View
109
Download
4
Embed Size (px)
DESCRIPTION
renew
Matrix Inverse dengan Metode Eliminasi Gauss JordanContoh Soal: MATRIX 3 x 3
3 1 2 3 0 0 3 0 0 297 0 0 297 0 0 1 0 0
5 1 -3 5 -2 -19 5 -2 0 495 -198 0 0 -198 0 0 1 0
-4 1 3 -4 7 17 -4 7 -99 0 0 -99 0 0 -99 0 0 1
1 0 0 1 -1 -2 1 -1 15 39 6 15 54 6 15
0 1 0 0 3 0 0 3 -57 228 -102 -57 -27 -102 -57
0 0 1 0 0 3 0 0 6 -24 42 6 81 42 6 R1 3R2-R1 3R3-2R1 R1 R2 2R3-19R2 99R1-4R3 99R2-7R3 R3 R1-2.5R2 R2 R3 R1/297 R2/-198 R3/-99
0.182 -0.09 0.273 -0.03 0.515 -0.21 -0.15 0.576 -0.06
1
Support: wardhanacare@gmail.com
1 -3 4 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
Tugas: MATRIX 4 x 4 1 1 -2 1 -1 8 -5 -2 1 1 -5 -5 1 1 0 0 1 1 0 0 1 29 0 0 -696 -174 0 0 0 -174 0 0 0 1 0 0 1 4 4 -2 1 4 24 18 1 4 24 0 1 116 696 0 0 0 696 0 0 0 696 0 0 0 1 0
0 2 -5 1 0 2 -5 1 0 2 5 11 0 2 5 -29 0 0 0 -29 0 0 0 -29 0 0 0 -29 0 0 0 1
1 0 0 0 1 3 -4 0 1 3 11 15 1 3 11 -27 1 33 184 -27 -512 -14 184 -27 456 -14 184 -27
0 1 0 0 0 1 0 0 0 1 5 5 0 1 5 -5 0 19 120 -5 120 6 120 -5 -96 6 120 -5
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 3 0 6 44 3 44 8 44 3 -12 8 44 3
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 -4 0 -8 -20 -4 -20 28 -20 -4 132 28 -20 -4 R1 R2+3R1 R3+4R1 R4 R1 R2 R3+5R2 R4+5R2 R1 R2 R3 3R3-4R4 R1 2R4+29R2 5R4+29R3 R4 R3-696R1 R3-6R2 R3 R4 4R2-R1 R2 R3 R4 R1/696 R2/-174 R3/696 R4/-29
-696 0 0 0 696 0 0 0 1 0 0 0
0.6552 -0.138 -0.017 0.1897 0.0805 -0.034 -0.046 -0.161 0.2644 0.1724 0.0632 -0.029 0.931 0.1724 -0.103 0.1379
2
Support: wardhanacare@gmail.com
MATRIX 5x51 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 3 0 -1 0 1 3 0 -1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 3 0 0 0 0 3 0 0 0 0 1 0 0 0 0 0 2 2 0 0 0 2 2 0 0 0 2 2 0 0 0 2 0 0 0 0 2 0 0 0 0 6 0 0 0 0 12 0 0 0 0 1 0 0 0 0 -3 -1 1 0 0 -3 -1 1 0 0 -3 -1 1 0 0 -3 2 1 0 0 -3 2 0 0 0 -9 6 0 0 0 0 6 0 0 0 0 1 0 0 -1 -2 0 2 0 -1 -2 0 2 0 -1 1 0 1 0 -1 1 -1 1 0 -1 1 -1 3 0 0 0 0 3 0 0 0 0 3 0 0 0 0 1 1 0 0 0 0 1 0 0 0 -1 1 0 0 0 -1 1 0 0 0 -1 1 0 0 0 -2 1 -2 2 -2 -2 1 -2 -2 -2 -2 1.000 -0.667 -0.167 -0.333 -0.667 0 1 0 0 0 0 1 0 0 0 0 1 -3 0 1 0 1 -3 3 1 0 1 -3 3 -1 0 2 -8 8 -1 0 2 8 8 -1 0.000 0.667 0.667 1.333 -0.333 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 -1 0 0 0 1 -1 1 0 1 2 -2 1 0 1 -2 -2 1 0.000 0.333 -0.167 -0.333 0.333 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 -1 0 -1 1 2 -1 0 -1 8 2 -1 0.000 -0.333 0.667 0.333 -0.333 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 2 0 2 -2 2 2 0 2 2 2 2 0.000 0.667 0.167 0.333 0.667 R1 R2 R3 R4 R5-R1 R1 R2 R3-3R2 R4 R5+R2 R1 R2 R3 R4-R3 R5 R1 R2 R3 R4 2R5-R4 R1 3R2+R5 3R3-R5 3R4+R5 R5 R1 R2 2R3+3R4 R4 R5 R1/1 R2/3 R3/12 R4/6 R5/3
3
Support: wardhanacare@gmail.com
Matrix Inverse dengan Metode AdjoinSoal: matrix 4 x 4 1 -3 4 0 1 -2 -1 -5 1 1 8 -2 0 2 -5 1
A=
Solve: Cari cof ( A ): M11 = (-1)1+1
-2 -1 -5 1 -1 -5 1 -2 -5 1 -2 -1 -3 4 0 1 4 0 1 -3 0 1 -3 4
1 8 -2 1 8 -2 1 1 -2 1 1 8 1 8 -2 1 8 -2 1 1 -2 1 1 8
2 -5 1 0 -5 1 0 2 1 0 2 -5 2 -5 1 0 -5 1 0 2 1 0 2 -5
=
1
x
114
= 114
M21
=
(-1)
2+1
=
-1
x
24
=
-24
M31
=
(-1)
3+1
=
1
x
-3
=
-3
M41
=
(-1)
4+1
=
-1
x
-33
=
33
M12
=
(-1)
1+2
=
-1
x
-14
=
14
M22
=
(-1)
2+2
=
1
x
-6
=
-6
M32
=
(-1)
3+2
=
-1
x
8
=
-8
M42
=
(-1)
4+2
=
1
x
-28
=
-28
4
Support: wardhanacare@gmail.com
M13
=
(-1)
1+3
-3 4 0 1 4 0 1 -3 0 1 -3 4 -3 4 0 1 4 0 1 -3 0 1 -3 4
-2 -1 -5 1 -1 -5 1 -2 -5 1 -2 -1 -2 -1 -5 1 -1 -5 1 -2 -5 1 -2 -1
2 -5 1 0 -5 1 0 2 1 0 2 -5 1 8 -2 1 8 -2 1 1 -2 1 1 8
=
1
x
46
=
46
M23
=
(-1)
2+3
=
-1
x
-30
=
30
M33
=
(-1)
3+3
=
1
x
11
=
11
M43
=
(-1)
4+3
=
-1
x
5
=
-5
M14
=
(-1)
1+4
=
-1
x
-162
= 162
M24
=
(-1)
2+4
=
1
x
30
=
30
M34
=
(-1)
3+4
=
-1
x
18
=
-18
M44
=
(-1)
4+4
=
1
x
24
=
24
5
Support: wardhanacare@gmail.com
Cof ( A ) =
114 -24 -3 33
14 -6 -8 -28
46 30 11 -5
162 30 -18 24
Adj ( A ) Adj ( A )
= = 114 14 46 162
{ Cof ( A ) }T -24 -3 -6 -8 30 11 30 -18
33 -28 -5 24
Inv ( A )
=
1 / Det ( A ) x Adj ( A ) 114 14 46 162 0.655 0.080 0.264 0.931 -24 -6 30 30 -0.138 -0.034 0.172 0.172 -3 -8 11 -18 -0.017 -0.046 0.063 -0.103 33 -28 -5 24 0.190 -0.161 -0.029 0.138
=
1/174
x
Inv ( A )
=
6
Support: wardhanacare@gmail.com
Soal: matrix 5
x51 0 0 0 1 0 2 2 0 0 2 2 0 0 0 2 0 0 0 2 0 0 0 2 2 0 -3 -1 1 0 -3 -1 1 0 0 -1 1 0 0 -3 1 0 0 -3 -1 0 1 3 0 -1 -1 -2 0 2 0 -2 0 2 0 -1 0 2 0 -1 -2 2 0 -1 -2 0 0 0 2 2 0 0 0 -3 -1 1 0 -1 -2 0 2
A=
Solve: Cari Cof ( A ) M11= (-1)1+1 1 3 0 -1 0 3 0 -1 0 1 0 -1 0 1 3 -1 0 1 3 0 = 1 x -4 = -4
M21=
(-1)1+1
= -1 x 0 = 0
M31=
(-1)1+1
=1x0=0
M41=
(-1)1+1
= -1 X 0 = 0
M51=
(-1)1+1
=1x0=0
7
Support: wardhanacare@gmail.com
M12=
(-1)1+1
0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0
0 2 2 0 0 2 2 0 0 0 2 0 0 0 2 0 0 0 2 2
0 -3 -1 1 0 -3 -1 1 0 0 -1 1 0 0 -3 1 0 0 -3 -1
-1 -2 0 2 0 -2 0 2 0 -1 0 2 0 -1 -2 2 0 -1 -2 0
= -1 x -6 = 6
M22=
(-1)1+1
= 1 x -4 = -4
M32=
(-1)1+1
= -1 x 0 = 0
M42=
(-1)1+1
=1x0=0
M52=
(-1)1+1
= -1 x -6 = 6
8
Support: wardhanacare@gmail.com
M13=
(-1)1+1
0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0
1 3 0 -1 0 3 0 -1 0 1 0 -1 0 1 3 -1 0 1 3 0
0 -3 -1 1 0 -3 -1 1 0 0 -1 1 0 0 -3 1 0 0 -3 -1
-1 -2 0 2 0 -2 0 2 0 -1 0 2 0 -1 -2 2 0 -1 -2 0
=1x0=0
M23=
(-1)1+1
= -1 x -4 = 4
M33=
(-1)1+1
= 1 x -1 = -1
M43=
(-1)1+1
= -1 x -3 = 3
M53=
(-1)1+1
=1x0=0
9
Support: wardhanacare@gmail.com
M14=
(-1)1+1
0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0
1 3 0 -1 0 3 0 -1 0 1 0 -1 0 1 3 -1 0 1 3 0
0 2 2 0 0 2 2 0 0 0 2 0 0 0 2 0 0 0 2 2
-1 -2 0 2 0 -2 0 2 0 -1 0 2 0 -1 -2 2 0 -1 -2 0
= -1 x 0 = 0
M24=
(-1)1+1
=1x8=8
M34=
(-1)1+1
= -1 x 2 = -2
M44=
(-1)1+1
=1x2=2
M54=
(-1)1+1
= -1 x 0 = 0
10
Support: wardhanacare@gmail.com
M15=
(-1)1+1
0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0
1 3 0 -1 0 3 0 -1 0 1 0 -1 0 1 3 -1 0 1 3 0
0 2 2 0 0 2 2 0 0 0 2 0 0 0 2 0 0 0 2 2
0 -3 -1 1 0 -3 -1 1 0 0 -1 1 0 0 -3 1 0 0 -3 -1
= 1 x -2 = -2
M25=
(-1)1+1
= -1 x 0 = 0
M35=
(-1)1+1
=1x2=2
M45=
(-1)1+1
= -1 x 2 = -2
M55=
(-1)1+1
= 1 x -2 = -2
11
Support: wardhanacare@gmail.com
Cof ( A ) =
-4 0 0 0 0
6 -4 0 0 6
0 4 -1 3 0
0 8 -2 2 0
-2 0 2 -2 -2
Adj ( A ) = -4 6 0 0 -2 1 0 0 0 1 2
Adj ( A ) =
{ Cof ( A ) }T 0 0 0 -4 0 0 4 -1 3 8 -2 2 0 2 -2 0 1 3 0 -1 0 0 2 2 0 0 0 -3 -1 1
0 6 0 0 -2 0 -1 -2 0 2 1 0 0 0 1 0 1 3 0 -1 0 0 2 2 0 0 0 -3 -1 1
Det ( A ) =
Det ( A ) =
Inv ( A )
= 1 / Det ( A ) x Adj ( A ) -4 6 0 0 -2 -2 3 0 0 -1 0 -4 4 8 0 0 -2 2 4 0 0 0 -1 -2 2 0 0 -0.5 -1 1 0 0 3 2 -2 0 0 1.5 1 -1 0 6 0 0 -2 0 3 0 0 -1
=
1/2
x
Inv ( A )
=
12
Support: wardhanacare@gmail.com
Result:Gauss Jordan Inverse Matrix 4x 4 Adjoint
0.6552 0.0805 0.2644 0.931
-0.138 -0.034 0.1724 0.1724
-0.017 -0.046 0.0632 -0.103
0.1897 -0.161 -0.029 0.1379
=
0.655 -0.138 -0.017 0.190 0.080 -0.034 -0.046 -0.161 0.264 0.172 0.063 -0.029 0.931 0.172 -0.103 0.138
Inverse Matrix 5x 5
1 -0.667 -0.167 -0.333 -0.667
0 0.667 0.667 1.333 -0.333
0 0.333 -0.167 -0.333 0.333
0 -0.333 0.667 0.333 -0.333
0 0.667 0.167 0.333 0.667
-2 3 0 0 -1
0 -2 2 4 0
0 0 -0.5 -1 1
0 0 1.5 1 -1
0 3 0 0-1
13
Support: wardhanacare@gmail.com