27
Matrica krutosti 19 MATRICA KRUTOSTI 2 2 2 2.1. Uvod Ovo poglavlje obuhvata osnove metoda pomjeranja tj. osnovni koncept MKE. Bez obzira što ima još vidova MKE ovaj je najjasniji i na ovom konceptu može se naučiti procedura metoda konačnih elemenata. Osim toga dat je niz primjera koji će pomoći da se shvati kako se primjenjuje MKE. Svi primjeri urađeni su za linearnu elastičnu oprugu ili sistem opruga. Prvo je izvedena matrica krutosti elemenata, a onda združivanjem matrica izvedena je ukupna matrica krutosti struktura. Metod pomjeranja može se i često se naziva direktni jer se direktno dobiva matrica krutosti. Nakon postavljanja ukupne matrice strukture postavljaju se granični uslovi. Oni mogu biti homogeni i nehomogeni, što je objašnjeno u ovom poglavlju i pokazano na primjeru. Jednačina strukture povezuje vektor sila i vektor pomjeranja pomoću matrice krutosti strukture. Rješenja za nepoznata pomjeranja ili sile dobiju se iz jednačine strukture kada se napiše u obliku sistema jednačina. Drugi način dobivanja matrice krutosti je primjena principa minimuma potencijalne energije. Postupak se svodi na traženje funkcionala a poslije toga mimimizacije po mogućim pomjeranjima. Kao i u slučaju direktnog pristupa sve je primijenjeno na oprugu a zatim na sistem opruga sa malim brojem stepeni slobode. Isti koncept je primjenljiv i na sistem sa velikim brojem stepeni slobode.

Metod konačnih elemenata - am.unze.ba 2.pdf · Matrica krutosti 20 2.2. Pojam matrice krutosti Metod pomjeranja predstavlja osnovu za razumijevanje metoda konačnih elemenata. Osnovno

Embed Size (px)

Citation preview

Page 1: Metod konačnih elemenata - am.unze.ba 2.pdf · Matrica krutosti 20 2.2. Pojam matrice krutosti Metod pomjeranja predstavlja osnovu za razumijevanje metoda konačnih elemenata. Osnovno

Matrica krutosti

19

MATRICA KRUTOSTI 222

2.1. Uvod Ovo poglavlje obuhvata osnove metoda pomjeranja tj. osnovni koncept MKE. Bez obzira što ima još vidova MKE ovaj je najjasniji i na ovom konceptu može se naučiti procedura metoda konačnih elemenata. Osim toga dat je niz primjera koji će pomoći da se shvati kako se primjenjuje MKE. Svi primjeri urađeni su za linearnu elastičnu oprugu ili sistem opruga. Prvo je izvedena matrica krutosti elemenata, a onda združivanjem matrica izvedena je ukupna matrica krutosti struktura. Metod pomjeranja može se i često se naziva direktni jer se direktno dobiva matrica krutosti. Nakon postavljanja ukupne matrice strukture postavljaju se granični uslovi. Oni mogu biti homogeni i nehomogeni, što je objašnjeno u ovom poglavlju i pokazano na primjeru. Jednačina strukture povezuje vektor sila i vektor pomjeranja pomoću matrice krutosti strukture. Rješenja za nepoznata pomjeranja ili sile dobiju se iz jednačine strukture kada se napiše u obliku sistema jednačina. Drugi način dobivanja matrice krutosti je primjena principa minimuma potencijalne energije. Postupak se svodi na traženje funkcionala a poslije toga mimimizacije po mogućim pomjeranjima. Kao i u slučaju direktnog pristupa sve je primijenjeno na oprugu a zatim na sistem opruga sa malim brojem stepeni slobode. Isti koncept je primjenljiv i na sistem sa velikim brojem stepeni slobode.

Page 2: Metod konačnih elemenata - am.unze.ba 2.pdf · Matrica krutosti 20 2.2. Pojam matrice krutosti Metod pomjeranja predstavlja osnovu za razumijevanje metoda konačnih elemenata. Osnovno

Matrica krutosti

20

2.2. Pojam matrice krutosti Metod pomjeranja predstavlja osnovu za razumijevanje metoda konačnih elemenata. Osnovno u metodu pomjeranja je da se shvati šta je to matrica krutosti i kako se ona formira. Svaki konačni element ima svoju matricu krutosti koja se označava sa k. Pri tome važi jednačina da je:

.dkf U ovoj jednačini k zavisi od koordinata lokalnog koordinatnog sistema (x, y, z), čvornih pomjeranja d i vektora sila f u lokalnom koordinatnom sistemu. Struktura na koju se primjenjuje metod konačnih elemenata sastoji se od niza međusobno povezanih konačnih elemenata. Ukupna matrica krutosti strukture označava se sa K i nije jednaka prostom zbiru matrica krutosti pojedinih elemenata. Matrica krutosti strukture definira se u globalnom koordinatnom sistemu. Pomjeranja čvorova i sile su također definirani u globalnom koordinatnom sistemu.

2.3. Postupak dobivanja matrice krutosti za element opruge

Za pojašnjenje kako se dobiva matrica krutosti nekog elementa najbolje je koristiti jednodimenzionalnu linearnu oprugu koja se ponaša po Hooke-ovom zakonu, a sile djeluju samo u pravcu opruge. Takva opruga data je na slici 2.1.

Slika 2.1. Opruga u lokalnom koordinatnom sistemu Tačke 1 i 2 na krajevima opruge ograničavaju element i zovu se čvorovi. Sile f1x i f2x su sile koje djeluju u čvorovima 1 i 2 na oprugu u pravcu ose x lokalnog koordinatnog sistema i u pozitivnom smjeru te ose. Pošto sile djeluju duž ose x i pomjeranja opruge će se dešavati duž iste ose i to su

f2x2 xf1x 1

Page 3: Metod konačnih elemenata - am.unze.ba 2.pdf · Matrica krutosti 20 2.2. Pojam matrice krutosti Metod pomjeranja predstavlja osnovu za razumijevanje metoda konačnih elemenata. Osnovno

Matrica krutosti

21

pomjeranja d1x i d2x . Pomjeranja čvorova zovu se stepeni slobode. Čvorovi 1 i 2 imaju po jedan stepen slobode. Oznakom k obilježava se konstanta opruge odnosno krutost opruge. Po

analogiji sa oprugom može se napisati da je krutost grede L

AEk gdje je:

A – poprečni presjek, E – modul elastičnosti, L – dužina prizmatične grede.

Za štap kružnog poprečnog presjeka krutost je data izrazom L

JGk , pri

čemu je štap opterećen na torziju, gdje su :

J – polarni moment inercije, G – modul klizanja materijala.

Postavljanje izraza za matricu krutosti predstavlja uspostavljanje veze između sila koje djeluju u čvorovima i pomjeranja tih čvorova. Za element opruge, dat na slici 2.1, veza matrice sila u čvorovima i pomjeranja dati su izrazom:

x

x

x

x

d

d

kk

kk

f

f

2

1

2221

1211

2

1 (2.1)

gdje su kij elementi matrice krutosti koje treba odrediti. Postavljanje matrice krutosti ostvaruje se kroz nekoliko koraka koji će ovdje biti ukratko opisani.

2.3.1. Izbor tipa elementa

Slika 2.2. Djelovanje sila na oprugu

d2x

2

2

x

x

d1x

1

1

k

L

T T

Page 4: Metod konačnih elemenata - am.unze.ba 2.pdf · Matrica krutosti 20 2.2. Pojam matrice krutosti Metod pomjeranja predstavlja osnovu za razumijevanje metoda konačnih elemenata. Osnovno

Matrica krutosti

22

Na krajevima opruge u čvorovima djeluju sile kako je prikazano na slici 2.2 duž ose x lokalnog koordinatnog sistema. Prije deformacije nastale usljed djelovanja sila opruga je bila dužine L. Sile T (tension) su istežuće sile.

2.3.2. Izbor funkcije pomjeranja Prethodno je uočeno da se opruga ponaša po Hookovom zakonu i da je veza napon deformacija linearna. Međutim, to i ne mora uvijek biti linearna relacija. Bez obzira kakva je funkcija "u" ona se može nazvati funkcijom pomjeranja u lokalnom koordinatnom sistemu. Pomjeranje čvornih tačaka se ostvaruje duž ose x opruge i smatra se linearnom funkcijom sa navedenim krajnjim tačkama i može se opisati, u lokalnom koordinatnom sistemu, funkcijom pomjeranja u = a1 + a2 x (2.2) U opštem slučaju broj koeficijenata "a" jednak je ukupnom broju stepeni slobode jednog elementa. Ukupan broj stepeni slobode opruge na slici 2.1 iznosi 2 tj. po jedno aksijalno pomjeranje u svakom čvoru. Jednačina (2.2) može se napisati u matričnom obliku:

2

11a

axu (2.3)

Funkcija pomjeranja (2.3) može se izraziti kao funkcija čvornih pomjeranja d1x i d2x . To se može postići izračunavanjem pomjeranja "u" u svakom čvoru i iznalaženjem a1 i a2 . Za vrijednost x = 0 funkcija pomjeranja u čvoru 1 je: u (0) = d1x = a1 (2.4) Za vrijednost x = L funkcija pomjeranja u čvoru 2 je data izrazom:

u (L) = d2x = a2 L + d1x

L

dda xx 12

2

(2.5)

Page 5: Metod konačnih elemenata - am.unze.ba 2.pdf · Matrica krutosti 20 2.2. Pojam matrice krutosti Metod pomjeranja predstavlja osnovu za razumijevanje metoda konačnih elemenata. Osnovno

Matrica krutosti

23

Kada se dobivene vrijednosti koeficijenata uvrste u jednačinu pomjeranja (2.2) dobije se:

u = a1 + a2 x

xL

dddu xx

x

121 (2.6)

I jednačina (2.6) predstavlja pomjeranje tačaka dato u lokalnom koordinatnom sistemu. Jednačina (2.6) može se napisati u matričnom obliku:

x

x

d

d

L

x

L

xu

2

11 (2.7)

x

x

d

dNNu

2

121

L

xNi

L

xN 21 1 su funkcije oblika zato što Ni izražavaju oblik

razmatrane funkcije pomjeranja nad domenom elementa kada i-ti stepen slobode elementa ima jediničnu vrijednost a svi ostali stepeni slobode su nula. N1 i N2 predstavljaju linearne funkcije takvih osobina da je N1 = 1 u čvoru 1 i N1 = 0 u čvoru 2, a da je N2 = 1 u čvoru 2 i N2 = 0 u čvoru 1. Također je N1 + N2 = 1 za aksijalnu koordinatu duž grede. Ove funkcije se često zovu interpolacione funkcije, zato što se vrijednost funkcije između čvorova dobiva interpolacijom vrijednosti funkcija u čvorovima.

2.3.3. Definicije veza između deformacije i pomjeranja i napona i deformacija

Sile istezanja T proizvode ukupno izduženje opruge. Za linearnu oprugu T i su vezani Hooke-ovim zakonom: T = k (2.8) je ukupna dilatacija opruge

Page 6: Metod konačnih elemenata - am.unze.ba 2.pdf · Matrica krutosti 20 2.2. Pojam matrice krutosti Metod pomjeranja predstavlja osnovu za razumijevanje metoda konačnih elemenata. Osnovno

Matrica krutosti

24

= u (L) – u (0)

= d2x – d1x (2.9)

Slika 2.3. Pomjeranje čvornih tačaka opruge Iz jednačine (2.9) se vidi da ukupno pomjeranje predstavlja razliku pomjeranja čvorova u x pravcu. Ukupna dilatacija prikazana je na slici 2.3. d1x je negativna vrijednost jer se pomjeranje čvora 1 vrši u suprotnom smjeru od pozitivnog smjera ose x, dok je d2x pozitivna vrijednost.

2.3.4. Određivanje elemenata matrice krutosti Određivanje ukupne matrice krutosti počinje određivanjem članova matrice krutosti elemenata. Prvo se usvoji konvencija o znaku sila u čvorovima. Za sile u čvorovima na slici 2.1 uzima se da je: f1x = - T f2x = T (2.10) Sila u opruzi u čvoru 1 je: T = k = - f1x = k (d2x – d1x) (2.11) a sila u opruzi u čvoru 2 je:

T = k = + f2x = k (d2x – d1x) ili (2.12)

f1x = k (d1x – d2x) (2.13)

f2x = k (d2x – d1x) (2.14) Jednačine (2.13) i (2.14) mogu se napisati u matričnom obliku:

d2x

2

d1x

1

L

k

Page 7: Metod konačnih elemenata - am.unze.ba 2.pdf · Matrica krutosti 20 2.2. Pojam matrice krutosti Metod pomjeranja predstavlja osnovu za razumijevanje metoda konačnih elemenata. Osnovno

Matrica krutosti

25

x

x

x

x

d

d

kk

kk

f

f

2

1

2

1 (2.15)

Jednačina (2.15) važi za oprugu sa slike 2.1 duž ose x. Osnovni oblik matrice krutosti za linijski element dat je izrazom:

kk

kkk (2.16)

Matrica krutosti za element linearne opruge ima članove k. To je lokalna matrica krutosti ili matrica krutosti za dotični element. Ako se posmatra matrica (2.16) vidi se da je k simetrična kvadratna matrica tj. kij = kji .

2.3.5. Sabiranje jednačina elemenata, postavljanje globalnih jednačina i uvođenje graničnih uslova

Ako struktura ima više elemenata za svaki se odredi matrica krutosti i vektor sila u čvorovima. Globalna matrica krutosti dobije se prema izrazu (2.17). Globalna matrica krutosti i globalna matrica sila se povezuju pomoću jednačina ravnoteže sila u čvorovima elemenata. To se ostvaruje vezom sila i deformacija i jednačinama kompatibilnosti opisanim u direktnom metodu. Ova procedura odnosi se na strukturu koja ima i više elemenata. Izrazima (2.17) opisane su matrice krutosti cijele strukture i vektor sila:

)(

11

eN

e

N

e

fkFikK

(2.17)

K i {F} u izrazu (2.17) su krutost elemenata i sile u globalnom koordinatnom sistemu. Znak ne znači prosto sabiranje pojedinačnih matrica krutosti u ukupnu – globalnu matricu nego predstavlja združivanje matrica pojedinih elemenata, što će biti prikazano na primjerima i u tački 2.3.

Page 8: Metod konačnih elemenata - am.unze.ba 2.pdf · Matrica krutosti 20 2.2. Pojam matrice krutosti Metod pomjeranja predstavlja osnovu za razumijevanje metoda konačnih elemenata. Osnovno

Matrica krutosti

26

2.3.6. Računanje čvornih pomjeranja Matrica krutosti K strukture je singularna. Da bi se izračunala pomjeranja uvode se granični uslovi i rješava sistem jednačina. dKF (2.18)

2.3.7. Računanje sila Ukoliko su zadana pomjeranja nepoznate veličine su sile koji se odrede iz sistema jednačina. Primjer 2.1. Kao ilustracija provođenja prethodno opisane procedure razmatra se sistem opruga. Elementi nekog sistema koji su međusovno povezani zajedno čine jednu strukturu. Za potrebe analize strukture mora se odrediti ukupna matrica krutosti sistema elemenata. Prije razmatranja greda i okvira kao složenijih struktura analiziran je sistem dvije opruge dat na slici 2.4. Opruge 1 i 2 su vezane u čvoru 3.

Slika 2.4. Sistem od dvije opruge

Čvor 1 je fiksan, a sila F3x djeluje u čvoru 3, i sila F2x u čvoru 2. Krutosti opruga su k1 i k2. Osa x je istovremeno i osa lokalnog koordinatnog sistema za obadvije opruge, ali i globalna osa. Za element 1, oprugu može se napisati matrična jednačina (2.19) koja daje vezu između sila i pomjeranja

x3

x1

11

11

x3

x1

d

d

kk

kk

f

f (2.19)

F2x

2 xF3x

1

1 2

3

k2k1

Page 9: Metod konačnih elemenata - am.unze.ba 2.pdf · Matrica krutosti 20 2.2. Pojam matrice krutosti Metod pomjeranja predstavlja osnovu za razumijevanje metoda konačnih elemenata. Osnovno

Matrica krutosti

27

Za element 2 može se napisati slična jednačina (2.20)

x

x

x

x

d

d

kk

kk

f

f

2

3

22

22

2

3 (2.20)

Elementi 1 i 2 moraju za vrijeme pomjeranja ostati povezani u čvoru 3. Ova činjenica predstavlja kontinuitet strukture, odnosno kompatibilnost. Ovo se može objasniti tako da pomjeranje čvora 3 na elementu 1 mora biti isto kao pomjeranje čvora 3 na elementu 2 ili d3x

1 = d3x2 = d3x (2.21)

Relacija (2.21) prestavlja kompatibilnost pomjeranja. Prethodno je rečeno da su jednačine ravnoteže sila u čvorovima 3, 2 i 1 date izrazom:

F3x = sila u opruzi 1 – sila u opruzi 2

F2x = sila u opruzi 2 (2.22)

F1x = sila u opruzi 1

Slika 2.5. Ravnoteža čvorova

Sila F1x predstavlja reakciju fiksnog oslonca. Kada se primijene uslovi ravnoteže sila u čvorovima 3., 2. i 1. dobiju se jednačine:

x1 = 0 F1x = - k1 d1x + k1 d3x

x2 = 0 F2x = - k2 d3x + k2 d2x (2.23)

x3 = 0 F3x = - k1 d1x + k1 d3x + k2 d3x – k2 d2x

F2x

F3x

2F1x

f1xf1x f3x f3x f3x f3x f2x f2x11 1 1 2 2 2 2

1

1 2

3

Page 10: Metod konačnih elemenata - am.unze.ba 2.pdf · Matrica krutosti 20 2.2. Pojam matrice krutosti Metod pomjeranja predstavlja osnovu za razumijevanje metoda konačnih elemenata. Osnovno

Matrica krutosti

28

gdje je: f1x = k1 d1x f3x = k2 d3x f3x = k1 d3x f2x = k2 d2x U matričnom obliku jednačine (2.23) su:

x

x

x

x

x

x

d

d

d

kk

kk

kkkk

F

F

F

1

2

3

11

22

1221

1

2

3

0

0 (2.24)

Kada se preuredi jednačina (2.24) može se napisati u obliku (2.25) i (2.26):

x

x

x

x

x

x

d

d

d

kkkk

kk

kk

F

F

F

3

2

1

2121

22

11

3

2

1

0

0

(2.25)

dKF (2.26) gdje je: {F} - globalni vektor sila u čvorovima {d} - globalni vektor čvornih pomjeranja [K] - globalna ili totalna matrica krutosti

2121

22

11

0

0

kkkk

kk

kk

K (2.27)

Iz prethodno navedenog slijedi da se za postavljanje matrice krutosti za skup opruga koriste relacije: - sila/pomjeranje - jednačine kompatibilnosti - ravnoteža sila u čvorovima.

Page 11: Metod konačnih elemenata - am.unze.ba 2.pdf · Matrica krutosti 20 2.2. Pojam matrice krutosti Metod pomjeranja predstavlja osnovu za razumijevanje metoda konačnih elemenata. Osnovno

Matrica krutosti

29

2.4. Formiranje ukupne matrice krutosti (direktni metod)

Direktni metod predstavlja praktičniji metod od prethodno navedenog. Zasniva se na superpoziciji matrice krutosti elemenata koje su sastavni dijelovi posmatranog sistema. Matrica krutosti elemenata 1 d1x d3x

11

111

kk

kkk (2.28)

Matrica krutosti elemenata 2 d3x d2x

22

222

kk

kkk (2.29)

Oznake dix napisane iznad kolona matrica predstavljaju oznake za stepene slobode pridružene elementima opruge na slici 2.4. Znači da je element 1 određen čvorovima 1 i 3, a element 2 čvorovima 2 i 3. Matrice krutosti dva elementa matrice ne povezuju isti stepeni slobode. Tako je elementu 1 pridruženo aksijalno pomjeranje čvorova 1 i 3, a elementu 2 pomjeranja čvorova 2 i 3. Zato se ni matrice ne mogu direktno sabrati. Svakom elementu matrice pridruženi su stepeni slobode strukture. Da bi se proširila matrica krutosti da bude reda totalne matrice jednostavno se dodaje vrsta i kolona nula za pomjeranje koje nije pridruženo posmatranom elementu. Npr. za element 1 prepiše se matrica krutosti u proširenom obliku.

13

12

11

13

12

11

1

101

000

101

x

x

x

x

x

x

f

f

f

d

d

d

k (2.30)

Vidi se da d2x

1 i f2x1 nisu priduženi matrici krutosti elementa 1. Slično je i

za element 2 i dato jednačinom:

Page 12: Metod konačnih elemenata - am.unze.ba 2.pdf · Matrica krutosti 20 2.2. Pojam matrice krutosti Metod pomjeranja predstavlja osnovu za razumijevanje metoda konačnih elemenata. Osnovno

Matrica krutosti

30

23

22

21

23

22

21

2

110

110

000

x

x

x

x

x

x

f

f

f

d

d

d

k (2.31)

Ravnoteža sila u svakom čvoru je

x

x

x

x

x

x

x

F

F

F

f

f

f

f

3

2

1

23

22

13

11

0

0 (2.32)

Kada se saberu jednačine za sistem opruga dobije se (2.33)

13

12

11

1

101

000

101

x

x

x

d

d

d

k +

23

22

21

2

110

110

000

x

x

x

d

d

d

k =

x

x

x

F

F

F

3

2

1

(2.33)

a zatim (2.34)

x

x

x

x

x

x

F

F

F

d

d

d

kkkk

kk

kk

3

2

1

3

2

1

2121

12

11

0

0

(2.34)

Oznake elemenata u vektoru d, (2.34) nisu navedene jer je d1x

1 = d1x , d2x

2 = d2x i d3x1 = d3x

2 = d3x . Ovaj metod združivanja pojedinačnih matrica krutosti u ukupnu matricu krutosti strukture zove se direktni metod. Ovo je najvažniji korak u metodu konačnih elemenata. U jednostavnom slučaju matrica se može proširiti do reda ukupne matrice krutosti bez obzira koliki on bio. Može se koristiti i skraćeni postupak direktnog metoda da se dobije ukupna matrica krutosti. Kolone svake matrice krutosti pojedinih elemenata se označe odgovarajućim stepenima slobode koji se javljaju u problemu koji se rješava d1x d3x d3x d2x

22

222

11

111

kk

kkk

kk

kkk (2.35)

Page 13: Metod konačnih elemenata - am.unze.ba 2.pdf · Matrica krutosti 20 2.2. Pojam matrice krutosti Metod pomjeranja predstavlja osnovu za razumijevanje metoda konačnih elemenata. Osnovno

Matrica krutosti

31

Ukupna matrica krutosti (2.27) strukture se dobije direktnim sabiranjem članova matrice k1 i k2 d1x d2x d3x

2121

22

11

0

0

kkkk

kk

kk

K (2.36)

333231

232221

131211

kkk

kkk

kkk

K

2.5. Granični uslovi Za svaku razmatranu strukturu, pa i za sistem opruga, slika 2.4 moraju se uvesti odgovarajući granični uslovi. Bez graničnih uslova K će biti singularna tako da joj je determinanta jednaka nuli i inverzna matrica ne postoji. U fizičkom smislu bez odgovarajućih graničnih uslova; kinematičkih ograničenja ili uslova oslanjanja struktura bi se kretala kao kruto tijelo. Granični uslovi mogu biti: - homogeni koji kompletno sprečavaju svako kretanje, - nehomogeni gdje su date i poznate vrijednosti za pomjeranja različita

od nule. U opštem slučaju, jednačine ravnoteže se dobiju iz matrične jednačine

2

1

2

1

2221

1211

F

F

d

d

KK

KK (2.37)

Neka je d1 slobodno ili neograničeno pomjeranje a d2 zadano pomjeranje. U prvoj jednačini d1 je nepoznata koju treba odrediti, a u drugoj je to sila F2.

K11 d1 + K12 d2 = F1 K11 d1 = F1 – K12 d2 (2.38)

K21 d1 + K22 d2 = F2 F2 = K21 d1 + K22 d2

Page 14: Metod konačnih elemenata - am.unze.ba 2.pdf · Matrica krutosti 20 2.2. Pojam matrice krutosti Metod pomjeranja predstavlja osnovu za razumijevanje metoda konačnih elemenata. Osnovno

Matrica krutosti

32

Sila F1 je poznata sila u čvoru, a F2 je nepoznata sila u čvoru u kom je poznato pomjeranje d2. Prvo se odredi pomjeranje d1 iz prve jednačine, zatim se uvrsti u drugu i izračuna nepoznata sila F2. Smatra se da K11 matrica nije singularna pa se može odrediti pomjeranje d1. Da bi se ilustrirala dva osnovna tipa graničnih uslova posmatra se jednačina (2.39) u kojoj su:

x

x

x

x

x

F

F

F

d

d

kkkk

kk

kk

3

2

1

3

2

2121

22

11 0

0

0

(2.39)

uneseni homogeni granični uslovi. Granični uslovi su takvi da su pomjeranja u čvoru unijete vrijednosti tj. d1x = 0, tj. čvor je fiksan. Iz matrične jednačine (2.39) dobiju se tri algebarske jednačine:

xxx

xxx

xxx

Fdkkdkk

Fdkdk

Fdkdk

3321221

23222

13121

)()0(

)0(0

)0()0(

(2.40)

Izdvojene jednačine pišu se u obliku:

x

x

x

x

F

F

d

d

kkk

kk

3

2

3

2

212

22 (2.41)

Na opisani način izvršena je u stvari samo particija matrice. Za homogene granične uslove prethodna jednačina se može dobiti direktno brisanjem određene vrste i kolone koja odgovara nultom pomjeranju. Brišu se prva vrsta i kolona jer je d1x = 0. F1x ne mora biti nula i može se naći na način koji slijedi. Poslije izračunavanja F1x odrede se d2x i d3x iz (2.42):

Page 15: Metod konačnih elemenata - am.unze.ba 2.pdf · Matrica krutosti 20 2.2. Pojam matrice krutosti Metod pomjeranja predstavlja osnovu za razumijevanje metoda konačnih elemenata. Osnovno

Matrica krutosti

33

x

x

x

x

x

x

F

F

kk

kkk

F

F

kkk

kk

d

d

3

2

11

112

3

2

1

212

22

3

2

11

111

(2.42)

Iz jednačine (2.40) kako je navedeno izračuna se F1x (prva od tri jednačine). F1x = - k1 d3x (2.43) F1x je nepoznata sila u čvoru 1. tj. reakcija veze i može se izraziti preko ostalih sila koje sve zajedno čine ravnotežu sistema F1x = - F2x = - F3x (2.44) Za sve homogene granične uslove mogu se brisati vrste i kolone koje odgovaraju nultim stepenima slobode u osnovnom, prvobitnom sistemu jednačina. Tada se riješe nepoznata pomjeranja. Na opisani način bi se radilo kada se problem rješava korak po korak bez korištenja računara za slučaj homogenih graničnih uslova. U slučaju nehomogenih graničnih uslova neka od datih pomjeranja su različita od nule. Neka je npr. d1x poznato tj. d1x = . Jednačina tada ima oblik (2.45).

x

x

x

x

x

F

F

F

d

d

kkkk

kk

kk

3

2

1

3

2

2121

22

11

0

0 (2.45)

xxx

xxx

xxx

Fdkkdkk

Fdkdk

Fdkdk

3321221

23222

13121

)(

0

0

(2.46)

Posmatraju se druga i treća jednačina u kojima su sile F2x i F3x poznate i d1x = poznato, a F1x nepoznata sila.

1332122

23222

)( kFdkkdk

Fdkdk

xxx

xxx

(2.47)

Page 16: Metod konačnih elemenata - am.unze.ba 2.pdf · Matrica krutosti 20 2.2. Pojam matrice krutosti Metod pomjeranja predstavlja osnovu za razumijevanje metoda konačnih elemenata. Osnovno

Matrica krutosti

34

u matričnom obliku:

x

x

x

x

Fk

F

d

d

kkk

kk

31

2

3

2

212

22

(2.48)

Kada se koriste nehomogeni granični uslovi ne može se na početku brisati prva vrsta i kolona kao što je to bilo u prethodnom slučaju. Ako bi se to uradilo član k1 će se zanemariti i javiće se greška u rezultatima pomjeranja. Za homogene granične uslove u opštem slučaju treba članove u kojima je sadržano poznato pomjeranje prebaciti tako da se pojave na desnoj strani u matrici sila. To se radi prije rješavanja nepoznatih čvornih pomjeranja. Ako se pogleda posljednja matrična jednačina (2.48) vidi se da je član k1 koji sadrži poznato pomjeranje pridužen sili F3x na desnoj strani. Nakon toga mogu se izračunati d2x i d3x na isti način kao i u slučaju homogenih graničnih uslova. Na kraju je bitno naglasiti neke osobine matrice krutosti K: - K je simetrična matrica, - K je singularna matrica i nema inverznu matricu sve dok se ne uvedu

granični uslovi tj. dok se ne spriječi kretanje sistema kao krutog tijela, odnosno dok se ne ukloni singularitet,

- članovi matrice [K] na dijagonali su uvijek pozitivni. U suprotnom pozitivna sila Fi koja djeluje u čvoru može proizvesti negativno pomjeranje di što je suprotno ponašanju bilo koje postojeće strukture.

Primjer 2.2. Za sistem opruga na slici 2.5 odrediti: a) globalnu matricu krutosti, b) pomjeranja čvorova 2, 3 i 4, c) sile u čvorovima sistema, d) sile na elementima sistema. Čvor 1 je nepomičan a pomjeranje čvora 5 je zadano i iznosi = 20 mm. Krutosti svih opruga su iste i iznose k = 200 kN/m.

Page 17: Metod konačnih elemenata - am.unze.ba 2.pdf · Matrica krutosti 20 2.2. Pojam matrice krutosti Metod pomjeranja predstavlja osnovu za razumijevanje metoda konačnih elemenata. Osnovno

Matrica krutosti

35

F3x21

1 2 433 4 5 5

dkk k k

Slika 2.5 Sistem opruga

a) Matrice krutosti svih elemenata su jednake

200200

2002004321 kkkk (2.49)

Sabiranjem i superpozicijom matrica pojedinih elemenata dobije se ukupna matrica krutosti:

200200000

20040020000

02004002000

00200400200

000200200

000

00

00

0

000

5554

454443

343332

34232221

1211

kk

kkk

kkk

kkkk

kk

K (2.50)

b) Globalna matrica krutosti povezana je sa globalnim vektorom sila i

vektorom pomjeranja. Izraz je slijedeći:

x

x

x

x

x

x

x

x

x

x

d

d

d

d

d

F

F

F

F

F

5

4

3

2

1

5

4

3

2

1

200200000

20040020000

02004002000

00200400200

000200200

(2.51)

U izraz (2.51) uvrste se granični uslovi d1x = 0 i d5x = 20 mm, te F2x = 0, F3x = 0, F4x = 0. Pri tome su uzeti drugi, treći i četvrti red matrice

Page 18: Metod konačnih elemenata - am.unze.ba 2.pdf · Matrica krutosti 20 2.2. Pojam matrice krutosti Metod pomjeranja predstavlja osnovu za razumijevanje metoda konačnih elemenata. Osnovno

Matrica krutosti

36

02,0

0

20040020000

02004002000

00200400200

0

0

0

4

3

2

x

x

x

d

d

d

(2.52)

Desna strana jednačina se pomnoži i sredi pa se dobije (2.53):

x

x

x

d

d

d

4

3

2

4002000

200400200

0200400

4

0

0

(2.53)

Rješavanjem jednačine dobije se: d2x = 0,005 m d3x = 0,01 m d4x = 0,015 m (2.54) c) Globalne sile u čvorovima se dobiju kada se izračunata pomjeranja

uvrste u jednačine (2.51) iz čega slijedi:

kNF

F

F

F

kNF

x

x

x

x

x

0,1)02,0()200()015,0()200(

0)02,0()200()015,0()400()01,0()200(

0)015,0()200()01,0()400()005,0()200(

0)01,0()200()005,0()400(

0,1)05,0()200(

5

4

3

2

1

(2.55)

Za izračunate vrijednosti F1x , zadano F5x i zadano u čvoru 5 sistem opruga će biti u ravnoteži. d) Ako se traže sile u svim čvorovima onda se svaka opruga posmatra kao

zaseban element i osmatra ravnoteža svakog elementa:

Element 1

005,0

0

200200

200200

2

1

x

x

f

f (2.56)

Page 19: Metod konačnih elemenata - am.unze.ba 2.pdf · Matrica krutosti 20 2.2. Pojam matrice krutosti Metod pomjeranja predstavlja osnovu za razumijevanje metoda konačnih elemenata. Osnovno

Matrica krutosti

37

f1x = (200) (0) + (-200) (0,005) = - 1 kN

f2x = (-200) (0) + (200) (0,005) = -1 kN (2.57) Element 2

01,0

005,0

200200

200200

3

2

x

x

f

f (2.58)

f2x = (200) (0,005) + (-200) (0,01) = -1 kN

f3x = (-200) (0,005) + (200) (0,01) = 1 kN (2.59) Element 3

015,0

01,0

200200

200200

4

3

x

x

f

f (2.60)

f3x = (200) (0,01) + (-200) (0,015) = -1 kN

f4x = (-200) (0,01) + (200) (0,015) = 1 kN (2.61) Element 4

02,0

015,0

200200

200200

5

4

x

x

f

f (2.62)

f4x = (200) (0,015) + (-200) (0,02) = -1 kN

f5x = (-200) (0,015) + (200) (0,02) = 1 kN (2.63)

2.6. Princip minimuma potencijalne energije za dobivanje jednačina elementa

Osim metoda pomjeranja u kome su osnovne nepoznate pomjeranja u čvornim tačkama, postoji metoda sila. Osnovne nepoznate u metodu sila su sile u čvorovima. U hibridnom metodu su nepoznate i jedne i druge veličine. Jednačine elementa mogu se dobiti i na druge načine osim opisanih. Jedan

Page 20: Metod konačnih elemenata - am.unze.ba 2.pdf · Matrica krutosti 20 2.2. Pojam matrice krutosti Metod pomjeranja predstavlja osnovu za razumijevanje metoda konačnih elemenata. Osnovno

Matrica krutosti

38

od njih je princip minimuma potencijalne energije za dobivanje jednačina elemenata odnosno matrice krutosti. Ovaj metod predstavlja opći pristup. Bolji je od prethodnog posebno za elemente sa velikim brojem stepeni slobode (npr. ravni element sa čvorovima na sredinama stranica ili element savijene ploče i trodimenzionalni – solid element). Princip minimuma potencijalne energije primjenljiv je samo na linearno elastične materijale. Ipak najopštija kategorija su varijacioni metodi kao što je princip virtualnog rada koji je primjenljiv za bilo koje materijale. Ako se primjene na elastične materijale oba metoda daju potpuno iste jednačine. U varijacionim metodama dobiju se varijacione funkcije – funkcionali koji se odnose na druge probleme osim strukturalnih za koje se može naći ukupna potencijalna energija. Ovi problemi zovu se problemi polja (npr. prenos toplote, tok fluida, električni potencijal i sl). Za neke druge probleme za koje je teško formulirati potencijal koriste se metodi reziduala od kojih je najviše koristi Galerkinov. Ukupna potencijalna energija strukture p se izražava kao funkcija pomjeranja. U metodu konačnih elemenata (MKE) potencijalna energija ili potencijal p je p = p (d1 , d2 , d3 , ... dn) (2.64) Kada se p minimizira po pomjeranjima tj. kada se nađe izvod p po pomjeranjima dobiju se jednačine ravnoteže. Za element opruge dobiće se iste jednačine koje su dobijene metodom pomjeranja, f= K d. Primijenjen u MKE princip minimuma potencijalne energije glasi: Od svih pomjeranja koja zadovoljavaju date granične uslove strukture, ona koja zadovoljavaju jednačine ravnoteže zadovoljavaju i stacionarnu vrijednost pontencijalne energije. Ako je stacionarna vrijednost minimalna stanje ravnoteže je stabilno. Ukupna potencijalna energija strukture je zbir unutrašnje energije pomjeranja U i potencijalne energije vanjskih sila , tj.

p = U + Unutrašnja energija ili energija pomjeranja je sposobnost unutrašnjih sila (ili napona) da izvrše rad na putu tj. deformacijama u strukturi.

Page 21: Metod konačnih elemenata - am.unze.ba 2.pdf · Matrica krutosti 20 2.2. Pojam matrice krutosti Metod pomjeranja predstavlja osnovu za razumijevanje metoda konačnih elemenata. Osnovno

Matrica krutosti

39

Potencijalna energija vanjskih sila je sposobnost sila da izvrše rad na pomjeranju strukture. Sile mogu biti zapreminske, površinske i koncentrisane koje djeluju u čvorovima. Poznato je da u opruzi postoji sila F koja je sa pomjeranjem opruge povezana koeficijentom krutosti opruge, F = kx. Diferencijal unutrašnje energije dU u opruzi je u stvari jednak radu unutrašnjih sila na promjeni pomjeranja dx. dU = F dx (2.66) pošto je: F = kx dU = kx dx,

22

2

1

2

1kxkxU

dxkxU

x

o

x

o

(2.67)

Rad unutrašnjih sila opruge prikazan je kao područje ispod krive sila–pomjeranje,

2 F x

x - deformacija

sila

F

1

Slika 2.6 Dijagram promjene sile pri promjeni deformacije za linearnu oprugu

Za razliku od rada unutrašnjih sila potencijalna energija vanjskih sila je suprotnog predznaka od izvršenog rada zato što se potencijalna energija gubi kada se rad vrši vanjskim silama.

Page 22: Metod konačnih elemenata - am.unze.ba 2.pdf · Matrica krutosti 20 2.2. Pojam matrice krutosti Metod pomjeranja predstavlja osnovu za razumijevanje metoda konačnih elemenata. Osnovno

Matrica krutosti

40

= -Fx (2.68) Ukupan potencijal je tada:

.2

1 2 Fxkxp (2.69)

Funkcija, pa tako i potencijal može imati maksimum ili minimum. Ekstremna vrijednost odnosno minimum potencijala dobije se za

,0dx

d p (2.70)

na pomjeranju dx odnosno di . Varijacija p je:

.22

11

nn

pppp d

dd

dd

d

(2.71)

Posmatrana struktura je u ravnoteži kada je p = 0, za varijaciju di . Prihvatljiva varijacija je ona u kojoj polje pomjeranja zadovoljava granične uslove i kompatibilnost elemenata. Primjer 2.3. Za linearno elastičnu oprugu koja je opterećena silom 1000 N odrediti potencijalnu energiju za različite vrijednosti pomjeranja. Odrediti minimum potencijalne energije koja odgovara položaju ravnoteže opruge.

Page 23: Metod konačnih elemenata - am.unze.ba 2.pdf · Matrica krutosti 20 2.2. Pojam matrice krutosti Metod pomjeranja predstavlja osnovu za razumijevanje metoda konačnih elemenata. Osnovno

Matrica krutosti

41

F

x

x - deformacija

k

sila

F

k = 500 N/cm

Slika 2.7 Djelovanje sile na oprugu Ukupna potencijalna energija opruge jednaka je zbiru unutrašnje energije i energije deformacije p = U + (2.72)

FxkxFxkxU p 22

2

1,,

2

1 (2.73)

Opruga se deformira duž ose x pa je p funkcija samo jedne promjenljive i to pomjeranja x. Derivacija p u odnosu na x je:

0

x

xp

p

(2.74)

Pošto x ne može biti nula jednačina će biti jednaka nuli za

0

xp

, odnosno (2.75)

cmxxx

FkxFxkx

p

p

2;01000500

022

1

(2.76)

Page 24: Metod konačnih elemenata - am.unze.ba 2.pdf · Matrica krutosti 20 2.2. Pojam matrice krutosti Metod pomjeranja predstavlja osnovu za razumijevanje metoda konačnih elemenata. Osnovno

Matrica krutosti

42

Ukupna potencijalna energija opruge dobije se kada se x = 2 cm uvrsti u p

Ncm

U

p

p

1000

21000)2(5002

1 2

(2.77)

Minimum potencijalne energije opruge može se dobiti – prikazati tabelarno za različite vrijednosti x. Potencijalna energija iz tabele se može prikazati i dijagramski.

Tabela 2.1. Promjena p zavisno od promjene x deformacija x potencijalna energijap

-4,0 8 000 -3,0 5 250 -2,0 3 000 -1,0 1 250 0,0 0 1,0 -750 2,0 -1 000

Pp

0

8000

4 x

Slika 2.8 Promjena potencijalne energije opruge

Page 25: Metod konačnih elemenata - am.unze.ba 2.pdf · Matrica krutosti 20 2.2. Pojam matrice krutosti Metod pomjeranja predstavlja osnovu za razumijevanje metoda konačnih elemenata. Osnovno

Matrica krutosti

43

Vrijednosti za p dobivene su iz izraza (2.78)

xxxxp 100025010005002

1 22 (2.78)

Funkcija p ima minimum za x = 2 cm tj. p = -1000 Ncm. Slijedeći korak je određivanje jednačina ravnoteže elementa i matrice krutosti korištenjem principa o minimumu potencijalne energije.

xxxxxxp dfdfddk 22112

122

1 (2.79)

pri čemu je x = d2x – d1x

f2x2f1x 1

xxxxxxxxp dfdfddddk 2211

22121

22 2

2

1 (2.80)

Minimizacija potencijalne energije p u odnosu na svako čvorno pomjeranje piše se u obliku:

xxx

xxx

xxxx

p

xxxx

p

fddk

fddk

ilifddkd

fddkd

212

112

2122

1121

0222

1

0222

1

(2.81)

U matričnom obliku ove jednačine su:

x

x

x

x

f

f

d

d

kk

kk

2

1

2

1 (2.82)

gdje je:

Page 26: Metod konačnih elemenata - am.unze.ba 2.pdf · Matrica krutosti 20 2.2. Pojam matrice krutosti Metod pomjeranja predstavlja osnovu za razumijevanje metoda konačnih elemenata. Osnovno

Matrica krutosti

44

kk

kkkdkf ; (2.83)

Koristeći minimizaciju potencijalne energije opruge po čvornim pomjeranjima dobivene su jednačine konačnog elementa. Primjer 2.4. Za razliku od prethodnog primjera koji je imao samo jednu oprugu u ovom promjeru se razmatra sistem od više elemenata za koji treba odrediti jednačinu strukture.

F = 5000 N

1000 N 2000 N 3000 N

21

1 2 3

3 4

Slika 2.9 Sistem opruga je razmatrana struktura Potencijalna energija sistema jednaka je zbiru potencijalnih energija pojedinih dijelova sistema.

xxxxxxxxxxxx

xxxxi

xxpip

dfdfdfdfdfdf

ddkddkddk

23

243

442

432

331

311

1

2423

2342

3

1

2131 2

1

2

1

2

1

(2.84)

Nakon toga izvrši se minimizacija p po di.

0

0

0

0

34

2443233242

4

23

1332421131

3

324323

2

111131

1

xxxxxxx

p

xxxxxxx

p

xxxx

p

xxxx

p

ffdkdkdkdkd

ffdkdkdkdkd

fdkdkd

fdkdk

(2.85)

Page 27: Metod konačnih elemenata - am.unze.ba 2.pdf · Matrica krutosti 20 2.2. Pojam matrice krutosti Metod pomjeranja predstavlja osnovu za razumijevanje metoda konačnih elemenata. Osnovno

Matrica krutosti

45

U matričnom obliku je:

34

24

23

13

32

11

4

3

2

1

3223

2211

33

11

0

0

00

00

xx

xx

x

x

x

x

x

x

ff

ff

f

f

d

d

d

d

kkkk

kkkk

kk

kk

(2.86)

Koristeći ravnotežu sila u čvorovima dobije se:

xxx

xxx

xx

xx

Fff

Fff

Ff

Ff

43

42

4

32

31

3

23

2

11

1

(2.87)

Zamjenom numeričkih vrijednosti za k1 , k2 i k3 dobije se:

x

x

x

x

x

x

x

x

F

F

F

F

d

d

d

d

4

3

2

1

4

3

2

1

20003000200030000

20002000100001000

300030000

0100001000

(2.88)

Jednačina (2.88) je istog oblika koji se dobije direktnom metodom nakon korištenja graničnih uslova F3x = 0 , F4x = 5000 N. Nepoznate su reakcije čvorova F1x i F2x. Reakcije se odrede i dobiju vrijednosti: F1x = (-10 000 / 11) N F2x = (-45 000 / 11) N