46
[ ] Minimal Model for Cosmic Rays and Neutrinos Michael Kachelrieß NTNU, Trondheim

Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

[]

Minimal Model for Cosmic Rays and Neutrinos

Michael Kachelrieß

NTNU, Trondheim

Page 2: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Introduction Outline

Outline of the talk

1 Introduction

◮ CR–γ–ν connection

◮ CR composition

◮ elmag. cascades

◮ constraints & wishes

2 Escape model for Galactic CRs

◮ main properties

◮ neutrinos from starburst galaxies

3 Minimal model for UHECRs and neutrinos

◮ with only Ap interactions

◮ with Aγ and Ap interactions

4 Conclusions

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 2 / 19

Page 3: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Introduction Outline

Outline of the talk

1 Introduction

◮ CR–γ–ν connection

◮ CR composition

◮ elmag. cascades

◮ constraints & wishes

2 Escape model for Galactic CRs

◮ main properties

◮ neutrinos from starburst galaxies

3 Minimal model for UHECRs and neutrinos

◮ with only Ap interactions

◮ with Aγ and Ap interactions

4 Conclusions

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 2 / 19

Page 4: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Introduction Outline

Outline of the talk

1 Introduction

◮ CR–γ–ν connection

◮ CR composition

◮ elmag. cascades

◮ constraints & wishes

2 Escape model for Galactic CRs

◮ main properties

◮ neutrinos from starburst galaxies

3 Minimal model for UHECRs and neutrinos

◮ with only Ap interactions

◮ with Aγ and Ap interactions

4 Conclusions

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 2 / 19

Page 5: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Introduction CR–γ–ν connection

The CR–γ–ν connection:

HE neutrinos and photons are unavoidable byproducts of HECRs

astrophysical models, cosmogenic flux:◮ ratio Iν/Ip determined by nuclear composition of UHECRs and source

evolution◮ ratio Iν/Iγ determined by isospin

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 3 / 19

Page 6: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Introduction CR–γ–ν connection

The CR–γ–ν connection:

HE neutrinos and photons are unavoidable byproducts of HECRs

astrophysical models, cosmogenic flux:◮ ratio Iν/Ip determined by nuclear composition of UHECRs and source

evolution◮ ratio Iν/Iγ determined by isospin

astrophysical models, direct flux:◮ stronger model dependence:

⋆ target density⋆ photons may cascade in source

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 3 / 19

Page 7: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Introduction CR–γ–ν connection

The CR–γ–ν connection:

HE neutrinos and photons are unavoidable byproducts of HECRs

astrophysical models, cosmogenic flux:◮ ratio Iν/Ip determined by nuclear composition of UHECRs and source

evolution◮ ratio Iν/Iγ determined by isospin

astrophysical models, direct flux:◮ stronger model dependence:

⋆ target density⋆ photons may cascade in source

Our aim:◮ is a single source class responsible for extragalactic CRs, photons and

neutrinos?

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 3 / 19

Page 8: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Introduction CR composition

Composition of CRs: KASCADE-Grande 2013

primary energy E/eV

1510

1610 1710

1810

)1

.5 e

V-1

s-1

sr

-2 / (

m2

.5 E

dif

f. f

lux

dJ

/dE

·

1510

1610

1710

Akeno (J.Phys.G18(1992)423)AGASA (ICRC 2003)HiResI (PRL100(2008)101101)HiResII (PRL100(2008)101101)AUGER (arXiv:1107:4809)AUGER AMIGA infill (ICRC 2011)

EAS-TOP (Astrop.Phys.10(1999)1)Tibet-III, QGSJET 01 (ApJ678(2008)1165)GAMMA (ICRC 2011)IceTop (arXiv:1202.3039v1)TUNKA-133 (ICRC 2011)Yakutsk (NewJ.Phys11(2008)065008)KASCADE-Grande, QGSJET II (Astrop.Phys.36(2012)183)

KASCADE-Grande, all-part., QGSJET II (this work)KASCADE-Grande, light (p), QGSJET II (this work)KASCADE-Grande, medium (He+C+Si), QGSJET II (this work)KASCADE-Grande, heavy (Fe), QGSJET II (this work)

KASCADE, all-part., QGSJET II (see Appendix A)KASCADE, light (p), QGSJET II (see Appendix A)

KASCADE, medium (He+C+Si), QGSJET II (see Appendix A)KASCADE, heavy (Fe), QGSJET II (see Appendix A)

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 4 / 19

Page 9: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Introduction CR composition

Composition of CRs: Auger [arXiv:1409.5083 ]

0

100

200

300

400

500

600

500 600 700 800 900 1000

N

Sibyll 2.1

log(E/eV) = 17.8-17.9

p < 10-4

500 600 700 800 900 1000

Sibyll 2.1

log(E/eV) = 17.8-17.9

p = 0.013

500 600 700 800 900 1000

Sibyll 2.1

log(E/eV) = 17.8-17.9

p = 0.235

FeN

Hep

Auger

0

100

200

300

400

500

600

500 600 700 800 900 1000

N

QGSJET II-04

log(E/eV) = 17.8-17.9

p < 10-4

500 600 700 800 900 1000

QGSJET II-04

log(E/eV) = 17.8-17.9

p < 10-3

500 600 700 800 900 1000

QGSJET II-04

log(E/eV) = 17.8-17.9

p = 0.326

0

100

200

300

400

500

600

500 600 700 800 900 1000

N

Xmax [g/cm2]

EPOS-LHC

log(E/eV) = 17.8-17.9

p < 10-4

500 600 700 800 900 1000

Xmax [g/cm2]

EPOS-LHC

log(E/eV) = 17.8-17.9

p = 0.776

500 600 700 800 900 1000

Xmax [g/cm2]

EPOS-LHC

log(E/eV) = 17.8-17.9

p = 0.769

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 4 / 19

Page 10: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Introduction CR composition

Composition of CRs: Auger [arXiv:1409.5083 ]

0

100

200

300

400

500

600

500 600 700 800 900 1000

N

Sibyll 2.1

log(E/eV) = 17.8-17.9

p < 10-4

500 600 700 800 900 1000

Sibyll 2.1

log(E/eV) = 17.8-17.9

p = 0.013

500 600 700 800 900 1000

Sibyll 2.1

log(E/eV) = 17.8-17.9

p = 0.235

FeN

Hep

Auger

0

100

200

300

400

500

600

500 600 700 800 900 1000

N

QGSJET II-04

log(E/eV) = 17.8-17.9

p < 10-4

500 600 700 800 900 1000

QGSJET II-04

log(E/eV) = 17.8-17.9

p < 10-3

500 600 700 800 900 1000

QGSJET II-04

log(E/eV) = 17.8-17.9

p = 0.326

0

100

200

300

400

500

600

500 600 700 800 900 1000

N

Xmax [g/cm2]

EPOS-LHC

log(E/eV) = 17.8-17.9

p < 10-4

500 600 700 800 900 1000

Xmax [g/cm2]

EPOS-LHC

log(E/eV) = 17.8-17.9

p = 0.776

500 600 700 800 900 1000

Xmax [g/cm2]

EPOS-LHC

log(E/eV) = 17.8-17.9

p = 0.769

composition 6 × 1017 − 5 × 10

18 eV consistent with

◮ 50% p, 50% He+N, < 20%Fe

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 4 / 19

Page 11: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Introduction CR composition

Composition of CRs:

0

100

200

300

400

500

600

500 600 700 800 900 1000

N

Sibyll 2.1

log(E/eV) = 17.8-17.9

p < 10-4

500 600 700 800 900 1000

Sibyll 2.1

log(E/eV) = 17.8-17.9

p = 0.013

500 600 700 800 900 1000

Sibyll 2.1

log(E/eV) = 17.8-17.9

p = 0.235

FeN

Hep

Auger

0

100

200

300

400

500

600

500 600 700 800 900 1000

N

QGSJET II-04

log(E/eV) = 17.8-17.9

p < 10-4

500 600 700 800 900 1000

QGSJET II-04

log(E/eV) = 17.8-17.9

p < 10-3

500 600 700 800 900 1000

QGSJET II-04

log(E/eV) = 17.8-17.9

p = 0.326

0

100

200

300

400

500

600

500 600 700 800 900 1000

N

Xmax [g/cm2]

EPOS-LHC

log(E/eV) = 17.8-17.9

p < 10-4

500 600 700 800 900 1000

Xmax [g/cm2]

EPOS-LHC

log(E/eV) = 17.8-17.9

p = 0.776

500 600 700 800 900 1000

Xmax [g/cm2]

EPOS-LHC

log(E/eV) = 17.8-17.9

p = 0.769

composition 6 × 1017 − 5 × 10

18 eV consistent with

◮ 50% p, 50% He+N, < 20%Fe

◮ early transition from Galactic to extragalactic CRs

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 4 / 19

Page 12: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Introduction CR composition

Transition to extragalactic CRs – anisotropy limits

dipole quadrupole

E [EeV]1 10

Upp

er L

imit

- D

ipol

e A

mpl

itude

-210

-110

1

Z=1Z=26

E [EeV]1 10

+λU

pper

Lim

it - A

mpl

itude

-210

-110

1

Z=1Z=26

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 5 / 19

Page 13: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Introduction CR composition

Transition to extragalactic CRs – anisotropy limits

dipole quadrupole

E [EeV]1 10

Upp

er L

imit

- D

ipol

e A

mpl

itude

-210

-110

1

Z=1Z=26

E [EeV]1 10

+λU

pper

Lim

it - A

mpl

itude

-210

-110

1

Z=1Z=26

dominant light Galactic composition around E = 1018 eV excluded[Giacinti, MK, Semikoz, Sigl (’12), PAO ’13 ]

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 5 / 19

Page 14: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Introduction CR composition

Effect of heavier nuclei

models reproducing UHECR composition

◮ neutrino flux Iν(E) ∝ A1−αIp(E)

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 6 / 19

Page 15: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Introduction CR composition

Effect of heavier nuclei

models reproducing UHECR composition

◮ neutrino flux Iν(E) ∝ A1−αIp(E)

◮ Peter’s cycle: Emax,A = ZEmax,p

◮ require threshold ⇒ based on Aγ interactions

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 6 / 19

Page 16: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Introduction CR composition

Effect of heavier nuclei

models reproducing UHECR composition

◮ neutrino flux Iν(E) ∝ A1−αIp(E)

◮ Peter’s cycle: Emax,A = ZEmax,p

◮ require threshold ⇒ based on Aγ interactions

ν flux is too small, at too high E

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 6 / 19

Page 17: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Introduction CR composition

ν and mixed composition [e.g. Unger, Farrar, Anchordoqui ’15 ]

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 7 / 19

Page 18: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Introduction Constraints & wishes

IceCube searches for sources: transient sources

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 8 / 19

Page 19: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Introduction Constraints & wishes

IceCube searches for sources: stationary sources

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 8 / 19

Page 20: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Introduction Cascade spectrum

Development of the elmag. cascade:

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 9 / 19

Page 21: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Introduction Cascade spectrum

Development of the elmag. cascade:

analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75 ]

Jγ(E) =

K(E/εX)−3/2 at E ≤ εX

K(E/εX)−2 at εX ≤ E ≤ εa

0 at E > εa

three regimes:◮ Thomson cooling:

Eγ =4

3

εbbE2

e

m2e

≈ 100 MeV

(

Ee

1TeV

)2

◮ plateau region: ICS Eγ ∼ Ee

◮ above pair-creation threshold smin = 4Eγεbb = 4m2

e:flux exponentially suppressed

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 9 / 19

Page 22: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Introduction Cascade spectrum

Cascade limit: α = 2.1

1

10

100

1000

10000

1e+10 1e+11 1e+12 1e+13 1e+14 1e+15 1e+16 1e+17

E2 J

(E)

[eV

/cm

2 s s

r]

E/eV

gammanu

Fermi EGRB

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 10 / 19

Page 23: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Introduction Cascade spectrum

Cascade limit: α = 2.3

1

10

100

1000

10000

1e+10 1e+11 1e+12 1e+13 1e+14 1e+15 1e+16 1e+17

E2 J

(E)

[eV

/cm

2 s s

r]

E/eV

gammanu

Fermi EGRB

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 10 / 19

Page 24: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Introduction Cascade spectrum

Cascade limit: α = 2.5

1

10

100

1000

10000

1e+10 1e+11 1e+12 1e+13 1e+14 1e+15 1e+16 1e+17

E2 J

(E)

[eV

/cm

2 s s

r]

E/eV

gammanu

Fermi EGRB

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 10 / 19

Page 25: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Introduction Cascade spectrum

Blazars as neutrino sources?

unresolved blazars dominate HE part of EGRB

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 11 / 19

Page 26: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Introduction Cascade spectrum

Blazars as neutrino sources?

unresolved blazars dominate HE part of EGRB

stacked analysis of gamma-ray and muon neutrino flux from blazars

⇒ disfavors blazars as HE neutrino source

[IceCube ’16, A.Neronov, D.V.Semikoz, K.Ptitsyna ’16 ]

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 11 / 19

Page 27: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Introduction Cascade spectrum

Blazars as neutrino sources?

unresolved blazars dominate HE part of EGRB

stacked analysis of gamma-ray and muon neutrino flux from blazars

⇒ disfavors blazars as HE neutrino source

[IceCube ’16, A.Neronov, D.V.Semikoz, K.Ptitsyna ’16 ]

leptonic blazar models favored to explain EGRB

neutrino sources should give sub-dominant contribution to EGRB

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 11 / 19

Page 28: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Introduction Cascade spectrum

Constraints on a minimal model:

a single source class that

fits the extragalactic UHECR flux and composition

fits the (extragalactic) neutrino flux

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 12 / 19

Page 29: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Introduction Cascade spectrum

Constraints on a minimal model:

a single source class that

fits the extragalactic UHECR flux and composition

fits the (extragalactic) neutrino flux

gives subdominant contribution to EGRB

consistent with early Galactic to extragalactic transition

⇒ ankle has to be a feature of source spectrum

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 12 / 19

Page 30: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Escape model

Escape model for Galactic cosmic rays [Giacinti, MK, Semikoz ’14+ ]

reproduces fluxes of individual CR groups

1010

1011

1012

1013

1014 1015 1016 1017 1018 1019 1020

E2.

5 F(E

) [e

V2.

5 /cm

2 /s/s

r]

E [eV]

TibetKASCADEGrandeAuger 2013PHeCNOSiFetotal

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 13 / 19

Page 31: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Escape model

Escape model for Galactic cosmic rays [Giacinti, MK, Semikoz ’14+ ]

reproduces fluxes of individual CR groups

explains dipole anisotropy

10-5

10-4

10-3

10-2

1011 1012 1013 1014 1015 1016 1017 1018

100 TeV

1 PeV

δ

E [eV]

all dataIceCube 2013

fit 1 SNGalactic

totalGalactic

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 13 / 19

Page 32: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Escape model

Escape model for Galactic cosmic rays [Giacinti, MK, Semikoz ’14+ ]

reproduces fluxes of individual CR groups

explains dipole anisotropy

fixes extragalactic flux: F iexgal(E) = F i

obs(E) − F igal(E)

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 13 / 19

Page 33: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Escape model

Escape model for Galactic cosmic rays [Giacinti, MK, Semikoz ’14+ ]

reproduces fluxes of individual CR groups

explains dipole anisotropy

fixes extragalactic flux: F iexgal(E) = F i

obs(E) − F igal(E)

escape model applies also to other normal galaxies as starburstgalaxies:

◮ magnetic fields factor 100 higher:

◮ if knee is caused by⋆ diffusion: Ecr ∼ B, neutrino knee at few ×10

16 eV

⋆ source: Emax ∼ BCR, neutrino knee at few ×1014 eV

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 13 / 19

Page 34: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Escape model Exgal. protons, γ’s and ν’s

Normal and starburst galaxies:

assume E−2.2 source spectrum

normalisation from escape model

starburst: B ∼ 100BMW ⇒ rescale grammage and Emax

fix QCR via SN/star formation rate

vary gas density

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 14 / 19

Page 35: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Escape model Exgal. protons, γ’s and ν’s

Normal and starburst galaxies: [Giacinti, MK, Kalashev, Neronov, Semikoz ’15 ]

0.1

1

10

100

1000

108 1010 1012 1014 1016 1018 1020

jE2 , e

V c

m-2

s-1

sr-1

E, eV

νgal(98%)

νEGKASCADE 2013

KASCADE Grande EGAuger 2013 Protons

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 15 / 19

Page 36: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Escape model Exgal. protons, γ’s and ν’s

Normal and starburst galaxies: [Giacinti, MK, Kalashev, Neronov, Semikoz ’15 ]

0.1

1

10

100

1000

108 1010 1012 1014 1016 1018 1020

jE2 , e

V c

m-2

s-1

sr-1

E, eV

νgal(98%)

νEGKASCADE 2013

KASCADE Grande EGAuger 2013 Protons

can not explain exgal. protons

sources can not be dominant sources of both EGRB and neutrinos

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 15 / 19

Page 37: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Minimal model

Source model:

3 zones

◮ core: rigidity dependent acceleration dN/dR ∝ R−α exp(−R/Rmax)

◮ inner zone: Aγ interactions

◮ outer zone: Ap interactions

diffusion: increase of effective τint

source evolution

◮ BL Lac ≃ peaked at late times

◮ AGN ≃ peaked at early times

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 16 / 19

Page 38: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Minimal model

Source model:

3 zones

◮ core: rigidity dependent acceleration dN/dR ∝ R−α exp(−R/Rmax)

◮ inner zone: Aγ interactions

◮ outer zone: Ap interactions

diffusion: increase of effective τint

source evolution

◮ BL Lac ≃ peaked at late times

◮ AGN ≃ peaked at early times

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 16 / 19

Page 39: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Minimal model

Source model:

3 zones

◮ core: rigidity dependent acceleration dN/dR ∝ R−α exp(−R/Rmax)

◮ inner zone: Aγ interactions

◮ outer zone: Ap interactions

diffusion: increase of effective τint

source evolution

◮ BL Lac ≃ peaked at late times

◮ AGN ≃ peaked at early times

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 16 / 19

Page 40: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Minimal model

Late evol., only interactions on gas: α = 1.8, τpp

0= 0.035 at E0 = 10

19 eV

10-2

10-1

100

101

102

103

104

105

1010 1012 1014 1016 1018 1020

Fermi LAT

IceCube Auger

KASCADE Grande

γν

E2 F

(E)

[eV

/cm

2 /s/s

r]

E [eV]

total EGtotal Gal

p2-4

5-1617-2829-56

[MK, Kalashev, Ostapchenko, Semikoz ’17 ]

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 17 / 19

Page 41: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Minimal model

Late evol., only interactions on gas: α = 1.8, τpp

0= 0.035 at E0 = 10

19 eV

550

600

650

700

750

800

850

900

1017 1018 1019 1020

Xm

ax [g

/cm

2 ]

E [eV]

Augerp EPOS LHC

Fe EPOS LHCp QGSJetII-4

Fe QGSJetII-4model QGSJetII-4

model EPOS

[MK, Kalashev, Ostapchenko, Semikoz ’17 ]

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 17 / 19

Page 42: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Minimal model

Late evol., only interactions on gas: α = 1.8, τpp

0= 0.035 at E0 = 10

19 eV

10

20

30

40

50

60

70

80

1017 1018 1019 1020

RM

S(X

max

) [g

/cm

2 ]

E [eV]

Augerp EPOS LHC

Fe EPOS LHCp QGSJetII-4

Fe QGSJetII-4model QGSJetII-4

model EPOS

[MK, Kalashev, Ostapchenko, Semikoz ’17 ]

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 17 / 19

Page 43: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Minimal model

AGN evol., gas and photons: α = 1.5, τpp

0= 0.035 and τ

0= 0.29

10-2

10-1

100

101

102

103

104

105

1010 1012 1014 1016 1018 1020

γ ν

Fermi LAT

IceCube Auger

KASCADE Grande

E2 F

(E)

[eV

/cm

2 /s/s

r]

E [eV]

total EGtotal Gal

p2-4

5-1617-2829-56

[MK, Kalashev, Ostapchenko, Semikoz ’17 ]

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 18 / 19

Page 44: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Minimal model

AGN evol., gas and photons: α = 1.5, τpp

0= 0.035 and τ

0= 0.29

550

600

650

700

750

800

850

900

1017 1018 1019 1020

Xm

ax [g

/cm

2 ]

E [eV]

Augerp EPOS LHC

Fe EPOS LHCp QGSJetII-4

Fe QGSJetII-4model QGSJetII-4model EPOS-LHC

[MK, Kalashev, Ostapchenko, Semikoz ’17 ]

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 18 / 19

Page 45: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Minimal model

AGN evol., gas and photons: α = 1.5, τpp

0= 0.035 and τ

0= 0.29

10

20

30

40

50

60

70

80

1017 1018 1019 1020

RM

S(X

max

) [g

/cm

2 ]

E [eV]

Augerp EPOS LHC

Fe EPOS LHCp QGSJetII-4

Fe QGSJetII-4model QGSJetII-4

model EPOS

10

20

30

40

50

60

70

80

1017 1018 1019 1020

RM

S(X

max

) [g

/cm

2 ]

E [eV]

Augerp EPOS LHC

Fe EPOS LHCp QGSJetII-4

Fe QGSJetII-4model QGSJetII-4

model EPOS

[MK, Kalashev, Ostapchenko, Semikoz ’17 ]

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 18 / 19

Page 46: Michael Kachelrieß NTNU, Trondheim · 2017. 9. 27. · Development of the elmag. cascade: analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75] Jγ(E) = K(E/ε X)−3/2

Summary

Summary1 EGRB constrains stronly neutrino sources:

◮ slope of extragal. neutrino α <∼

2.3

◮ neutrino sources are not main source class of EGRB

2 neutrino signal in IceCube:

◮ isotropy favours dominant extragalactic origin above 10–100 TeV

◮ steeper additional contribution dominating at low energies (?)

3 common source class for UHECRs and neutrinos?

◮ several candidates as GRBs are already disfavoured

◮ (subclasses of) AGNs remain attractive option

◮ large neutrino flux at “low” energies requires Ap interactions

◮ UHECR composition favours nuclei with Aγ

◮ sources with both Ap and Aγ interactions favoured

Michael Kachelrieß (NTNU Trondheim) Minimal Models for Cosmic Rays and NeutrinosPAHEN, Napoli, 26. Sep. ’17 19 / 19