8
大韓環境工學會誌 論文 - Original Paper 351~358. 2012 Corresponding author E-mail: [email protected] Tel: 051-669-4635 Fax: 051-669-4669 Microcystis sp. Cell의 부패와 염소 소독부산물 생성 Decomposition of Microcystis sp. Cell and Formation of Chlorination Disinfection By-Products 손희종 염훈식정종문최진택 Hee-Jong Son Hoon-Sik YeomJong-Mun JungJin-Taek Choi 부산광역시 상수도사업본부 수질연구소 Water Quality Institute, Water Authority, Busan (2012111일 접수, 2012529일 채택) Abstract : Formation of disinfection by-products (DBPs) including trihalomethans (THM), haloacetic acid (HAA) and haloacetonitriles (HAN) from chlorination of extracellular organic matter (EOM) and cells + intracellular organic matter (IOM) of Microcystis sp., a blue-green algae, during decomposed period was investigated. Microcystis sp. cells + IOM and EOM of Microcystis sp. exhibited a high potential for DBP formation. HAAFP (formation potential) was higher than THMFP during decomposed period. In the variations of HAAFP species during decomposed period, the ratio of di-HAAFP species was gradually decreased and the ratio of tri-HAAFP species was gradually increased in the case of EOM during decomposed period, while the opposite result was in the case of cells + IOM during decomposed period. In the variations of HANFP species during decomposed period, the ratio of di-HANFP species was much higher than the ratio of tri-HAAFP species. Key Words : Blue-Green Algae, Microcystis sp., Algogenic Organic Matter (AOM), Chlorination, Disinfection By-Products (DBPs). 요약 : Microcystis sp.의 부패과정에서 수중으로 용출되는 AOM 특성과 염소 이들에서의 disinfection by-products (DBPs) 생성 특성을 조사하였다. 수중으로 용출된 EOMcell + IOM에서의 염소 DBPs 생성특성을 조사한 결과, EOM은 보관기간 초기부 터 지속적으로 증가하였으나 cell + IOM의 경우는 급격한 감소경향을 나타내었으며, 생성된 DBPs HAAFP가 가장 높은 생성 비율을 나타내었다. 또한, 이 때의 DBP 구성종들의 변화를 살펴본 결과, HAA 구성종들의 경우는 EOM에서는 di-HAA 구성종 들의 비율은 점점 감소하였고 tri-HAA 구성종들의 비율은 점점 증가하였다. 그러나 cell + IOM의 경우는 EOM의 경우와는 반 대 경향을 나타내었다. 또한, HAN 구성종들의 경우는 EOMcell + IOM 모두 di-HAN 구성종들의 생성비율이 월등히 높았다. 주제어 : 남조류, Microcystis sp., 조류유래 유기물질, 염소처리, 소독부산물 1. 서 론 강이나 호소 같은 상수원에 서식하는 조류는 수중에 조류 개체수가 적을 경우에는 정수처리에 큰 문제를 유발하지 않지만 여러 가지 요인으로 인해 수중의 조류 개체수가 증 가하면 정수처리 공정의 운영측면에서 응집약품 사용량 증 , 응집플록의 침전능 저하, 모래 여과지 폐색 유발 및 역 세척 주기 단축 등 많은 문제를 유발한다. 1~4) 또한, 처리수 질 측면에서는 조류가 분비하는 독소물질과 이취 유발물질 이 문제시되어 이에 대한 다양한 연구들이 진행되었다. 5,6) 근에는 조류유래 유기물질(Algogenic Organic Matter, AOM) 7) 들이 정수처리에서 사용되는 소독제인 염소와 반응하여 인 체에 유해한 다양한 소독부산물(Disinfection By-Products, DBPs)들을 생성시킨다고 보고되었다. 8~10) 특히, AOM은 대 부분이 친수성을 띄는 저분자 유기물질들로 구성되어져 있 기 때문에 응집-침전-여과와 같은 기존 정수처리 시스템에서 는 쉽게 제거되지 않으며, 11) 염소와 반응하여 다양한 종류의 DBPs를 생성한다고 알려져 있다. 12) AOM은 조체(algal cell)를 구성하는 물질들(Intracellular Organic Matter, IOM)과 조류가 생장하면서 수중으로 방출 하는 다양한 대사산물들(metabolic substances)로 구성된 Ex- tracellular Organic Matter (EOM)으로 나뉜다. 13) IOM은 조 류의 세포벽과 세포벽 내의 다양한 유기성 세포 구성성분들 (algal biomolecules)로 탄수화물(carbohydrate), 지질(lipid) 단백질(protein)로 구성되며, 조류 종류에 따라 구성비율에 많은 차이를 나타내는 것으로 보고되고 있다. 14,15) 특히, 류의 세포벽은 N-acetylglucosamine, N-acetylmuramic acid 및 다양한 유기질소 화합물들로 구성되어 있고, 13) 조류 세포 구성 물질들은 fatty acid, polysaccharide와 같은 탄수화물 및 다양한 단백질들로 구성되어 있다고 알려져 있다. 16~18) 조류종에 따라서는 일반적으로 남조류는 단백질 함량이 규 조류 보다 높은 반면, 지질의 함량은 규조류가 남조류와 녹 조류 보다 높다고 알려져 있다. 19) 또한, 조류가 생장하면서 수중으로 방출하는 EOM의 경우 지수 성장기(exponential growth phase)의 조류들은 glycolic acidamino acid와 같은 저분자 물질들을 수중으로 방출 하며, 노화기에 접어든 조류들에서는 polysaccharide와 같은 고분자 물질들이 수중으로 방출된다고 알려져 있다. 13) 따라

Microcystis sp. Cell의 부패와 염소 소독부산물 생성 · 2014-12-18 · (algal biomolecules)로 탄수화물(carbohydrate), 지질(lipid) 및 단백질(protein)로 구성되며,

Embed Size (px)

Citation preview

  • - Original Paper 351~358. 2012

    Corresponding author E-mail: [email protected] Tel: 051-669-4635 Fax: 051-669-4669

    Microcystis sp. Cell

    Decomposition of Microcystis sp. Cell and Formation of Chlorination Disinfection By-Products

    Hee-Jong SonHoon-Sik YeomJong-Mun JungJin-Taek Choi

    Water Quality Institute, Water Authority, Busan

    (2012 1 11 , 2012 5 29 )

    Abstract : Formation of disinfection by-products (DBPs) including trihalomethans (THM), haloacetic acid (HAA) and haloacetonitriles (HAN) from chlorination of extracellular organic matter (EOM) and cells + intracellular organic matter (IOM) of Microcystis sp., a blue-green algae, during decomposed period was investigated. Microcystis sp. cells + IOM and EOM of Microcystis sp. exhibited a high potential for DBP formation. HAAFP (formation potential) was higher than THMFP during decomposed period. In the variations of HAAFP species during decomposed period, the ratio of di-HAAFP species was gradually decreased and the ratio of tri-HAAFP species was gradually increased in the case of EOM during decomposed period, while the opposite result was in the case of cells + IOM during decomposed period. In the variations of HANFP species during decomposed period, the ratio of di-HANFP species was much higher than the ratio of tri-HAAFP species.Key Words : Blue-Green Algae, Microcystis sp., Algogenic Organic Matter (AOM), Chlorination, Disinfection By-Products (DBPs).

    : Microcystis sp. AOM disinfection by-products (DBPs) . EOM cell + IOM DBPs , EOM cell + IOM , DBPs HAAFP . , DBP , HAA EOM di-HAA tri-HAA . cell + IOM EOM . , HAN EOM cell + IOM di-HAN . : , Microcystis sp., , ,

    1.

    , , .1~4) ,

    .5,6) (Algogenic Organic Matter, AOM)7)

    (Disinfection By-Products, DBPs) .8~10) , AOM

    -- ,11) DBPs .12)

    AOM (algal cell) (Intracellular

    Organic Matter, IOM) (metabolic substances) Ex-tracellular Organic Matter (EOM) .13) IOM

    (algal biomolecules) (carbohydrate), (lipid) (protein) , .14,15) , N-acetylglucosamine, N-acetylmuramic acid ,13) fatty acid, polysaccharide .16~18)

    , .19)

    , EOM (exponential growth phase) glycolic acid amino acid , polysaccharide .13)

  • 352

    Journal of KSEE Vol.34, No.5 May, 2012

    (growth phase) AOM DBPs ,13,20) DBPs EOM 72~90% DBPs , ,

    EOM .13)

    , EOM Microcystis sp. AOM

    Microcystis sp. 20 EOM trihalome-thanes (THMs), haloacetic acids (HAAs) haloacetonitrile (HANs) .

    2.

    2.1.

    2011 10 4 M .

    (Millipore) . 300 m3/ pilot-plant 0.45 m (Millipore) 300 mL BOD (2 mL) (chl-a : 225 11 mg/m3) .

    . pH 7.0 , DOC UV-254 SUVA 1.97 mg/L, 0.0340 cm-1 1.7279 L/mgm.

    2.2.

    300 mL BOD 20 60 . , (Scope A1, ZEISS, Germany) 400 .

    2.3. AOM

    AOM DOC (Sievers 5310C, Sievers, USA) UV-254 (UV-2401PC, Shi-madzu, Japan) , DOC UV-254 SUVA (specific UV absorbance) . , AOM HPSEC (High Performance Size Exclusion Chromatography) , 30 cm, 0.8 cm Zobax GF- 450 (9.4 250 mm, 4 m) UV detector (SPD-6A, Shi-madzu, Japan) HPLC (LC600, Shimadzu, Japan) .

    2.4.

    10,000 mg/L (Junsei chemical, Japan) 10 mg/L 20 , 10% NaOH (1 + 10) H3PO4 pH 7.0 0.2 20 24

    . THMs, HAAs HANs . THMs headspace autosampler GC/ECD (6890N, Agilent, USA) , HAAs US EPA Method 552.3 21) GC/ ECD (6890N, Agilent, USA) , HANs US EPA Method 551.1 22) GC/ECD (6890N, Agilent, USA) .

    3.

    3.1. AOM

    AOM (EOM) DOC, UV-254 SUVA Fig. 1 . Fig. 1 DOC, UV-254 SUVA UV-254 21 0.06803 cm-1 36, 45 60 0.06638, 0.05496 0.04704 cm-1 UV-254 . , DOC 36 3.92 mg/L , SUVA 10 2.04 m-1L/mg .

    UV-254 DOC UV-254 DOC . UV-254

  • 353 Microcystis sp. Cell

    34 5 2012 5

    (a) 0 day (b) 10 day after (c) 21 day after

    Fig. 2. Photographs of changed Microcystis sp. cells according to increasing storage time.

    Fig. 1. Variations of EOM (DOC, UV-254 & SUVA) concentration according to increasing storage time.

    AOM (EOM)

    (mineralization) UV-254 DOC . Nguyen 23) Henderson 7) AOM 60%~70% .

    SUVA / , SUVA 3 . Fig. 1 SUVA 10 2.04 m-1L/mg

    AOM , Fang 18) EOM SUVA 1.38 m-1L/mg , Her 24) AOM (Natural Organic Matter, NOM) , SUVA

    . , (logarithmic phase) SUVA Henderson 7) .

    Microcystis sp. Fig. 2 . Fig. 2(a) 0 Microcystis sp.

    IOM . Fig. 2(b) 10 Microcystis sp. IOM , Fig. 2(c) 21 Microcystis sp. IOM

    . AOM

    Fig. 3 . Fig. 3 (0 day) BAC 50~150 kDa ,

    Fig. 3. Variations of molecular weight size distributions of EOM according to increasing storage time.

  • 354

    Journal of KSEE Vol.34, No.5 May, 2012

    10 36 50~200 kDa 50~400 kDa . (0) EOM Fig. 1 BAC (0) DOC UV-254 .

    , 10 Microcystis sp.(Fig. 2 (b)) IOM 50 kDa~ 150 kDa AOM AOM 300 kDa , Fig. 1 AOM . Pivokonsky 25) Microcystis aeruginosa EOM IOM EOM IOM , EOM

    EOM .

    3.2. DBP

    EOM AOM (cell + IOM) Fig. 4 . Fig. 4 THMFP, HAAFP HANFP EOM , cell + IOM . EOM (DOC UV- 254) Fig. 2 IOM .

    , EOM AOM (cell + IOM) THMFP HAAFP , AOM

    NOM

    26) THM (THMFP) HAA (HAAFP) , THMFP HAAFP Huang 13) HAAFP .

    , EOM HAAFP HANFP 36 , THMFP . EOM Fig. 1 DOC UV-254

    Fig. 4. Variations of DBPFP for Microcystis sp. cell + IOM and EOM according to increasing storage time.

    Fig. 5. Distribution of HAAFP species for Microcystis sp. cell+ IOM and EOM according to increasing storage time.

    , (precur-sor) THMFP DBPs .

    EOM AOM (cell + IOM) HAA Fig. 5 . Fig. 5 EOM HAA dichloroacetic acid (DCAA) di-HAA , tri-chloroacetic acid (TCAA) tri-HAA

    . AOM (cell +

  • 355 Microcystis sp. Cell

    34 5 2012 5

    Fig. 7. Proposed pathway for the formation of organic chloramines and N-DBPs from chlorination and chloramination of algogenic organic matter (AOM)18).

    Fig. 6. Distribution of HANFP species for Microcystis sp. cell + IOM and EOM according to increasing storage time.

    IOM) EOM . EOM AOM (cell + IOM) , Huang 13) (death phase)

    EOM tri-HAA (lysis) tri-HAA IOM 49% 60 58% tri-HAA , Fig. 2(c) IOM 21 tri-HAA .

    EOM AOM (cell + IOM) HAN Fig. 6 . Fig. 6 EOM cell + IOM HANFP 80~90% dichloroacetonitrile (DCAN) di-HAN , 60 . Microcystis aeruginosa Fang (cell + IOM) HAN , TCAN DCAN .27) AOM

    Fig. 7 mono-chloramine (RNHCl) di-

  • 356

    Journal of KSEE Vol.34, No.5 May, 2012

    Table 1. Comparisons of DBP formation potential for various organic matter sources

    Source SUVA THMFP/DOC HAAFP/DOC HANFP/DOC Reference

    NDRWa) - HPIb) 1.26~2.24 16.3~37.3 28.8~32.1 - 26)

    NDRWa) - HAc) 2.92~3.52 38.9~55.9 13.8~28.8 - 26)

    NDRWa) - FAd) 2.44~3.45 28.1~56.5 9.6~22.5 - 26)

    Ce) - HAc) (without Br-) - 40.1 77.7 4.7 31)

    Ce) - HAc) (with Br-) - 85.8 50.2 0.2 31)

    EOM 1.24~2.04 26.8~30.4 32.4~47.6 1.3~3.1 this studya) NDRW: Nakdong River water, b) HPI: hydrophilic NOM, c) HA: humic acid, d) FA: fulvic acid, e) C: commercial

    chloramine (RNCl2) chloramine , halo-aldehyde DCAN .28,29) Halo-aldehyde dihaloacetaldehyde trihaloacetaldehyde , .30) , DCAN (intermediate) dihaloacetamide DCAA dihaloacetic acid

    .30) DBP 31)

    HAN aspartic acid, histidine, asparagine, tryptophan tyrosine HAN , HAN DCAN .

    EOM DOC DBP (DBPFP/DOC, specific DBPFP) Fig. 8 . HAAFP/ DOC (specific HAAFP) 10

    , 32.4~45.9 g/mg. ,

    Fig. 8. Variations of specific DBPFP for Microcystis sp. EOM according to increasing storage time.

    THMFP/DOC (specific THMFP) HANFP/DOC (specific HANFP) 60 , 24.3~ 30.0 g/mg 1.1~3.1 g/mg . DOC specific HAAFP, sp-ecific THMFP specific HANFP .

    EOM (DOC) DBPFP Fig. 9 . EOM THMFP EOM (DOC) 0.96 , HANFP EOM 0.93, HAAFP EOM 0.80 .

    DOC DBP (DBPFP/DOC) Table 1 . EOM hydrophilic-NOM (NDRW-HPI) SUVA humic acid (NDRW-HA) fulvic acid (NDRW-FA) SUVA . HAAFP/DOC NOM(NDRW-HPI, NDRW-HA NDRW-FA) .

    Fig. 9. Relationships between EOM (DOC) concentration and DBPFP concentration.

  • 357 Microcystis sp. Cell

    34 5 2012 5

    4.

    Microcystis sp. AOM .

    1) Microcystis sp. EOM 20 DOC , UV-254 , EOM 50~150 kDa 50~300 kDa AOM .

    2) EOM cell + IOM DBPs , EOM cell + IOM . , DBPs HAAFP , THMFP HANFP .

    3) EOM cell + IOM DBP , HAA EOM di-HAA tri- HAA cell + IOM . , HAN EOM cell + IOM di-HAN .

    1. Jun, H. B., Lee, Y. J., Lee, B. D. and Knappe, D. R. U., Effectiveness of coagulants and coagulant aids for the re-moval of filter-clogging Synedra, J. Water Suppl. Res. Te-chnol. Aqua, 50(3), 135~148(2001).

    2. Choi, S. K., Lee, J. Y., Kwon, D. Y. and Cho, K. J., Se-ttling characteristics of problem algae in the water treatment process, Water Sci. Technol., 53(7), 73~119(2006).

    3. Joh, G., Choi, Y. S., Shin, J, K. and Lee, J., Problematic algae in the sedimentation and filtration process of water treatment plants, J. Water Suppl. Res. Technol. Aqua, 60 (4), 219~230(2011).

    4. Ma, J., Lei, G. and Fang, J., Effect of algae species po-pulation structure on their removal by coagulation and fil-tration processes - a case study, J. Water Suppl. Res. Technol. Aqua, 56(1), 41~54(2007).

    5. Fleming, L. E., Rivero, C., Burns, J., Williams, C., Bean, J. A., Shea, K. A. and Stinn, J., Blue green algal (cyanobac-terial) toxins, surface drinking water and liver cancer in Florida, Harmful Algae, 1, 157~168(2002).

    6. Ando, A., Miwa, M., Kajino, M. and Tatsumi, S., Removal of musty-odorous compounds in water and retained in algal cells through water purification processes, Water Sci. Tech-

    nol., 25(2), 299~306(1992).7. Henderson, R. K., Baker, A., Parsons, S. A. and Jefferson,

    B., Characterization of algogenic organic matter extracted from cyanobacteria, green algae and diatoms, Water Res., 42, 3435~3445(2008).

    8. Plummer, J. D. and Edzwald, J. K., Effect of ozone on algae as precursors for trihalomethane and haloacetic acid production, Environ. Sci. Technol., 35(18), 3661~3668(2001).

    9. Huang, J., Graham, N. J. D., Templeton, M. R., Zhang, Y., Collins, C., Nieuwenhuijsen, M., Evaluation of Anabaena flos-aquae as a precursor for trihalomethane and haloacetic acid formation, Water Sci. Technol. Water Suppl., 8(6), 653~ 662(2008).

    10. Bond, T., Huang, J., Templeton, M. R. and Graham, N., Occurrence and control of nitrogenous disinfection by-pro-ducts in drinking water - a review, Water Res., 45, 4341~ 4354(2011).

    11. Boyer, T. H., Singer, P. C., Aiken, G. R., Removal of dis-solved organic matter by anion exchange: effect of dissolved organic matter properties, Environ. Sci. Technol., 42(19), 7431~7437(2008).

    12. Hua, G. and Reckhow, D. A., Characterization of disinfec-tion byproduct precursors based on hydrophobicity and mo-lecular size, Environ. Sci. Technol., 42(19), 3309~3315(2007).

    13. Huang, J., Graham, N. J. D., Templeton, M. R., Zhang, Y., Collins, C., Nieuwenhuijsen, M., A comparison of the role of two blue-green algae in THM and HAA formation, Water Res., 43, 3009~3018(2009).

    14. Brown, M. R., Jeffrey, S. W., Volkman, J. K. and Dunstan, G. A., Nutritional properties of microalgae for mariculture, Aquaculture, 151(1~4), 315~331(1997).

    15. Becker, E. W., Micro-algae as a source of protein, Bio-technol. Advances, 25(2), 207~210(2007).

    16. Crane, A. M., Kovacic, P. and Kovacic, E. D., Volatile ha-locarbon production from the chlorination of marine algal byproducts, including D-mannitol, Environ. Sci. Technol., 14(11), 1371~1374(1980).

    17. Myklestad, S. M., Release of extracellular products by ph-ytoplankton with special emphasis on polysaccharides, Sci. Total Environ., 165, 155~164(1995).

    18. Fang, J., Yang, X., Ma, J., Shang, C. and Zhao, Q., Cha-racterization of algal organic matter and formation of DBPs from chlor(am)ination, Water Res., 44, 5897~5096(2010).

    19. Hong, H. C., Mazumder, A., Wong, M. H. and Liang, Y., Yield of trihalomethanes and haloacetic acids upon chlori-nating algal cells and its prediction via algal cellular bio-chemical composition, Water Res., 42, 4941~4949(2008).

    20. Goslan, E. H., Purcell, D., Henderson, R., Jefferson, B., Janmohamed, I. H. S., Watson, J. S. and Parsons, S. A., The potential of algal extracellular organic matter as DBP pre-cursor material : a study of six algal species, Proceedings of IWA NOM conference, pp. 480~486, 2~4 September, Bath, UK, (2008).

    21. U.S. EPA, Method 552.3: Determination of Haloacetic Acids and Dalapon in Drinking Water by Liquid-Liquid Micro-

  • 358

    Journal of KSEE Vol.34, No.5 May, 2012

    extraction, Derivatization and Gas Chromatography with Electron Capture Detection. EPA 815-B-03-002, Cincinnati, Ohio, (2003).

    22. U.S. EPA, Method 551.1: Determination of Chlorination Disinfection By-Products, Chlorinated Solvents and Haloge-nated Pesticides/Herbicides in Drinking Water by Liquid- Liquid Extraction and Gas Chromatography with Electron Capture Detection, Cincinnati, Ohio, (1995).

    23. Nguyen, M. L., Westerhoff, P., Baker, L., Hu, Q., Esparza- Soto, M. and Sommerfeld, M., Characteristics and reactivity of algae-produced dissolved organic carbon, J. Environ. Eng., 131(11), 1574~1582(2005).

    24. Her, N., Amy, G. L., Park, H. R., Song, M., Characteri-zing algogenic organic matter (AOM) and evaluating asso-ciated NF membrane fouling, Water Res., 38, 1427~1438 (2004).

    25. Pivokonsky, M., Kloucek, O. and Pivokonska, L., Evalua-tion of the production, composition and aluminium and iron complexation of algogenic organic matter, Water Res., 40, 3045~3052(2006).

    26. , , , , , 26 (4), 457~466(2004).

    27. Fang, J., Ma, J., Yang, X. and Shang, C., Formation of car-bonaceous and nitrogenous disinfection by-products from the chlorination of Microcystis aeruginosa, Water Res., 44, 1934~ 1940(2010).

    28. Joo, S. H. and Mitch, W. A., Nitrile, aldehyde and haloni-troalkane formation during chlorination/chloramination of pri-mary amines, Environ. Sci. Technol., 39, 3811~3818(2007).

    29. Yang, X., Fan, C., Zhao, Q. and Shang, C., Nitrogeneous disinfection byproducts formation and nitrogen origin explora-tion during chloramination of nitrogeneous organic compo-unds, Water Res., 44, 2691~2702(2010).

    30. Reckhow, D. A., Platt, T. L., MacNeill, A. L. and McCle-llan, J. N., Formation and degradation of dichloroacetoni-trile in drinking waters, Aqua, 50, 1~13(2001).

    31. , , , , , , 31(5), 332~340 (2009).