Transcript
  • - Original Paper 351~358. 2012

    Corresponding author E-mail: [email protected] Tel: 051-669-4635 Fax: 051-669-4669

    Microcystis sp. Cell

    Decomposition of Microcystis sp. Cell and Formation of Chlorination Disinfection By-Products

    Hee-Jong SonHoon-Sik YeomJong-Mun JungJin-Taek Choi

    Water Quality Institute, Water Authority, Busan

    (2012 1 11 , 2012 5 29 )

    Abstract : Formation of disinfection by-products (DBPs) including trihalomethans (THM), haloacetic acid (HAA) and haloacetonitriles (HAN) from chlorination of extracellular organic matter (EOM) and cells + intracellular organic matter (IOM) of Microcystis sp., a blue-green algae, during decomposed period was investigated. Microcystis sp. cells + IOM and EOM of Microcystis sp. exhibited a high potential for DBP formation. HAAFP (formation potential) was higher than THMFP during decomposed period. In the variations of HAAFP species during decomposed period, the ratio of di-HAAFP species was gradually decreased and the ratio of tri-HAAFP species was gradually increased in the case of EOM during decomposed period, while the opposite result was in the case of cells + IOM during decomposed period. In the variations of HANFP species during decomposed period, the ratio of di-HANFP species was much higher than the ratio of tri-HAAFP species.Key Words : Blue-Green Algae, Microcystis sp., Algogenic Organic Matter (AOM), Chlorination, Disinfection By-Products (DBPs).

    : Microcystis sp. AOM disinfection by-products (DBPs) . EOM cell + IOM DBPs , EOM cell + IOM , DBPs HAAFP . , DBP , HAA EOM di-HAA tri-HAA . cell + IOM EOM . , HAN EOM cell + IOM di-HAN . : , Microcystis sp., , ,

    1.

    , , .1~4) ,

    .5,6) (Algogenic Organic Matter, AOM)7)

    (Disinfection By-Products, DBPs) .8~10) , AOM

    -- ,11) DBPs .12)

    AOM (algal cell) (Intracellular

    Organic Matter, IOM) (metabolic substances) Ex-tracellular Organic Matter (EOM) .13) IOM

    (algal biomolecules) (carbohydrate), (lipid) (protein) , .14,15) , N-acetylglucosamine, N-acetylmuramic acid ,13) fatty acid, polysaccharide .16~18)

    , .19)

    , EOM (exponential growth phase) glycolic acid amino acid , polysaccharide .13)

  • 352

    Journal of KSEE Vol.34, No.5 May, 2012

    (growth phase) AOM DBPs ,13,20) DBPs EOM 72~90% DBPs , ,

    EOM .13)

    , EOM Microcystis sp. AOM

    Microcystis sp. 20 EOM trihalome-thanes (THMs), haloacetic acids (HAAs) haloacetonitrile (HANs) .

    2.

    2.1.

    2011 10 4 M .

    (Millipore) . 300 m3/ pilot-plant 0.45 m (Millipore) 300 mL BOD (2 mL) (chl-a : 225 11 mg/m3) .

    . pH 7.0 , DOC UV-254 SUVA 1.97 mg/L, 0.0340 cm-1 1.7279 L/mgm.

    2.2.

    300 mL BOD 20 60 . , (Scope A1, ZEISS, Germany) 400 .

    2.3. AOM

    AOM DOC (Sievers 5310C, Sievers, USA) UV-254 (UV-2401PC, Shi-madzu, Japan) , DOC UV-254 SUVA (specific UV absorbance) . , AOM HPSEC (High Performance Size Exclusion Chromatography) , 30 cm, 0.8 cm Zobax GF- 450 (9.4 250 mm, 4 m) UV detector (SPD-6A, Shi-madzu, Japan) HPLC (LC600, Shimadzu, Japan) .

    2.4.

    10,000 mg/L (Junsei chemical, Japan) 10 mg/L 20 , 10% NaOH (1 + 10) H3PO4 pH 7.0 0.2 20 24

    . THMs, HAAs HANs . THMs headspace autosampler GC/ECD (6890N, Agilent, USA) , HAAs US EPA Method 552.3 21) GC/ ECD (6890N, Agilent, USA) , HANs US EPA Method 551.1 22) GC/ECD (6890N, Agilent, USA) .

    3.

    3.1. AOM

    AOM (EOM) DOC, UV-254 SUVA Fig. 1 . Fig. 1 DOC, UV-254 SUVA UV-254 21 0.06803 cm-1 36, 45 60 0.06638, 0.05496 0.04704 cm-1 UV-254 . , DOC 36 3.92 mg/L , SUVA 10 2.04 m-1L/mg .

    UV-254 DOC UV-254 DOC . UV-254

  • 353 Microcystis sp. Cell

    34 5 2012 5

    (a) 0 day (b) 10 day after (c) 21 day after

    Fig. 2. Photographs of changed Microcystis sp. cells according to increasing storage time.

    Fig. 1. Variations of EOM (DOC, UV-254 & SUVA) concentration according to increasing storage time.

    AOM (EOM)

    (mineralization) UV-254 DOC . Nguyen 23) Henderson 7) AOM 60%~70% .

    SUVA / , SUVA 3 . Fig. 1 SUVA 10 2.04 m-1L/mg

    AOM , Fang 18) EOM SUVA 1.38 m-1L/mg , Her 24) AOM (Natural Organic Matter, NOM) , SUVA

    . , (logarithmic phase) SUVA Henderson 7) .

    Microcystis sp. Fig. 2 . Fig. 2(a) 0 Microcystis sp.

    IOM . Fig. 2(b) 10 Microcystis sp. IOM , Fig. 2(c) 21 Microcystis sp. IOM

    . AOM

    Fig. 3 . Fig. 3 (0 day) BAC 50~150 kDa ,

    Fig. 3. Variations of molecular weight size distributions of EOM according to increasing storage time.

  • 354

    Journal of KSEE Vol.34, No.5 May, 2012

    10 36 50~200 kDa 50~400 kDa . (0) EOM Fig. 1 BAC (0) DOC UV-254 .

    , 10 Microcystis sp.(Fig. 2 (b)) IOM 50 kDa~ 150 kDa AOM AOM 300 kDa , Fig. 1 AOM . Pivokonsky 25) Microcystis aeruginosa EOM IOM EOM IOM , EOM

    EOM .

    3.2. DBP

    EOM AOM (cell + IOM) Fig. 4 . Fig. 4 THMFP, HAAFP HANFP EOM , cell + IOM . EOM (DOC UV- 254) Fig. 2 IOM .

    , EOM AOM (cell + IOM) THMFP HAAFP , AOM

    NOM

    26) THM (THMFP) HAA (HAAFP) , THMFP HAAFP Huang 13) HAAFP .

    , EOM HAAFP HANFP 36 , THMFP . EOM Fig. 1 DOC UV-254

    Fig. 4. Variations of DBPFP for Microcystis sp. cell + IOM and EOM according to increasing storage time.

    Fig. 5. Distribution of HAAFP species for Microcystis sp. cell+ IOM and EOM according to increasing storage time.

    , (precur-sor) THMFP DBPs .

    EOM AOM (cell + IOM) HAA Fig. 5 . Fig. 5 EOM HAA dichloroacetic acid (DCAA) di-HAA , tri-chloroacetic acid (TCAA) tri-HAA

    . AOM (cell +

  • 355 Microcystis sp. Cell

    34 5 2012 5

    Fig. 7. Proposed pathway for the formation of organic chloramines and N-DBPs from chlorination and chloramination of algogenic organic matter (AOM)18).

    Fig. 6. Distribution of HANFP species for Microcystis sp. cell + IOM and EOM according to increasing storage time.

    IOM) EOM . EOM AOM (cell + IOM) , Huang 13) (death phase)

    EOM tri-HAA (lysis) tri-HAA IOM 49% 60 58% tri-HAA , Fig. 2(c) IOM 21 tri-HAA .

    EOM AOM (cell + IOM) HAN Fig. 6 . Fig. 6 EOM cell + IOM HANFP 80~90% dichloroacetonitrile (DCAN) di-HAN , 60 . Microcystis aeruginosa Fang (cell + IOM) HAN , TCAN DCAN .27) AOM

    Fig. 7 mono-chloramine (RNHCl) di-

  • 356

    Journal of KSEE Vol.34, No.5 May, 2012

    Table 1. Comparisons of DBP formation potential for various organic matter sources

    Source SUVA THMFP/DOC HAAFP/DOC HANFP/DOC Reference

    NDRWa) - HPIb) 1.26~2.24 16.3~37.3 28.8~32.1 - 26)

    NDRWa) - HAc) 2.92~3.52 38.9~55.9 13.8~28.8 - 26)

    NDRWa) - FAd) 2.44~3.45 28.1~56.5 9.6~22.5 - 26)

    Ce) - HAc) (without Br-) - 40.1 77.7 4.7 31)

    Ce) - HAc) (with Br-) - 85.8 50.2 0.2 31)

    EOM 1.24~2.04 26.8~30.4 32.4~47.6 1.3~3.1 this studya) NDRW: Nakdong River water, b) HPI: hydrophilic NOM, c) HA: humic acid, d) FA: fulvic acid, e) C: commercial

    chloramine (RNCl2) chloramine , halo-aldehyde DCAN .28,29) Halo-aldehyde dihaloacetaldehyde trihaloacetaldehyde , .30) , DCAN (intermediate) dihaloacetamide DCAA dihaloacetic acid

    .30) DBP 31)

    HAN aspartic acid, histidine, asparagine, tryptophan tyrosine HAN , HAN DCAN .

    EOM DOC DBP (DBPFP/DOC, specific DBPFP) Fig. 8 . HAAFP/ DOC (specific HAAFP) 10

    , 32.4~45.9 g/mg. ,

    Fig. 8. Variations of specific DBPFP for Microcystis sp. EOM according to increasing storage time.

    THMFP/DOC (specific THMFP) HANFP/DOC (specific HANFP) 60 , 24.3~ 30.0 g/mg 1.1~3.1 g/mg . DOC specific HAAFP, sp-ecific THMFP specific HANFP .

    EOM (DOC) DBPFP Fig. 9 . EOM THMFP EOM (DOC) 0.96 , HANFP EOM 0.93, HAAFP EOM 0.80 .

    DOC DBP (DBPFP/DOC) Table 1 . EOM hydrophilic-NOM (NDRW-HPI) SUVA humic acid (NDRW-HA) fulvic acid (NDRW-FA) SUVA . HAAFP/DOC NOM(NDRW-HPI, NDRW-HA NDRW-FA) .

    Fig. 9. Relationships between EOM (DOC) concentration and DBPFP concentration.

  • 357 Microcystis sp. Cell

    34 5 2012 5

    4.

    Microcystis sp. AOM .

    1) Microcystis sp. EOM 20 DOC , UV-254 , EOM 50~150 kDa 50~300 kDa AOM .

    2) EOM cell + IOM DBPs , EOM cell + IOM . , DBPs HAAFP , THMFP HANFP .

    3) EOM cell + IOM DBP , HAA EOM di-HAA tri- HAA cell + IOM . , HAN EOM cell + IOM di-HAN .

    1. Jun, H. B., Lee, Y. J., Lee, B. D. and Knappe, D. R. U., Effectiveness of coagulants and coagulant aids for the re-moval of filter-clogging Synedra, J. Water Suppl. Res. Te-chnol. Aqua, 50(3), 135~148(2001).

    2. Choi, S. K., Lee, J. Y., Kwon, D. Y. and Cho, K. J., Se-ttling characteristics of problem algae in the water treatment process, Water Sci. Technol., 53(7), 73~119(2006).

    3. Joh, G., Choi, Y. S., Shin, J, K. and Lee, J., Problematic algae in the sedimentation and filtration process of water treatment plants, J. Water Suppl. Res. Technol. Aqua, 60 (4), 219~230(2011).

    4. Ma, J., Lei, G. and Fang, J., Effect of algae species po-pulation structure on their removal by coagulation and fil-tration processes - a case study, J. Water Suppl. Res. Technol. Aqua, 56(1), 41~54(2007).

    5. Fleming, L. E., Rivero, C., Burns, J., Williams, C., Bean, J. A., Shea, K. A. and Stinn, J., Blue green algal (cyanobac-terial) toxins, surface drinking water and liver cancer in Florida, Harmful Algae, 1, 157~168(2002).

    6. Ando, A., Miwa, M., Kajino, M. and Tatsumi, S., Removal of musty-odorous compounds in water and retained in algal cells through water purification processes, Water Sci. Tech-

    nol., 25(2), 299~306(1992).7. Henderson, R. K., Baker, A., Parsons, S. A. and Jefferson,

    B., Characterization of algogenic organic matter extracted from cyanobacteria, green algae and diatoms, Water Res., 42, 3435~3445(2008).

    8. Plummer, J. D. and Edzwald, J. K., Effect of ozone on algae as precursors for trihalomethane and haloacetic acid production, Environ. Sci. Technol., 35(18), 3661~3668(2001).

    9. Huang, J., Graham, N. J. D., Templeton, M. R., Zhang, Y., Collins, C., Nieuwenhuijsen, M., Evaluation of Anabaena flos-aquae as a precursor for trihalomethane and haloacetic acid formation, Water Sci. Technol. Water Suppl., 8(6), 653~ 662(2008).

    10. Bond, T., Huang, J., Templeton, M. R. and Graham, N., Occurrence and control of nitrogenous disinfection by-pro-ducts in drinking water - a review, Water Res., 45, 4341~ 4354(2011).

    11. Boyer, T. H., Singer, P. C., Aiken, G. R., Removal of dis-solved organic matter by anion exchange: effect of dissolved organic matter properties, Environ. Sci. Technol., 42(19), 7431~7437(2008).

    12. Hua, G. and Reckhow, D. A., Characterization of disinfec-tion byproduct precursors based on hydrophobicity and mo-lecular size, Environ. Sci. Technol., 42(19), 3309~3315(2007).

    13. Huang, J., Graham, N. J. D., Templeton, M. R., Zhang, Y., Collins, C., Nieuwenhuijsen, M., A comparison of the role of two blue-green algae in THM and HAA formation, Water Res., 43, 3009~3018(2009).

    14. Brown, M. R., Jeffrey, S. W., Volkman, J. K. and Dunstan, G. A., Nutritional properties of microalgae for mariculture, Aquaculture, 151(1~4), 315~331(1997).

    15. Becker, E. W., Micro-algae as a source of protein, Bio-technol. Advances, 25(2), 207~210(2007).

    16. Crane, A. M., Kovacic, P. and Kovacic, E. D., Volatile ha-locarbon production from the chlorination of marine algal byproducts, including D-mannitol, Environ. Sci. Technol., 14(11), 1371~1374(1980).

    17. Myklestad, S. M., Release of extracellular products by ph-ytoplankton with special emphasis on polysaccharides, Sci. Total Environ., 165, 155~164(1995).

    18. Fang, J., Yang, X., Ma, J., Shang, C. and Zhao, Q., Cha-racterization of algal organic matter and formation of DBPs from chlor(am)ination, Water Res., 44, 5897~5096(2010).

    19. Hong, H. C., Mazumder, A., Wong, M. H. and Liang, Y., Yield of trihalomethanes and haloacetic acids upon chlori-nating algal cells and its prediction via algal cellular bio-chemical composition, Water Res., 42, 4941~4949(2008).

    20. Goslan, E. H., Purcell, D., Henderson, R., Jefferson, B., Janmohamed, I. H. S., Watson, J. S. and Parsons, S. A., The potential of algal extracellular organic matter as DBP pre-cursor material : a study of six algal species, Proceedings of IWA NOM conference, pp. 480~486, 2~4 September, Bath, UK, (2008).

    21. U.S. EPA, Method 552.3: Determination of Haloacetic Acids and Dalapon in Drinking Water by Liquid-Liquid Micro-

  • 358

    Journal of KSEE Vol.34, No.5 May, 2012

    extraction, Derivatization and Gas Chromatography with Electron Capture Detection. EPA 815-B-03-002, Cincinnati, Ohio, (2003).

    22. U.S. EPA, Method 551.1: Determination of Chlorination Disinfection By-Products, Chlorinated Solvents and Haloge-nated Pesticides/Herbicides in Drinking Water by Liquid- Liquid Extraction and Gas Chromatography with Electron Capture Detection, Cincinnati, Ohio, (1995).

    23. Nguyen, M. L., Westerhoff, P., Baker, L., Hu, Q., Esparza- Soto, M. and Sommerfeld, M., Characteristics and reactivity of algae-produced dissolved organic carbon, J. Environ. Eng., 131(11), 1574~1582(2005).

    24. Her, N., Amy, G. L., Park, H. R., Song, M., Characteri-zing algogenic organic matter (AOM) and evaluating asso-ciated NF membrane fouling, Water Res., 38, 1427~1438 (2004).

    25. Pivokonsky, M., Kloucek, O. and Pivokonska, L., Evalua-tion of the production, composition and aluminium and iron complexation of algogenic organic matter, Water Res., 40, 3045~3052(2006).

    26. , , , , , 26 (4), 457~466(2004).

    27. Fang, J., Ma, J., Yang, X. and Shang, C., Formation of car-bonaceous and nitrogenous disinfection by-products from the chlorination of Microcystis aeruginosa, Water Res., 44, 1934~ 1940(2010).

    28. Joo, S. H. and Mitch, W. A., Nitrile, aldehyde and haloni-troalkane formation during chlorination/chloramination of pri-mary amines, Environ. Sci. Technol., 39, 3811~3818(2007).

    29. Yang, X., Fan, C., Zhao, Q. and Shang, C., Nitrogeneous disinfection byproducts formation and nitrogen origin explora-tion during chloramination of nitrogeneous organic compo-unds, Water Res., 44, 2691~2702(2010).

    30. Reckhow, D. A., Platt, T. L., MacNeill, A. L. and McCle-llan, J. N., Formation and degradation of dichloroacetoni-trile in drinking waters, Aqua, 50, 1~13(2001).

    31. , , , , , , 31(5), 332~340 (2009).