9
Biography : ZHOUJian ( 1983 —), Male , DoctorCandidate ; EGmail : zhouGjianG168@163com ; ReceivedDate : June4 , 2012 JOURNALOFIRON ANDSTEELRESEARCH , INTERNATIONAL2013 , 20 ( ): 117G125 MicrostructureandPro p ertiesofHotWorkin g DieSteelH13MOD ZHOUJian , MA DangGshen , CHIHongGxiao , CHENZaiGzhi , LIXiangGyang ( CentralIronandSteelResearchInstitute , Beijing100081 , China ) Abstract : ComparedwithH13steel , theinfluencesofdifferentheattreatmentprocessonthe microstructureand propertiesofthenewtypeofhotworkingdiesteelH13MOD werestudied.TheresultsshowthatthecompleteausG tenitizingtemperatureofH13MODisaround1030 ℃ andthequenchinghardnessachievesthe maximum valueat thistemperature.WhileforH13 , thecompleteaustenitizingtemperatureisabove1100 ℃ andthequenchinghardness riseconstantly withthequenchingtemperatureincreasing.Inquenchingprocess , theundissolved MCcarbidescan preventthecoarseningofgraininbothsteels.Withtheriseofquenchingtemperature , when MCcarbidesdissolve completely , thegraingrowsquickly.ThehardnessandstrengthofH13MODathighertemperingtemperature ( above 570℃ ) arenearlythesameasthoseofH13 , butitstoughnessishigherthanthatofH13.Mo Ccarbideisthemain strengtheningphasein H13MOD , whichisattributedtothehighercontentofMo.ThequantityofVCeutecticcarG bidesisreducedbecauseoflowercontentofVinH13MOD , whichplaysanimportantroleinenhancingtheimpact toughnessofH13MOD.Underacertainstrengthcondition , H13MODsteelcanbeusedintheenvironmentthat highertoughnessisrequiredandtheservicelifeofdiecastingmoldcanbeimproved. Keywords : hotworkingdiesteel ; hardness ; heattreatment ; impactductility ; tensilestrength Diecastingisaneconomicalwaytoproducelarge quantitiesofcomplicatedshaped productsoflight metalswithhighprecisionandgoodsurfacefinish. Themostimportantfailuremechanismsthatlimit theperformanceandservicelifeoftoolsinaluminG ium andbrassdiecastingapplicationsarethermal fatiguecracking , erosion , corrosion , soldering , and grossfracture [1] .Morethan80%failuresofthedies arecausedbythermalfatiguechecking.Toincrease theheatchecking resistance , thetoolsteel must havegoodhighGtemperaturestrength , highGtemperG aturetoughnessandthermalconductivity [2] .AISI H13isthemostpopularsteelfordiecastingapplicaG tion.Inthediecastingprocess , thetoughnessshortG ageofH13alwaysoccurs , whichleadstothefailure ofdieGcastingmold.Therefore , toimprovethemaG terialtoughnessbecomesthe main purposeofenG hancingtheservicelifeofdiesteelinacertaincondiG tionofstrengthandhardness.In hot workingdie steel , theprecipitationofdifferenttypeofcarbideis animportantfactortoaffectthestrengthandtoughG nessofsteel , andintroducingalloyingelementsto modifythesecondary precipitationseemsto bea morerelevantroute for casting dies orforging tools [3] .DieGcastingsteelsoftencontainalloyingeleG mentsofMoandV , whichcanimprovethestrength ofsteelbytheformationoffinecarbides.ButtheexG traadditionofVinducestheheterogeneityofvanaG diumconcentrationwithinthematrix , andtheforG mationofsomeeutecticcarbides ( VC ) mayaffect theimpacttoughnessofsteel.Thisisalsothereason thatH11steel ( 04%V , masspercent ) hashigher toughnessthanthatofH13steel ( 10%V , massperG cent ) .Theaustenitizationconditionscouldnotbe modifiedtoanextentbytheadditionofMo ( 27% , masspercent ) wheresufficientdissolutionoccurred , becauseprimary carbidesarefoundin quantities , whichhaveadetrimentaleffectonthecharpyimpact energy [3] .Forthese reasons , modified H13steel wasdeveloped to meetthe above requirements. Comparedwith H13 , thenew H13MODsteelhas lowercontentsofSiand V.Inadditiontothat , to increasethecontentof Moproperlycanensurethe strengthofsteelathightemperature.Inthispaper , themicrostructureand mechanicalpropertiesofthe H13MODarestudiedandcomparedwithH13steel.

Microstructure and Properties of Hot Working Die Steel H13MOD

Embed Size (px)

Citation preview

Page 1: Microstructure and Properties of Hot Working Die Steel H13MOD

BiographyZHOUJian(1983mdash)MaleDoctorCandidate EGmailzhouGjianG1681631049008com ReceivedDateJune42012

1051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271

JOURNALOFIRONANDSTEELRESEARCHINTERNATIONAL1049008201320(9)117G12510512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273

MicrostructureandPropertiesofHotWorkingDieSteelH13MOD

ZHOUJian MADangGshen CHIHongGxiao CHENZaiGzhi LIXiangGyang(CentralIronandSteelResearchInstituteBeijing100081China)

AbstractComparedwithH13steeltheinfluencesofdifferentheattreatmentprocessonthemicrostructureandpropertiesofthenewtypeofhotworkingdiesteelH13MODwerestudiedTheresultsshowthatthecompleteausGtenitizingtemperatureofH13MODisaround1030 andthequenchinghardnessachievesthemaximumvalueatthistemperatureWhileforH13thecompleteaustenitizingtemperatureisabove1100andthequenchinghardnessriseconstantlywiththequenchingtemperatureincreasingInquenchingprocesstheundissolvedMCcarbidescanpreventthecoarseningofgraininbothsteelsWiththeriseofquenchingtemperaturewhenMCcarbidesdissolvecompletelythegraingrowsquicklyThehardnessandstrengthofH13MODathighertemperingtemperature(above570)arenearlythesameasthoseofH13butitstoughnessishigherthanthatofH13Mo2CcarbideisthemainstrengtheningphaseinH13MODwhichisattributedtothehighercontentofMoThequantityofVCeutecticcarGbidesisreducedbecauseoflowercontentofVinH13MODwhichplaysanimportantroleinenhancingtheimpacttoughnessofH13MODUnderacertainstrengthconditionH13MODsteelcanbeusedintheenvironmentthathighertoughnessisrequiredandtheservicelifeofdiecastingmoldcanbeimprovedKeywordshotworkingdiesteelhardnessheattreatmentimpactductilitytensilestrength

  DiecastingisaneconomicalwaytoproducelargequantitiesofcomplicatedshapedproductsoflightmetalswithhighprecisionandgoodsurfacefinishThemostimportantfailuremechanismsthatlimittheperformanceandservicelifeoftoolsinaluminGiumandbrassdiecastingapplicationsarethermalfatiguecrackingerosioncorrosionsolderingandgrossfracture[1]Morethan80failuresofthediesarecausedbythermalfatiguecheckingToincreasetheheatcheckingresistancethetoolsteel musthavegoodhighGtemperaturestrengthhighGtemperGaturetoughnessandthermalconductivity[2]AISIH13isthemostpopularsteelfordiecastingapplicaGtionInthediecastingprocessthetoughnessshortGageofH13alwaysoccurswhichleadstothefailureofdieGcastingmoldThereforetoimprovethemaGterialtoughnessbecomesthe mainpurposeofenGhancingtheservicelifeofdiesteelinacertaincondiGtionofstrengthandhardnessInhotworkingdiesteeltheprecipitationofdifferenttypeofcarbideisanimportantfactortoaffectthestrengthandtoughGnessofsteelandintroducingalloyingelementstomodifythesecondaryprecipitationseemstobea

morerelevantrouteforcasting dies orforgingtools[3]DieGcastingsteelsoftencontainalloyingeleGmentsofMoandVwhichcanimprovethestrengthofsteelbytheformationoffinecarbidesButtheexGtraadditionofVinducestheheterogeneityofvanaGdiumconcentrationwithinthematrixandtheforGmationofsomeeutecticcarbides (VC)mayaffecttheimpacttoughnessofsteelThisisalsothereasonthatH11steel(010490084Vmasspercent)hashighertoughnessthanthatofH13steel(110490080VmassperGcent)TheaustenitizationconditionscouldnotbemodifiedtoanextentbytheadditionofMo(210490087masspercent)wheresufficientdissolutionoccurredbecauseprimarycarbidesarefoundinquantitieswhichhaveadetrimentaleffectonthecharpyimpactenergy[3]Forthesereasonsmodified H13steelwasdeveloped to meetthe aboverequirementsComparedwith H13thenew H13MODsteelhaslowercontentsofSiandVInadditiontothattoincreasethecontentofMoproperlycanensurethestrengthofsteelathightemperatureInthispaperthemicrostructureandmechanicalpropertiesoftheH13MODarestudiedandcomparedwithH13steel

1 ExperimentalMaterialsandMethods

  Twokindsofexperimentalsteelsinthisstudywerepreparedbyvacuummeltingof25kgingotfolGlowedbyhotforgingtoproduceroundbarwithsizeofϕ16mmtimes500mmThechemicalcompositionoftestingsteelislistedinTable1Afterforging870-760isothermalannealingprocesswasadoptedforthefinalproductTheannealinghardnessesofH13

andH13MODareHB203andHB200respectivelySpheroidalannealingstructuregradeof H13andH13MODbelongtotheratingofAS3andAS1reGspectivelyaccordingtotheNADCA207G2003annealedquality microstructurechartAfterannealingtheroundbar wascutintohardnesstestingsampleswithsizeof12mmtimes12mmtimes16mmASTMstandardϕ5tensiletestpieceandCharpyUGnotchedimpactspecimenswithsizeof10mmtimes10mmtimes55mminlongitudinaldirectioninthecenteroftheroundbar

      Table1 Chemicalcompositionofteststeel         (masspercent)

Steel C Si Mn S P Cr Mo V

H13 0104900844 0104900894 0104900841 01049008006 010490080096 4104900869 1104900822 0104900884H13MOD 0104900838 0104900838 0104900849 01049008006 010490080097 5104900813 1104900884 0104900849

  InordertodeterminethehardeningtreatmentprocessesoftestedsteelthehardnesstestingsamGpleswerepreheatedat500for30minthenausGtenitizedfor30minatdifferenttemperaturesof920950980100010301060and1100inMufflefurnacewhichisfollowedbyoilquenching  Inordertoresearchtheinfluenceoftemperingtemperatureonthemicrostructureandpropertiesoftestedsteeltensiletestpiecesandimpactspecimenswereaustenitizedfor30minat1030quenchedinoilandthentemperedatdifferenttemperaturesof450480710540570600and650for2htwice    The annealed hardness was determined byHP250hardmeterwhilethequenchingandtempeGringhardnessesweredeterminedbyTIME TH300hardmeterTensilepropertiesweredeterminedonanLOS600tensiletestmachineImpacttestonCharpyUGnotchedsampleswasperformedfordeterminingimpacttoughnesswithaJB30Bimpacttestmachineatroomtemperature  MetallographicanalysiswasdonebyusinganLEICA MEF4opticalmicroscopeanHITACHISG4300electronicscanningmicroscope(SEM)attachedanEDAXGENESIS610490080spectrumanalyzer(EDS)andanH800transmissionelectronmicroscope(TEM)

2 ResultsandDiscussion210490081 Effectofquenchingtemperatureonhardnessandmicrostructure    The variations of hardness with differentquenchingtemperatureforH13andH13MODsteelsareshowninFig10490081ThehardnessesofthesetwosteelsrisewiththeincreaseofquenchingtemperaGturewhenthetemperatureisbelow1030andthe

Fig10490081 HardnessandgraingradecurvesofH13andH13MODatdifferentquenchingtemperatures

hardnessofH13MODishigherthanthatofH13Thehardnessof H13MODreachesthe maximumvalueat1030 andhasnofurtherincreasewiththeriseofquenchingtemperaturewhilefor H13steelitstillkeepsonincreasingThehardnessofH13steelisHRC210490087higherthanthatofH13MODsteelwhenquenchedat1100Theaustenitizationconditionsofbothsteelsarecalculated by usingThermoGCalcsoftware(Fig10490082)Theresultsshowthatinthetemperaturerangeof500-1200 thecarGbidesofM23C6MCandM7C3existinH13steelaswellas M23C6MCand M6Cexistin H13MODsteelExceptMCcarbidesnoM23C6M6CM7C3

carbidesleftinH13andH13MODwhenthequenchGingtemperatureisabove900ThedissolvingtemGperatureofMCcarbidesforH13is1141whichis101higherthanthatofH13MODItisremarkGablethatthedissolvingtemperatureofMCcarbidesisjustthecompleteaustenitizingtemperatureofthetwosteelsWhensolutiontemperatureisbelow1030carbonisnotcompletelydissolvedintotheaustenite

10489448111048944       JournalofIronandSteelResearchInternational              Vol104900820 

(a)H13  (b)H13MODFig10490082 Effectoftemperatureontransformedamountofcarbides

butexistsintheformofundissolvedMC(VGrich)inH13ItisclearthattheasGquenchedhardnessisgreatlyaffectedbytheextentofsolidsolutionhardGeningbycarbonandalloyingelementsAsthetemGperatureincreasesmoreand morecarbidesdisGsolvethusenrichingtheausteniteincarbonandalGloyingelementsHighercarbonandalloyingeleGmentsintheaustenite(uptoalimit)willleadtohigherhardnessofthemartensiteproducedfromthisaustenite[4]ThecarbidesinH13MODaredissolvedat1030 completelywhilein H13itneedsahigheraustenitizingtemperaturetobringthemintosolidstatesolutionentirelysothehardnessofH13islowerthanthatofH13MODwhensolutiontemGperatureisbelow1030WhenquenchingtemperGatureishigherthan1030 H13MODhasbeencompletelyaustenizitingThereforewiththeriseofquenchingtemperaturethehardnessofH13MODhasnofurtherincreasewhileforH13MCcarbides(VGrich)dissolveintoaustenitematrixcontinuouslywhichleadstothecontentofcarboninquenchingmartensiteincreasesgraduallyandthehardnessinGcreasescorrespondingly  Fig10490083showsthemetallographicstructuresofbothH13andH13MODquenchedat1000and1030 TherearealotofundissolvedsmallcarbidesinmarGtensiticmatrixofbothsteelswhenquenchedat1000[Fig10490083(a)and(b)]butat1030 undissolvedcarbidescanonlybefoundinH13[Fig10490083(c)]Itiscleartoseethattheundissolved MCparticles(VGrich)existinH13whenquenchedat1030 [Fig10490084(a)]whileinH13MODnearlyallcarbidesaredisG

solvedandthemicrostructureismartensite[Fig10490084(b)]atthistemperatureFromtheaboveresultsitcanbeseenthattheresultscalculatedbyThermoGCalcoftheteststeelsareingoodagreementwiththeexperimentalones  AccompanyingwiththedissolutionofthealloycarbidesandtheincreasingofaustenitizingtemperaGtureausteniticgrainsizeincreasesasindicatedinFig10490081ButforH13MODcoarseningofthegrainsizeismuch moreobviousthanthatof H13especiallywhenthequenchingtemperatureisabove1030 ThisisattributedtotheundissolvedcarbidesthatinhibitgraingrowthinH13steelthusthegrainsizestillretains9gradesuntilthequenchingtemperaturereaches1060ButitiseasytorecognizethatthebrittlenessofsteelriseswiththehardnessincreasGingespeciallythelargesizeworkpiecewhichisveryeasytocrackwhenquenchingat1060Soitismuchbettertochoose1030 asthereasonablequenchingtemperaturewhichisestablishedempiriGcallyforeachsteelonthebasisofattainablehardGnessandgraincoarsening

210490082 EffectoftemperingtemperatureonmicrostrucGtureandmechanicalproperties  Fig10490085showstheplotsoftemperedhardnesstenGsilestrengthreductionofarea(Z)andelongationafterfracture(A)asfunctionsoftemperingtemperatureforH13and H13MODAstemperingtemperatureincreasesthehardnessfirstincreasestoamaximumandthengraduallydecreasesBothofthetwosteelsundergosecondaryhardeningassociatedwiththeprecG

10489449111048944Issue9         MicrostructureandPropertiesofHotWorkingDieSteelH13MOD 

(a)H131000  (b)H13MOD1000  (c)H131030  (d)H13MOD1030Fig10490083 Metallographicstructuresofteststeelsquenchedat1000and1030

(a)H13  (b)H13MODFig10490084 SEM microstructuresofteststeelsquenchedat1030

ipitationofalloycarbidesintempered martensiteTheprecipitationofsecondarycarbidesretardssofGteningandincreasesthehardnessesofthetwosteelsH13hasasecondaryhardeningpeakat510 whileforH13MODitisat480 AndthetemperedhardnessofH13MODisslightlylowerthanthatofH13whenthetemperatureisbelow540 Whenthetemperatureisabove540H13andH13MODsteelshavenearlythesamehardness  ThevariationoftensilestrengthwithtemperingtemperatureinFig10490085showsnearlythesametrendashardnessThetensilestrengthofH13ishigherthan

thatofH13MODwhenthetemperingtemperatureisbelow540andreachesitsmaximumat510whichisalsotheminimumvalueofreductionofareaThemixGclusterwhichiscalled [MGC]segregationgroupdevelopedby MoCrandCatomsonαGphaseinduceslatticedistortion[5]andthesmallVCparticlesprecipitatedwhiletemperinggeneratesigGnificantsecondaryphasestrengthening[6]whichinGducesatensilestrengthincrementofH13comparedwithH13MODinthistemperaturerangeWiththeincreaseoftemperingtemperaturethedifferenceofreductionofareabetweenthetwosteelstendstobe

10489440211048944       JournalofIronandSteelResearchInternational              Vol104900820 

Fig10490085 Influencesofhardnesstensilestrengthreductionofarea(Z)andelongationafterfracture(A)ondifferenttemperingtemperaturesofH13steelandH13MODsteel

smallerH13MODhasabetterductilitycomparedwithH13AtthehighertemperingtemperatureesGpeciallyintherangefrom580to600 whichisgenerallyappliedformosthotworkingapplicationsbothofthetwosteelshavealmostthesamestrengthproperties  Thethin martensitelathsanddispersedcarGbidesarefoundinthetemperedmicrostructuresofH13andH13MOD (quenchedat1030 andtemGperedat600 )therearemuch morelargesizeM23C6 (CrGrich)M6C (MoGrich)andMC (VGrich)carbides(distinguishedbyEDS)existinH13steelcompared with H13MOD steel (Fig10490086)In H13steelarapidcarbidetransitionwhichnegativelyinfluencestheprecipitationstrengtheningoccursatmoderatelyhightemperatures(600)ThedistriGbutionofundissolvedVGrichcarbides(MC)transGformstoacoarserdistributionofCrGrichcarbides(M23C6)whicharelesseffectivefromaprecipitatiGonstrengthening perspective[7]Fig10490087 showstheTEMimagesofpartcarbidesinH13steelunderdifG

ferentheattreatmentconditionsTheTEMinvestiGgationsrevealedundissolved MCcarbides(VGrich)andthecoarseningofM6CandM23C6carbidepartiGclesinmatrix [Fig10490087 (a)]whichmayleadtothedecreaseofstrengtheningeffect  Fig10490088showstheTEMimagesofcarbidesinH13MODsteelaftertemperingat540and600ItcanbeseenthatanumberofsmallrodGlikecarbideparticlesarethemainmicrostructuralfeaturewhentemperedat540 [Fig10490088(a)]Diffractionpatternofcarbidestemperedat600 [Fig10490088(c)]showsthattherodGlikecarbideparticlesarealloycementites(M3C)precipitatedfrom martensiteIncreasingthetempeGringtemperatureabove600 causescoarseningofalloycementites[Fig10490088 (b)]andrecoveryofmarGtensitewhicharethereasonsforconsiderablehardGnessandstrengthdropItcanbeseenthattheextentofhardnessandtensilestrengthdropofH13MODislowerthanthatofH13ForthehighercontentofMoinH13MODMoprovidessecondaryhardeningandredhardnessbytheformationoftheMo2Ctype

Fig10490086 SEM microstructuresofH13(a)andH13MOD(b)temperedtwiceat600 (quenchedat1030)

10489441211048944Issue9         MicrostructureandPropertiesofHotWorkingDieSteelH13MOD 

(a)MCcarbideat570 (TEMdarkGfieldimage)  (b)M23C6carbideat600 (TEMdarkGfieldimage)(c)M6Ccarbideat600 (TEMbrightGfieldimage)

Fig10490087 CarbidesandselectedareaelectrondiffractionimagesofH13steelatdifferenttemperingtemperatures(quenchedat1030)

(a)Temperedtwiceat540  (b)Temperedtwiceat600  (c)Diffractionpatternofcarbidesof(b)Fig10490088 TEMdarkGfieldimagesoftemperedH13MODsteel(quenchedat1030)

ofcarbide[8]Mo2CkeepscoherentwithmatrixacGcumulatingandcoarseningslowlywhichmayalsoleadtosecondaryhardeningFortheinterferenceofthealloycementitenoM2CcarbidediffractionpatGternisobtainedfromthethinfoilat600orlowertemperingtemperatureButforH13MODtestsamGplewhichhasbeenquenchedat1030 andtemGperedat600 twicefurthertemperingonthissampleat620for2hitisfoundthatM2C (forH13MODitmaywellbeMo2C)carbidehasastrongdiffractionpatternFurthermorethecarbidesstillkeepverysmallsize(Fig10490089)ThereforeM2CisthemainstrengtheningphaseinH13MODwhichisalGsotheimportantreasonthathigherhardnessandstrengthcanbekeptinH13MODathightemperingtemperature

  TheresultsofCharpyimpacttestperformedatroomtemperaturetoevaluatetoughnessofthetwosteelsarepresentedinFig104900810Itisnoticedthattheminimaintheimpactenergycurvesoccursatthetemperingtemperatureof510 forH13steeland480forH13MODsteelwhichiscorrespondingtothetemperedhardnesscurves(Fig10490085)ThisatGtendantlossofimpacttoughnessisknownasreversGibletemperedembrittlementTheembrittlementisfoundtobeconcurrentwiththeinterlathprecipitatiGonofalloycementitesduringtemperingandtheconGsequentmechanicalinstabilityofinterlathfilmsofretainedausteniteduringsubsequentloading[9-10]TheincreaseofimpactenergyabovethebrittletemGperatureisassociatedwiththematrixsofteningandcoarseningofcarbidesparticles[11]

10489442211048944       JournalofIronandSteelResearchInternational              Vol104900820 

Fig10490089 TEMdarkGfieldimageofH13MODtemperedat620for2h(afterquenchingat1030andtemperingat600twice)(a)anddiffractionpatternofcarbides(b)

Fig104900810 ImpactenergiesofH13andH13MODsteels

  AscanbeseenfromFig104900810theimpacttoughGnessofH13MODismuchhigherthanthatofH13steelevenunderthesametemperinghardnesswhentemperingtemperatureisabove540 (Fig10490085)ThatistosayH13MODcanbeusedinthesamehardnessenvironmentasH13buthighertoughnessisrequiredthusenhancethermalfatigueresistanceandservicelifeofmouldTheSEManalysisonfracGturesurfaceindicatesthatthefracturecharacterisGticofH13isquasiGcleavage[Fig104900811(a)]aftertemGperingat600whileforH13MODsteelitisquasiGcleavagefracturewithmasssmalldimples[Fig104900811(b)]

Fig104900811 SEMfractographsoftemperedimpactsampleofH13(a)andH13MOD(b)steels(quenchingat1030andtemperingtwiceat600)

ThebasiccharacteristicsofquasiGcleavagefracturearesmallcrackedgrainandtearridgesThecrackgivebirthtonuclearinthestresshighlyconcentratGedlocation(suchasinclusionsandcarbides)ThenthecrackoriginextendsrespectivelyalongtheeasiGestexpending wayfuseintoeachotherbystrongplasticdeformationinlocalareaandform quasiGcleavagefracturefinallyInsmallcracksurfacemanycurvingtearridgesspreadwhichareobviousG

lydifferentfromthecleavagefractureofldquoriverpatGternrdquoTheformerisdevelopedbystrongplasticdeGformationconnectioninthe matrix micro zonewhilethelatterisjoinedbyeachcleavagestepandtheplasticdeformationisrarelyseenQuasiGcleavageisadiscontinuousfractureprocesswheneveryhidGdencrackconnectswitheachotherlargerplasticdeformationcalledtearridgealwaysoccursForH13MODitiseasytofindoutthedomainofplastic

10489443211048944Issue9         MicrostructureandPropertiesofHotWorkingDieSteelH13MOD 

deformation[Fig104900811(b)]whichshowshigherimGpacttoughnessofH13MOD  ItwassuggestedthatsuperiortoughnessisasGsociated with minimization oflargeprimarycarGbidesTheundissolvedprimarycarbideshaveagreaGtereffectontoughnessthanthatofcarbidesprecipiGtatedupontemperingDuringsolidificationofvanaGdiumsteelsthelastsectionsofliquidbetweenausGtenitedendritesareenrichedinvanadiumandcarbonuptotheeutecticcompositionandeutecticsolidificaGtionoccursLrarrγ+VC[12]AsmentionedabovebeGcauseofthehighercontentofVinH13steelitiseasytoformlargepseudoprimaryMCGtype(VGrich)carbides (primary carbides)during solidificationcomparedwithH13MODVCisanexothermictype

compoundcombiningwithhighhardnessandintenGsityItisundissolvedinausteniteunderhightemGperaturethusin H13steelitiseasytofindouttheselargeundissolvedprimarycarbidesin SEMfractograph[Fig104900812 (a)]BytheanalysisofEDStheblockeutecticcarbidesareidentifiedas(VTi)CThesecarbidesinH13steelleadtodeteriorationintoughnessAscanbeseenfromFig104900813(a)mostoftheseprimaryundissolvedcarbidesappearirregularshapewhicharedifferentfromthesecondarycarGbidesprecipitatedinthetemperingprocessThesecarbidesdamagethecontinuityofthematrixhavGingadirectinfluenceontheimpacttoughnessThelargeundissolvedcarbidesreduceboththefracturetoughnessandtheimpacttoughnessatthesamestrG

(a)Largeblockeutecticcarbide  (b)EDXofcarbideFig104900812 SEMfractographofimpactsampleofH13steeltemperedtwiceat600

(a)Largeblockeutecticcarbide  (b)EDXofeutecticcarbideFig104900813 SEMofmicrostructureofH13steeltemperedtwiceat600

engthlevel[13]

3 Conclusions  1)H13hashigherhardnesswhenquenchingtemperatureisabove1030H13MODreachesthemaximumvalueofhardnessat1030andhasnofurtherincreasewiththeriseofquenchingtemperaGtureCoarseningofthegrainsizein H13MODismuch moreobviousthanthatin H13especially

whenthequenchingtemperatureisabove1030 Bothofthetwosteelshaveareasonablequenchingtemperatureat1030  2)H13andH13MODhavesecondaryhardeningpeaksat510and480respectivelyafterquenchingat1030 Thevariationoftensilestrength withtemperingtemperatureshowsnearlythesametrendashardnessThehardnessandtensilestrengthofH13arehigherthanthoseofH13MODwhentemG

10489444211048944       JournalofIronandSteelResearchInternational              Vol104900820 

peringtemperatureisbelow540butatahighertemperingtemperatureespeciallyintherangefrom580to600 whichisgenerallyappliedformosthotworkingapplicationsbothofthetwosteelshavealmostthesamestrengthproperties   3)Theimpacttoughnessand ductility ofH13MODaremuchhigherthanthoseofH13steelevenunderthesametemperinghardness(temperingtemperatureabove540)H13MODcanbeusedinthesamehardnessenvironmentasH13buthighertoughnessisrequiredThenewdevelopedH13MODsteelhaveabetterthermalfatigueresistanceandservicelifecomparedwithH13

References

[1] PerssonAOnToolFailureinDieCasting[D]UppsalaSweGdenUppsalaUniversity2003

[2] LarsGAkeNorstromLennartJonsonBengtKlarenfjordDeGvelopmentofPremiumDieSteelforDieCasting[J]DieCastGingManagement19901224

[3] MichaudPDelagnesaDLamesleaPTheEffectoftheAddiGtionofAlloyingElementsonCarbidePrecipitationandMechanGicalPropertiesin5 Chromium MartensiticSteels[J]ActaMaterialia200755(14)4877

[4] PaysonPTheMetallurgyofToolSteels[M]New YorkJohn

WileyandSonsInc1962[5] LIUZongGchangDUZhiGweiZHUWenGfangSecondaryHardenG

ingofH13SteelDuringTemering[J]OrdnanceMaterialSciGenceandEngineering200124(3)11(inChinese)

[6] CHENYingCHENZaiGzhiDONGHanAdvanceinResearchofTemperingSecondary HardeningofAlloyToolandDieSteelFeGMGCQuenchedMartensite[J]JIronSteelRes200618(5)29(inChinese)

[7] SandbergOMillerPKlarenfjordBPropertiesProfileComGparisonofPremium QualityH13and ModifiedHotWorkDieSteel[J]DieCastingEngineer(USA)200246(3)40

[8] NehrenbergAEHeatandTemperResistantAlloySteelUS3600160[P]1971G8G17

[9] SarmaDSTemperedMartensiteEmbrittlement[J]ToolAlGloySteels198418(12)363

[10] Nam WJKim DSAhnSTEffectsofAlloyingElementsonMicrostructuralEvolutionandMechanicalPropertiesofInGductionQuenchedGandGTemperedSteels[J]JournalofMateGrialsScience200338(17)3611

[11] HornRMRitchieROMechanismsofTemperedMartensiteEmbrittlementinLowAlloySteels[J]MetallurgicalTransGactions19789A(8)1039

[12] MalinochkaY NOlikhovaM AMakogonovaTICarbideEutecticin Vanadium Steels [J]MetalScienceand HeatTreatment197921(3)171

[13] LechtenbergTATheMicrostructureMechanicalPropertiesandAbrasiveWearResistanceofModifiedSecondaryHardenGingSteels[D]BerkeleyUniversityofCaliforniaBerkeleyCA1979

10489445211048944Issue9         MicrostructureandPropertiesofHotWorkingDieSteelH13MOD 

Page 2: Microstructure and Properties of Hot Working Die Steel H13MOD

1 ExperimentalMaterialsandMethods

  Twokindsofexperimentalsteelsinthisstudywerepreparedbyvacuummeltingof25kgingotfolGlowedbyhotforgingtoproduceroundbarwithsizeofϕ16mmtimes500mmThechemicalcompositionoftestingsteelislistedinTable1Afterforging870-760isothermalannealingprocesswasadoptedforthefinalproductTheannealinghardnessesofH13

andH13MODareHB203andHB200respectivelySpheroidalannealingstructuregradeof H13andH13MODbelongtotheratingofAS3andAS1reGspectivelyaccordingtotheNADCA207G2003annealedquality microstructurechartAfterannealingtheroundbar wascutintohardnesstestingsampleswithsizeof12mmtimes12mmtimes16mmASTMstandardϕ5tensiletestpieceandCharpyUGnotchedimpactspecimenswithsizeof10mmtimes10mmtimes55mminlongitudinaldirectioninthecenteroftheroundbar

      Table1 Chemicalcompositionofteststeel         (masspercent)

Steel C Si Mn S P Cr Mo V

H13 0104900844 0104900894 0104900841 01049008006 010490080096 4104900869 1104900822 0104900884H13MOD 0104900838 0104900838 0104900849 01049008006 010490080097 5104900813 1104900884 0104900849

  InordertodeterminethehardeningtreatmentprocessesoftestedsteelthehardnesstestingsamGpleswerepreheatedat500for30minthenausGtenitizedfor30minatdifferenttemperaturesof920950980100010301060and1100inMufflefurnacewhichisfollowedbyoilquenching  Inordertoresearchtheinfluenceoftemperingtemperatureonthemicrostructureandpropertiesoftestedsteeltensiletestpiecesandimpactspecimenswereaustenitizedfor30minat1030quenchedinoilandthentemperedatdifferenttemperaturesof450480710540570600and650for2htwice    The annealed hardness was determined byHP250hardmeterwhilethequenchingandtempeGringhardnessesweredeterminedbyTIME TH300hardmeterTensilepropertiesweredeterminedonanLOS600tensiletestmachineImpacttestonCharpyUGnotchedsampleswasperformedfordeterminingimpacttoughnesswithaJB30Bimpacttestmachineatroomtemperature  MetallographicanalysiswasdonebyusinganLEICA MEF4opticalmicroscopeanHITACHISG4300electronicscanningmicroscope(SEM)attachedanEDAXGENESIS610490080spectrumanalyzer(EDS)andanH800transmissionelectronmicroscope(TEM)

2 ResultsandDiscussion210490081 Effectofquenchingtemperatureonhardnessandmicrostructure    The variations of hardness with differentquenchingtemperatureforH13andH13MODsteelsareshowninFig10490081ThehardnessesofthesetwosteelsrisewiththeincreaseofquenchingtemperaGturewhenthetemperatureisbelow1030andthe

Fig10490081 HardnessandgraingradecurvesofH13andH13MODatdifferentquenchingtemperatures

hardnessofH13MODishigherthanthatofH13Thehardnessof H13MODreachesthe maximumvalueat1030 andhasnofurtherincreasewiththeriseofquenchingtemperaturewhilefor H13steelitstillkeepsonincreasingThehardnessofH13steelisHRC210490087higherthanthatofH13MODsteelwhenquenchedat1100Theaustenitizationconditionsofbothsteelsarecalculated by usingThermoGCalcsoftware(Fig10490082)Theresultsshowthatinthetemperaturerangeof500-1200 thecarGbidesofM23C6MCandM7C3existinH13steelaswellas M23C6MCand M6Cexistin H13MODsteelExceptMCcarbidesnoM23C6M6CM7C3

carbidesleftinH13andH13MODwhenthequenchGingtemperatureisabove900ThedissolvingtemGperatureofMCcarbidesforH13is1141whichis101higherthanthatofH13MODItisremarkGablethatthedissolvingtemperatureofMCcarbidesisjustthecompleteaustenitizingtemperatureofthetwosteelsWhensolutiontemperatureisbelow1030carbonisnotcompletelydissolvedintotheaustenite

10489448111048944       JournalofIronandSteelResearchInternational              Vol104900820 

(a)H13  (b)H13MODFig10490082 Effectoftemperatureontransformedamountofcarbides

butexistsintheformofundissolvedMC(VGrich)inH13ItisclearthattheasGquenchedhardnessisgreatlyaffectedbytheextentofsolidsolutionhardGeningbycarbonandalloyingelementsAsthetemGperatureincreasesmoreand morecarbidesdisGsolvethusenrichingtheausteniteincarbonandalGloyingelementsHighercarbonandalloyingeleGmentsintheaustenite(uptoalimit)willleadtohigherhardnessofthemartensiteproducedfromthisaustenite[4]ThecarbidesinH13MODaredissolvedat1030 completelywhilein H13itneedsahigheraustenitizingtemperaturetobringthemintosolidstatesolutionentirelysothehardnessofH13islowerthanthatofH13MODwhensolutiontemGperatureisbelow1030WhenquenchingtemperGatureishigherthan1030 H13MODhasbeencompletelyaustenizitingThereforewiththeriseofquenchingtemperaturethehardnessofH13MODhasnofurtherincreasewhileforH13MCcarbides(VGrich)dissolveintoaustenitematrixcontinuouslywhichleadstothecontentofcarboninquenchingmartensiteincreasesgraduallyandthehardnessinGcreasescorrespondingly  Fig10490083showsthemetallographicstructuresofbothH13andH13MODquenchedat1000and1030 TherearealotofundissolvedsmallcarbidesinmarGtensiticmatrixofbothsteelswhenquenchedat1000[Fig10490083(a)and(b)]butat1030 undissolvedcarbidescanonlybefoundinH13[Fig10490083(c)]Itiscleartoseethattheundissolved MCparticles(VGrich)existinH13whenquenchedat1030 [Fig10490084(a)]whileinH13MODnearlyallcarbidesaredisG

solvedandthemicrostructureismartensite[Fig10490084(b)]atthistemperatureFromtheaboveresultsitcanbeseenthattheresultscalculatedbyThermoGCalcoftheteststeelsareingoodagreementwiththeexperimentalones  AccompanyingwiththedissolutionofthealloycarbidesandtheincreasingofaustenitizingtemperaGtureausteniticgrainsizeincreasesasindicatedinFig10490081ButforH13MODcoarseningofthegrainsizeismuch moreobviousthanthatof H13especiallywhenthequenchingtemperatureisabove1030 ThisisattributedtotheundissolvedcarbidesthatinhibitgraingrowthinH13steelthusthegrainsizestillretains9gradesuntilthequenchingtemperaturereaches1060ButitiseasytorecognizethatthebrittlenessofsteelriseswiththehardnessincreasGingespeciallythelargesizeworkpiecewhichisveryeasytocrackwhenquenchingat1060Soitismuchbettertochoose1030 asthereasonablequenchingtemperaturewhichisestablishedempiriGcallyforeachsteelonthebasisofattainablehardGnessandgraincoarsening

210490082 EffectoftemperingtemperatureonmicrostrucGtureandmechanicalproperties  Fig10490085showstheplotsoftemperedhardnesstenGsilestrengthreductionofarea(Z)andelongationafterfracture(A)asfunctionsoftemperingtemperatureforH13and H13MODAstemperingtemperatureincreasesthehardnessfirstincreasestoamaximumandthengraduallydecreasesBothofthetwosteelsundergosecondaryhardeningassociatedwiththeprecG

10489449111048944Issue9         MicrostructureandPropertiesofHotWorkingDieSteelH13MOD 

(a)H131000  (b)H13MOD1000  (c)H131030  (d)H13MOD1030Fig10490083 Metallographicstructuresofteststeelsquenchedat1000and1030

(a)H13  (b)H13MODFig10490084 SEM microstructuresofteststeelsquenchedat1030

ipitationofalloycarbidesintempered martensiteTheprecipitationofsecondarycarbidesretardssofGteningandincreasesthehardnessesofthetwosteelsH13hasasecondaryhardeningpeakat510 whileforH13MODitisat480 AndthetemperedhardnessofH13MODisslightlylowerthanthatofH13whenthetemperatureisbelow540 Whenthetemperatureisabove540H13andH13MODsteelshavenearlythesamehardness  ThevariationoftensilestrengthwithtemperingtemperatureinFig10490085showsnearlythesametrendashardnessThetensilestrengthofH13ishigherthan

thatofH13MODwhenthetemperingtemperatureisbelow540andreachesitsmaximumat510whichisalsotheminimumvalueofreductionofareaThemixGclusterwhichiscalled [MGC]segregationgroupdevelopedby MoCrandCatomsonαGphaseinduceslatticedistortion[5]andthesmallVCparticlesprecipitatedwhiletemperinggeneratesigGnificantsecondaryphasestrengthening[6]whichinGducesatensilestrengthincrementofH13comparedwithH13MODinthistemperaturerangeWiththeincreaseoftemperingtemperaturethedifferenceofreductionofareabetweenthetwosteelstendstobe

10489440211048944       JournalofIronandSteelResearchInternational              Vol104900820 

Fig10490085 Influencesofhardnesstensilestrengthreductionofarea(Z)andelongationafterfracture(A)ondifferenttemperingtemperaturesofH13steelandH13MODsteel

smallerH13MODhasabetterductilitycomparedwithH13AtthehighertemperingtemperatureesGpeciallyintherangefrom580to600 whichisgenerallyappliedformosthotworkingapplicationsbothofthetwosteelshavealmostthesamestrengthproperties  Thethin martensitelathsanddispersedcarGbidesarefoundinthetemperedmicrostructuresofH13andH13MOD (quenchedat1030 andtemGperedat600 )therearemuch morelargesizeM23C6 (CrGrich)M6C (MoGrich)andMC (VGrich)carbides(distinguishedbyEDS)existinH13steelcompared with H13MOD steel (Fig10490086)In H13steelarapidcarbidetransitionwhichnegativelyinfluencestheprecipitationstrengtheningoccursatmoderatelyhightemperatures(600)ThedistriGbutionofundissolvedVGrichcarbides(MC)transGformstoacoarserdistributionofCrGrichcarbides(M23C6)whicharelesseffectivefromaprecipitatiGonstrengthening perspective[7]Fig10490087 showstheTEMimagesofpartcarbidesinH13steelunderdifG

ferentheattreatmentconditionsTheTEMinvestiGgationsrevealedundissolved MCcarbides(VGrich)andthecoarseningofM6CandM23C6carbidepartiGclesinmatrix [Fig10490087 (a)]whichmayleadtothedecreaseofstrengtheningeffect  Fig10490088showstheTEMimagesofcarbidesinH13MODsteelaftertemperingat540and600ItcanbeseenthatanumberofsmallrodGlikecarbideparticlesarethemainmicrostructuralfeaturewhentemperedat540 [Fig10490088(a)]Diffractionpatternofcarbidestemperedat600 [Fig10490088(c)]showsthattherodGlikecarbideparticlesarealloycementites(M3C)precipitatedfrom martensiteIncreasingthetempeGringtemperatureabove600 causescoarseningofalloycementites[Fig10490088 (b)]andrecoveryofmarGtensitewhicharethereasonsforconsiderablehardGnessandstrengthdropItcanbeseenthattheextentofhardnessandtensilestrengthdropofH13MODislowerthanthatofH13ForthehighercontentofMoinH13MODMoprovidessecondaryhardeningandredhardnessbytheformationoftheMo2Ctype

Fig10490086 SEM microstructuresofH13(a)andH13MOD(b)temperedtwiceat600 (quenchedat1030)

10489441211048944Issue9         MicrostructureandPropertiesofHotWorkingDieSteelH13MOD 

(a)MCcarbideat570 (TEMdarkGfieldimage)  (b)M23C6carbideat600 (TEMdarkGfieldimage)(c)M6Ccarbideat600 (TEMbrightGfieldimage)

Fig10490087 CarbidesandselectedareaelectrondiffractionimagesofH13steelatdifferenttemperingtemperatures(quenchedat1030)

(a)Temperedtwiceat540  (b)Temperedtwiceat600  (c)Diffractionpatternofcarbidesof(b)Fig10490088 TEMdarkGfieldimagesoftemperedH13MODsteel(quenchedat1030)

ofcarbide[8]Mo2CkeepscoherentwithmatrixacGcumulatingandcoarseningslowlywhichmayalsoleadtosecondaryhardeningFortheinterferenceofthealloycementitenoM2CcarbidediffractionpatGternisobtainedfromthethinfoilat600orlowertemperingtemperatureButforH13MODtestsamGplewhichhasbeenquenchedat1030 andtemGperedat600 twicefurthertemperingonthissampleat620for2hitisfoundthatM2C (forH13MODitmaywellbeMo2C)carbidehasastrongdiffractionpatternFurthermorethecarbidesstillkeepverysmallsize(Fig10490089)ThereforeM2CisthemainstrengtheningphaseinH13MODwhichisalGsotheimportantreasonthathigherhardnessandstrengthcanbekeptinH13MODathightemperingtemperature

  TheresultsofCharpyimpacttestperformedatroomtemperaturetoevaluatetoughnessofthetwosteelsarepresentedinFig104900810Itisnoticedthattheminimaintheimpactenergycurvesoccursatthetemperingtemperatureof510 forH13steeland480forH13MODsteelwhichiscorrespondingtothetemperedhardnesscurves(Fig10490085)ThisatGtendantlossofimpacttoughnessisknownasreversGibletemperedembrittlementTheembrittlementisfoundtobeconcurrentwiththeinterlathprecipitatiGonofalloycementitesduringtemperingandtheconGsequentmechanicalinstabilityofinterlathfilmsofretainedausteniteduringsubsequentloading[9-10]TheincreaseofimpactenergyabovethebrittletemGperatureisassociatedwiththematrixsofteningandcoarseningofcarbidesparticles[11]

10489442211048944       JournalofIronandSteelResearchInternational              Vol104900820 

Fig10490089 TEMdarkGfieldimageofH13MODtemperedat620for2h(afterquenchingat1030andtemperingat600twice)(a)anddiffractionpatternofcarbides(b)

Fig104900810 ImpactenergiesofH13andH13MODsteels

  AscanbeseenfromFig104900810theimpacttoughGnessofH13MODismuchhigherthanthatofH13steelevenunderthesametemperinghardnesswhentemperingtemperatureisabove540 (Fig10490085)ThatistosayH13MODcanbeusedinthesamehardnessenvironmentasH13buthighertoughnessisrequiredthusenhancethermalfatigueresistanceandservicelifeofmouldTheSEManalysisonfracGturesurfaceindicatesthatthefracturecharacterisGticofH13isquasiGcleavage[Fig104900811(a)]aftertemGperingat600whileforH13MODsteelitisquasiGcleavagefracturewithmasssmalldimples[Fig104900811(b)]

Fig104900811 SEMfractographsoftemperedimpactsampleofH13(a)andH13MOD(b)steels(quenchingat1030andtemperingtwiceat600)

ThebasiccharacteristicsofquasiGcleavagefracturearesmallcrackedgrainandtearridgesThecrackgivebirthtonuclearinthestresshighlyconcentratGedlocation(suchasinclusionsandcarbides)ThenthecrackoriginextendsrespectivelyalongtheeasiGestexpending wayfuseintoeachotherbystrongplasticdeformationinlocalareaandform quasiGcleavagefracturefinallyInsmallcracksurfacemanycurvingtearridgesspreadwhichareobviousG

lydifferentfromthecleavagefractureofldquoriverpatGternrdquoTheformerisdevelopedbystrongplasticdeGformationconnectioninthe matrix micro zonewhilethelatterisjoinedbyeachcleavagestepandtheplasticdeformationisrarelyseenQuasiGcleavageisadiscontinuousfractureprocesswheneveryhidGdencrackconnectswitheachotherlargerplasticdeformationcalledtearridgealwaysoccursForH13MODitiseasytofindoutthedomainofplastic

10489443211048944Issue9         MicrostructureandPropertiesofHotWorkingDieSteelH13MOD 

deformation[Fig104900811(b)]whichshowshigherimGpacttoughnessofH13MOD  ItwassuggestedthatsuperiortoughnessisasGsociated with minimization oflargeprimarycarGbidesTheundissolvedprimarycarbideshaveagreaGtereffectontoughnessthanthatofcarbidesprecipiGtatedupontemperingDuringsolidificationofvanaGdiumsteelsthelastsectionsofliquidbetweenausGtenitedendritesareenrichedinvanadiumandcarbonuptotheeutecticcompositionandeutecticsolidificaGtionoccursLrarrγ+VC[12]AsmentionedabovebeGcauseofthehighercontentofVinH13steelitiseasytoformlargepseudoprimaryMCGtype(VGrich)carbides (primary carbides)during solidificationcomparedwithH13MODVCisanexothermictype

compoundcombiningwithhighhardnessandintenGsityItisundissolvedinausteniteunderhightemGperaturethusin H13steelitiseasytofindouttheselargeundissolvedprimarycarbidesin SEMfractograph[Fig104900812 (a)]BytheanalysisofEDStheblockeutecticcarbidesareidentifiedas(VTi)CThesecarbidesinH13steelleadtodeteriorationintoughnessAscanbeseenfromFig104900813(a)mostoftheseprimaryundissolvedcarbidesappearirregularshapewhicharedifferentfromthesecondarycarGbidesprecipitatedinthetemperingprocessThesecarbidesdamagethecontinuityofthematrixhavGingadirectinfluenceontheimpacttoughnessThelargeundissolvedcarbidesreduceboththefracturetoughnessandtheimpacttoughnessatthesamestrG

(a)Largeblockeutecticcarbide  (b)EDXofcarbideFig104900812 SEMfractographofimpactsampleofH13steeltemperedtwiceat600

(a)Largeblockeutecticcarbide  (b)EDXofeutecticcarbideFig104900813 SEMofmicrostructureofH13steeltemperedtwiceat600

engthlevel[13]

3 Conclusions  1)H13hashigherhardnesswhenquenchingtemperatureisabove1030H13MODreachesthemaximumvalueofhardnessat1030andhasnofurtherincreasewiththeriseofquenchingtemperaGtureCoarseningofthegrainsizein H13MODismuch moreobviousthanthatin H13especially

whenthequenchingtemperatureisabove1030 Bothofthetwosteelshaveareasonablequenchingtemperatureat1030  2)H13andH13MODhavesecondaryhardeningpeaksat510and480respectivelyafterquenchingat1030 Thevariationoftensilestrength withtemperingtemperatureshowsnearlythesametrendashardnessThehardnessandtensilestrengthofH13arehigherthanthoseofH13MODwhentemG

10489444211048944       JournalofIronandSteelResearchInternational              Vol104900820 

peringtemperatureisbelow540butatahighertemperingtemperatureespeciallyintherangefrom580to600 whichisgenerallyappliedformosthotworkingapplicationsbothofthetwosteelshavealmostthesamestrengthproperties   3)Theimpacttoughnessand ductility ofH13MODaremuchhigherthanthoseofH13steelevenunderthesametemperinghardness(temperingtemperatureabove540)H13MODcanbeusedinthesamehardnessenvironmentasH13buthighertoughnessisrequiredThenewdevelopedH13MODsteelhaveabetterthermalfatigueresistanceandservicelifecomparedwithH13

References

[1] PerssonAOnToolFailureinDieCasting[D]UppsalaSweGdenUppsalaUniversity2003

[2] LarsGAkeNorstromLennartJonsonBengtKlarenfjordDeGvelopmentofPremiumDieSteelforDieCasting[J]DieCastGingManagement19901224

[3] MichaudPDelagnesaDLamesleaPTheEffectoftheAddiGtionofAlloyingElementsonCarbidePrecipitationandMechanGicalPropertiesin5 Chromium MartensiticSteels[J]ActaMaterialia200755(14)4877

[4] PaysonPTheMetallurgyofToolSteels[M]New YorkJohn

WileyandSonsInc1962[5] LIUZongGchangDUZhiGweiZHUWenGfangSecondaryHardenG

ingofH13SteelDuringTemering[J]OrdnanceMaterialSciGenceandEngineering200124(3)11(inChinese)

[6] CHENYingCHENZaiGzhiDONGHanAdvanceinResearchofTemperingSecondary HardeningofAlloyToolandDieSteelFeGMGCQuenchedMartensite[J]JIronSteelRes200618(5)29(inChinese)

[7] SandbergOMillerPKlarenfjordBPropertiesProfileComGparisonofPremium QualityH13and ModifiedHotWorkDieSteel[J]DieCastingEngineer(USA)200246(3)40

[8] NehrenbergAEHeatandTemperResistantAlloySteelUS3600160[P]1971G8G17

[9] SarmaDSTemperedMartensiteEmbrittlement[J]ToolAlGloySteels198418(12)363

[10] Nam WJKim DSAhnSTEffectsofAlloyingElementsonMicrostructuralEvolutionandMechanicalPropertiesofInGductionQuenchedGandGTemperedSteels[J]JournalofMateGrialsScience200338(17)3611

[11] HornRMRitchieROMechanismsofTemperedMartensiteEmbrittlementinLowAlloySteels[J]MetallurgicalTransGactions19789A(8)1039

[12] MalinochkaY NOlikhovaM AMakogonovaTICarbideEutecticin Vanadium Steels [J]MetalScienceand HeatTreatment197921(3)171

[13] LechtenbergTATheMicrostructureMechanicalPropertiesandAbrasiveWearResistanceofModifiedSecondaryHardenGingSteels[D]BerkeleyUniversityofCaliforniaBerkeleyCA1979

10489445211048944Issue9         MicrostructureandPropertiesofHotWorkingDieSteelH13MOD 

Page 3: Microstructure and Properties of Hot Working Die Steel H13MOD

(a)H13  (b)H13MODFig10490082 Effectoftemperatureontransformedamountofcarbides

butexistsintheformofundissolvedMC(VGrich)inH13ItisclearthattheasGquenchedhardnessisgreatlyaffectedbytheextentofsolidsolutionhardGeningbycarbonandalloyingelementsAsthetemGperatureincreasesmoreand morecarbidesdisGsolvethusenrichingtheausteniteincarbonandalGloyingelementsHighercarbonandalloyingeleGmentsintheaustenite(uptoalimit)willleadtohigherhardnessofthemartensiteproducedfromthisaustenite[4]ThecarbidesinH13MODaredissolvedat1030 completelywhilein H13itneedsahigheraustenitizingtemperaturetobringthemintosolidstatesolutionentirelysothehardnessofH13islowerthanthatofH13MODwhensolutiontemGperatureisbelow1030WhenquenchingtemperGatureishigherthan1030 H13MODhasbeencompletelyaustenizitingThereforewiththeriseofquenchingtemperaturethehardnessofH13MODhasnofurtherincreasewhileforH13MCcarbides(VGrich)dissolveintoaustenitematrixcontinuouslywhichleadstothecontentofcarboninquenchingmartensiteincreasesgraduallyandthehardnessinGcreasescorrespondingly  Fig10490083showsthemetallographicstructuresofbothH13andH13MODquenchedat1000and1030 TherearealotofundissolvedsmallcarbidesinmarGtensiticmatrixofbothsteelswhenquenchedat1000[Fig10490083(a)and(b)]butat1030 undissolvedcarbidescanonlybefoundinH13[Fig10490083(c)]Itiscleartoseethattheundissolved MCparticles(VGrich)existinH13whenquenchedat1030 [Fig10490084(a)]whileinH13MODnearlyallcarbidesaredisG

solvedandthemicrostructureismartensite[Fig10490084(b)]atthistemperatureFromtheaboveresultsitcanbeseenthattheresultscalculatedbyThermoGCalcoftheteststeelsareingoodagreementwiththeexperimentalones  AccompanyingwiththedissolutionofthealloycarbidesandtheincreasingofaustenitizingtemperaGtureausteniticgrainsizeincreasesasindicatedinFig10490081ButforH13MODcoarseningofthegrainsizeismuch moreobviousthanthatof H13especiallywhenthequenchingtemperatureisabove1030 ThisisattributedtotheundissolvedcarbidesthatinhibitgraingrowthinH13steelthusthegrainsizestillretains9gradesuntilthequenchingtemperaturereaches1060ButitiseasytorecognizethatthebrittlenessofsteelriseswiththehardnessincreasGingespeciallythelargesizeworkpiecewhichisveryeasytocrackwhenquenchingat1060Soitismuchbettertochoose1030 asthereasonablequenchingtemperaturewhichisestablishedempiriGcallyforeachsteelonthebasisofattainablehardGnessandgraincoarsening

210490082 EffectoftemperingtemperatureonmicrostrucGtureandmechanicalproperties  Fig10490085showstheplotsoftemperedhardnesstenGsilestrengthreductionofarea(Z)andelongationafterfracture(A)asfunctionsoftemperingtemperatureforH13and H13MODAstemperingtemperatureincreasesthehardnessfirstincreasestoamaximumandthengraduallydecreasesBothofthetwosteelsundergosecondaryhardeningassociatedwiththeprecG

10489449111048944Issue9         MicrostructureandPropertiesofHotWorkingDieSteelH13MOD 

(a)H131000  (b)H13MOD1000  (c)H131030  (d)H13MOD1030Fig10490083 Metallographicstructuresofteststeelsquenchedat1000and1030

(a)H13  (b)H13MODFig10490084 SEM microstructuresofteststeelsquenchedat1030

ipitationofalloycarbidesintempered martensiteTheprecipitationofsecondarycarbidesretardssofGteningandincreasesthehardnessesofthetwosteelsH13hasasecondaryhardeningpeakat510 whileforH13MODitisat480 AndthetemperedhardnessofH13MODisslightlylowerthanthatofH13whenthetemperatureisbelow540 Whenthetemperatureisabove540H13andH13MODsteelshavenearlythesamehardness  ThevariationoftensilestrengthwithtemperingtemperatureinFig10490085showsnearlythesametrendashardnessThetensilestrengthofH13ishigherthan

thatofH13MODwhenthetemperingtemperatureisbelow540andreachesitsmaximumat510whichisalsotheminimumvalueofreductionofareaThemixGclusterwhichiscalled [MGC]segregationgroupdevelopedby MoCrandCatomsonαGphaseinduceslatticedistortion[5]andthesmallVCparticlesprecipitatedwhiletemperinggeneratesigGnificantsecondaryphasestrengthening[6]whichinGducesatensilestrengthincrementofH13comparedwithH13MODinthistemperaturerangeWiththeincreaseoftemperingtemperaturethedifferenceofreductionofareabetweenthetwosteelstendstobe

10489440211048944       JournalofIronandSteelResearchInternational              Vol104900820 

Fig10490085 Influencesofhardnesstensilestrengthreductionofarea(Z)andelongationafterfracture(A)ondifferenttemperingtemperaturesofH13steelandH13MODsteel

smallerH13MODhasabetterductilitycomparedwithH13AtthehighertemperingtemperatureesGpeciallyintherangefrom580to600 whichisgenerallyappliedformosthotworkingapplicationsbothofthetwosteelshavealmostthesamestrengthproperties  Thethin martensitelathsanddispersedcarGbidesarefoundinthetemperedmicrostructuresofH13andH13MOD (quenchedat1030 andtemGperedat600 )therearemuch morelargesizeM23C6 (CrGrich)M6C (MoGrich)andMC (VGrich)carbides(distinguishedbyEDS)existinH13steelcompared with H13MOD steel (Fig10490086)In H13steelarapidcarbidetransitionwhichnegativelyinfluencestheprecipitationstrengtheningoccursatmoderatelyhightemperatures(600)ThedistriGbutionofundissolvedVGrichcarbides(MC)transGformstoacoarserdistributionofCrGrichcarbides(M23C6)whicharelesseffectivefromaprecipitatiGonstrengthening perspective[7]Fig10490087 showstheTEMimagesofpartcarbidesinH13steelunderdifG

ferentheattreatmentconditionsTheTEMinvestiGgationsrevealedundissolved MCcarbides(VGrich)andthecoarseningofM6CandM23C6carbidepartiGclesinmatrix [Fig10490087 (a)]whichmayleadtothedecreaseofstrengtheningeffect  Fig10490088showstheTEMimagesofcarbidesinH13MODsteelaftertemperingat540and600ItcanbeseenthatanumberofsmallrodGlikecarbideparticlesarethemainmicrostructuralfeaturewhentemperedat540 [Fig10490088(a)]Diffractionpatternofcarbidestemperedat600 [Fig10490088(c)]showsthattherodGlikecarbideparticlesarealloycementites(M3C)precipitatedfrom martensiteIncreasingthetempeGringtemperatureabove600 causescoarseningofalloycementites[Fig10490088 (b)]andrecoveryofmarGtensitewhicharethereasonsforconsiderablehardGnessandstrengthdropItcanbeseenthattheextentofhardnessandtensilestrengthdropofH13MODislowerthanthatofH13ForthehighercontentofMoinH13MODMoprovidessecondaryhardeningandredhardnessbytheformationoftheMo2Ctype

Fig10490086 SEM microstructuresofH13(a)andH13MOD(b)temperedtwiceat600 (quenchedat1030)

10489441211048944Issue9         MicrostructureandPropertiesofHotWorkingDieSteelH13MOD 

(a)MCcarbideat570 (TEMdarkGfieldimage)  (b)M23C6carbideat600 (TEMdarkGfieldimage)(c)M6Ccarbideat600 (TEMbrightGfieldimage)

Fig10490087 CarbidesandselectedareaelectrondiffractionimagesofH13steelatdifferenttemperingtemperatures(quenchedat1030)

(a)Temperedtwiceat540  (b)Temperedtwiceat600  (c)Diffractionpatternofcarbidesof(b)Fig10490088 TEMdarkGfieldimagesoftemperedH13MODsteel(quenchedat1030)

ofcarbide[8]Mo2CkeepscoherentwithmatrixacGcumulatingandcoarseningslowlywhichmayalsoleadtosecondaryhardeningFortheinterferenceofthealloycementitenoM2CcarbidediffractionpatGternisobtainedfromthethinfoilat600orlowertemperingtemperatureButforH13MODtestsamGplewhichhasbeenquenchedat1030 andtemGperedat600 twicefurthertemperingonthissampleat620for2hitisfoundthatM2C (forH13MODitmaywellbeMo2C)carbidehasastrongdiffractionpatternFurthermorethecarbidesstillkeepverysmallsize(Fig10490089)ThereforeM2CisthemainstrengtheningphaseinH13MODwhichisalGsotheimportantreasonthathigherhardnessandstrengthcanbekeptinH13MODathightemperingtemperature

  TheresultsofCharpyimpacttestperformedatroomtemperaturetoevaluatetoughnessofthetwosteelsarepresentedinFig104900810Itisnoticedthattheminimaintheimpactenergycurvesoccursatthetemperingtemperatureof510 forH13steeland480forH13MODsteelwhichiscorrespondingtothetemperedhardnesscurves(Fig10490085)ThisatGtendantlossofimpacttoughnessisknownasreversGibletemperedembrittlementTheembrittlementisfoundtobeconcurrentwiththeinterlathprecipitatiGonofalloycementitesduringtemperingandtheconGsequentmechanicalinstabilityofinterlathfilmsofretainedausteniteduringsubsequentloading[9-10]TheincreaseofimpactenergyabovethebrittletemGperatureisassociatedwiththematrixsofteningandcoarseningofcarbidesparticles[11]

10489442211048944       JournalofIronandSteelResearchInternational              Vol104900820 

Fig10490089 TEMdarkGfieldimageofH13MODtemperedat620for2h(afterquenchingat1030andtemperingat600twice)(a)anddiffractionpatternofcarbides(b)

Fig104900810 ImpactenergiesofH13andH13MODsteels

  AscanbeseenfromFig104900810theimpacttoughGnessofH13MODismuchhigherthanthatofH13steelevenunderthesametemperinghardnesswhentemperingtemperatureisabove540 (Fig10490085)ThatistosayH13MODcanbeusedinthesamehardnessenvironmentasH13buthighertoughnessisrequiredthusenhancethermalfatigueresistanceandservicelifeofmouldTheSEManalysisonfracGturesurfaceindicatesthatthefracturecharacterisGticofH13isquasiGcleavage[Fig104900811(a)]aftertemGperingat600whileforH13MODsteelitisquasiGcleavagefracturewithmasssmalldimples[Fig104900811(b)]

Fig104900811 SEMfractographsoftemperedimpactsampleofH13(a)andH13MOD(b)steels(quenchingat1030andtemperingtwiceat600)

ThebasiccharacteristicsofquasiGcleavagefracturearesmallcrackedgrainandtearridgesThecrackgivebirthtonuclearinthestresshighlyconcentratGedlocation(suchasinclusionsandcarbides)ThenthecrackoriginextendsrespectivelyalongtheeasiGestexpending wayfuseintoeachotherbystrongplasticdeformationinlocalareaandform quasiGcleavagefracturefinallyInsmallcracksurfacemanycurvingtearridgesspreadwhichareobviousG

lydifferentfromthecleavagefractureofldquoriverpatGternrdquoTheformerisdevelopedbystrongplasticdeGformationconnectioninthe matrix micro zonewhilethelatterisjoinedbyeachcleavagestepandtheplasticdeformationisrarelyseenQuasiGcleavageisadiscontinuousfractureprocesswheneveryhidGdencrackconnectswitheachotherlargerplasticdeformationcalledtearridgealwaysoccursForH13MODitiseasytofindoutthedomainofplastic

10489443211048944Issue9         MicrostructureandPropertiesofHotWorkingDieSteelH13MOD 

deformation[Fig104900811(b)]whichshowshigherimGpacttoughnessofH13MOD  ItwassuggestedthatsuperiortoughnessisasGsociated with minimization oflargeprimarycarGbidesTheundissolvedprimarycarbideshaveagreaGtereffectontoughnessthanthatofcarbidesprecipiGtatedupontemperingDuringsolidificationofvanaGdiumsteelsthelastsectionsofliquidbetweenausGtenitedendritesareenrichedinvanadiumandcarbonuptotheeutecticcompositionandeutecticsolidificaGtionoccursLrarrγ+VC[12]AsmentionedabovebeGcauseofthehighercontentofVinH13steelitiseasytoformlargepseudoprimaryMCGtype(VGrich)carbides (primary carbides)during solidificationcomparedwithH13MODVCisanexothermictype

compoundcombiningwithhighhardnessandintenGsityItisundissolvedinausteniteunderhightemGperaturethusin H13steelitiseasytofindouttheselargeundissolvedprimarycarbidesin SEMfractograph[Fig104900812 (a)]BytheanalysisofEDStheblockeutecticcarbidesareidentifiedas(VTi)CThesecarbidesinH13steelleadtodeteriorationintoughnessAscanbeseenfromFig104900813(a)mostoftheseprimaryundissolvedcarbidesappearirregularshapewhicharedifferentfromthesecondarycarGbidesprecipitatedinthetemperingprocessThesecarbidesdamagethecontinuityofthematrixhavGingadirectinfluenceontheimpacttoughnessThelargeundissolvedcarbidesreduceboththefracturetoughnessandtheimpacttoughnessatthesamestrG

(a)Largeblockeutecticcarbide  (b)EDXofcarbideFig104900812 SEMfractographofimpactsampleofH13steeltemperedtwiceat600

(a)Largeblockeutecticcarbide  (b)EDXofeutecticcarbideFig104900813 SEMofmicrostructureofH13steeltemperedtwiceat600

engthlevel[13]

3 Conclusions  1)H13hashigherhardnesswhenquenchingtemperatureisabove1030H13MODreachesthemaximumvalueofhardnessat1030andhasnofurtherincreasewiththeriseofquenchingtemperaGtureCoarseningofthegrainsizein H13MODismuch moreobviousthanthatin H13especially

whenthequenchingtemperatureisabove1030 Bothofthetwosteelshaveareasonablequenchingtemperatureat1030  2)H13andH13MODhavesecondaryhardeningpeaksat510and480respectivelyafterquenchingat1030 Thevariationoftensilestrength withtemperingtemperatureshowsnearlythesametrendashardnessThehardnessandtensilestrengthofH13arehigherthanthoseofH13MODwhentemG

10489444211048944       JournalofIronandSteelResearchInternational              Vol104900820 

peringtemperatureisbelow540butatahighertemperingtemperatureespeciallyintherangefrom580to600 whichisgenerallyappliedformosthotworkingapplicationsbothofthetwosteelshavealmostthesamestrengthproperties   3)Theimpacttoughnessand ductility ofH13MODaremuchhigherthanthoseofH13steelevenunderthesametemperinghardness(temperingtemperatureabove540)H13MODcanbeusedinthesamehardnessenvironmentasH13buthighertoughnessisrequiredThenewdevelopedH13MODsteelhaveabetterthermalfatigueresistanceandservicelifecomparedwithH13

References

[1] PerssonAOnToolFailureinDieCasting[D]UppsalaSweGdenUppsalaUniversity2003

[2] LarsGAkeNorstromLennartJonsonBengtKlarenfjordDeGvelopmentofPremiumDieSteelforDieCasting[J]DieCastGingManagement19901224

[3] MichaudPDelagnesaDLamesleaPTheEffectoftheAddiGtionofAlloyingElementsonCarbidePrecipitationandMechanGicalPropertiesin5 Chromium MartensiticSteels[J]ActaMaterialia200755(14)4877

[4] PaysonPTheMetallurgyofToolSteels[M]New YorkJohn

WileyandSonsInc1962[5] LIUZongGchangDUZhiGweiZHUWenGfangSecondaryHardenG

ingofH13SteelDuringTemering[J]OrdnanceMaterialSciGenceandEngineering200124(3)11(inChinese)

[6] CHENYingCHENZaiGzhiDONGHanAdvanceinResearchofTemperingSecondary HardeningofAlloyToolandDieSteelFeGMGCQuenchedMartensite[J]JIronSteelRes200618(5)29(inChinese)

[7] SandbergOMillerPKlarenfjordBPropertiesProfileComGparisonofPremium QualityH13and ModifiedHotWorkDieSteel[J]DieCastingEngineer(USA)200246(3)40

[8] NehrenbergAEHeatandTemperResistantAlloySteelUS3600160[P]1971G8G17

[9] SarmaDSTemperedMartensiteEmbrittlement[J]ToolAlGloySteels198418(12)363

[10] Nam WJKim DSAhnSTEffectsofAlloyingElementsonMicrostructuralEvolutionandMechanicalPropertiesofInGductionQuenchedGandGTemperedSteels[J]JournalofMateGrialsScience200338(17)3611

[11] HornRMRitchieROMechanismsofTemperedMartensiteEmbrittlementinLowAlloySteels[J]MetallurgicalTransGactions19789A(8)1039

[12] MalinochkaY NOlikhovaM AMakogonovaTICarbideEutecticin Vanadium Steels [J]MetalScienceand HeatTreatment197921(3)171

[13] LechtenbergTATheMicrostructureMechanicalPropertiesandAbrasiveWearResistanceofModifiedSecondaryHardenGingSteels[D]BerkeleyUniversityofCaliforniaBerkeleyCA1979

10489445211048944Issue9         MicrostructureandPropertiesofHotWorkingDieSteelH13MOD 

Page 4: Microstructure and Properties of Hot Working Die Steel H13MOD

(a)H131000  (b)H13MOD1000  (c)H131030  (d)H13MOD1030Fig10490083 Metallographicstructuresofteststeelsquenchedat1000and1030

(a)H13  (b)H13MODFig10490084 SEM microstructuresofteststeelsquenchedat1030

ipitationofalloycarbidesintempered martensiteTheprecipitationofsecondarycarbidesretardssofGteningandincreasesthehardnessesofthetwosteelsH13hasasecondaryhardeningpeakat510 whileforH13MODitisat480 AndthetemperedhardnessofH13MODisslightlylowerthanthatofH13whenthetemperatureisbelow540 Whenthetemperatureisabove540H13andH13MODsteelshavenearlythesamehardness  ThevariationoftensilestrengthwithtemperingtemperatureinFig10490085showsnearlythesametrendashardnessThetensilestrengthofH13ishigherthan

thatofH13MODwhenthetemperingtemperatureisbelow540andreachesitsmaximumat510whichisalsotheminimumvalueofreductionofareaThemixGclusterwhichiscalled [MGC]segregationgroupdevelopedby MoCrandCatomsonαGphaseinduceslatticedistortion[5]andthesmallVCparticlesprecipitatedwhiletemperinggeneratesigGnificantsecondaryphasestrengthening[6]whichinGducesatensilestrengthincrementofH13comparedwithH13MODinthistemperaturerangeWiththeincreaseoftemperingtemperaturethedifferenceofreductionofareabetweenthetwosteelstendstobe

10489440211048944       JournalofIronandSteelResearchInternational              Vol104900820 

Fig10490085 Influencesofhardnesstensilestrengthreductionofarea(Z)andelongationafterfracture(A)ondifferenttemperingtemperaturesofH13steelandH13MODsteel

smallerH13MODhasabetterductilitycomparedwithH13AtthehighertemperingtemperatureesGpeciallyintherangefrom580to600 whichisgenerallyappliedformosthotworkingapplicationsbothofthetwosteelshavealmostthesamestrengthproperties  Thethin martensitelathsanddispersedcarGbidesarefoundinthetemperedmicrostructuresofH13andH13MOD (quenchedat1030 andtemGperedat600 )therearemuch morelargesizeM23C6 (CrGrich)M6C (MoGrich)andMC (VGrich)carbides(distinguishedbyEDS)existinH13steelcompared with H13MOD steel (Fig10490086)In H13steelarapidcarbidetransitionwhichnegativelyinfluencestheprecipitationstrengtheningoccursatmoderatelyhightemperatures(600)ThedistriGbutionofundissolvedVGrichcarbides(MC)transGformstoacoarserdistributionofCrGrichcarbides(M23C6)whicharelesseffectivefromaprecipitatiGonstrengthening perspective[7]Fig10490087 showstheTEMimagesofpartcarbidesinH13steelunderdifG

ferentheattreatmentconditionsTheTEMinvestiGgationsrevealedundissolved MCcarbides(VGrich)andthecoarseningofM6CandM23C6carbidepartiGclesinmatrix [Fig10490087 (a)]whichmayleadtothedecreaseofstrengtheningeffect  Fig10490088showstheTEMimagesofcarbidesinH13MODsteelaftertemperingat540and600ItcanbeseenthatanumberofsmallrodGlikecarbideparticlesarethemainmicrostructuralfeaturewhentemperedat540 [Fig10490088(a)]Diffractionpatternofcarbidestemperedat600 [Fig10490088(c)]showsthattherodGlikecarbideparticlesarealloycementites(M3C)precipitatedfrom martensiteIncreasingthetempeGringtemperatureabove600 causescoarseningofalloycementites[Fig10490088 (b)]andrecoveryofmarGtensitewhicharethereasonsforconsiderablehardGnessandstrengthdropItcanbeseenthattheextentofhardnessandtensilestrengthdropofH13MODislowerthanthatofH13ForthehighercontentofMoinH13MODMoprovidessecondaryhardeningandredhardnessbytheformationoftheMo2Ctype

Fig10490086 SEM microstructuresofH13(a)andH13MOD(b)temperedtwiceat600 (quenchedat1030)

10489441211048944Issue9         MicrostructureandPropertiesofHotWorkingDieSteelH13MOD 

(a)MCcarbideat570 (TEMdarkGfieldimage)  (b)M23C6carbideat600 (TEMdarkGfieldimage)(c)M6Ccarbideat600 (TEMbrightGfieldimage)

Fig10490087 CarbidesandselectedareaelectrondiffractionimagesofH13steelatdifferenttemperingtemperatures(quenchedat1030)

(a)Temperedtwiceat540  (b)Temperedtwiceat600  (c)Diffractionpatternofcarbidesof(b)Fig10490088 TEMdarkGfieldimagesoftemperedH13MODsteel(quenchedat1030)

ofcarbide[8]Mo2CkeepscoherentwithmatrixacGcumulatingandcoarseningslowlywhichmayalsoleadtosecondaryhardeningFortheinterferenceofthealloycementitenoM2CcarbidediffractionpatGternisobtainedfromthethinfoilat600orlowertemperingtemperatureButforH13MODtestsamGplewhichhasbeenquenchedat1030 andtemGperedat600 twicefurthertemperingonthissampleat620for2hitisfoundthatM2C (forH13MODitmaywellbeMo2C)carbidehasastrongdiffractionpatternFurthermorethecarbidesstillkeepverysmallsize(Fig10490089)ThereforeM2CisthemainstrengtheningphaseinH13MODwhichisalGsotheimportantreasonthathigherhardnessandstrengthcanbekeptinH13MODathightemperingtemperature

  TheresultsofCharpyimpacttestperformedatroomtemperaturetoevaluatetoughnessofthetwosteelsarepresentedinFig104900810Itisnoticedthattheminimaintheimpactenergycurvesoccursatthetemperingtemperatureof510 forH13steeland480forH13MODsteelwhichiscorrespondingtothetemperedhardnesscurves(Fig10490085)ThisatGtendantlossofimpacttoughnessisknownasreversGibletemperedembrittlementTheembrittlementisfoundtobeconcurrentwiththeinterlathprecipitatiGonofalloycementitesduringtemperingandtheconGsequentmechanicalinstabilityofinterlathfilmsofretainedausteniteduringsubsequentloading[9-10]TheincreaseofimpactenergyabovethebrittletemGperatureisassociatedwiththematrixsofteningandcoarseningofcarbidesparticles[11]

10489442211048944       JournalofIronandSteelResearchInternational              Vol104900820 

Fig10490089 TEMdarkGfieldimageofH13MODtemperedat620for2h(afterquenchingat1030andtemperingat600twice)(a)anddiffractionpatternofcarbides(b)

Fig104900810 ImpactenergiesofH13andH13MODsteels

  AscanbeseenfromFig104900810theimpacttoughGnessofH13MODismuchhigherthanthatofH13steelevenunderthesametemperinghardnesswhentemperingtemperatureisabove540 (Fig10490085)ThatistosayH13MODcanbeusedinthesamehardnessenvironmentasH13buthighertoughnessisrequiredthusenhancethermalfatigueresistanceandservicelifeofmouldTheSEManalysisonfracGturesurfaceindicatesthatthefracturecharacterisGticofH13isquasiGcleavage[Fig104900811(a)]aftertemGperingat600whileforH13MODsteelitisquasiGcleavagefracturewithmasssmalldimples[Fig104900811(b)]

Fig104900811 SEMfractographsoftemperedimpactsampleofH13(a)andH13MOD(b)steels(quenchingat1030andtemperingtwiceat600)

ThebasiccharacteristicsofquasiGcleavagefracturearesmallcrackedgrainandtearridgesThecrackgivebirthtonuclearinthestresshighlyconcentratGedlocation(suchasinclusionsandcarbides)ThenthecrackoriginextendsrespectivelyalongtheeasiGestexpending wayfuseintoeachotherbystrongplasticdeformationinlocalareaandform quasiGcleavagefracturefinallyInsmallcracksurfacemanycurvingtearridgesspreadwhichareobviousG

lydifferentfromthecleavagefractureofldquoriverpatGternrdquoTheformerisdevelopedbystrongplasticdeGformationconnectioninthe matrix micro zonewhilethelatterisjoinedbyeachcleavagestepandtheplasticdeformationisrarelyseenQuasiGcleavageisadiscontinuousfractureprocesswheneveryhidGdencrackconnectswitheachotherlargerplasticdeformationcalledtearridgealwaysoccursForH13MODitiseasytofindoutthedomainofplastic

10489443211048944Issue9         MicrostructureandPropertiesofHotWorkingDieSteelH13MOD 

deformation[Fig104900811(b)]whichshowshigherimGpacttoughnessofH13MOD  ItwassuggestedthatsuperiortoughnessisasGsociated with minimization oflargeprimarycarGbidesTheundissolvedprimarycarbideshaveagreaGtereffectontoughnessthanthatofcarbidesprecipiGtatedupontemperingDuringsolidificationofvanaGdiumsteelsthelastsectionsofliquidbetweenausGtenitedendritesareenrichedinvanadiumandcarbonuptotheeutecticcompositionandeutecticsolidificaGtionoccursLrarrγ+VC[12]AsmentionedabovebeGcauseofthehighercontentofVinH13steelitiseasytoformlargepseudoprimaryMCGtype(VGrich)carbides (primary carbides)during solidificationcomparedwithH13MODVCisanexothermictype

compoundcombiningwithhighhardnessandintenGsityItisundissolvedinausteniteunderhightemGperaturethusin H13steelitiseasytofindouttheselargeundissolvedprimarycarbidesin SEMfractograph[Fig104900812 (a)]BytheanalysisofEDStheblockeutecticcarbidesareidentifiedas(VTi)CThesecarbidesinH13steelleadtodeteriorationintoughnessAscanbeseenfromFig104900813(a)mostoftheseprimaryundissolvedcarbidesappearirregularshapewhicharedifferentfromthesecondarycarGbidesprecipitatedinthetemperingprocessThesecarbidesdamagethecontinuityofthematrixhavGingadirectinfluenceontheimpacttoughnessThelargeundissolvedcarbidesreduceboththefracturetoughnessandtheimpacttoughnessatthesamestrG

(a)Largeblockeutecticcarbide  (b)EDXofcarbideFig104900812 SEMfractographofimpactsampleofH13steeltemperedtwiceat600

(a)Largeblockeutecticcarbide  (b)EDXofeutecticcarbideFig104900813 SEMofmicrostructureofH13steeltemperedtwiceat600

engthlevel[13]

3 Conclusions  1)H13hashigherhardnesswhenquenchingtemperatureisabove1030H13MODreachesthemaximumvalueofhardnessat1030andhasnofurtherincreasewiththeriseofquenchingtemperaGtureCoarseningofthegrainsizein H13MODismuch moreobviousthanthatin H13especially

whenthequenchingtemperatureisabove1030 Bothofthetwosteelshaveareasonablequenchingtemperatureat1030  2)H13andH13MODhavesecondaryhardeningpeaksat510and480respectivelyafterquenchingat1030 Thevariationoftensilestrength withtemperingtemperatureshowsnearlythesametrendashardnessThehardnessandtensilestrengthofH13arehigherthanthoseofH13MODwhentemG

10489444211048944       JournalofIronandSteelResearchInternational              Vol104900820 

peringtemperatureisbelow540butatahighertemperingtemperatureespeciallyintherangefrom580to600 whichisgenerallyappliedformosthotworkingapplicationsbothofthetwosteelshavealmostthesamestrengthproperties   3)Theimpacttoughnessand ductility ofH13MODaremuchhigherthanthoseofH13steelevenunderthesametemperinghardness(temperingtemperatureabove540)H13MODcanbeusedinthesamehardnessenvironmentasH13buthighertoughnessisrequiredThenewdevelopedH13MODsteelhaveabetterthermalfatigueresistanceandservicelifecomparedwithH13

References

[1] PerssonAOnToolFailureinDieCasting[D]UppsalaSweGdenUppsalaUniversity2003

[2] LarsGAkeNorstromLennartJonsonBengtKlarenfjordDeGvelopmentofPremiumDieSteelforDieCasting[J]DieCastGingManagement19901224

[3] MichaudPDelagnesaDLamesleaPTheEffectoftheAddiGtionofAlloyingElementsonCarbidePrecipitationandMechanGicalPropertiesin5 Chromium MartensiticSteels[J]ActaMaterialia200755(14)4877

[4] PaysonPTheMetallurgyofToolSteels[M]New YorkJohn

WileyandSonsInc1962[5] LIUZongGchangDUZhiGweiZHUWenGfangSecondaryHardenG

ingofH13SteelDuringTemering[J]OrdnanceMaterialSciGenceandEngineering200124(3)11(inChinese)

[6] CHENYingCHENZaiGzhiDONGHanAdvanceinResearchofTemperingSecondary HardeningofAlloyToolandDieSteelFeGMGCQuenchedMartensite[J]JIronSteelRes200618(5)29(inChinese)

[7] SandbergOMillerPKlarenfjordBPropertiesProfileComGparisonofPremium QualityH13and ModifiedHotWorkDieSteel[J]DieCastingEngineer(USA)200246(3)40

[8] NehrenbergAEHeatandTemperResistantAlloySteelUS3600160[P]1971G8G17

[9] SarmaDSTemperedMartensiteEmbrittlement[J]ToolAlGloySteels198418(12)363

[10] Nam WJKim DSAhnSTEffectsofAlloyingElementsonMicrostructuralEvolutionandMechanicalPropertiesofInGductionQuenchedGandGTemperedSteels[J]JournalofMateGrialsScience200338(17)3611

[11] HornRMRitchieROMechanismsofTemperedMartensiteEmbrittlementinLowAlloySteels[J]MetallurgicalTransGactions19789A(8)1039

[12] MalinochkaY NOlikhovaM AMakogonovaTICarbideEutecticin Vanadium Steels [J]MetalScienceand HeatTreatment197921(3)171

[13] LechtenbergTATheMicrostructureMechanicalPropertiesandAbrasiveWearResistanceofModifiedSecondaryHardenGingSteels[D]BerkeleyUniversityofCaliforniaBerkeleyCA1979

10489445211048944Issue9         MicrostructureandPropertiesofHotWorkingDieSteelH13MOD 

Page 5: Microstructure and Properties of Hot Working Die Steel H13MOD

Fig10490085 Influencesofhardnesstensilestrengthreductionofarea(Z)andelongationafterfracture(A)ondifferenttemperingtemperaturesofH13steelandH13MODsteel

smallerH13MODhasabetterductilitycomparedwithH13AtthehighertemperingtemperatureesGpeciallyintherangefrom580to600 whichisgenerallyappliedformosthotworkingapplicationsbothofthetwosteelshavealmostthesamestrengthproperties  Thethin martensitelathsanddispersedcarGbidesarefoundinthetemperedmicrostructuresofH13andH13MOD (quenchedat1030 andtemGperedat600 )therearemuch morelargesizeM23C6 (CrGrich)M6C (MoGrich)andMC (VGrich)carbides(distinguishedbyEDS)existinH13steelcompared with H13MOD steel (Fig10490086)In H13steelarapidcarbidetransitionwhichnegativelyinfluencestheprecipitationstrengtheningoccursatmoderatelyhightemperatures(600)ThedistriGbutionofundissolvedVGrichcarbides(MC)transGformstoacoarserdistributionofCrGrichcarbides(M23C6)whicharelesseffectivefromaprecipitatiGonstrengthening perspective[7]Fig10490087 showstheTEMimagesofpartcarbidesinH13steelunderdifG

ferentheattreatmentconditionsTheTEMinvestiGgationsrevealedundissolved MCcarbides(VGrich)andthecoarseningofM6CandM23C6carbidepartiGclesinmatrix [Fig10490087 (a)]whichmayleadtothedecreaseofstrengtheningeffect  Fig10490088showstheTEMimagesofcarbidesinH13MODsteelaftertemperingat540and600ItcanbeseenthatanumberofsmallrodGlikecarbideparticlesarethemainmicrostructuralfeaturewhentemperedat540 [Fig10490088(a)]Diffractionpatternofcarbidestemperedat600 [Fig10490088(c)]showsthattherodGlikecarbideparticlesarealloycementites(M3C)precipitatedfrom martensiteIncreasingthetempeGringtemperatureabove600 causescoarseningofalloycementites[Fig10490088 (b)]andrecoveryofmarGtensitewhicharethereasonsforconsiderablehardGnessandstrengthdropItcanbeseenthattheextentofhardnessandtensilestrengthdropofH13MODislowerthanthatofH13ForthehighercontentofMoinH13MODMoprovidessecondaryhardeningandredhardnessbytheformationoftheMo2Ctype

Fig10490086 SEM microstructuresofH13(a)andH13MOD(b)temperedtwiceat600 (quenchedat1030)

10489441211048944Issue9         MicrostructureandPropertiesofHotWorkingDieSteelH13MOD 

(a)MCcarbideat570 (TEMdarkGfieldimage)  (b)M23C6carbideat600 (TEMdarkGfieldimage)(c)M6Ccarbideat600 (TEMbrightGfieldimage)

Fig10490087 CarbidesandselectedareaelectrondiffractionimagesofH13steelatdifferenttemperingtemperatures(quenchedat1030)

(a)Temperedtwiceat540  (b)Temperedtwiceat600  (c)Diffractionpatternofcarbidesof(b)Fig10490088 TEMdarkGfieldimagesoftemperedH13MODsteel(quenchedat1030)

ofcarbide[8]Mo2CkeepscoherentwithmatrixacGcumulatingandcoarseningslowlywhichmayalsoleadtosecondaryhardeningFortheinterferenceofthealloycementitenoM2CcarbidediffractionpatGternisobtainedfromthethinfoilat600orlowertemperingtemperatureButforH13MODtestsamGplewhichhasbeenquenchedat1030 andtemGperedat600 twicefurthertemperingonthissampleat620for2hitisfoundthatM2C (forH13MODitmaywellbeMo2C)carbidehasastrongdiffractionpatternFurthermorethecarbidesstillkeepverysmallsize(Fig10490089)ThereforeM2CisthemainstrengtheningphaseinH13MODwhichisalGsotheimportantreasonthathigherhardnessandstrengthcanbekeptinH13MODathightemperingtemperature

  TheresultsofCharpyimpacttestperformedatroomtemperaturetoevaluatetoughnessofthetwosteelsarepresentedinFig104900810Itisnoticedthattheminimaintheimpactenergycurvesoccursatthetemperingtemperatureof510 forH13steeland480forH13MODsteelwhichiscorrespondingtothetemperedhardnesscurves(Fig10490085)ThisatGtendantlossofimpacttoughnessisknownasreversGibletemperedembrittlementTheembrittlementisfoundtobeconcurrentwiththeinterlathprecipitatiGonofalloycementitesduringtemperingandtheconGsequentmechanicalinstabilityofinterlathfilmsofretainedausteniteduringsubsequentloading[9-10]TheincreaseofimpactenergyabovethebrittletemGperatureisassociatedwiththematrixsofteningandcoarseningofcarbidesparticles[11]

10489442211048944       JournalofIronandSteelResearchInternational              Vol104900820 

Fig10490089 TEMdarkGfieldimageofH13MODtemperedat620for2h(afterquenchingat1030andtemperingat600twice)(a)anddiffractionpatternofcarbides(b)

Fig104900810 ImpactenergiesofH13andH13MODsteels

  AscanbeseenfromFig104900810theimpacttoughGnessofH13MODismuchhigherthanthatofH13steelevenunderthesametemperinghardnesswhentemperingtemperatureisabove540 (Fig10490085)ThatistosayH13MODcanbeusedinthesamehardnessenvironmentasH13buthighertoughnessisrequiredthusenhancethermalfatigueresistanceandservicelifeofmouldTheSEManalysisonfracGturesurfaceindicatesthatthefracturecharacterisGticofH13isquasiGcleavage[Fig104900811(a)]aftertemGperingat600whileforH13MODsteelitisquasiGcleavagefracturewithmasssmalldimples[Fig104900811(b)]

Fig104900811 SEMfractographsoftemperedimpactsampleofH13(a)andH13MOD(b)steels(quenchingat1030andtemperingtwiceat600)

ThebasiccharacteristicsofquasiGcleavagefracturearesmallcrackedgrainandtearridgesThecrackgivebirthtonuclearinthestresshighlyconcentratGedlocation(suchasinclusionsandcarbides)ThenthecrackoriginextendsrespectivelyalongtheeasiGestexpending wayfuseintoeachotherbystrongplasticdeformationinlocalareaandform quasiGcleavagefracturefinallyInsmallcracksurfacemanycurvingtearridgesspreadwhichareobviousG

lydifferentfromthecleavagefractureofldquoriverpatGternrdquoTheformerisdevelopedbystrongplasticdeGformationconnectioninthe matrix micro zonewhilethelatterisjoinedbyeachcleavagestepandtheplasticdeformationisrarelyseenQuasiGcleavageisadiscontinuousfractureprocesswheneveryhidGdencrackconnectswitheachotherlargerplasticdeformationcalledtearridgealwaysoccursForH13MODitiseasytofindoutthedomainofplastic

10489443211048944Issue9         MicrostructureandPropertiesofHotWorkingDieSteelH13MOD 

deformation[Fig104900811(b)]whichshowshigherimGpacttoughnessofH13MOD  ItwassuggestedthatsuperiortoughnessisasGsociated with minimization oflargeprimarycarGbidesTheundissolvedprimarycarbideshaveagreaGtereffectontoughnessthanthatofcarbidesprecipiGtatedupontemperingDuringsolidificationofvanaGdiumsteelsthelastsectionsofliquidbetweenausGtenitedendritesareenrichedinvanadiumandcarbonuptotheeutecticcompositionandeutecticsolidificaGtionoccursLrarrγ+VC[12]AsmentionedabovebeGcauseofthehighercontentofVinH13steelitiseasytoformlargepseudoprimaryMCGtype(VGrich)carbides (primary carbides)during solidificationcomparedwithH13MODVCisanexothermictype

compoundcombiningwithhighhardnessandintenGsityItisundissolvedinausteniteunderhightemGperaturethusin H13steelitiseasytofindouttheselargeundissolvedprimarycarbidesin SEMfractograph[Fig104900812 (a)]BytheanalysisofEDStheblockeutecticcarbidesareidentifiedas(VTi)CThesecarbidesinH13steelleadtodeteriorationintoughnessAscanbeseenfromFig104900813(a)mostoftheseprimaryundissolvedcarbidesappearirregularshapewhicharedifferentfromthesecondarycarGbidesprecipitatedinthetemperingprocessThesecarbidesdamagethecontinuityofthematrixhavGingadirectinfluenceontheimpacttoughnessThelargeundissolvedcarbidesreduceboththefracturetoughnessandtheimpacttoughnessatthesamestrG

(a)Largeblockeutecticcarbide  (b)EDXofcarbideFig104900812 SEMfractographofimpactsampleofH13steeltemperedtwiceat600

(a)Largeblockeutecticcarbide  (b)EDXofeutecticcarbideFig104900813 SEMofmicrostructureofH13steeltemperedtwiceat600

engthlevel[13]

3 Conclusions  1)H13hashigherhardnesswhenquenchingtemperatureisabove1030H13MODreachesthemaximumvalueofhardnessat1030andhasnofurtherincreasewiththeriseofquenchingtemperaGtureCoarseningofthegrainsizein H13MODismuch moreobviousthanthatin H13especially

whenthequenchingtemperatureisabove1030 Bothofthetwosteelshaveareasonablequenchingtemperatureat1030  2)H13andH13MODhavesecondaryhardeningpeaksat510and480respectivelyafterquenchingat1030 Thevariationoftensilestrength withtemperingtemperatureshowsnearlythesametrendashardnessThehardnessandtensilestrengthofH13arehigherthanthoseofH13MODwhentemG

10489444211048944       JournalofIronandSteelResearchInternational              Vol104900820 

peringtemperatureisbelow540butatahighertemperingtemperatureespeciallyintherangefrom580to600 whichisgenerallyappliedformosthotworkingapplicationsbothofthetwosteelshavealmostthesamestrengthproperties   3)Theimpacttoughnessand ductility ofH13MODaremuchhigherthanthoseofH13steelevenunderthesametemperinghardness(temperingtemperatureabove540)H13MODcanbeusedinthesamehardnessenvironmentasH13buthighertoughnessisrequiredThenewdevelopedH13MODsteelhaveabetterthermalfatigueresistanceandservicelifecomparedwithH13

References

[1] PerssonAOnToolFailureinDieCasting[D]UppsalaSweGdenUppsalaUniversity2003

[2] LarsGAkeNorstromLennartJonsonBengtKlarenfjordDeGvelopmentofPremiumDieSteelforDieCasting[J]DieCastGingManagement19901224

[3] MichaudPDelagnesaDLamesleaPTheEffectoftheAddiGtionofAlloyingElementsonCarbidePrecipitationandMechanGicalPropertiesin5 Chromium MartensiticSteels[J]ActaMaterialia200755(14)4877

[4] PaysonPTheMetallurgyofToolSteels[M]New YorkJohn

WileyandSonsInc1962[5] LIUZongGchangDUZhiGweiZHUWenGfangSecondaryHardenG

ingofH13SteelDuringTemering[J]OrdnanceMaterialSciGenceandEngineering200124(3)11(inChinese)

[6] CHENYingCHENZaiGzhiDONGHanAdvanceinResearchofTemperingSecondary HardeningofAlloyToolandDieSteelFeGMGCQuenchedMartensite[J]JIronSteelRes200618(5)29(inChinese)

[7] SandbergOMillerPKlarenfjordBPropertiesProfileComGparisonofPremium QualityH13and ModifiedHotWorkDieSteel[J]DieCastingEngineer(USA)200246(3)40

[8] NehrenbergAEHeatandTemperResistantAlloySteelUS3600160[P]1971G8G17

[9] SarmaDSTemperedMartensiteEmbrittlement[J]ToolAlGloySteels198418(12)363

[10] Nam WJKim DSAhnSTEffectsofAlloyingElementsonMicrostructuralEvolutionandMechanicalPropertiesofInGductionQuenchedGandGTemperedSteels[J]JournalofMateGrialsScience200338(17)3611

[11] HornRMRitchieROMechanismsofTemperedMartensiteEmbrittlementinLowAlloySteels[J]MetallurgicalTransGactions19789A(8)1039

[12] MalinochkaY NOlikhovaM AMakogonovaTICarbideEutecticin Vanadium Steels [J]MetalScienceand HeatTreatment197921(3)171

[13] LechtenbergTATheMicrostructureMechanicalPropertiesandAbrasiveWearResistanceofModifiedSecondaryHardenGingSteels[D]BerkeleyUniversityofCaliforniaBerkeleyCA1979

10489445211048944Issue9         MicrostructureandPropertiesofHotWorkingDieSteelH13MOD 

Page 6: Microstructure and Properties of Hot Working Die Steel H13MOD

(a)MCcarbideat570 (TEMdarkGfieldimage)  (b)M23C6carbideat600 (TEMdarkGfieldimage)(c)M6Ccarbideat600 (TEMbrightGfieldimage)

Fig10490087 CarbidesandselectedareaelectrondiffractionimagesofH13steelatdifferenttemperingtemperatures(quenchedat1030)

(a)Temperedtwiceat540  (b)Temperedtwiceat600  (c)Diffractionpatternofcarbidesof(b)Fig10490088 TEMdarkGfieldimagesoftemperedH13MODsteel(quenchedat1030)

ofcarbide[8]Mo2CkeepscoherentwithmatrixacGcumulatingandcoarseningslowlywhichmayalsoleadtosecondaryhardeningFortheinterferenceofthealloycementitenoM2CcarbidediffractionpatGternisobtainedfromthethinfoilat600orlowertemperingtemperatureButforH13MODtestsamGplewhichhasbeenquenchedat1030 andtemGperedat600 twicefurthertemperingonthissampleat620for2hitisfoundthatM2C (forH13MODitmaywellbeMo2C)carbidehasastrongdiffractionpatternFurthermorethecarbidesstillkeepverysmallsize(Fig10490089)ThereforeM2CisthemainstrengtheningphaseinH13MODwhichisalGsotheimportantreasonthathigherhardnessandstrengthcanbekeptinH13MODathightemperingtemperature

  TheresultsofCharpyimpacttestperformedatroomtemperaturetoevaluatetoughnessofthetwosteelsarepresentedinFig104900810Itisnoticedthattheminimaintheimpactenergycurvesoccursatthetemperingtemperatureof510 forH13steeland480forH13MODsteelwhichiscorrespondingtothetemperedhardnesscurves(Fig10490085)ThisatGtendantlossofimpacttoughnessisknownasreversGibletemperedembrittlementTheembrittlementisfoundtobeconcurrentwiththeinterlathprecipitatiGonofalloycementitesduringtemperingandtheconGsequentmechanicalinstabilityofinterlathfilmsofretainedausteniteduringsubsequentloading[9-10]TheincreaseofimpactenergyabovethebrittletemGperatureisassociatedwiththematrixsofteningandcoarseningofcarbidesparticles[11]

10489442211048944       JournalofIronandSteelResearchInternational              Vol104900820 

Fig10490089 TEMdarkGfieldimageofH13MODtemperedat620for2h(afterquenchingat1030andtemperingat600twice)(a)anddiffractionpatternofcarbides(b)

Fig104900810 ImpactenergiesofH13andH13MODsteels

  AscanbeseenfromFig104900810theimpacttoughGnessofH13MODismuchhigherthanthatofH13steelevenunderthesametemperinghardnesswhentemperingtemperatureisabove540 (Fig10490085)ThatistosayH13MODcanbeusedinthesamehardnessenvironmentasH13buthighertoughnessisrequiredthusenhancethermalfatigueresistanceandservicelifeofmouldTheSEManalysisonfracGturesurfaceindicatesthatthefracturecharacterisGticofH13isquasiGcleavage[Fig104900811(a)]aftertemGperingat600whileforH13MODsteelitisquasiGcleavagefracturewithmasssmalldimples[Fig104900811(b)]

Fig104900811 SEMfractographsoftemperedimpactsampleofH13(a)andH13MOD(b)steels(quenchingat1030andtemperingtwiceat600)

ThebasiccharacteristicsofquasiGcleavagefracturearesmallcrackedgrainandtearridgesThecrackgivebirthtonuclearinthestresshighlyconcentratGedlocation(suchasinclusionsandcarbides)ThenthecrackoriginextendsrespectivelyalongtheeasiGestexpending wayfuseintoeachotherbystrongplasticdeformationinlocalareaandform quasiGcleavagefracturefinallyInsmallcracksurfacemanycurvingtearridgesspreadwhichareobviousG

lydifferentfromthecleavagefractureofldquoriverpatGternrdquoTheformerisdevelopedbystrongplasticdeGformationconnectioninthe matrix micro zonewhilethelatterisjoinedbyeachcleavagestepandtheplasticdeformationisrarelyseenQuasiGcleavageisadiscontinuousfractureprocesswheneveryhidGdencrackconnectswitheachotherlargerplasticdeformationcalledtearridgealwaysoccursForH13MODitiseasytofindoutthedomainofplastic

10489443211048944Issue9         MicrostructureandPropertiesofHotWorkingDieSteelH13MOD 

deformation[Fig104900811(b)]whichshowshigherimGpacttoughnessofH13MOD  ItwassuggestedthatsuperiortoughnessisasGsociated with minimization oflargeprimarycarGbidesTheundissolvedprimarycarbideshaveagreaGtereffectontoughnessthanthatofcarbidesprecipiGtatedupontemperingDuringsolidificationofvanaGdiumsteelsthelastsectionsofliquidbetweenausGtenitedendritesareenrichedinvanadiumandcarbonuptotheeutecticcompositionandeutecticsolidificaGtionoccursLrarrγ+VC[12]AsmentionedabovebeGcauseofthehighercontentofVinH13steelitiseasytoformlargepseudoprimaryMCGtype(VGrich)carbides (primary carbides)during solidificationcomparedwithH13MODVCisanexothermictype

compoundcombiningwithhighhardnessandintenGsityItisundissolvedinausteniteunderhightemGperaturethusin H13steelitiseasytofindouttheselargeundissolvedprimarycarbidesin SEMfractograph[Fig104900812 (a)]BytheanalysisofEDStheblockeutecticcarbidesareidentifiedas(VTi)CThesecarbidesinH13steelleadtodeteriorationintoughnessAscanbeseenfromFig104900813(a)mostoftheseprimaryundissolvedcarbidesappearirregularshapewhicharedifferentfromthesecondarycarGbidesprecipitatedinthetemperingprocessThesecarbidesdamagethecontinuityofthematrixhavGingadirectinfluenceontheimpacttoughnessThelargeundissolvedcarbidesreduceboththefracturetoughnessandtheimpacttoughnessatthesamestrG

(a)Largeblockeutecticcarbide  (b)EDXofcarbideFig104900812 SEMfractographofimpactsampleofH13steeltemperedtwiceat600

(a)Largeblockeutecticcarbide  (b)EDXofeutecticcarbideFig104900813 SEMofmicrostructureofH13steeltemperedtwiceat600

engthlevel[13]

3 Conclusions  1)H13hashigherhardnesswhenquenchingtemperatureisabove1030H13MODreachesthemaximumvalueofhardnessat1030andhasnofurtherincreasewiththeriseofquenchingtemperaGtureCoarseningofthegrainsizein H13MODismuch moreobviousthanthatin H13especially

whenthequenchingtemperatureisabove1030 Bothofthetwosteelshaveareasonablequenchingtemperatureat1030  2)H13andH13MODhavesecondaryhardeningpeaksat510and480respectivelyafterquenchingat1030 Thevariationoftensilestrength withtemperingtemperatureshowsnearlythesametrendashardnessThehardnessandtensilestrengthofH13arehigherthanthoseofH13MODwhentemG

10489444211048944       JournalofIronandSteelResearchInternational              Vol104900820 

peringtemperatureisbelow540butatahighertemperingtemperatureespeciallyintherangefrom580to600 whichisgenerallyappliedformosthotworkingapplicationsbothofthetwosteelshavealmostthesamestrengthproperties   3)Theimpacttoughnessand ductility ofH13MODaremuchhigherthanthoseofH13steelevenunderthesametemperinghardness(temperingtemperatureabove540)H13MODcanbeusedinthesamehardnessenvironmentasH13buthighertoughnessisrequiredThenewdevelopedH13MODsteelhaveabetterthermalfatigueresistanceandservicelifecomparedwithH13

References

[1] PerssonAOnToolFailureinDieCasting[D]UppsalaSweGdenUppsalaUniversity2003

[2] LarsGAkeNorstromLennartJonsonBengtKlarenfjordDeGvelopmentofPremiumDieSteelforDieCasting[J]DieCastGingManagement19901224

[3] MichaudPDelagnesaDLamesleaPTheEffectoftheAddiGtionofAlloyingElementsonCarbidePrecipitationandMechanGicalPropertiesin5 Chromium MartensiticSteels[J]ActaMaterialia200755(14)4877

[4] PaysonPTheMetallurgyofToolSteels[M]New YorkJohn

WileyandSonsInc1962[5] LIUZongGchangDUZhiGweiZHUWenGfangSecondaryHardenG

ingofH13SteelDuringTemering[J]OrdnanceMaterialSciGenceandEngineering200124(3)11(inChinese)

[6] CHENYingCHENZaiGzhiDONGHanAdvanceinResearchofTemperingSecondary HardeningofAlloyToolandDieSteelFeGMGCQuenchedMartensite[J]JIronSteelRes200618(5)29(inChinese)

[7] SandbergOMillerPKlarenfjordBPropertiesProfileComGparisonofPremium QualityH13and ModifiedHotWorkDieSteel[J]DieCastingEngineer(USA)200246(3)40

[8] NehrenbergAEHeatandTemperResistantAlloySteelUS3600160[P]1971G8G17

[9] SarmaDSTemperedMartensiteEmbrittlement[J]ToolAlGloySteels198418(12)363

[10] Nam WJKim DSAhnSTEffectsofAlloyingElementsonMicrostructuralEvolutionandMechanicalPropertiesofInGductionQuenchedGandGTemperedSteels[J]JournalofMateGrialsScience200338(17)3611

[11] HornRMRitchieROMechanismsofTemperedMartensiteEmbrittlementinLowAlloySteels[J]MetallurgicalTransGactions19789A(8)1039

[12] MalinochkaY NOlikhovaM AMakogonovaTICarbideEutecticin Vanadium Steels [J]MetalScienceand HeatTreatment197921(3)171

[13] LechtenbergTATheMicrostructureMechanicalPropertiesandAbrasiveWearResistanceofModifiedSecondaryHardenGingSteels[D]BerkeleyUniversityofCaliforniaBerkeleyCA1979

10489445211048944Issue9         MicrostructureandPropertiesofHotWorkingDieSteelH13MOD 

Page 7: Microstructure and Properties of Hot Working Die Steel H13MOD

Fig10490089 TEMdarkGfieldimageofH13MODtemperedat620for2h(afterquenchingat1030andtemperingat600twice)(a)anddiffractionpatternofcarbides(b)

Fig104900810 ImpactenergiesofH13andH13MODsteels

  AscanbeseenfromFig104900810theimpacttoughGnessofH13MODismuchhigherthanthatofH13steelevenunderthesametemperinghardnesswhentemperingtemperatureisabove540 (Fig10490085)ThatistosayH13MODcanbeusedinthesamehardnessenvironmentasH13buthighertoughnessisrequiredthusenhancethermalfatigueresistanceandservicelifeofmouldTheSEManalysisonfracGturesurfaceindicatesthatthefracturecharacterisGticofH13isquasiGcleavage[Fig104900811(a)]aftertemGperingat600whileforH13MODsteelitisquasiGcleavagefracturewithmasssmalldimples[Fig104900811(b)]

Fig104900811 SEMfractographsoftemperedimpactsampleofH13(a)andH13MOD(b)steels(quenchingat1030andtemperingtwiceat600)

ThebasiccharacteristicsofquasiGcleavagefracturearesmallcrackedgrainandtearridgesThecrackgivebirthtonuclearinthestresshighlyconcentratGedlocation(suchasinclusionsandcarbides)ThenthecrackoriginextendsrespectivelyalongtheeasiGestexpending wayfuseintoeachotherbystrongplasticdeformationinlocalareaandform quasiGcleavagefracturefinallyInsmallcracksurfacemanycurvingtearridgesspreadwhichareobviousG

lydifferentfromthecleavagefractureofldquoriverpatGternrdquoTheformerisdevelopedbystrongplasticdeGformationconnectioninthe matrix micro zonewhilethelatterisjoinedbyeachcleavagestepandtheplasticdeformationisrarelyseenQuasiGcleavageisadiscontinuousfractureprocesswheneveryhidGdencrackconnectswitheachotherlargerplasticdeformationcalledtearridgealwaysoccursForH13MODitiseasytofindoutthedomainofplastic

10489443211048944Issue9         MicrostructureandPropertiesofHotWorkingDieSteelH13MOD 

deformation[Fig104900811(b)]whichshowshigherimGpacttoughnessofH13MOD  ItwassuggestedthatsuperiortoughnessisasGsociated with minimization oflargeprimarycarGbidesTheundissolvedprimarycarbideshaveagreaGtereffectontoughnessthanthatofcarbidesprecipiGtatedupontemperingDuringsolidificationofvanaGdiumsteelsthelastsectionsofliquidbetweenausGtenitedendritesareenrichedinvanadiumandcarbonuptotheeutecticcompositionandeutecticsolidificaGtionoccursLrarrγ+VC[12]AsmentionedabovebeGcauseofthehighercontentofVinH13steelitiseasytoformlargepseudoprimaryMCGtype(VGrich)carbides (primary carbides)during solidificationcomparedwithH13MODVCisanexothermictype

compoundcombiningwithhighhardnessandintenGsityItisundissolvedinausteniteunderhightemGperaturethusin H13steelitiseasytofindouttheselargeundissolvedprimarycarbidesin SEMfractograph[Fig104900812 (a)]BytheanalysisofEDStheblockeutecticcarbidesareidentifiedas(VTi)CThesecarbidesinH13steelleadtodeteriorationintoughnessAscanbeseenfromFig104900813(a)mostoftheseprimaryundissolvedcarbidesappearirregularshapewhicharedifferentfromthesecondarycarGbidesprecipitatedinthetemperingprocessThesecarbidesdamagethecontinuityofthematrixhavGingadirectinfluenceontheimpacttoughnessThelargeundissolvedcarbidesreduceboththefracturetoughnessandtheimpacttoughnessatthesamestrG

(a)Largeblockeutecticcarbide  (b)EDXofcarbideFig104900812 SEMfractographofimpactsampleofH13steeltemperedtwiceat600

(a)Largeblockeutecticcarbide  (b)EDXofeutecticcarbideFig104900813 SEMofmicrostructureofH13steeltemperedtwiceat600

engthlevel[13]

3 Conclusions  1)H13hashigherhardnesswhenquenchingtemperatureisabove1030H13MODreachesthemaximumvalueofhardnessat1030andhasnofurtherincreasewiththeriseofquenchingtemperaGtureCoarseningofthegrainsizein H13MODismuch moreobviousthanthatin H13especially

whenthequenchingtemperatureisabove1030 Bothofthetwosteelshaveareasonablequenchingtemperatureat1030  2)H13andH13MODhavesecondaryhardeningpeaksat510and480respectivelyafterquenchingat1030 Thevariationoftensilestrength withtemperingtemperatureshowsnearlythesametrendashardnessThehardnessandtensilestrengthofH13arehigherthanthoseofH13MODwhentemG

10489444211048944       JournalofIronandSteelResearchInternational              Vol104900820 

peringtemperatureisbelow540butatahighertemperingtemperatureespeciallyintherangefrom580to600 whichisgenerallyappliedformosthotworkingapplicationsbothofthetwosteelshavealmostthesamestrengthproperties   3)Theimpacttoughnessand ductility ofH13MODaremuchhigherthanthoseofH13steelevenunderthesametemperinghardness(temperingtemperatureabove540)H13MODcanbeusedinthesamehardnessenvironmentasH13buthighertoughnessisrequiredThenewdevelopedH13MODsteelhaveabetterthermalfatigueresistanceandservicelifecomparedwithH13

References

[1] PerssonAOnToolFailureinDieCasting[D]UppsalaSweGdenUppsalaUniversity2003

[2] LarsGAkeNorstromLennartJonsonBengtKlarenfjordDeGvelopmentofPremiumDieSteelforDieCasting[J]DieCastGingManagement19901224

[3] MichaudPDelagnesaDLamesleaPTheEffectoftheAddiGtionofAlloyingElementsonCarbidePrecipitationandMechanGicalPropertiesin5 Chromium MartensiticSteels[J]ActaMaterialia200755(14)4877

[4] PaysonPTheMetallurgyofToolSteels[M]New YorkJohn

WileyandSonsInc1962[5] LIUZongGchangDUZhiGweiZHUWenGfangSecondaryHardenG

ingofH13SteelDuringTemering[J]OrdnanceMaterialSciGenceandEngineering200124(3)11(inChinese)

[6] CHENYingCHENZaiGzhiDONGHanAdvanceinResearchofTemperingSecondary HardeningofAlloyToolandDieSteelFeGMGCQuenchedMartensite[J]JIronSteelRes200618(5)29(inChinese)

[7] SandbergOMillerPKlarenfjordBPropertiesProfileComGparisonofPremium QualityH13and ModifiedHotWorkDieSteel[J]DieCastingEngineer(USA)200246(3)40

[8] NehrenbergAEHeatandTemperResistantAlloySteelUS3600160[P]1971G8G17

[9] SarmaDSTemperedMartensiteEmbrittlement[J]ToolAlGloySteels198418(12)363

[10] Nam WJKim DSAhnSTEffectsofAlloyingElementsonMicrostructuralEvolutionandMechanicalPropertiesofInGductionQuenchedGandGTemperedSteels[J]JournalofMateGrialsScience200338(17)3611

[11] HornRMRitchieROMechanismsofTemperedMartensiteEmbrittlementinLowAlloySteels[J]MetallurgicalTransGactions19789A(8)1039

[12] MalinochkaY NOlikhovaM AMakogonovaTICarbideEutecticin Vanadium Steels [J]MetalScienceand HeatTreatment197921(3)171

[13] LechtenbergTATheMicrostructureMechanicalPropertiesandAbrasiveWearResistanceofModifiedSecondaryHardenGingSteels[D]BerkeleyUniversityofCaliforniaBerkeleyCA1979

10489445211048944Issue9         MicrostructureandPropertiesofHotWorkingDieSteelH13MOD 

Page 8: Microstructure and Properties of Hot Working Die Steel H13MOD

deformation[Fig104900811(b)]whichshowshigherimGpacttoughnessofH13MOD  ItwassuggestedthatsuperiortoughnessisasGsociated with minimization oflargeprimarycarGbidesTheundissolvedprimarycarbideshaveagreaGtereffectontoughnessthanthatofcarbidesprecipiGtatedupontemperingDuringsolidificationofvanaGdiumsteelsthelastsectionsofliquidbetweenausGtenitedendritesareenrichedinvanadiumandcarbonuptotheeutecticcompositionandeutecticsolidificaGtionoccursLrarrγ+VC[12]AsmentionedabovebeGcauseofthehighercontentofVinH13steelitiseasytoformlargepseudoprimaryMCGtype(VGrich)carbides (primary carbides)during solidificationcomparedwithH13MODVCisanexothermictype

compoundcombiningwithhighhardnessandintenGsityItisundissolvedinausteniteunderhightemGperaturethusin H13steelitiseasytofindouttheselargeundissolvedprimarycarbidesin SEMfractograph[Fig104900812 (a)]BytheanalysisofEDStheblockeutecticcarbidesareidentifiedas(VTi)CThesecarbidesinH13steelleadtodeteriorationintoughnessAscanbeseenfromFig104900813(a)mostoftheseprimaryundissolvedcarbidesappearirregularshapewhicharedifferentfromthesecondarycarGbidesprecipitatedinthetemperingprocessThesecarbidesdamagethecontinuityofthematrixhavGingadirectinfluenceontheimpacttoughnessThelargeundissolvedcarbidesreduceboththefracturetoughnessandtheimpacttoughnessatthesamestrG

(a)Largeblockeutecticcarbide  (b)EDXofcarbideFig104900812 SEMfractographofimpactsampleofH13steeltemperedtwiceat600

(a)Largeblockeutecticcarbide  (b)EDXofeutecticcarbideFig104900813 SEMofmicrostructureofH13steeltemperedtwiceat600

engthlevel[13]

3 Conclusions  1)H13hashigherhardnesswhenquenchingtemperatureisabove1030H13MODreachesthemaximumvalueofhardnessat1030andhasnofurtherincreasewiththeriseofquenchingtemperaGtureCoarseningofthegrainsizein H13MODismuch moreobviousthanthatin H13especially

whenthequenchingtemperatureisabove1030 Bothofthetwosteelshaveareasonablequenchingtemperatureat1030  2)H13andH13MODhavesecondaryhardeningpeaksat510and480respectivelyafterquenchingat1030 Thevariationoftensilestrength withtemperingtemperatureshowsnearlythesametrendashardnessThehardnessandtensilestrengthofH13arehigherthanthoseofH13MODwhentemG

10489444211048944       JournalofIronandSteelResearchInternational              Vol104900820 

peringtemperatureisbelow540butatahighertemperingtemperatureespeciallyintherangefrom580to600 whichisgenerallyappliedformosthotworkingapplicationsbothofthetwosteelshavealmostthesamestrengthproperties   3)Theimpacttoughnessand ductility ofH13MODaremuchhigherthanthoseofH13steelevenunderthesametemperinghardness(temperingtemperatureabove540)H13MODcanbeusedinthesamehardnessenvironmentasH13buthighertoughnessisrequiredThenewdevelopedH13MODsteelhaveabetterthermalfatigueresistanceandservicelifecomparedwithH13

References

[1] PerssonAOnToolFailureinDieCasting[D]UppsalaSweGdenUppsalaUniversity2003

[2] LarsGAkeNorstromLennartJonsonBengtKlarenfjordDeGvelopmentofPremiumDieSteelforDieCasting[J]DieCastGingManagement19901224

[3] MichaudPDelagnesaDLamesleaPTheEffectoftheAddiGtionofAlloyingElementsonCarbidePrecipitationandMechanGicalPropertiesin5 Chromium MartensiticSteels[J]ActaMaterialia200755(14)4877

[4] PaysonPTheMetallurgyofToolSteels[M]New YorkJohn

WileyandSonsInc1962[5] LIUZongGchangDUZhiGweiZHUWenGfangSecondaryHardenG

ingofH13SteelDuringTemering[J]OrdnanceMaterialSciGenceandEngineering200124(3)11(inChinese)

[6] CHENYingCHENZaiGzhiDONGHanAdvanceinResearchofTemperingSecondary HardeningofAlloyToolandDieSteelFeGMGCQuenchedMartensite[J]JIronSteelRes200618(5)29(inChinese)

[7] SandbergOMillerPKlarenfjordBPropertiesProfileComGparisonofPremium QualityH13and ModifiedHotWorkDieSteel[J]DieCastingEngineer(USA)200246(3)40

[8] NehrenbergAEHeatandTemperResistantAlloySteelUS3600160[P]1971G8G17

[9] SarmaDSTemperedMartensiteEmbrittlement[J]ToolAlGloySteels198418(12)363

[10] Nam WJKim DSAhnSTEffectsofAlloyingElementsonMicrostructuralEvolutionandMechanicalPropertiesofInGductionQuenchedGandGTemperedSteels[J]JournalofMateGrialsScience200338(17)3611

[11] HornRMRitchieROMechanismsofTemperedMartensiteEmbrittlementinLowAlloySteels[J]MetallurgicalTransGactions19789A(8)1039

[12] MalinochkaY NOlikhovaM AMakogonovaTICarbideEutecticin Vanadium Steels [J]MetalScienceand HeatTreatment197921(3)171

[13] LechtenbergTATheMicrostructureMechanicalPropertiesandAbrasiveWearResistanceofModifiedSecondaryHardenGingSteels[D]BerkeleyUniversityofCaliforniaBerkeleyCA1979

10489445211048944Issue9         MicrostructureandPropertiesofHotWorkingDieSteelH13MOD 

Page 9: Microstructure and Properties of Hot Working Die Steel H13MOD

peringtemperatureisbelow540butatahighertemperingtemperatureespeciallyintherangefrom580to600 whichisgenerallyappliedformosthotworkingapplicationsbothofthetwosteelshavealmostthesamestrengthproperties   3)Theimpacttoughnessand ductility ofH13MODaremuchhigherthanthoseofH13steelevenunderthesametemperinghardness(temperingtemperatureabove540)H13MODcanbeusedinthesamehardnessenvironmentasH13buthighertoughnessisrequiredThenewdevelopedH13MODsteelhaveabetterthermalfatigueresistanceandservicelifecomparedwithH13

References

[1] PerssonAOnToolFailureinDieCasting[D]UppsalaSweGdenUppsalaUniversity2003

[2] LarsGAkeNorstromLennartJonsonBengtKlarenfjordDeGvelopmentofPremiumDieSteelforDieCasting[J]DieCastGingManagement19901224

[3] MichaudPDelagnesaDLamesleaPTheEffectoftheAddiGtionofAlloyingElementsonCarbidePrecipitationandMechanGicalPropertiesin5 Chromium MartensiticSteels[J]ActaMaterialia200755(14)4877

[4] PaysonPTheMetallurgyofToolSteels[M]New YorkJohn

WileyandSonsInc1962[5] LIUZongGchangDUZhiGweiZHUWenGfangSecondaryHardenG

ingofH13SteelDuringTemering[J]OrdnanceMaterialSciGenceandEngineering200124(3)11(inChinese)

[6] CHENYingCHENZaiGzhiDONGHanAdvanceinResearchofTemperingSecondary HardeningofAlloyToolandDieSteelFeGMGCQuenchedMartensite[J]JIronSteelRes200618(5)29(inChinese)

[7] SandbergOMillerPKlarenfjordBPropertiesProfileComGparisonofPremium QualityH13and ModifiedHotWorkDieSteel[J]DieCastingEngineer(USA)200246(3)40

[8] NehrenbergAEHeatandTemperResistantAlloySteelUS3600160[P]1971G8G17

[9] SarmaDSTemperedMartensiteEmbrittlement[J]ToolAlGloySteels198418(12)363

[10] Nam WJKim DSAhnSTEffectsofAlloyingElementsonMicrostructuralEvolutionandMechanicalPropertiesofInGductionQuenchedGandGTemperedSteels[J]JournalofMateGrialsScience200338(17)3611

[11] HornRMRitchieROMechanismsofTemperedMartensiteEmbrittlementinLowAlloySteels[J]MetallurgicalTransGactions19789A(8)1039

[12] MalinochkaY NOlikhovaM AMakogonovaTICarbideEutecticin Vanadium Steels [J]MetalScienceand HeatTreatment197921(3)171

[13] LechtenbergTATheMicrostructureMechanicalPropertiesandAbrasiveWearResistanceofModifiedSecondaryHardenGingSteels[D]BerkeleyUniversityofCaliforniaBerkeleyCA1979

10489445211048944Issue9         MicrostructureandPropertiesofHotWorkingDieSteelH13MOD