27
© Fraunhofer ITWM 1 Mikrostruktursimulation der mechanischen Deformation von Fasermaterialien Heiko Andrä 1 , Andreas Fink 1 , Michael Godehardt 2 , Matthias Kabel 1 , Janis Sliseris 1 , Sarah Staub 1 , Oliver Wirjadi 2 1 Strömungs- und Materialsimulation 2 Bildverarbeitung Fraunhofer ITWM, Kaiserslautern VVD 2015 – Verarbeitungsmaschinen und Verpackungstechnik 12. und 13. März 2015 in Dresden/Radebeul

Mikrostruktursimulation der mechanischen Deformation von

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Mikrostruktursimulation der mechanischen Deformation von

© Fraunhofer ITWM 1

Mikrostruktursimulation der mechanischen Deformation von Fasermaterialien

Heiko Andrä1, Andreas Fink1, Michael Godehardt2, Matthias Kabel1, Janis Sliseris1, Sarah Staub1, Oliver Wirjadi2

1 Strömungs- und Materialsimulation 2 Bildverarbeitung Fraunhofer ITWM, Kaiserslautern

VVD 2015 – Verarbeitungsmaschinen und Verpackungstechnik 12. und 13. März 2015 in Dresden/Radebeul

Page 2: Mikrostruktursimulation der mechanischen Deformation von

© Fraunhofer ITWM 2

Outline

Introduction and Motivation

Image processing of 3D µCT scans

Generation of representative volume elements for microstructures

Microscale simulation and numerical homogenization

Two-scale simulation

Page 3: Mikrostruktursimulation der mechanischen Deformation von

© Fraunhofer ITWM 3

Computer Aided Material Characterization

Mechanical properties of fibrous materials (paper, paperboard, fiberboard) depend on a variety of microstructural parameters, e.g.:

Fiber orientation (FO)

Fiber length, curvature and thickness

Fiber volume fraction

Measurements are complicated (or even impossible) and need to be done for many samples

A combination of measurements for simple specimens and simulations for varying complex microstructure parameters accelerates the material characterization of fibrous materials.

Nonlinear computations on realistic samples are expensive. Fast microscale solvers necessary

Page 4: Mikrostruktursimulation der mechanischen Deformation von

© Fraunhofer ITWM 4

Computer Aided Material Characterization

Material CAE Structural CAE

Microscale simulation

Microstructure can be easily changed

Effect of defects (pores) can be studied

Complicated coupon test can be reduced

Macro-scale simulation with LS-DYNA or PAMCRASH

Arbitrary geometries

Local mesh refinement

Measurement for specimen Isotropic behavior

Rate dependent

Material cards

Simulation results are used to derive effective material laws

Anisotropic behavior

Rate dependent

Page 5: Mikrostruktursimulation der mechanischen Deformation von

© Fraunhofer ITWM 5

Material and microstructure characterization

Effective Stiffness

Fiber orientation

µCT-Image Voxel model

Segmentation

Image analysis

Microstructure simulation and Homogenization

Analytic formulas

µCT scanner (ITWM)

DMTA (ITWM)

Viscoelastic, plastic properties and damage

Deep-drawn sample from paperboard

Page 6: Mikrostruktursimulation der mechanischen Deformation von

© Fraunhofer ITWM 6

Microstructure simulation technique

Microscale simulation

Image processing

Experiments

Generation of database of RVEs

-Bending and tensile test -µCT scans -Measurements of fiber length and thickness

-Second order partial derivatives at Gaussian scale-space -Reconstruction of fiber orientation

-Simulation of fiber lay-down process -Compression of fiber network -Generation of hybrid voxel image

-Simulation of 6 load cases -Numerical homogenization -Effective stiffness

Page 7: Mikrostruktursimulation der mechanischen Deformation von

© Fraunhofer ITWM 7

µCT with 8 µm voxel length µCT with 4 µm voxel length

µCT image from GE Phoenix X-Ray

3D Imaging: Fiberboard

Page 8: Mikrostruktursimulation der mechanischen Deformation von

© Fraunhofer ITWM 8

3D Imaging: Fiberboard

µCT image from GE Phoenix X-Ray

Resolution: 4 µm Diameter: 8 mm, Height: 6 mm

Page 9: Mikrostruktursimulation der mechanischen Deformation von

© Fraunhofer ITWM 9

3D Imaging: Deep-drawn sample from paperboard (VM/VAT, TU Dresden)

Synchrotron µCT, Resolution: 0.32 µm

Deep-drawn sample

µCT, Resolution 9.7 µm

M. Hauptmann, A. Lenske

Page 10: Mikrostruktursimulation der mechanischen Deformation von

© Fraunhofer ITWM 10

Reconstruction of fiber orientation using direct approach

We estimate the directional distribution by calculating the local fiber direction in each pixel.

The eigenvector corresponding to smallest eigenvalue of the Hessian matrix is interpreted as local direction. Orientation tensor of fiber is obtained by averaging local directions over small sub-volumes.

This is done using MAVI software.

Because of complex fiber geometry and many fiber joints, this method overestimates fibers which are oriented in z direction.

µCT image Orientation tensor axx Orientation tensor ayy Orientation tensor azz

Lighter color indicates higher value

X

Y

Page 11: Mikrostruktursimulation der mechanischen Deformation von

© Fraunhofer ITWM 11

Reconstruction of fiber orientation

Local fiber direction map computed by using Hessian matrix.

Oliver Wirjadi

Page 12: Mikrostruktursimulation der mechanischen Deformation von

© Fraunhofer ITWM 12

Analysis of fiber bundles (non-separated fibers)

Non separated fibers (fiber bundles) are analyzed using µCT image. Fiber bundles are detected by observing that the local fiber orientations are more homogeneous within fiber bundles that elsewhere. The solid volume fraction of fiber bundles is less than 10 %. The average orientation of fiber bundles is similar to separated fiber orientation.

µCT image from GE Phoenix X-Ray

Resolution: 4 µm Diameter: 8 mm, height: 6 mm Oliver Wirjadi

Page 13: Mikrostruktursimulation der mechanischen Deformation von

© Fraunhofer ITWM 13

Segmentation of fiber bundles

Fiber bundles in gray color Fiber bundles in red color

Oliver Wirjadi

Page 14: Mikrostruktursimulation der mechanischen Deformation von

© Fraunhofer ITWM 14

Construction of representative volume elements (RVEs)

Virtual fiber network generation

Fiber network with density up to 400 kg/m3*

Fiber network compression

Fiber direction regeneration**

Probability distribution of Fiber thickness

Probability distribution of Fiber length

Cell wall thickness, glue volume

*Fiber overlapping is not allowed, **We assume that wood fibers are transversal isotropic

Homogenization of RVE

Page 15: Mikrostruktursimulation der mechanischen Deformation von

© Fraunhofer ITWM 15

Construction of representative volume elements (RVEs)

Simulation of mechanical compression

In-plane isotropic FO

In-plane anisotropic FO In-plane anisotropic FO

In-plane isotropic FO

Page 16: Mikrostruktursimulation der mechanischen Deformation von

© Fraunhofer ITWM 16

Failure criteria of wood fiber cell wall and glue

If the strength criteria is not satisfied, then damage variables are computed and the stiffness is reduced using damage variables.

X1

X2

X3

Fiber joint

1. Axial strength criteria 2. Transversal strength criteria 3. Shear strength criteria

Page 17: Mikrostruktursimulation der mechanischen Deformation von

© Fraunhofer ITWM 17

Computation of local stress and strain fields

Fast numerical micro computation on voxel images using FFT

No matrix assembling and storage No mesh generation PDE is reformulated as volume integral equation of Lippmann-Schwinger type

Efficient computation of large microstructures (512 x 512 x 512 voxels)

Page 18: Mikrostruktursimulation der mechanischen Deformation von

© Fraunhofer ITWM 18

Results of numerical homogenization: Tensile test

0

1

2

3

4

5

6

7

8

9

10

0 0,001 0,002 0,003 0,004 0,005 0,006 0,007 0,008 0,009

Str

ess

/MP

a

Strain

Isotropic 1

Isotropic 2

Isotropic 3

Anisotropic 4

Anisotropic 5

Anisotropic 6

µCT

Page 19: Mikrostruktursimulation der mechanischen Deformation von

© Fraunhofer ITWM 19

Comparison of numerical and experimental results of tensile test (fiberboard)

Difference between average computed tensile strength and experimentally measured is less than 5%, however the standard deviations varies much more.

Page 20: Mikrostruktursimulation der mechanischen Deformation von

© Fraunhofer ITWM 20

Two-scale simulation

Postproc. Micromech.

¾; "

micro. analysis in advance for arbitrary microstructures varying elasticity coefficients matrix damage, fiber fraction interface debonding no load history proportional loading

Macroscale FEA

C

Microstruct. Analys is

Process Simulation

FOT

Microstruct. Model

Analytical or discrete geometrical model of the microstructure Analytical or numerical microstructural analysis (linear or nonlinear)

CT image

Page 21: Mikrostruktursimulation der mechanischen Deformation von

© Fraunhofer ITWM 21

Coupled two-scale simulation

Postproc. Micromech.

¾; "

for arbitrary microstructures varying elasticity coefficients arbitrary loading progressive damage

Macroscale FEA

C; ¾

Microstruct. Analys is

Process Simulation

FOT

Microstruct. Model

CT image

"

Multiscale simulations are very expensive and therefore almost not accepted. Fast “micro solvers” are needed.

Page 22: Mikrostruktursimulation der mechanischen Deformation von

© Fraunhofer ITWM 22

Two scale simulation of three point bending test (fiberboard)

Micromechanical model (GeoDict, FeelMath)

Resolution,…

details…

Macromechanical model Density profile, fiber orientation according to µCT scans

Database of stiffness tensor depending on strain tensor

Page 23: Mikrostruktursimulation der mechanischen Deformation von

© Fraunhofer ITWM 23

Two scale simulation of three point bending test (fiberboard)

Page 24: Mikrostruktursimulation der mechanischen Deformation von

© Fraunhofer ITWM 24

Applications of FeelMath

Porous materials

Filter media (Oil and water filter)

Metallic knitted fabrics

Sanitary products

Packaging

Medium density fiberboards (MDF)

Rocks

Polymer foams

Composites

Short and long fiber reinforced plastics (CFRP + GFRP)

Metallic alloys (AlSi, MMC)

Steel reinforced concrete

Nonlinear material behavior

Plasticity

Damage

Plasticity + Damage

Thermal expansion and shrinkage

Residual stresses

Creep

UMAT-Interface

Page 25: Mikrostruktursimulation der mechanischen Deformation von

© Fraunhofer ITWM 25

The End

Thank you very much for your attention.

Visit us at

www.itwm.fraunhofer.de

Generation of microstructures

Sliseris J, Andrä H, Kabel M, Dix B, Plinke B, Wirjadi O, Frolovs G: Numerical prediction of the stiffness and strength of medium density fiberboards, Mechanics of Materials 79 (2014) 73-84

Page 26: Mikrostruktursimulation der mechanischen Deformation von

© Fraunhofer ITWM 26 26

Porous and Composite Material design

Paper, cellulose material: permeability, capillarity

Non-wovens (textiles): filter efficiency

Weaves: flow resistance

Foam: Heat or acoustic insulation material

Sinter material: ceramics, MMC thermo-mech. behaviour

Fibre reinforced composites: visco-elastic behavior, creep, fatigue, damage

Page 27: Mikrostruktursimulation der mechanischen Deformation von

© Fraunhofer ITWM 27

Virtual Material Laboratory Modules of the GeoDict Software

Demoversion & Information:

www.geodict.com

Material Models FiberGeo SinterGeo PaperGeo WeaveGeo GridGeo PackGeo PleatGeo PaperGeo LayerGeo FoamGeo GadGeo

Property Computation: FlowDict (single phase flow properties)

AddiDict (particle transport)

ElastoDict (effective elastic properties)

ConductoDict (effective conductivity)

DiffuDict (effective diffusivity)

FilterDict (pressure drop, efficiency, life time)

SatuDict (two phase flow properties)

PoroDict (pore size measures)

AcoustoDict (acoustic absorption)

Math2Market (M2M) is a spin-off company from

is the product of