Nimonic Alloy 105

Embed Size (px)

Citation preview

  • 7/30/2019 Nimonic Alloy 105

    1/24

    NIMONIC alloy 105 (W. Nr. 2.4634) is a wroughtnickel-cobalt-chromium-base alloy strengthened byadditions of molybdenum, aluminum and titanium. Ithas been developed for service up to 950C, and com-

    bines the high strength of the age-hardening nickel-basealloys with good creep resistance.

    NIMONIC alloy 105 is produced by high frequencymelting in air followed by casting in air, or, for morecritical applications the alloy is produced by vacuummelting and electroslag refining.

    The alloy is used for turbine blades, discs, forgings,ring sections, bolts and fasteners.

    Heat Treatment

    The heat treatment recommended is dependent on theintended service condition.

    Two heat treatments are recommended as follows:

    (a) 4 h/1150C/AC+16 h/1050-1065C/AC+16h/850C/AC

    (b) 4 h/1125C/AC+16 h/850/AC

    In general, heat treatment (a) is intended for optimumlong-term creep strength and ductility at operating tem-

    peratures in the range 850-950C. Heat-treatment (b)may be used where long-term properties are not of para-mount importance and tensile strength, elongation andimpact strength may be enhanced for operating temper-atures up to 700C. When applying heat-treatment (b)it is essential to ensure that cooling from 1125C takes

    place freely and is not delayed due to close packing ofcomponents.

    Examples of the use of these heat treatments are asfollows:

    (a) turbine blades, discs, forgings and ring sections,all of which may be produced from as-extruded,as-forged or subsequently cold worked startingstock

    (b) bolts and fasteners for which extruded and cold

    worked bar or section is recommended as startingstock.

    *Reference to the balance of an alloys composition does not guaran-tee this is exclusively of the element mentioned, but that it predomi-

    nates and others are present only in minimal quantities.

    Carbon.........................................................................0.17 max

    Silicon............................................................................1.0 max

    Copper...........................................................................0.2 max

    Iron.................................................................................1.0 max

    Manganese....................................................................1.0 max

    Chromium....................................................................14.0-15.7

    Titanium...........................................................................0.9-1.5

    Aluminum.........................................................................4.5-4.9

    Cobalt..........................................................................18.0-22.0

    Molybdenum...................................................................4.5-5.5

    Lead.........................................................................0.0015 max

    Sulfur..........................................................................0.010 max

    Boron.......................................................................0.003-0.010

    Zirconium.....................................................................0.15 max

    Nickel............................................................................Balance*

    Composition, %

    N

    IMONIC

    alloy10

    5

    www.specialmetals.co

    The composition stated in BS HR 3 is as follows:

  • 7/30/2019 Nimonic Alloy 105

    2/24

    Physical Properties

    Density 8.01 g/cm0.289 lb/in

    The exact density is dependent on compositional variationwithin the release specification.

    Melting Range Liquidus temperature 1345CSolidus temperature 1290C

    The liquidus temperature was determined by inverse cool-ing techniques and the solidus temperature obtained by met-allographic examination. The accuracy of determination was 5C for the liquidus temperature and +0, -10C for thesolidus temperature.

    2

    Table 1 - Specific Heat

    Table 2 - Thermal Conductivity

    Temperature range, C

    20-100

    20-200

    20-30020-400

    20-500

    20-600

    20-700

    20-800

    20-900

    20-1000

    10-6/ C

    12.2

    12.8

    13.1

    13.4

    13.7

    14.0

    14.5

    15.3

    16.5

    18.0

    Table 3 - Mean Coefficient of Linear Thermal Expansion

    Extruded section subsequently cold rolled given heat t reatment

    4 h/1150C/AC + 16 h/1050C/AC + 16 h/850C/AC.These data are average and subject to approximately 5% variation.

    Temperature C

    20

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    Relative Resistance

    1.000

    1.021

    1.044

    1.066

    1.089

    1.107

    1.155

    1.117

    1.106

    1.088

    1.055

    Table 4 - Electrical Properties

    Hot rolled bar subsequently cold drawn (wire) and given heat treatment 15

    min/1150C/AC + 1 h/1050C/AC + 16 h/850C/AC.

    Electrical resistivity at 20C = 131 microhm cm

    Table 5 - Magnetic Properties

    Magnetic permeability from

    0.02T-0.2T 1.000715

    Extruded bar subsequently forged and given heat treatment 4 h/1150C/AC

    + 16 h/1050C/AC + 16 h/850C/AC.

    NIMONIC alloy 105

    Temperature ,C

    20

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    Thermal Conductivity, W/m C

    10.89

    12.10

    13.57

    14.99

    16.33

    17.67

    18.63

    20.56

    22.23

    24.03

    26.21

    These values have been calculatedfrom electrical resistance measurements

    on a single 3-stage heat-treated specimen using the modified Wiedemann-

    Franz equations.

    Temperature, C

    20

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    Specific Heat, J/kgC

    419

    461

    502

    502

    544

    544

    586

    628

    628

    670

    670

  • 7/30/2019 Nimonic Alloy 105

    3/24

    3

    Temperature

    C

    20

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    Extruded bar

    GPa

    188

    184

    179

    174

    168

    161

    154

    147

    139

    129

    110

    Extruded bar,

    subsequently

    forged

    GPa

    223

    219

    212

    206

    200

    193

    186

    178

    168

    155

    138

    Extruded bar,

    subsequently

    cold rolled

    GPa

    220

    216

    210

    204

    198

    191

    185

    177

    168

    154

    137

    Table 6 - Dynamic Youngs Modulus

    Heat treatment 4 h/1150C/AC + 16 h/1050C/AC + 16 h/850C/AC.

    Tensile Properties: Extruded Bar

    The data given in Table 7 and presented graphically in Figures 1 and 2 represent the tensile properties for extruded bar afterthe 3-stage heat treatment.

    Strain rate 0.005/min to proof stress (at room temperature), 0.002/min to proof stress (at elevated temperatures) and 0.1/minthereafter.

    Temperature, C

    20

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    1100

    0.1% proof stress

    MPa

    751

    739

    712

    712

    718

    711

    694

    706

    647

    373

    144

    26

    0.2% proof stress

    MPa

    776

    762

    735

    735

    743

    740

    720

    732

    677

    400

    152

    29

    Tensile strength

    MPa

    1140

    1123

    1084

    1091

    1101

    1064

    1038

    1018

    813

    496

    175

    51

    Elongation on 5.65

    So, %

    22

    20

    21

    20

    24

    23

    25

    28

    25

    30

    42

    172

    Reduction of area,

    %

    31

    31

    38

    30

    39

    37

    38

    36

    37

    47

    73

    99

    Table 7 - Heat treatment 4 h/1150C/AC + 16 h/1050-1065C/AC + 16 h/850C/AC

    Average results of tests on 15 casts.

    NIMONIC alloy 105

  • 7/30/2019 Nimonic Alloy 105

    4/24

    0

    20

    40

    60

    80

    100

    Temperature, F

    200 1000800600400 1200 1400 1600 1800

    20

    40

    60

    80

    0

    Stress,

    MPa

    Reducti o

    nofAr e

    a,%

    200 100080060040000

    800

    400

    1200

    1600

    20

    40

    60

    80

    100

    0

    120

    140

    160

    180

    200220

    Temperature, C

    0.2% Proof Stress

    R. of A.

    Figure 1. Heat treatment 4h/1150C/AC + 16h/1050-1065C/AC + 16h/850C/AC

    98% confidence region calculated on 15 casts

    ton/in 10 lb/in

    Temperature, F

    200 1000800600400 1200 1400 1600 1800

    20

    40

    60

    80

    0

    Stress,

    MPa

    Elongati o

    n,%

    200 10008006004000

    0

    800

    400

    1200

    1600

    Temperature, C

    Figure 2. Heat treatment 4h/1150C/AC + 16h/1050-1065C/AC + 16h/850C/AC

    98% confidence region calculated on 15 casts

    Tensile Strength

    Elongation

    4

    NIMONIC alloy 105

    0

    20

    40

    60

    80

    100

    20

    40

    60

    80

    100

    0

    120

    140

    160

    180

    200

    220

    ton/in 10 lb/in

  • 7/30/2019 Nimonic Alloy 105

    5/24

    Tensile Properties: Extruded Bar Subsequently Forged

    The data given in Table 8 and presented graphically in Figures 3 and 4 represent the tensile properties for extruded bar sub-sequently forged after the 3-stage heat treatment.

    Strain rate 0.005/min to proof stress (at room temperature), 0.002/min to proof stress (at elevated temperatures) and 0.1/minthereafter.

    Temperature, C

    20

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    1100

    0.1% proof stress

    MPa

    796

    760

    745

    739

    732

    748

    735

    739

    680

    390

    152

    28

    0.2% proof stress

    MPa

    827

    793

    774

    766

    763

    782

    769

    768

    714

    411

    156

    31

    Tensile strength

    MPa

    1180

    1185

    1188

    1162

    1126

    1148

    1111

    1075

    836

    491

    189

    56

    Elongation on 5.65

    So, %

    16

    21

    24

    20

    23

    23

    22

    26

    24

    28

    43

    132

    Reduction of area,

    %

    16

    24

    34

    24

    33

    31

    32

    33

    34

    38

    60

    99

    Table 8 - Heat treatment 4 h/1150C/AC + 16 h/1050-1065C/AC + 16 h/850C/AC

    Average results of tests on 15 casts.

    5

    NIMONIC alloy 105

    200 1000800600400 1200 1400 1600 1800

    20

    40

    60

    80

    0

    Reduct io

    nofA

    rea,%

    200 100080060040000

    800

    400

    1200

    1600

    Temperature, C

    0.2% Proof Stress

    R. of A.

    Figure 3. Heat treatment 4h/1150C/AC + 16h/1050-1065C/AC + 16h/850C/AC

    98% confidence region calculated on 15 casts

    Temperature, F

    0

    20

    40

    60

    80

    100

    20

    40

    60

    80

    100

    0

    120

    140

    160

    180

    200

    220

    ton/in 10 lb/in

    Stress,

    MPa

  • 7/30/2019 Nimonic Alloy 105

    6/24

    Temperature, C

    20

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    0.1% proof stress

    MPa

    795

    780

    755

    744

    744

    752

    743

    744

    681

    392

    168

    0.2% proof stress

    MPa

    826

    811

    785

    772

    783

    785

    775

    778

    718

    420

    176

    Tensile strength

    MPa

    1246

    1220

    1234

    1239

    1226

    1195

    1177

    1092

    856

    533

    221

    Elongation on 5.55

    So, %

    25

    24

    26

    26

    27

    27

    25

    31

    25

    31

    48

    Reduction of area,

    %

    29

    30

    31

    31

    31

    31

    31

    31

    31

    39

    61

    Table 9 - Heat treatment 4 h/1150C/AC + 16 h/1050-1065C/AC + 16 h/850C/AC

    Average results of tests on 15 casts.

    Temperature, F

    200 1000800600400 1200 1400 1600 1800

    20

    40

    60

    80

    0

    Stress,

    MPa

    Elong

    ation,%

    200 100080060040000

    800

    400

    1200

    1600

    Temperature, C

    Figure 4. Heat treatment 4h/1150C/AC + 16h/1050-1065C/AC + 16h/850C/AC

    98% confidence region calculated on 15 casts

    Tensile Strength

    Elongation

    Tensile Properties: Extruded Section Subsequently Cold Rolled

    The data given in Table 9 and presented graphically in Figures 5 and 6 represent the tensile properties for extruded sectionsubsequently cold rolled after the 3-stage heat treatment.

    Strain rate 0.005/min to proof stress (at room temperature), 0.002/min to proof stress (at elevated temperatures) and 0.1/minthereafter.

    6

    NIMONIC alloy 105

    0

    20

    40

    60

    80

    100

    20

    40

    60

    80

    100

    0

    120

    140

    160

    180

    200

    220

    ton/in 10 lb/in

  • 7/30/2019 Nimonic Alloy 105

    7/24

    7

    NIMONIC alloy 105

    Temperature, F

    200 1000800600400 1200 1400 1600 1800

    20

    40

    60

    80

    0

    Stress,

    MPa

    Reductio

    nofAr e

    a,%

    200 10008006004000

    0

    800

    400

    1200

    1600

    Temperature, C

    0.2% Proof Stress

    R. of A.

    Figure 5. Heat treatment 4h/1150C/AC + 16h/1050-1065C/AC + 16h/850C/AC

    98% confidence region calculated on 15 casts

    Temperature, F

    200 1000800600400 1200 1400 1600 1800

    20

    40

    60

    80

    0

    Stress,

    MPa

    Elongati o

    n,%

    200 10008006004000

    0

    800

    400

    1200

    1600

    Temperature, C

    Figure 6. Heat treatment 4h/1150C/AC + 16h/1050-1065C/AC + 16h/850C/AC

    98% confidence region calculated on 15 casts

    Tensile Strength

    Elongation

    0

    20

    40

    60

    80

    100

    20

    40

    60

    80

    100

    0

    120

    140

    160

    180

    200

    220

    ton/in 10 lb/in

    0

    20

    40

    60

    80

    100

    20

    40

    60

    80

    100

    0

    120

    140

    160

    180

    200

    220

    ton/in 10 lb/in

  • 7/30/2019 Nimonic Alloy 105

    8/24

    Temperature, C

    20

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    0.1% proof stress

    MPa

    791

    749

    731

    732

    740

    740

    726

    723

    678

    407

    155

    0.2% proof stress

    MPa

    811

    777

    757

    752

    760

    771

    759

    752

    706

    430

    161

    Tensile strength

    MPa

    1220

    1177

    1186

    1183

    1143

    1140

    1106

    1060

    817

    496

    210

    Elongation on 5.55

    So, %

    25

    24

    27

    25

    28

    28

    26

    30

    27

    27

    46

    Reduction of area,

    %

    35

    39

    34

    36

    35

    35

    35

    33

    35

    35

    59

    Table 10 - Heat treatment 4 h/1125C/AC + 16 h/850C/AC

    Test on 1 cast.

    Tensile Properties: Extruded Bar Subsequently Cold Stretched

    The data given in Table 10 and presented graphically in Figure 7 represent the tensile properties for extruded bar subsequentlycold stretched after the 2-stage heat treatment.

    Strain rate 0.005/min to proof stress (at room temperature), 0.002/min to proof stress (at elevated temperatures) and 0.1/minthereafter.

    Temperature, F

    200 1000800600400 1200 1400 1600 1800

    20

    40

    60

    80

    0

    Stress,

    MPa

    Elo

    ngation

    andRe

    duction

    ofArea

    ,%

    200 10008006004000

    0

    800

    400

    1200

    1600

    Temperature, C

    0.2% Proof Stress

    R. of A.

    Figure 7. Heat treatment 4h/1125C/AC + 16h/850C/AC

    Elongation

    Tensile Strength

    8

    NIMONIC alloy 105

    0

    20

    40

    60

    80

    100

    20

    40

    60

    80

    100

    0

    120

    140

    160

    180

    200

    220

    ton/in 10 lb/in

  • 7/30/2019 Nimonic Alloy 105

    9/24

    9

    NIMONIC alloy 105

    Creep Properties

    The creep characteristics for NIMONIC alloy 105 have been determined for bar after the 3-stage heat treatment.Creep-rupture properties for extruded bar subsequently forged are shown in Table 11 and Figures 8 and 9, by Larson-

    Miller presentation and Graham and Walles technique.Creep-rupture properties for extruded bar subsequently cold stretched are shown in Table 12 and Figures 10 and 11.Derived total plastic strain data were created from test specimens 9.1 - 11.7 mm diameter x 76 mm gauge length (0.357 -

    0.461 in diameter x 3 in gauge length) and are shown in Table 13.

    Creep-Rupture Properties: Extruded Bar Subsequently Forged

    The data given in Table 11 and presented graphically in Figures 8 and 9 represent the average results of 15 casts of extrudedbar subsequently forged.

    Table 11 - Heat treatment 4 h/1150C/AC + 16 h/1050-1065C/AC + 16 h/850C/AC

    Test

    temperature

    C

    750 GW

    LM

    815 GW

    LM

    870 GWLM

    940 GW

    LM

    980 GW

    LM

    Stress toproducerupture in

    100 h

    MPa456

    448

    324

    324

    208208

    108

    108

    68

    68

    300 h

    MPa

    394

    417

    278

    270

    178173

    82

    85

    51

    51

    1000 h

    MPa

    340

    363

    232

    224

    131134

    (60)

    (62)

    31

    32

    3000 h

    MPa

    270

    317

    178

    185

    99102

    (36)

    (39)

    (17)

    (19)

    10 000 h

    MPa

    (201)

    (263)

    (130)

    (144)

    (54)(77)

    (20)

    (25)

    30 000 h

    MPa

    (154)

    (224)

    (77)

    (116)

    (31)(54)

    100 000 h

    MPa

    (83)

    (178)

    (42)

    (85)

    (17)(39)

    Elongation

    at fracture

    on 5.65

    So, %

    12-18

    8-21

    7-17

    10-21

    12-22

    GW=Graham and Walles analysis. LM=Larson-Miller analysis. ( ) =Outside range of determination.

  • 7/30/2019 Nimonic Alloy 105

    10/24

    10

    NIMONIC alloy 105

    10090807060

    50

    40

    3025

    20

    15

    109876

    5

    4

    3

    2

    1.5

    1

    20

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    1100

    1200

    100

    200

    300

    400

    500600

    700

    800

    900

    1000

    1100

    1200

    1300

    1400

    1500

    1600

    1700

    1800

    1900

    2000

    2100

    2200

    2300

    F C

    10-1 100 101 102 103 104 105

    Time, hours

    Figure 8 - Larson-Miller Parameter, T(20 + log t) x10-3; T in K, t in hours; Heat treatment 4 h/1150C/AC + 16 h/1050-1065C/AC +

    16 h/850C/AC

    MPax101

    5 10 15 20 25 30 35

    Creep-Rupture Properties: Extruded Bar Subsequently Forged

    1MPa x 101 = 107 N/m2 ; 1 N/mm2 (1 MN/m2) = 0.1 hbar = 1.02 kgf/mm2 = 0.0647 tonf/in2

  • 7/30/2019 Nimonic Alloy 105

    11/24

    11

    NIMONIC alloy 105

    Creep-Rupture Properties: Extruded Bar Subsequently Forged

    3

    4

    5

    6

    7

    8

    9

    10

    12

    14

    16

    18

    20

    22

    24

    26

    28

    30

    35

    40

    45

    50

    55

    60

    65

    70

    80

    90

    100

    110

    120

    130

    140

    1.5

    2

    2.5

    3

    4

    5

    6

    7

    8

    9

    10

    12

    14

    16

    18

    20

    2224

    26

    28

    30

    35

    40

    45

    50

    55

    60

    20

    30

    40

    50

    60

    70

    80

    90

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    10 100 1000 10 000 100 000

    Time, hours

    Stress,

    MPa

    750C

    815C

    870C

    940C

    980C

    ton/in 10 lb/in

    Figure 9. Heat-treatment 4 h/1150C/AC + 16h/1050-1065C/AC + 16 h/850C/AC

  • 7/30/2019 Nimonic Alloy 105

    12/24

    Creep-Rupture Properties: Extruded Bar Subsequently Cold Stretched

    The data given in Table 12 and presented graphically in Figure 10 represent the creep-rupture properties of extruded bar sub-sequently cold stretched.

    Table 12 - Heat treatment 4 h/1125C/AC + 16 h/850C/AC

    Test temperature,

    C

    550

    600

    650

    700

    Stress to produce

    rupture in

    100h 300h 1000h

    MPa MPa MPa

    1050 1020 989

    958 911 865

    819 742 680

    634 572 495

    Elongation at

    fracture on 5.65

    So, %

    18-21

    8-17

    9-13

    13-19

    Test on 1 cast.

    12

    NIMONIC alloy 105

  • 7/30/2019 Nimonic Alloy 105

    13/24

    13

    NIMONIC alloy 105

    1009080706050

    40

    3025

    20

    15

    109876

    5

    4

    3

    2

    1.5

    1

    20

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    1100

    1200

    2300

    F C

    10-1 100 101 102 103 104 105

    Time, hours

    Figure 10 - Larson-Miller Parameter, T(20 + log t) x10 -3; T in K, t in hours.

    Heat treatment 4 h/1125C/AC +16 h/850C/AC

    MPax101

    5 10 15 20 25 30 35

    Creep-Rupture Properties: Extruded Bar Subsequently Cold Stretched

    2200

    2100

    2000

    1800

    1900

    1700

    1600

    1500

    1400

    1300

    1200

    1100

    1000

    900

    800

    700

    600

    500

    400

    300

    200

    100

    1MPa x 101 = 107 N/m2

    1 N/mm2 (1 MN/m2) = 0.1 hbar = 1.02 kgf/mm2 = 0.0647 tonf/in2

  • 7/30/2019 Nimonic Alloy 105

    14/24

    1400 1200 1000 800 600 400 200

    10 000

    1000

    100

    10

    Stress, MPa

    Life

    torupture,

    hours

    Figure 11. Heat-treatment 4 h/1125C/AC + 16 h/850C/AC

    }

    550C

    600C

    650C

    700C

    Notched

    550C

    600C

    650C

    700C

    14

    NIMONIC alloy 105

    Creep-Rupture Properties: Extruded Bar Subsequently Cold Stretched

    Plain

  • 7/30/2019 Nimonic Alloy 105

    15/24

    15

    NIMONIC alloy 105

    Total Plastic Strain Data

    This data has been determined on as extruded bar and extruded section subsequently cold worked.

    Test

    temperature

    C

    650

    750

    815

    870

    980

    Strain %

    0.1

    0.2

    0.5

    rupture

    0.1

    0.2

    0.5

    rupture

    0.1

    0.2

    0.5

    rupture

    0.1

    0.2

    0.5

    rupture

    0.1

    0.2

    0.5

    rupture

    100 h

    MPa

    599

    625

    667

    772

    314

    358

    391

    479

    190

    241

    309

    133

    156

    170

    193

    22

    28

    36

    60

    300 h

    MPa

    541

    568

    602

    703

    275

    317

    352

    427

    139

    190

    229

    263

    105

    128

    142

    164

    17

    26

    43

    1000 h

    MPa

    479

    510

    539

    618

    233

    275

    310

    368

    97

    134

    181

    218

    76

    97

    111

    130

    15

    31

    3000 h

    MPa

    422

    456

    486

    549

    196

    238

    273

    314

    74

    100

    136

    178

    54

    71

    83

    99

    22

    10 000 h

    MPa

    (358)

    394

    428

    471

    (154)

    196

    232

    263

    57

    74

    93

    135

    37

    46

    54

    65

    12

    30 000 h

    MPa

    (375)

    410

    (159)

    (195)

    (209)

    49

    57

    99

    34

    (37)

    40

    Stress to give total plastic strain in

    ( ) = Outside range of determination Tests on 3 casts.

  • 7/30/2019 Nimonic Alloy 105

    16/24

    Fatigue Properties: Extruded Section Subsequently Cold Rolled

    Fatigue properties for extruded section subsequently coldrolled given the heat treatment 4h/1150C/AC + 4h/1080C/AC + 8 h/850C/AC are given in Table 14.

    Gerber Diagrams

    Figures 12 to 17 illustrate the fatigue properties ofNIMONIC alloy 105 extruded section subsequently coldrolled (heat treatment 4 h/1150C/AC + 4 h/1080C/AC +8 h/850C/AC) at 20C, 400C, 650C, 750C, 870C and980C respectively, under conditions of uniaxial stressingwith varying mean stress. The abscissae represent the

    mean stress and the ordinate fluctuating stress. Thus apoint on the horizontal axis represents the steady stresswhich will produce fracture in a specific time in a normalcreep rupture test. A point on the vertical axis indicates thefluctuating stress required to produce a pure fatigue failurein the same time at the particular testing frequency adopt-ed. The lines radiating from the origin correspond to stressconditions of the form P CP where P is the steady stressand C is a constant for any line. The full lines join pointscorresponding to lines of 50 and 500 hours for varyingstress conditions.

    Test tempera-

    ture

    C

    20

    400

    650

    750

    870

    980

    Stress

    form

    O P

    P 2P

    P P

    P P

    P P

    O P

    P P

    P P

    P P

    P O

    O P

    P P

    P P

    P P

    P O

    O P

    P P

    P P

    P P

    P O

    O P

    P P

    P P

    P P

    P O

    O P

    P P

    P P

    P P

    P O

    50 h

    (3 x 107 cycles)

    MPa

    348

    155

    271

    433

    618

    232

    193

    371

    618

    1004

    271

    240

    417

    711

    834

    263

    232

    417

    502

    502

    240

    201

    240

    240

    240

    170

    84

    84

    84

    84

    500 h

    (3 x 108 cycles)

    MPa

    248

    116

    209

    356

    556

    232

    193

    371

    618

    1004

    271

    240

    417

    688

    688

    248

    209

    371

    386

    386

    193

    155

    155

    155

    155

    124

    46

    46

    46

    46

    Stress for lives of

    Table 14 - Heat treatment 4 h/1150C/AC + 4 h/1080C/AC + 8

    h/850C/AC

    16

    NIMONIC alloy 105

  • 7/30/2019 Nimonic Alloy 105

    17/24

    17

    NIMONIC alloy 105

    0 100 200 300 400 500 600 700 800 900 1000 1100 1200

    0 10 20 30 40 50 60 70

    800

    700

    600

    500

    400

    300

    200

    100

    0

    50

    40

    30

    20

    10

    0

    Mean tensile stress, ton/in

    Mean tensile stress, MPa

    Semi-rangeofalternatingstress,

    MPa

    Semi-rangeofalternatingstress,ton/in

    Figure 12. Fatigue properties at room temperature.

    Heat treatment 4 h/1150C/AC + 4 h/1080C/AC + 8 h/850C/AC

    50 h, 3 x 107 Cycles

    500 h, 3 x 108 Cycles

    OP

    P2P

    PP

    PP

    PP

    0 100 200 300 400 500 600 700 800 900 1000 1100 1200

    0 10 20 30 40 50 60 70

    800

    700

    600

    500

    400

    300

    200

    100

    0

    50

    40

    30

    20

    10

    0

    Mean tensile stress, ton/in

    Mean tensile stress, MPa

    Semi-rang

    eofalternatingstress,

    MPa

    Semi-rangeofalternatings

    tress,ton/in

    Figure 13. Fatigue properties at 400C.

    Heat treatment 4 h/1150C/AC + 4 h/1080C/AC + 8 h/850C/AC

    50 h, 3 x 107 Cycles

    500 h, 3 x 108 Cycles

    OP

    PP

    PP

    PP

    PO

    Fatigue Properties: Extruded Section Subsequently Cold Rolled

  • 7/30/2019 Nimonic Alloy 105

    18/24

    0 100 200 300 400 500 600 700 800 900 1000

    0 10 20 30 40 50 60

    800

    700

    600

    500

    400

    300

    200

    100

    0

    50

    40

    30

    20

    10

    0

    Mean tensile stress, ton/in

    Mean tensile stress, MPa

    Semi-range

    ofalternatingstress,

    MPa

    Semi-rangeofalternating

    stress,ton/in

    Figure 14. Fatigue properties at 650C.

    Heat treatment 4 h/1150C/AC + 4 h/1080C/AC + 8 h/850C/AC

    50 h, 3 x 107 Cycles

    500 h, 3 x 108 Cycles

    OP

    PP

    PP

    PP

    PO

    0 100 200 300 400 500 600 700 800 900 1000

    0 10 20 30 40 50 60

    800

    700

    600

    500

    400

    300

    200

    100

    0

    50

    40

    30

    20

    10

    0

    Mean tensile stress, ton/in

    Mean tensile stress, MPa

    Semi-rang

    eofalternatingstress,

    MPa

    Semi-rangeofalternatingst

    ress,ton/in

    Figure 15 . Fatigue properties at 750C.

    Heat treatment 4 h/1150C/AC + 4 h/1080C/AC + 8 h/850C/AC

    50 h, 3 x 107 Cycles

    500 h, 3 x 108 Cycles

    OP

    PP

    PP

    PP

    PO

    Fatigue Properties: Extruded Section Subsequently Cold Rolled

    18

    NIMONIC alloy 105

  • 7/30/2019 Nimonic Alloy 105

    19/24

    19

    NIMONIC alloy 105

    0 50 100 150 200 250

    0 2 4 6 8 10 12 14250

    200

    150

    100

    50

    0

    14

    12

    10

    8

    6

    4

    2

    0

    Mean tensile stress, ton/in

    Mean tensile stress, MPa

    Semi-rangeofalternatingstress,

    MPa

    Semi-rangeofalternatingstress,ton/in

    500 h, 3 x 108

    Cycles

    50 h, 3 x 107

    Cycles

    OP

    PP

    PP

    PP

    PO

    0 50 100 150 200 250

    0 2 4 6 8 10 12 14250

    200

    150

    100

    50

    0

    Mean tensile stress, ton/in

    Mean tensile stress, MPa

    Semi-

    rangeofalternatingstress,

    MPa

    Semi-rangeofalternatin

    gstress,ton/in

    50 h, 3 x 107 Cycles

    500 h, 3 x 108 CyclesOP

    PP

    PP

    PP

    PO

    14

    12

    10

    8

    6

    4

    2

    0

    Figure 16. Fatigue properties at 870C.

    Heat treatment 4 h/1150C/AC + 4 h/1080C/AC + 8 h/850C/AC

    Fatigue Properties: Extruded Section Subsequently Cold Rolled

    Figure 17. Fatigue properties at 980C.

    Heat treatment 4 h/1150C/AC + 4 h/1080C/AC + 8 h/850C/AC

  • 7/30/2019 Nimonic Alloy 105

    20/24

    Stress Relaxation Properties

    Stress relaxation data is given for extruded bar given the two recommended heat treatments. It should be noted that only verylimited data has been established, and that Tables 15 and 16 only give a general guide to the level of these properties.

    Stress Relaxation Properties: Extruded Bar Subsequently Hot Rolled

    Stress Relaxation Properties: Extruded Bar Subsequently Cold Stretched

    Residual Stress at stated time in MPaTest Condition

    Stress

    MPa539

    502

    Temp.

    C650

    700

    Final reading

    Temp.

    C

    600

    650

    700

    750

    800

    850

    Stress

    MPa

    274

    280

    277

    269

    243

    223

    232

    10 000

    8000

    14 000

    17

    201

    4600

    160

    3

    186

    7400

    310

    9

    170

    10 500

    600

    20

    155

    1120

    40

    139

    2100

    74

    10

    124

    4000

    130

    21

    109

    7200

    250

    38

    93

    450

    70

    77

    810

    140

    62

    1750

    290

    Time

    h

    10 000

    8613

    13 427

    16 546

    2014

    698

    Stress

    MPa

    232

    231

    161

    99

    60

    33

    Test condition Time (h) to reach indicated residual stress Final Reading

    Table 15 - Heat treatment 4 h/1150C/AC + 16 h/1050C/AC + 16 h/850C/AC

    Table 16 - Heat treatment 4 h/1125C/AC + 16 h/850C/AC

    100 h525

    374

    300 h501

    325

    1000 h445

    283

    3000 h382

    249

    Time

    h3841

    4104

    Stress

    MPa366

    238

    20

    NIMONIC alloy 105

    0.15% Initial Strain

    0.30% Initial Strain

  • 7/30/2019 Nimonic Alloy 105

    21/24

    21

    NIMONIC alloy 105

    Impact Data:

    Extruded Bar Subsequently Forged

    The room temperature Charpy impact strength forNIMONIC alloy 105 extruded bar subsequently forgedand given the recommended heat treatment of 4h/1150C/AC + 16 h/1050C/AC + 16 h/850C/AC is ofthe order of 16 J.

    Long-term embrittlement of this alloy has been inves-tigated by Charpy impact testing at room and elevatedtemperatures and the results of duplicate tests are given inTables 17 and 18 respectively.

    Charpy test specimen had square cross-section of 10

    mm, test area of 80 mm and V-notch angle of 45.

    Impact Data:

    Extruded Section SubsequentlyCold Rolled

    The room temperature Charpy impact strength ofNIMONIC alloy 105 extruded section subsequently coldrolled and given the recommended heat treatment of 4h/1150C/AC + 16 h/1050C/AC + 16 h/850C/AC is ofthe order of 20 J.

    Long-term embrittlement of this alloy has beeninvestigated by Charpy impact testing at room and ele-vated temperatures and the results of duplicate tests aregiven in Tables 19 and 20 respectively.

    Charpy test specimen had square cross-section of 10

    mm, test area of 80 mm and V-notch angle of 45.

    Soaking

    time,

    h

    30

    100

    300

    1000

    300010 000

    700

    J

    11 : 11

    8 : 11

    8 : 8

    9 : 11

    8 : 511 : 8

    750

    J

    9 : 8

    11 : 12

    14 : 15

    12 : 14

    14 : 1511 : 11

    800

    J

    14 : 16

    16 : 16

    16 : 19

    15 : 14

    14 : 159 : 11

    850

    J

    23 : 22

    26 : 19

    16 : 19

    16 : 14

    14 : 127 : 9

    900

    J

    22 : 22

    20 : 19

    12 : 11

    8 : 9

    8 : 88 : 5

    Soaking temperature, C

    Table 17 - Room Temperature Impact Values

    Soaking

    time,

    h

    0

    30

    100

    300

    1000

    3000

    10 000

    700

    J

    24 : 30

    16 : 19

    18 : 9

    8 : 11

    18 : 14

    15 : 15

    14 : 16

    750

    J

    23 : 22

    19 : 19

    15 : 19

    19 : 20

    22 : 19

    18 : 19

    20 : 20

    800

    J

    23 : 22

    19 : 23

    23 : 23

    23 : 20

    20 : 20

    15 : 23

    18 : 19

    850

    J

    23 : 24

    23 : 23

    22 : 24

    24 : 23

    22 : 20

    20 : 19

    16 : 15

    900

    J

    27 : 27

    24 : 26

    23 : 26

    22 : 26

    19 : 19

    22 : 20

    27 : 22

    Soaking and test temperature, C

    Table 18 - Elevated Temperature Impact Values

    Soaking

    time,

    h

    30

    100

    300

    1000

    300010 000

    700

    J

    11 : 11

    8 : 9

    5 : 8

    7 : 8

    9 : 912 : 12

    750

    J

    14 : 14

    15 : 12

    11

    12 : 12

    14 : 1215 : 14

    800

    J

    14 : 19

    18 : 15

    14 : 16

    19 : 16

    14 : 1215 : 14

    850

    J

    20 : 20

    23

    16 : 18

    16 : 20

    12 : 128 : 9

    900

    J

    24 : 26

    22 : 23

    18 : 16

    11 : 11

    7 : 99 : 5

    Soaking temperature, C

    Table 19 - Room Temperature Impact Values

    Soaking

    time,

    h

    0

    30

    100

    300

    1000

    3000

    10 000

    700

    J

    33 : 30

    16 : 19

    20 : 18

    16 : 16

    16 : 15

    18 : 18

    20 : 20

    750

    J

    22 : 22

    14 : 14

    12 : 15

    18 : 20

    22 : 24

    22 : 24

    23 : 24

    800

    J

    22 : 19

    19 : 26

    24 : 26

    26 : 26

    30 : 27

    24 : 24

    23 : 22

    850

    J

    23 : 22

    23 : 24

    24 : 24

    24 : 24

    23 : 23

    19 : 19

    15 : 16

    900

    J

    28 : 30

    28 : 27

    30 : 30

    28 : 26

    22 : 24

    22 : 20

    18 : 18

    Soaking and test temperature, C

    Table 20 - Elevated Temperature Impact Values

  • 7/30/2019 Nimonic Alloy 105

    22/24

    600C

    1.6

    2.3

    2.1

    700C

    8.7

    1.1

    0.5

    800C

    15.0

    0.6

    0.6

    1000C

    0.6

    2.1

    Descaled weight loss (mg/cm) after

    1000 hours at

    Temperature

    C

    890

    910

    990

    1010

    1090

    1110

    Time to onset

    of spalling (h)

    at max cycletemperature of

    C

    >1000

    >1000

    600

    300

    150

    75

    Rate of

    spalling

    (mg/cm/h) atmax cycle

    temperature of

    C

    0.150

    0.408

    0.946

    1.170

    Weight change

    in 100 h

    (mg/cm) atmax cycle

    temperature of

    C

    +0.66

    +1.05

    -51.9

    -229

    -748

    -955

    Descaled weight loss (mg/cm) after 100 hours at

    Soaking

    time,h

    100

    300

    1000

    500

    J

    31

    33

    24

    550

    J

    33

    33

    27

    600

    J

    28

    21

    17

    650

    J

    24

    16

    8

    Soaking temperature, C

    Table 21 - Room Temperature Impact Values

    Soaking

    time,

    h

    0

    100300

    1000

    500

    J

    48

    4545

    44

    550

    J

    43

    4748

    41

    600

    J

    47

    4437

    29

    650

    J

    47

    4128

    15

    Soaking temperature, C

    Table 22 - Elevated Temperature Impact Values

    800C

    0.11

    900C

    0.49

    950C

    0.99

    1000C

    1.43

    1100C

    6.41

    Descaled weight loss (mg/cm) after 100 hours at

    800C

    900C

    1.19

    950C

    1.59

    1000C

    1.61

    1100C

    13.3

    Atmosphere

    3% SO2-Argon

    3% SO2-Air

    3% SO2-5% O2-Argon

    Impact Data:Extruded Bar Subsequently Cold

    StretchedThe room temperature Charpy impact strength of

    NIMONIC alloy 105 extruded bar subsequently coldstretched and given the heat treatment of 4h/1125C/AC+ 16h/850C/AC is of the order of 36 J.

    Long-term embrittlement of this alloy has beeninvestigated by Charpy impact testing at room and ele-vated temperatures and the results of single tests aregiven in Tables 21 and 22 respectively.

    Charpy test specimen had square cross-section of 10mm, test area of 80 mm and V-notch angle of 45.

    Corrosion Resistance

    22

    NIMONIC alloy 105

    Oxidation in Air

    Continuous Heating

    Intermittent Heating

    (Cooling to room temperature every 24 hrs)

    Cyclic Heating

    (15 min in furnace, 5 min outside furnace)

    Resistance to Atmospheres Containing SO2

  • 7/30/2019 Nimonic Alloy 105

    23/24

    23

    NIMONIC alloy 105

    Fabrication

    Hot working

    NIMONIC alloy 105 may be hot worked in the temperaturerange 1050-1200C.

    Annealing

    Interstage annealing of NIMONIC alloy 105 should be car-ried out at 1150C followed by air cooling of fluidized bedquenching. Water quenching is not recommended as severesurface cracking may result from thermal shock.

    Machining

    NIMONIC alloy 105 should be in the fully heat-treated con-

    dition for all machining operations. The high hardnessrange, 320-385 HV, necessitates the use of tungsten carbidetipped tools. High speed steel shock-proof tools can be usedif the cut is of an intermittent nature.

    Welding

    Fusion welding of NIMONIC alloy 105 using conventionalprocesses such as T.I.G. or M.I.G. welding is not recom-mended as microfissuring can occur both in the weld andheat affected zones. Electron beam welding has been usedsuccessfully but the danger of microfissuring still exists andwelding trials should always be carried out before the

    process is specified.

    Similar difficulties can be expected with resistance spot,stitch or seam welding. Flash-butt welding is, however, quitesatisfactory and in regular use for the production of turbinerings.

    High temperature brazing

    High temperature brazing in vacuum, dry hydrogen or inertatmospheres is satisfactory for joining NIMONIC alloy105. However, the brazing cycle chosen should not involvetemperatures above the solution treatment temperature(1150C) as this could adversely affect the properties of thematerial.

    Available Products and Specifications

    NIMONIC alloy 105 is generally available in the following

    forms, subject to minimum order quantities. Other forms aresubject to enquiry.

    Bar and billet for forgingRod and bar for machiningExtruded section, rectangular or profiled, for

    machining, rolling and welding to rings, etc.Extruded and cold worked section

    NIMONIC alloy 105 is designated W. Nr. 2.4634 and is avail-able to the following specifications:

    BS. HR3 billets, bars and forgingsAICMA Ni-P61-HT billets, bars and forgings

    Swedish Defence Material Administration MH.14 forged barDIN designation NiCo20Cr15MoAlTi forged barAFNOR NCKD 20ATvAECMA PrEn 2179-2181

    Units of stress

    The primary units for property data are those of the SI sys-tem. The unit of stress is the Megapascal. Its relationshipwith other units is as follows:

    1MPa = N/mm = 1 MN/m = 0.1 hbar = 0.102 kgf/mm =0.0647 tonf/in.

    Publication SMC-081Copyright Special Metals Corporation, 2007 (Jan 07)

    NIMONIC is a trademark of the Special Metals Corporationgroup of companies.

    The data contained in this publication is for informational purposes only and may be

    revised at any time without prior notice. The data is believed to be accurate and reli-

    able, but Special Metals makes no representation or warranty of any kind (express or

    implied) and assumes no liability with respect to the accuracy or completeness of the

    information contained herein. Although the data is believed to be representative of the

    product, the actual characteristics or performance of the product may vary from what is

    shown in this publication. Nothing contained in this publication should be construed as

    guaranteeing the product for a particular use or application.

  • 7/30/2019 Nimonic Alloy 105

    24/24

    www.specialmetals.com

    India

    Special Metals Services Ltd.

    No. 60, First Main Road,First BlockVasantha Vallabha NagarSubramanyapura PostBangalore 560 061Phone +91 (0) 80 2666 9159Fax +91 (0) 80 2666 8918

    The Netherlands

    Special Metals Service BV

    Postbus 86813009 AR RotterdamPhone +31 (0) 10 451 44 55Fax +31 (0) 10 450 05 39

    China

    Special Metals Pacific Pte. Ltd.Room 1802, Plaza 661266 West Nanjing RoadShanghai 200040Phone +86 21 3229 0011Fax +86 21 6288 1811

    Special Metals Pacific Pte. Ltd.Room 1409United International Building

    No. 19 DongSanHuanNanLuChaoyang DistrictBeijing 100021, ChinaPhone +86 10 8766 7100Fax +86 10 8766 7101

    Special Metals Pacific Pte. Ltd.Room 16B, Yuntian Bldg.#12 Fengcheng Er RoadXian Economnic & IndustrialDevelopment ZoneXian 7100016 ChinaPhone +86 29 8210 6151Fax +86 29 8652 4031

    Singapore

    Special Metals Pacific Pte. Ltd.

    24 Raffles Place#27-04 Clifford CentreSingapore 048621Phone +65 6532 3823Fax +65 6532 3621

    Affiliated Companies

    Special Metals Welding

    Products1401 Burris Road

    Newton, NC 28658, U.S.A.Phone +1 (828) 465-0352

    +1 (800) 624-3411Fax +1 (828) 464-8993

    Canada HouseBidavon Industrial EstateWaterloo RoadBidford-On-AvonWarwickshire B50 4JN, U.K.Phone +44 (0) 1789 491780Fax +44 (0) 1789 491781

    Controlled Products Group590 Seaman Street, Stoney CreeOntario L8E 4H1, CanadaPhone +1 (905) 643-6555Fax +1 (905) 643-6614

    A-1 Wire Tech, Inc.A Special Metals Company

    4550 Kishwaukee StreetRockford, IL 61109, U.S.A.Phone +1 (815) 226-0477

    +1 (800) 426-6380Fax +1 (815) 226-0537

    Rescal SAA Special Metals Company

    200 Rue de la Couronne des Pr78681 Epne Cdex, FrancePhone +33 (0) 1 30 90 04 00Fax +33 (0) 1 30 90 02 11

    DAIDO-SPECIAL METALSLtd.A Joint Venture CompanyDaido Shinagawa Building6-35, Kohnan 1-chomeMinato-ku, Tokyo 108-0057, JapPhone +81 (0) 3 5495 7237Fax +81 (0) 3 5495 1853

    U.S.A.Special Metals Corporation

    Billet, rod & bar, flat& tubular products

    3200 Riverside DriveHuntington, WV 25705-1771Phone +1 (304) 526-5100

    +1 (800) 334-4626Fax +1 (304) 526-5643

    Billet & bar products4317 Middle Settlement Road

    New Hartford, NY 13413-5392Phone +1 (315) 798-2900

    +1 (800) 334-8351Fax +1 (315)798-2016

    Shape Memory Alloys4317 Middle Settlement RoadNew Hartford, NY 13413-5392Phone +1 (315) 798-2939Fax +1 (315) 798-6860

    United Kingdom

    Special Metals Wiggin Ltd.

    Holmer RoadHereford HR4 9SLPhone +44 (0) 1432 382200Fax +44 (0) 1432 264030

    Special Metals Wire Products

    Holmer RoadHereford HR4 9SLPhone +44 (0) 1432 382556Fax +44 (0) 1432 352984

    Germany

    Special Metals Deutschland Ltd.Postfach 20 04 0940102 DsseldorfPhone +49 (0) 211 38 63 40Fax +49 (0) 211 37 98 64

    Hong Kong

    Special Metals Pacific Pte. Ltd.Unit A, 17th Floor, On Hing Bldg1 On Hing TerraceCentral, Hong KongPhone +852 2439 9336Fax +852 2530 4511