5
non abelian hodge correspondance I Harmonic bundle let F le a vector space Met F positive definite quadratic forms on f is aRiemannian manifold Tg Mett F A CEnd E symmetric W r log A 137g AB A harmonic metric on a flat bundle Fis a harmonic section of Met F M A harmonic bundle ED g is a flat bundle CE D together with a harmonic metric g II harmonic bundles andrepresentations Harmonic bundles Repli s Ghm R Theorem Colette Donaldson Let Mbe a complete Riemannian let p tu Glen R assume is reductive then there exists an Essentially unique harmonic metric on Ep essentially unique g g CA A J with D'A 0 Next goal relate harmonic bundle to Higgs bundles and extend the theory to other semi simple G crash case on symmetric spaces

non hodge correspondance

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: non hodge correspondance

non abelian hodge correspondance

I Harmonicbundle

let F le avectorspace Met F positivedefinitequadratic formson fis aRiemannianmanifold Tg MettF ACEndE symmetric W r log

A 137g ABAharmonicmetricon a flatbundle Fis a harmonicsectionof

Met F M

A harmonic bundle E Dg is a flatbundleCED togetherwith

aharmonicmetricgII harmonicbundles andrepresentations

Harmonicbundles Repli s Ghm R

Theorem Colette Donaldson LetMbeacomplete Riemannianletp tu Glen R assume isreductive

thenthereexists anEssentiallyuniqueharmonicmetric onEp

essentiallyunique g gCA A J with D'A 0

Nextgoal relateharmonicbundleto Higgsbundles and

extendthetheory to othersemisimple Gcrash case on symmetricspaces

Page 2: non hodge correspondance

Il Harmonic bundles andHiggsbundleA FromHarmonicbundles to Higgsbundles

let LED g be a harmonicbundleover Xwhere E is complex

andg hermitian we consider y as a section of Met E

a the holomorphie bundle Ecamés a flatconnectionD and ametricgthenweget a unitarymetricM charatenzedby

D D LDJ2where Dayu v g Dg n v andDig hermitian

D theholomorphicstructuredoesnotcomefromtheflatconnectionb theHiggsfield

g MetLED hermitianendomorphismurtogAI g A u v gluArifAI A À formatrices À TAJ

Fact letgobe a hermitianmetricon a complexvectorspace E

thon Hermitian End E

A 1f A is hermitian JA is antihermitian a

Thus g harmonie Tg C l EndLEDis holomorphie

Page 3: non hodge correspondance

TheHiggsbundle Bd associated totheharmonicbundle E D gis E E J Etga last remarkActually Tg g thus jpg

and D D

Bj Hitchinselfduality equations ortheinverseconstructionStartingfromtheholomorphic bundleweneedto reconstructthe

metric theunitaryconnection is always obtainedthankstothe

holomorphic structure

proposition let g be a hermitianmetricon aholomorphicbundle thenthereexists a unique hermitian

connection D so that J givestheholomorphie structure

Thisuniquehermitianconnection is calledthe

Chonconnectionof gÀ Thespaceof J operator on Eis on affinespace

0,1Js J E r x EnDIEDTwounitary connections Tf Dz B E l'A A A antihomitian

Tl DzJ J B linearalgebra BG

Page 4: non hodge correspondance

let usstartwith a holomorphicbundle E

Giveametricg itscherconnection DThenthe candidate forthe flat connection is

D DAndtheselfduality or Hitchinequations isthatDesi flat

thatisa secondR ton 0 orderequationon g

thetoms for and vanishbecausewe are on a curve andold dbecauseof is holomorphie

Theorem Hitchin Simpson

Let LE be astableholomorphic Higgs bundlethen thereexists a unique hermitianmetricg so that

R n O

whereD is theChenconnectionof g

Remark when01 0 then Dis flatand weobtainNaramsenhan Seshadritheorem

Page 5: non hodge correspondance