13
MRM 2019, Dec. 12, 2019 Yokohama, Japan Numerical Simulation of Nanoparticle Network Formation in Transparent Conductive Coating Rei Tatsumi (UTokyo) Osamu Koike (PIA) Yukio Yamaguchi (PIA) Yoshiko Tsuji (UTokyo)

Numerical Simulation of Nanoparticle Network …nanotech.t.u-tokyo.ac.jp/docs/MRM2019_tatsumi.pdfMRM 2019, Dec. 12, 2019 Yokohama, Japan Numerical Simulation of Nanoparticle Network

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Numerical Simulation of Nanoparticle Network …nanotech.t.u-tokyo.ac.jp/docs/MRM2019_tatsumi.pdfMRM 2019, Dec. 12, 2019 Yokohama, Japan Numerical Simulation of Nanoparticle Network

MRM 2019, Dec. 12, 2019

Yokohama, Japan

Numerical Simulation of Nanoparticle Network Formation

in Transparent Conductive Coating

○ Rei Tatsumi (UTokyo)

Osamu Koike (PIA)

Yukio Yamaguchi (PIA)

Yoshiko Tsuji (UTokyo)

Page 2: Numerical Simulation of Nanoparticle Network …nanotech.t.u-tokyo.ac.jp/docs/MRM2019_tatsumi.pdfMRM 2019, Dec. 12, 2019 Yokohama, Japan Numerical Simulation of Nanoparticle Network

2

Aqueous suspensions

of nanoparticles

How do network structures form?

← Consideration by numerical simulations

Example of network structure:

Wakabayashi et al., Langmuir (2007).

Coating

Drying

Transparent conductive films

Page 3: Numerical Simulation of Nanoparticle Network …nanotech.t.u-tokyo.ac.jp/docs/MRM2019_tatsumi.pdfMRM 2019, Dec. 12, 2019 Yokohama, Japan Numerical Simulation of Nanoparticle Network

3

Drying: capillary force induced by free surface

Particle dispersion/aggregation + ++++ +

+

+++

- --

---

-

-

- --

--

--

-

DLVO potential

Electric double

layer repulsion

Van der Waals

attraction

Vertical push into liquid Lateral attraction

Structure of colloidal films

Page 4: Numerical Simulation of Nanoparticle Network …nanotech.t.u-tokyo.ac.jp/docs/MRM2019_tatsumi.pdfMRM 2019, Dec. 12, 2019 Yokohama, Japan Numerical Simulation of Nanoparticle Network

4

Aggregation Drying

Chains Network

Lateral capillary force

Anisotropic

aggregation

×

×

Fixation of

contact point

Page 5: Numerical Simulation of Nanoparticle Network …nanotech.t.u-tokyo.ac.jp/docs/MRM2019_tatsumi.pdfMRM 2019, Dec. 12, 2019 Yokohama, Japan Numerical Simulation of Nanoparticle Network

5

Anisotropic aggregation

×

Fixation of contact point

×

* *

Stick Slip

DLVO potential

Page 6: Numerical Simulation of Nanoparticle Network …nanotech.t.u-tokyo.ac.jp/docs/MRM2019_tatsumi.pdfMRM 2019, Dec. 12, 2019 Yokohama, Japan Numerical Simulation of Nanoparticle Network

• Random force: 𝐹𝛼R 𝑡 ~𝑁 0, 2𝜉𝑘B𝑇Δ𝑡 (Gaussian dist.)

𝑀 ሶ𝑽 = −𝜉𝑽 + 𝑭R + 𝑭cpl + 𝑭cnt + 𝑭DLVO

• Capillary force: 𝑭cpl

• Drag force: −𝜉𝑽 (Stokes’ law: 𝜉 = 3𝜋𝜂𝑑 )

6

→ Brownian motion

Liquid InterparticleFree surface𝑽

Vertical Lateral

Page 7: Numerical Simulation of Nanoparticle Network …nanotech.t.u-tokyo.ac.jp/docs/MRM2019_tatsumi.pdfMRM 2019, Dec. 12, 2019 Yokohama, Japan Numerical Simulation of Nanoparticle Network

𝑀 ሶ𝑽 = −𝜉𝑽 + 𝑭R + 𝑭cpl + 𝑭cnt + 𝑭DLVO

7

Liquid InterparticleFree surface𝑽

• Contact force/torque: 𝑭cnt, 𝑻cnt • DLVO force: 𝑭DLVO

+ ++

+ +++

++

+

- --

--

-

-

-

- --

--

--

-DLVO potentialℎ

Electric double layer repulsion

Van der Waals attraction

Contact point

→ Dispersion / Aggregation→ Aggregation shapes: Chain / Block

* *

Stick Slip

Page 8: Numerical Simulation of Nanoparticle Network …nanotech.t.u-tokyo.ac.jp/docs/MRM2019_tatsumi.pdfMRM 2019, Dec. 12, 2019 Yokohama, Japan Numerical Simulation of Nanoparticle Network

8

𝑥𝑦𝑧

Periodic boundaries 𝑥, 𝑦

Particles

• Diameter 𝑑 = 10 nm

• Zeta potential −50 mV

• Coverage on substrate 𝟑𝟎, 𝟒𝟎, 𝟓𝟎%(Initial volume fraction 2.3, 3.0, 3.8 vol%)

• Particle contact point stick, slip

Liquid (water)

• Ion concentration 10−3 M

• Drying rate 2.2 × 10−3 m/s

25𝑑

25𝑑

8𝑑

DLVO potential

Receding

free surface

(1) Aggregation in liquid

(2) Drying on substrate

6𝑘B𝑇

Page 9: Numerical Simulation of Nanoparticle Network …nanotech.t.u-tokyo.ac.jp/docs/MRM2019_tatsumi.pdfMRM 2019, Dec. 12, 2019 Yokohama, Japan Numerical Simulation of Nanoparticle Network

9

Contact number0 4

Stick Slip

Chain Block

Coverage 40%

Page 10: Numerical Simulation of Nanoparticle Network …nanotech.t.u-tokyo.ac.jp/docs/MRM2019_tatsumi.pdfMRM 2019, Dec. 12, 2019 Yokohama, Japan Numerical Simulation of Nanoparticle Network

10

Stick

Slip

Coverage

30% 40% 50%

Page 11: Numerical Simulation of Nanoparticle Network …nanotech.t.u-tokyo.ac.jp/docs/MRM2019_tatsumi.pdfMRM 2019, Dec. 12, 2019 Yokohama, Japan Numerical Simulation of Nanoparticle Network

11

Stick Slip

Chain Block

Coverage 40%

Page 12: Numerical Simulation of Nanoparticle Network …nanotech.t.u-tokyo.ac.jp/docs/MRM2019_tatsumi.pdfMRM 2019, Dec. 12, 2019 Yokohama, Japan Numerical Simulation of Nanoparticle Network

12

Stick

Slip

Coverage

30% 40% 50%

Percolation

Page 13: Numerical Simulation of Nanoparticle Network …nanotech.t.u-tokyo.ac.jp/docs/MRM2019_tatsumi.pdfMRM 2019, Dec. 12, 2019 Yokohama, Japan Numerical Simulation of Nanoparticle Network

13

◆ A possible mechanism of network formation

• Chain formation in liquid:

Anisotropic aggregation by DLVO potential

+ Fixation of contact point between particles

• Connection of chains by capillary force during drying

◆ Consideration of the mechanism of particle network

formation during drying by numerical simulations

◆ Effects of stick/slip particle contact on network formation

Stick → lower percolation coverage (~40%)