25
20 th June 2016 Janov nad Nisou 1/24 Návrh robustního experimentu založený na globální citlivosti Anna Kučerová Jan Sýkora Eliška Janouchová Jan Chleboun Daniela Jarušková Czech Technical University in Prague Faculty of Civil Engineering Department of Mechanics

Návrh robustního experimentu založený na globální citlivostipanm18.math.cas.cz/prednasky/PANM18_Anna_Kucerova.pdf · 1520th June 2016 June 2016 Bochum, Germany Janov nad Nisou

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Návrh robustního experimentu založený na globální citlivostipanm18.math.cas.cz/prednasky/PANM18_Anna_Kucerova.pdf · 1520th June 2016 June 2016 Bochum, Germany Janov nad Nisou

20th June 2016 Janov nad Nisou 1/24

Návrh robustního experimentu založený na globální citlivosti

Anna KučerováJan Sýkora

Eliška JanouchováJan Chleboun

Daniela Jarušková

Czech Technical University in PragueFaculty of Civil EngineeringDepartment of Mechanics

Page 2: Návrh robustního experimentu založený na globální citlivostipanm18.math.cas.cz/prednasky/PANM18_Anna_Kucerova.pdf · 1520th June 2016 June 2016 Bochum, Germany Janov nad Nisou

Experiment design problem

Material parameters to be identified:

● - values of thermal conductivity, heat capacity or water vapour resistance

Design variables to be optimised:

● - loading types (e.g. prescribed temperature, moisture flux or heat transfer at a boundary)

and loading magnitude as well as positions of sensors (thermometers, hygrometers etc.)

Noise variables to be considered:

● - measurement errors,

● - inaccurate positioning of sensors or imperfections in prescribed loading conditions

2th February 2016 Technische Universität Braunschweig 2/2215th June 2016 Bochum, Germany 2/2220th June 2016 Janov nad Nisou 2/24

Page 3: Návrh robustního experimentu založený na globální citlivostipanm18.math.cas.cz/prednasky/PANM18_Anna_Kucerova.pdf · 1520th June 2016 June 2016 Bochum, Germany Janov nad Nisou

Inverse analysis

After realisation of an experiment according to selected values of

Nonlinear regression with random parameters

- random = noise parameters follow prescribed probability distribution corresponding

to distribution of their values in a set of repeated experiments

- assumption of more repeated experiments

Bayesian inference

- distribution of noise parameters is updated along with the distribution of material properties

- assumption of only one realisation of the experiment, no repetitions

2th February 2016 Technische Universität Braunschweig 4/2215th June 2016 Bochum, Germany 4/2220th June 2016 Janov nad Nisou 3/24

Page 4: Návrh robustního experimentu založený na globální citlivostipanm18.math.cas.cz/prednasky/PANM18_Anna_Kucerova.pdf · 1520th June 2016 June 2016 Bochum, Germany Janov nad Nisou

Goals of experiment design

● Maximise information content on the investigated material parameters

● Minimise influence of experimental errors

(sensitivity of observations to material properties)

(sensitivity of observations to noise variables)

(expert on material model specifies feasible intervals)

(expert on experimentation specifies feasible intervals for design variables and mean and variance of noise variables)

Bayesian approach

- maximising Kullback-Leibner divergence

- quantifying information content of experiment by comparing prior and posterior distribution

- computationally very exhaustive

2th February 2016 Technische Universität Braunschweig 3/2115th June 2016 Bochum, Germany 3/2220th June 2016 Janov nad Nisou 4/24

Page 5: Návrh robustního experimentu založený na globální citlivostipanm18.math.cas.cz/prednasky/PANM18_Anna_Kucerova.pdf · 1520th June 2016 June 2016 Bochum, Germany Janov nad Nisou

Nonlinear regression with random parameters

Local sensitivity matrix – 1st order derivatives in Taylor development of the model:

Explicit solution of a least square problem:

With neglecting and considering measurement errors

to be i.i.d. variables with variance :

Optimality criterion:

[Ruffio,Saury,Petit, 2012, IJHMT]

2th February 2016 Technische Universität Braunschweig 4/22

F-optimality:

15th June 2016 Bochum, Germany 4/2220th June 2016 Janov nad Nisou 5/24

Page 6: Návrh robustního experimentu založený na globální citlivostipanm18.math.cas.cz/prednasky/PANM18_Anna_Kucerova.pdf · 1520th June 2016 June 2016 Bochum, Germany Janov nad Nisou

Robustness of solution

Worst case approach

● Noise parameters fixed at mean (zero) values

● Material parameters evaluated in central star design points

Requires starting guess about which is apriori unknown!

[Ruffio,Saury,Petit, 2012, IJHMT]

2th February 2016 Technische Universität Braunschweig 5/22

Robust optimisation of by particle swarm optimisation algorithm.

15th June 2016 Bochum, Germany 5/2220th June 2016 Janov nad Nisou 6/24

Page 7: Návrh robustního experimentu založený na globální citlivostipanm18.math.cas.cz/prednasky/PANM18_Anna_Kucerova.pdf · 1520th June 2016 June 2016 Bochum, Germany Janov nad Nisou

Formulation of using global sensitivity matrix

Polynomial chaos-based approximation of the model

All problem variables need to be transformed into the standardised variables of a chosen family via linear or nonlinear transformation

According to Doob-Dynkin lemma (Bobrovski, 2005), model response is also random vector expressed as a function of the same random variables.

According to (Xiu and Karniadakis, 2002, SIAM JSC), orthogonal polynomials w.r.t. given probability measures are the most suitable choice for the approximation.

● Hermite polynomials for Gaussian variables

● Legendre polynomials for uniform variables etc.

2th February 2016 Technische Universität Braunschweig 6/2215th June 2016 Bochum, Germany 6/2220th June 2016 Janov nad Nisou 7/24

Page 8: Návrh robustního experimentu založený na globální citlivostipanm18.math.cas.cz/prednasky/PANM18_Anna_Kucerova.pdf · 1520th June 2016 June 2016 Bochum, Germany Janov nad Nisou

Formulation of using global sensitivity matrix

Construction of PCE-based approximation – computation of PC coefficients● Linear regression● Stochastic collocation method● Stochastic Galerkin method

We use linear regression based

on Latin Hypercube sampling derived

from Halton sequence - very easy to implement

Global sensitivity matrix – variance-based Sobol' indices

2th February 2016 Technische Universität Braunschweig 6/2215th June 2016 Bochum, Germany 6/2220th June 2016 Janov nad Nisou 8/24

Page 9: Návrh robustního experimentu založený na globální citlivostipanm18.math.cas.cz/prednasky/PANM18_Anna_Kucerova.pdf · 1520th June 2016 June 2016 Bochum, Germany Janov nad Nisou

Formulation of using global sensitivity matrix

Global sensitivity matrix for given values of design variables:

Complete global sensitivity matrix:

Global sensitivity to material properties:

2th February 2016 Technische Universität Braunschweig 6/2215th June 2016 Bochum, Germany 6/22

Optimality measures:

20th June 2016 Janov nad Nisou 9/24

Page 10: Návrh robustního experimentu založený na globální citlivostipanm18.math.cas.cz/prednasky/PANM18_Anna_Kucerova.pdf · 1520th June 2016 June 2016 Bochum, Germany Janov nad Nisou

Linear non-stationary heat problem

Illustrative example – physical problem

Discretized system of equations

Energy balance equationInitial scheme

Solution at time step i+1

+ Boundary conditions+ Initial conditions

Material parameters:

Initial temperature:

Other properties:

2th February 2016 Technische Universität Braunschweig 7/2215th June 2016 Bochum, Germany 7/2220th June 2016 Janov nad Nisou 10/24

Page 11: Návrh robustního experimentu založený na globální citlivostipanm18.math.cas.cz/prednasky/PANM18_Anna_Kucerova.pdf · 1520th June 2016 June 2016 Bochum, Germany Janov nad Nisou

Illustrative example – physical problem

Linear non-stationary heat problem, numerical example

Evolution of temperature

2th February 2016 Technische Universität Braunschweig 8/2215th June 2016 Bochum, Germany 8/2221th June 2016 Janov nad Nisou 1/242th February 2016 Technische Universität Braunschweig 7/2215th June 2016 Bochum, Germany 7/2220th June 2016 Janov nad Nisou 11/24

Page 12: Návrh robustního experimentu založený na globální citlivostipanm18.math.cas.cz/prednasky/PANM18_Anna_Kucerova.pdf · 1520th June 2016 June 2016 Bochum, Germany Janov nad Nisou

Polynomial chaos – error analysis

Polynomial degree p=5

x=y=0t=60

x=y=0t=60

x=y=0t=60

2th February 2016 Technische Universität Braunschweig 9/2215th June 2016 Bochum, Germany 9/222th February 2016 Technische Universität Braunschweig 7/2215th June 2016 Bochum, Germany 7/2220th June 2016 Janov nad Nisou 12/24

Page 13: Návrh robustního experimentu založený na globální citlivostipanm18.math.cas.cz/prednasky/PANM18_Anna_Kucerova.pdf · 1520th June 2016 June 2016 Bochum, Germany Janov nad Nisou

Experiment design problem definition

Initial schemeMaterial parameters to be identified:

● - values of thermal conductivities and heat

capacity (3 variables) :

Design variables to be optimised:

● - positions of 3 sensors (6 variables) :

Noise variables to be considered:

● all zero-mean normal variables

● - measurement errors – at 3 sensors at 60

time steps: 180 i.i.d. variables,

● - inaccurate positions of sensors, 6 i.i.d. var.,

,

● - imperfection in loading

2th February 2016 Technische Universität Braunschweig 10/2215th June 2016 Bochum, Germany 10/222th February 2016 Technische Universität Braunschweig 7/2215th June 2016 Bochum, Germany 7/2220th June 2016 Janov nad Nisou 13/24

Page 14: Návrh robustního experimentu založený na globální citlivostipanm18.math.cas.cz/prednasky/PANM18_Anna_Kucerova.pdf · 1520th June 2016 June 2016 Bochum, Germany Janov nad Nisou

FEM & Variable sensor positions

● design variables: sensor positions

● noise variables: error in sensor positions

FE discretisation of model response

● localisation of k-th element

2th February 2016 Technische Universität Braunschweig 11/222th February 2016 Technische Universität Braunschweig 10/2215th June 2016 Bochum, Germany 11/222th February 2016 Technische Universität Braunschweig 7/2215th June 2016 Bochum, Germany 7/2220th June 2016 Janov nad Nisou 14/24

Page 15: Návrh robustního experimentu založený na globální citlivostipanm18.math.cas.cz/prednasky/PANM18_Anna_Kucerova.pdf · 1520th June 2016 June 2016 Bochum, Germany Janov nad Nisou

Experiment design problem definition

Material parameters to be identified:

● - values of thermal conductivities and heat

capacity (3 variables) :

Design variables to be optimised:

● - positions of 3 sensors (6 variables) :

Noise variables to be considered:

● - measurement errors,

● - inaccurate positions of sensors,

● - imperfection in loading

2th February 2016 Technische Universität Braunschweig 12/222th February 2016 Technische Universität Braunschweig 10/2215th June 2016 Bochum, Germany 12/222th February 2016 Technische Universität Braunschweig 7/2215th June 2016 Bochum, Germany 7/2220th June 2016 Janov nad Nisou 15/24

Page 16: Návrh robustního experimentu založený na globální citlivostipanm18.math.cas.cz/prednasky/PANM18_Anna_Kucerova.pdf · 1520th June 2016 June 2016 Bochum, Germany Janov nad Nisou

Linearised inverse analysis, global sensitivityCoarse mesh

Fine mesh

2th February 2016 Technische Universität Braunschweig 13/22

Considering only measurement errors:

2th February 2016 Technische Universität Braunschweig 10/2215th June 2016 Bochum, Germany 13/222th February 2016 Technische Universität Braunschweig 7/2215th June 2016 Bochum, Germany 7/2220th June 2016 Janov nad Nisou 16/24

Page 17: Návrh robustního experimentu založený na globální citlivostipanm18.math.cas.cz/prednasky/PANM18_Anna_Kucerova.pdf · 1520th June 2016 June 2016 Bochum, Germany Janov nad Nisou

Linearised inverse analysis, global sensitivityCoarse mesh

Fine mesh

2th February 2016 Technische Universität Braunschweig 14/22

Considering only measurement errors:

2th February 2016 Technische Universität Braunschweig 10/2215th June 2016 Bochum, Germany 14/222th February 2016 Technische Universität Braunschweig 7/2215th June 2016 Bochum, Germany 7/2220th June 2016 Janov nad Nisou 17/24

Page 18: Návrh robustního experimentu založený na globální citlivostipanm18.math.cas.cz/prednasky/PANM18_Anna_Kucerova.pdf · 1520th June 2016 June 2016 Bochum, Germany Janov nad Nisou

Linearised inverse analysis

[Ruffio, Saury, Petit, 2012, IJHMT]

2th February 2016 Technische Universität Braunschweig 15/22

Global sensitivity

x2

Local sensitivity

[Sawaf et al., 1995, IJHMT]

2th February 2016 Technische Universität Braunschweig 10/2215th June 2016 Bochum, Germany 15/222th February 2016 Technische Universität Braunschweig 7/2215th June 2016 Bochum, Germany 7/2220th June 2016 Janov nad Nisou 18/24

Page 19: Návrh robustního experimentu založený na globální citlivostipanm18.math.cas.cz/prednasky/PANM18_Anna_Kucerova.pdf · 1520th June 2016 June 2016 Bochum, Germany Janov nad Nisou

Linearised inverse analysis

4th November 2015 IPW2015, Liverpool, United Kingdom 16/22

Testing of robustness:

- statistics over discretised space of material parameters

2th February 2016 Technische Universität Braunschweig 10/2215th June 2016 Bochum, Germany 16/222th February 2016 Technische Universität Braunschweig 7/2215th June 2016 Bochum, Germany 7/2220th June 2016 Janov nad Nisou 19/24

Page 20: Návrh robustního experimentu založený na globální citlivostipanm18.math.cas.cz/prednasky/PANM18_Anna_Kucerova.pdf · 1520th June 2016 June 2016 Bochum, Germany Janov nad Nisou

MCMC-based Bayesian inference

2th February 2016 Technische Universität Braunschweig 1/15

E-opt. design U2 design

2th February 2016 Technische Universität Braunschweig 10/2215th June 2016 Bochum, Germany 17/22

Std = 1.097%

Std = 0.119%

Std = 1.364%

Std = 0.376%

Std = 2.069%

Std = 0.286%

2th February 2016 Technische Universität Braunschweig 7/2215th June 2016 Bochum, Germany 7/2220th June 2016 Janov nad Nisou 20/24

Page 21: Návrh robustního experimentu založený na globální citlivostipanm18.math.cas.cz/prednasky/PANM18_Anna_Kucerova.pdf · 1520th June 2016 June 2016 Bochum, Germany Janov nad Nisou

Wider bounds

15th June 2016 Technische Universität Braunschweig 18/222th February 2016 Technische Universität Braunschweig 1/152th February 2016 Technische Universität Braunschweig 10/2215th June 2016 Bochum, Germany 17/222th February 2016 Technische Universität Braunschweig 7/2215th June 2016 Bochum, Germany 7/2221th June 2016 Janov nad Nisou 20/242th February 2016 Technische Universität Braunschweig 1/152th February 2016 Technische Universität Braunschweig 10/2215th June 2016 Bochum, Germany 17/222th February 2016 Technische Universität Braunschweig 7/2215th June 2016 Bochum, Germany 7/2220th June 2016 Janov nad Nisou 21/24

Page 22: Návrh robustního experimentu založený na globální citlivostipanm18.math.cas.cz/prednasky/PANM18_Anna_Kucerova.pdf · 1520th June 2016 June 2016 Bochum, Germany Janov nad Nisou

Linearised inverse analysis

4th November 2015 IPW2015, Liverpool, United Kingdom 19/22

Testing of robustness:

- statistics over discretised space of material parameters

2th February 2016 Technische Universität Braunschweig 10/2215th June 2016 Bochum, Germany 19/222th February 2016 Technische Universität Braunschweig 1/152th February 2016 Technische Universität Braunschweig 10/2215th June 2016 Bochum, Germany 17/222th February 2016 Technische Universität Braunschweig 7/2215th June 2016 Bochum, Germany 7/2220th June 2016 Janov nad Nisou 22/24

Page 23: Návrh robustního experimentu založený na globální citlivostipanm18.math.cas.cz/prednasky/PANM18_Anna_Kucerova.pdf · 1520th June 2016 June 2016 Bochum, Germany Janov nad Nisou

MCMC-based Bayesian inference

2th February 2016 Technische Universität Braunschweig 1/15

E-opt. design S2 design

2th February 2016 Technische Universität Braunschweig 10/2215th June 2016 Bochum, Germany 20/22

Std = 1.097%

Std = 0.119%

Std = 0.541%

Std = 0.090%

Std = 0.849% Std = 0.103%

2th February 2016 Technische Universität Braunschweig 1/152th February 2016 Technische Universität Braunschweig 10/2215th June 2016 Bochum, Germany 17/222th February 2016 Technische Universität Braunschweig 7/2215th June 2016 Bochum, Germany 7/2220th June 2016 Janov nad Nisou 23/24

Page 24: Návrh robustního experimentu založený na globální citlivostipanm18.math.cas.cz/prednasky/PANM18_Anna_Kucerova.pdf · 1520th June 2016 June 2016 Bochum, Germany Janov nad Nisou

Conclusions

Proposed method:

● Global sensitivity matrix – no need for good guess about parameters to

be identified, only wide intervals are sufficient

● Better suited for cases, where response is nonlinear w.r.t. material

properties

● Involve two approximations: FEM & PCE & total Sobol

● Cause inaccuracy

● Decrease computational demands – allow to solve more complex tasks

Future work:

● Investigation of optimality criteria – multi-objective optimisation,

minimisation of correlation among the identified parameters etc.

2th February 2016 Technische Universität Braunschweig 21/222th February 2016 Technische Universität Braunschweig 1/152th February 2016 Technische Universität Braunschweig 10/2215th June 2016 Bochum, Germany 21/222th February 2016 Technische Universität Braunschweig 1/152th February 2016 Technische Universität Braunschweig 10/2215th June 2016 Bochum, Germany 17/222th February 2016 Technische Universität Braunschweig 7/2215th June 2016 Bochum, Germany 7/2220th June 2016 Janov nad Nisou 24/24

Page 25: Návrh robustního experimentu založený na globální citlivostipanm18.math.cas.cz/prednasky/PANM18_Anna_Kucerova.pdf · 1520th June 2016 June 2016 Bochum, Germany Janov nad Nisou

Thank you for your attention

The financial support of this research by the Czech Science

Foundation, project No. P15-07299S, is gratefully acknowledged.

2th February 2016 Technische Universität Braunschweig 22/222th February 2016 Technische Universität Braunschweig 1/152th February 2016 Technische Universität Braunschweig 10/2215th June 2016 Bochum, Germany 22/222th February 2016 Technische Universität Braunschweig 1/152th February 2016 Technische Universität Braunschweig 10/2215th June 2016 Bochum, Germany 17/222th February 2016 Technische Universität Braunschweig 7/2215th June 2016 Bochum, Germany 7/2220th June 2016 Janov nad Nisou 24/24