99
On approximate Birkhoff orthogonality in normed spaces Jacek Chmieli´ nski Instytut Matematyki Uniwersytet Pedagogiczny w Krakowie Banach Spaces and their Applications Lviv (Ukraine), June 26-29, 2019 J. Chmieli´ nski (Krak´ow,Poland) Approximate Birkhoff orthogonality Lviv 2019 1 / 28

On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

On approximate Birkhoff orthogonality in normed spaces

Jacek Chmielinski

Instytut MatematykiUniwersytet Pedagogiczny w Krakowie

Banach Spaces and their ApplicationsLviv (Ukraine), June 26-29, 2019

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 1 / 28

Page 2: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Introduction — inner product space

(X , 〈·|·〉) — inner product space; x⊥y ⇔ 〈x |y〉 = 0.

Approximate orthogonality (ε-orthogonality with ε ∈ [0, 1)):

x⊥ε y ⇔ | 〈x |y〉 | ≤ ε ‖x‖ ‖y‖, x , y ∈ X .

Observation

x⊥ε y ⇔ ∃ z ∈ X : x⊥z , ‖z − y‖ ≤ ε‖y‖.

Indeed, if x⊥ε y take z = − 〈x |y〉‖x‖2 x + y (z = y in case x = 0).

Conversely, assuming x⊥z and ‖z − y‖ ≤ ε‖y‖,

| 〈x |y〉 | = | 〈x |y − z〉 | ≤ ‖x‖ ‖y − z‖ ≤ ε‖x‖ ‖y‖.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 2 / 28

Page 3: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Introduction — inner product space

(X , 〈·|·〉) — inner product space; x⊥y ⇔ 〈x |y〉 = 0.

Approximate orthogonality (ε-orthogonality with ε ∈ [0, 1)):

x⊥ε y ⇔ | 〈x |y〉 | ≤ ε ‖x‖ ‖y‖, x , y ∈ X .

Observation

x⊥ε y ⇔ ∃ z ∈ X : x⊥z , ‖z − y‖ ≤ ε‖y‖.

Indeed, if x⊥ε y take z = − 〈x |y〉‖x‖2 x + y (z = y in case x = 0).

Conversely, assuming x⊥z and ‖z − y‖ ≤ ε‖y‖,

| 〈x |y〉 | = | 〈x |y − z〉 | ≤ ‖x‖ ‖y − z‖ ≤ ε‖x‖ ‖y‖.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 2 / 28

Page 4: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Introduction — inner product space

(X , 〈·|·〉) — inner product space; x⊥y ⇔ 〈x |y〉 = 0.

Approximate orthogonality (ε-orthogonality with ε ∈ [0, 1)):

x⊥ε y ⇔ | 〈x |y〉 | ≤ ε ‖x‖ ‖y‖, x , y ∈ X .

Observation

x⊥ε y ⇔ ∃ z ∈ X : x⊥z , ‖z − y‖ ≤ ε‖y‖.

Indeed, if x⊥ε y take z = − 〈x |y〉‖x‖2 x + y (z = y in case x = 0).

Conversely, assuming x⊥z and ‖z − y‖ ≤ ε‖y‖,

| 〈x |y〉 | = | 〈x |y − z〉 | ≤ ‖x‖ ‖y − z‖ ≤ ε‖x‖ ‖y‖.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 2 / 28

Page 5: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Introduction — inner product space

(X , 〈·|·〉) — inner product space; x⊥y ⇔ 〈x |y〉 = 0.

Approximate orthogonality (ε-orthogonality with ε ∈ [0, 1)):

x⊥ε y ⇔ | 〈x |y〉 | ≤ ε ‖x‖ ‖y‖, x , y ∈ X .

Observation

x⊥ε y ⇔ ∃ z ∈ X : x⊥z , ‖z − y‖ ≤ ε‖y‖.

Indeed, if x⊥ε y take z = − 〈x |y〉‖x‖2 x + y (z = y in case x = 0).

Conversely, assuming x⊥z and ‖z − y‖ ≤ ε‖y‖,

| 〈x |y〉 | = | 〈x |y − z〉 | ≤ ‖x‖ ‖y − z‖ ≤ ε‖x‖ ‖y‖.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 2 / 28

Page 6: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Introduction — inner product space

(X , 〈·|·〉) — inner product space; x⊥y ⇔ 〈x |y〉 = 0.

Approximate orthogonality (ε-orthogonality with ε ∈ [0, 1)):

x⊥ε y ⇔ | 〈x |y〉 | ≤ ε ‖x‖ ‖y‖, x , y ∈ X .

Observation

x⊥ε y ⇔ ∃ z ∈ X : x⊥z , ‖z − y‖ ≤ ε‖y‖.

Indeed, if x⊥ε y take z = − 〈x |y〉‖x‖2 x + y (z = y in case x = 0).

Conversely, assuming x⊥z and ‖z − y‖ ≤ ε‖y‖,

| 〈x |y〉 | = | 〈x |y − z〉 | ≤ ‖x‖ ‖y − z‖ ≤ ε‖x‖ ‖y‖.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 2 / 28

Page 7: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Introduction — inner product space

(X , 〈·|·〉) — inner product space; x⊥y ⇔ 〈x |y〉 = 0.

Approximate orthogonality (ε-orthogonality with ε ∈ [0, 1)):

x⊥ε y ⇔ | 〈x |y〉 | ≤ ε ‖x‖ ‖y‖, x , y ∈ X .

Observation

x⊥ε y ⇔ ∃ z ∈ X : x⊥z , ‖z − y‖ ≤ ε‖y‖.

Indeed, if x⊥ε y take z = − 〈x |y〉‖x‖2 x + y (z = y in case x = 0).

Conversely, assuming x⊥z and ‖z − y‖ ≤ ε‖y‖,

| 〈x |y〉 | = | 〈x |y − z〉 | ≤ ‖x‖ ‖y − z‖ ≤ ε‖x‖ ‖y‖.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 2 / 28

Page 8: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Birkhoff orthogonality

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 3 / 28

Page 9: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Birkhoff orthogonalityG. Birkhoff, Orthogonality in linear metric spaces. Duke Math. J., 1 (1935), 169–172.

(X , ‖ · ‖) a real normed space.

x⊥By :⇐⇒ ∀λ ∈ R : ‖x + λy‖ ≥ ‖x‖.

xy

x+λy

Figure: R2 with the maximum norm; x⊥By

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 4 / 28

Page 10: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Birkhoff orthogonalityG. Birkhoff, Orthogonality in linear metric spaces. Duke Math. J., 1 (1935), 169–172.

(X , ‖ · ‖) a real normed space.

x⊥By :⇐⇒ ∀λ ∈ R : ‖x + λy‖ ≥ ‖x‖.

xy

x+λy

Figure: R2 with the maximum norm; x⊥By

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 4 / 28

Page 11: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Birkhoff orthogonalityG. Birkhoff, Orthogonality in linear metric spaces. Duke Math. J., 1 (1935), 169–172.

(X , ‖ · ‖) a real normed space.

x⊥By :⇐⇒ ∀λ ∈ R : ‖x + λy‖ ≥ ‖x‖.

xy

x+λy

Figure: R2 with the maximum norm; x⊥By

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 4 / 28

Page 12: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Birkhoff orthogonalityG. Birkhoff, Orthogonality in linear metric spaces. Duke Math. J., 1 (1935), 169–172.

(X , ‖ · ‖) a real normed space.

x⊥By :⇐⇒ ∀λ ∈ R : ‖x + λy‖ ≥ ‖x‖.

xy

x+λy

Figure: R2 with the maximum norm; x⊥By

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 4 / 28

Page 13: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Approximate Birkhoff orthogonality

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 5 / 28

Page 14: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Approximate Birkhoff orthogonality

For ε ∈ [0, 1) we consider an ε-Birkhoff orthogonality ⊥εB.

J. Chmielinski, On an ε-Birkhoff orthogonality, J. Inequal. Pure andAppl. Math. 6 (2005), Art. 79.

x⊥εBy :⇐⇒ ∀λ ∈ K : ‖x + λy‖2 ≥ ‖x‖2 − 2ε‖x‖ ‖λy‖.

J. Chmielinski, T. Stypu la, P. Wojcik, Approximate orthogonality innormed spaces and its applications, Linear Algebra and itsApplications 531 (2017), 305–317.

x⊥εBy ⇐⇒ ∃z ∈ Lin{x , y} : x⊥Bz , ‖z − y‖ ≤ ε‖y‖.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 6 / 28

Page 15: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Approximate Birkhoff orthogonality

For ε ∈ [0, 1) we consider an ε-Birkhoff orthogonality ⊥εB.

J. Chmielinski, On an ε-Birkhoff orthogonality, J. Inequal. Pure andAppl. Math. 6 (2005), Art. 79.

x⊥εBy :⇐⇒ ∀λ ∈ K : ‖x + λy‖2 ≥ ‖x‖2 − 2ε‖x‖ ‖λy‖.

J. Chmielinski, T. Stypu la, P. Wojcik, Approximate orthogonality innormed spaces and its applications, Linear Algebra and itsApplications 531 (2017), 305–317.

x⊥εBy ⇐⇒ ∃z ∈ Lin{x , y} : x⊥Bz , ‖z − y‖ ≤ ε‖y‖.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 6 / 28

Page 16: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Approximate Birkhoff orthogonality

For ε ∈ [0, 1) we consider an ε-Birkhoff orthogonality ⊥εB.

J. Chmielinski, On an ε-Birkhoff orthogonality, J. Inequal. Pure andAppl. Math. 6 (2005), Art. 79.

x⊥εBy :⇐⇒ ∀λ ∈ K : ‖x + λy‖2 ≥ ‖x‖2 − 2ε‖x‖ ‖λy‖.

J. Chmielinski, T. Stypu la, P. Wojcik, Approximate orthogonality innormed spaces and its applications, Linear Algebra and itsApplications 531 (2017), 305–317.

x⊥εBy ⇐⇒ ∃z ∈ Lin{x , y} : x⊥Bz , ‖z − y‖ ≤ ε‖y‖.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 6 / 28

Page 17: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Approximate Birkhoff orthogonality

For ε ∈ [0, 1) we consider an ε-Birkhoff orthogonality ⊥εB.

J. Chmielinski, On an ε-Birkhoff orthogonality, J. Inequal. Pure andAppl. Math. 6 (2005), Art. 79.

x⊥εBy :⇐⇒ ∀λ ∈ K : ‖x + λy‖2 ≥ ‖x‖2 − 2ε‖x‖ ‖λy‖.

J. Chmielinski, T. Stypu la, P. Wojcik, Approximate orthogonality innormed spaces and its applications, Linear Algebra and itsApplications 531 (2017), 305–317.

x⊥εBy ⇐⇒ ∃z ∈ Lin{x , y} : x⊥Bz , ‖z − y‖ ≤ ε‖y‖.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 6 / 28

Page 18: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Approximate Birkhoff orthogonality

For ε ∈ [0, 1) we consider an ε-Birkhoff orthogonality ⊥εB.

J. Chmielinski, On an ε-Birkhoff orthogonality, J. Inequal. Pure andAppl. Math. 6 (2005), Art. 79.

x⊥εBy :⇐⇒ ∀λ ∈ K : ‖x + λy‖2 ≥ ‖x‖2 − 2ε‖x‖ ‖λy‖.

J. Chmielinski, T. Stypu la, P. Wojcik, Approximate orthogonality innormed spaces and its applications, Linear Algebra and itsApplications 531 (2017), 305–317.

x⊥εBy ⇐⇒ ∃z ∈ Lin{x , y} : x⊥Bz , ‖z − y‖ ≤ ε‖y‖.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 6 / 28

Page 19: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

x⊥εBy ⇐⇒ ∃z ∈ Lin{x , y} : x⊥Bz , ‖z − y‖ ≤ ε‖y‖.

1−1

1

−1

x

y

z

Figure: R2 with l∞-l1-norm

x 6⊥By , x⊥z , ‖z − y‖ ≤ ε⇒ x⊥εBy .

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 7 / 28

Page 20: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

x⊥εBy ⇐⇒ ∃z ∈ Lin{x , y} : x⊥Bz , ‖z − y‖ ≤ ε‖y‖.

1−1

1

−1

x

y

z

Figure: R2 with l∞-l1-norm

x 6⊥By , x⊥z , ‖z − y‖ ≤ ε⇒ x⊥εBy .

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 7 / 28

Page 21: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

x⊥εBy ⇐⇒ ∃z ∈ Lin{x , y} : x⊥Bz , ‖z − y‖ ≤ ε‖y‖.

1−1

1

−1

x

y

z

Figure: R2 with l∞-l1-norm

x 6⊥By

, x⊥z , ‖z − y‖ ≤ ε⇒ x⊥εBy .

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 7 / 28

Page 22: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

x⊥εBy ⇐⇒ ∃z ∈ Lin{x , y} : x⊥Bz , ‖z − y‖ ≤ ε‖y‖.

1−1

1

−1

x

y

z

Figure: R2 with l∞-l1-norm

x 6⊥By , x⊥z

, ‖z − y‖ ≤ ε⇒ x⊥εBy .

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 7 / 28

Page 23: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

x⊥εBy ⇐⇒ ∃z ∈ Lin{x , y} : x⊥Bz , ‖z − y‖ ≤ ε‖y‖.

1−1

1

−1

x

y

z

Figure: R2 with l∞-l1-norm

x 6⊥By , x⊥z , ‖z − y‖ ≤ ε

⇒ x⊥εBy .

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 7 / 28

Page 24: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

x⊥εBy ⇐⇒ ∃z ∈ Lin{x , y} : x⊥Bz , ‖z − y‖ ≤ ε‖y‖.

1−1

1

−1

x

y

z

Figure: R2 with l∞-l1-norm

x 6⊥By , x⊥z , ‖z − y‖ ≤ ε⇒ x⊥εBy .

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 7 / 28

Page 25: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

For 0 6= x ∈ X we consider the class of its supporting functionals:

J(x) = {ϕ ∈ X ∗ : ‖ϕ‖ = 1, ϕ(x) = ‖x‖ }.

Theorem

Let X be a real normed space, x , y ∈ X and ε ∈ [0, 1). Then

x⊥εBy ⇔ ∃ϕ ∈ J(x) : |ϕ(y)| ≤ ε‖y‖.

In particular (James),

x⊥By ⇔ ∃ϕ ∈ J(x) : ϕ(y) = 0.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 8 / 28

Page 26: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

For 0 6= x ∈ X we consider the class of its supporting functionals:

J(x) = {ϕ ∈ X ∗ : ‖ϕ‖ = 1, ϕ(x) = ‖x‖ }.

Theorem

Let X be a real normed space, x , y ∈ X and ε ∈ [0, 1). Then

x⊥εBy ⇔ ∃ϕ ∈ J(x) : |ϕ(y)| ≤ ε‖y‖.

In particular (James),

x⊥By ⇔ ∃ϕ ∈ J(x) : ϕ(y) = 0.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 8 / 28

Page 27: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

For 0 6= x ∈ X we consider the class of its supporting functionals:

J(x) = {ϕ ∈ X ∗ : ‖ϕ‖ = 1, ϕ(x) = ‖x‖ }.

Theorem

Let X be a real normed space, x , y ∈ X and ε ∈ [0, 1). Then

x⊥εBy ⇔ ∃ϕ ∈ J(x) : |ϕ(y)| ≤ ε‖y‖.

In particular (James),

x⊥By ⇔ ∃ϕ ∈ J(x) : ϕ(y) = 0.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 8 / 28

Page 28: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Applications

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 9 / 28

Page 29: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Orthogonality of operators on a Hilbert space

H – Hilbert space; L(H) – the space of linear bounded operators on H.For T ∈ L(H):

MT := {x ∈ SH : ‖Tx‖ = ‖T‖}.

R. Bhatia, P. Semrl, Orthogonality of matrices and some distanceproblems, Linear Algebra Appl. 287 (1999), 77-85.

Theorem (Bhatia-Semrl)

Let H be a Hilbert space and let T ,S ∈ L(H). Then, the followingconditions are equivalent:

(1) T⊥BS ;

(2) ∃ (xn)∞n=1 ⊂ SH : ‖Txn‖ → ‖T‖, 〈Txn|Sxn〉 → 0 (n→∞).

Moreover, if dimH <∞ and T ,S ∈ L(H), then each of the aboveconditions is equivalent to:

(3) ∃ x0 ∈ SH : ‖Tx0‖ = ‖T‖, Tx0⊥Sx0.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 10 / 28

Page 30: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Orthogonality of operators on a Hilbert space

H – Hilbert space; L(H) – the space of linear bounded operators on H.For T ∈ L(H):

MT := {x ∈ SH : ‖Tx‖ = ‖T‖}.

R. Bhatia, P. Semrl, Orthogonality of matrices and some distanceproblems, Linear Algebra Appl. 287 (1999), 77-85.

Theorem (Bhatia-Semrl)

Let H be a Hilbert space and let T ,S ∈ L(H). Then, the followingconditions are equivalent:

(1) T⊥BS ;

(2) ∃ (xn)∞n=1 ⊂ SH : ‖Txn‖ → ‖T‖, 〈Txn|Sxn〉 → 0 (n→∞).

Moreover, if dimH <∞ and T ,S ∈ L(H), then each of the aboveconditions is equivalent to:

(3) ∃ x0 ∈ SH : ‖Tx0‖ = ‖T‖, Tx0⊥Sx0.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 10 / 28

Page 31: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Orthogonality of operators on a Hilbert space

H – Hilbert space; L(H) – the space of linear bounded operators on H.For T ∈ L(H):

MT := {x ∈ SH : ‖Tx‖ = ‖T‖}.

R. Bhatia, P. Semrl, Orthogonality of matrices and some distanceproblems, Linear Algebra Appl. 287 (1999), 77-85.

Theorem (Bhatia-Semrl)

Let H be a Hilbert space and let T ,S ∈ L(H). Then, the followingconditions are equivalent:

(1) T⊥BS ;

(2) ∃ (xn)∞n=1 ⊂ SH : ‖Txn‖ → ‖T‖, 〈Txn|Sxn〉 → 0 (n→∞).

Moreover, if dimH <∞ and T ,S ∈ L(H), then each of the aboveconditions is equivalent to:

(3) ∃ x0 ∈ SH : ‖Tx0‖ = ‖T‖, Tx0⊥Sx0.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 10 / 28

Page 32: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Orthogonality of operators on a Hilbert space

H – Hilbert space; L(H) – the space of linear bounded operators on H.For T ∈ L(H):

MT := {x ∈ SH : ‖Tx‖ = ‖T‖}.

R. Bhatia, P. Semrl, Orthogonality of matrices and some distanceproblems, Linear Algebra Appl. 287 (1999), 77-85.

Theorem (Bhatia-Semrl)

Let H be a Hilbert space and let T , S ∈ L(H). Then, the followingconditions are equivalent:

(1) T⊥BS ;

(2) ∃ (xn)∞n=1 ⊂ SH : ‖Txn‖ → ‖T‖, 〈Txn|Sxn〉 → 0 (n→∞).

Moreover, if dimH <∞ and T ,S ∈ L(H), then each of the aboveconditions is equivalent to:

(3) ∃ x0 ∈ SH : ‖Tx0‖ = ‖T‖, Tx0⊥Sx0.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 10 / 28

Page 33: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Approximate orthogonality in L(H)

H – Hilbert space; T ∈ L(H); MT := {x ∈ SH : ‖Tx‖ = ‖T‖}.

Theorem

For T ,S ∈ L(H) the following conditions are equivalent:

(1) T⊥εBS ;

(2) ∃ (xn)∞n=1 ⊂ SH : ‖Txn‖ → ‖T‖, limn→∞ | 〈Txn|Sxn〉 | ≤ ε‖T‖ ‖S‖.

Moreover, if dimH <∞, then the above conditions are equivalent to

(3) ∃ x0 ∈ SH : ‖Tx0‖ = ‖T‖, | 〈Tx0|Sx0〉 | ≤ ε‖T‖ ‖S‖.

If dimH <∞ or if T is compact and if additionally MT ⊂ MS , the abovethree conditions are equivalent also to

(4) ∃ x0 ∈ SH : ‖Tx0‖ = ‖T‖, Tx0⊥εSx0.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 11 / 28

Page 34: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Approximate orthogonality in L(H)

H – Hilbert space; T ∈ L(H); MT := {x ∈ SH : ‖Tx‖ = ‖T‖}.

Theorem

For T ,S ∈ L(H) the following conditions are equivalent:

(1) T⊥εBS ;

(2) ∃ (xn)∞n=1 ⊂ SH : ‖Txn‖ → ‖T‖, limn→∞ | 〈Txn|Sxn〉 | ≤ ε‖T‖ ‖S‖.

Moreover, if dimH <∞, then the above conditions are equivalent to

(3) ∃ x0 ∈ SH : ‖Tx0‖ = ‖T‖, | 〈Tx0|Sx0〉 | ≤ ε‖T‖ ‖S‖.

If dimH <∞ or if T is compact and if additionally MT ⊂ MS , the abovethree conditions are equivalent also to

(4) ∃ x0 ∈ SH : ‖Tx0‖ = ‖T‖, Tx0⊥εSx0.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 11 / 28

Page 35: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Approximate orthogonality in L(H)

H – Hilbert space; T ∈ L(H); MT := {x ∈ SH : ‖Tx‖ = ‖T‖}.

Theorem

For T , S ∈ L(H) the following conditions are equivalent:

(1) T⊥εBS ;

(2) ∃ (xn)∞n=1 ⊂ SH : ‖Txn‖ → ‖T‖, limn→∞ | 〈Txn|Sxn〉 | ≤ ε‖T‖ ‖S‖.

Moreover, if dimH <∞, then the above conditions are equivalent to

(3) ∃ x0 ∈ SH : ‖Tx0‖ = ‖T‖, | 〈Tx0|Sx0〉 | ≤ ε‖T‖ ‖S‖.

If dimH <∞ or if T is compact and if additionally MT ⊂ MS , the abovethree conditions are equivalent also to

(4) ∃ x0 ∈ SH : ‖Tx0‖ = ‖T‖, Tx0⊥εSx0.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 11 / 28

Page 36: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Approximate orthogonality in L(H)

H – Hilbert space; T ∈ L(H); MT := {x ∈ SH : ‖Tx‖ = ‖T‖}.

Theorem

For T , S ∈ L(H) the following conditions are equivalent:

(1) T⊥εBS ;

(2) ∃ (xn)∞n=1 ⊂ SH : ‖Txn‖ → ‖T‖, limn→∞ | 〈Txn|Sxn〉 | ≤ ε‖T‖ ‖S‖.

Moreover, if dimH <∞, then the above conditions are equivalent to

(3) ∃ x0 ∈ SH : ‖Tx0‖ = ‖T‖, | 〈Tx0|Sx0〉 | ≤ ε‖T‖ ‖S‖.

If dimH <∞ or if T is compact and if additionally MT ⊂ MS , the abovethree conditions are equivalent also to

(4) ∃ x0 ∈ SH : ‖Tx0‖ = ‖T‖, Tx0⊥εSx0.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 11 / 28

Page 37: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Approximate orthogonality in L(H)

H – Hilbert space; T ∈ L(H); MT := {x ∈ SH : ‖Tx‖ = ‖T‖}.

Theorem

For T , S ∈ L(H) the following conditions are equivalent:

(1) T⊥εBS ;

(2) ∃ (xn)∞n=1 ⊂ SH : ‖Txn‖ → ‖T‖, limn→∞ | 〈Txn|Sxn〉 | ≤ ε‖T‖ ‖S‖.

Moreover, if dimH <∞, then the above conditions are equivalent to

(3) ∃ x0 ∈ SH : ‖Tx0‖ = ‖T‖, | 〈Tx0|Sx0〉 | ≤ ε‖T‖ ‖S‖.

If dimH <∞ or if T is compact and if additionally MT ⊂ MS , the abovethree conditions are equivalent also to

(4) ∃ x0 ∈ SH : ‖Tx0‖ = ‖T‖, Tx0⊥εSx0.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 11 / 28

Page 38: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Approximate orthogonality in L(H)

H – Hilbert space; T ∈ L(H); MT := {x ∈ SH : ‖Tx‖ = ‖T‖}.

Theorem

For T , S ∈ L(H) the following conditions are equivalent:

(1) T⊥εBS ;

(2) ∃ (xn)∞n=1 ⊂ SH : ‖Txn‖ → ‖T‖, limn→∞ | 〈Txn|Sxn〉 | ≤ ε‖T‖ ‖S‖.

Moreover, if dimH <∞, then the above conditions are equivalent to

(3) ∃ x0 ∈ SH : ‖Tx0‖ = ‖T‖, | 〈Tx0|Sx0〉 | ≤ ε‖T‖ ‖S‖.

If dimH <∞ or if T is compact and if additionally MT ⊂ MS , the abovethree conditions are equivalent also to

(4) ∃ x0 ∈ SH : ‖Tx0‖ = ‖T‖, Tx0⊥εSx0.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 11 / 28

Page 39: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Approximate orthogonality in L(H)

H – Hilbert space; T ∈ L(H); MT := {x ∈ SH : ‖Tx‖ = ‖T‖}.

Theorem

For T , S ∈ L(H) the following conditions are equivalent:

(1) T⊥εBS ;

(2) ∃ (xn)∞n=1 ⊂ SH : ‖Txn‖ → ‖T‖, limn→∞ | 〈Txn|Sxn〉 | ≤ ε‖T‖ ‖S‖.

Moreover, if dimH <∞, then the above conditions are equivalent to

(3) ∃ x0 ∈ SH : ‖Tx0‖ = ‖T‖, | 〈Tx0|Sx0〉 | ≤ ε‖T‖ ‖S‖.

If dimH <∞ or if T is compact and if additionally MT ⊂ MS , the abovethree conditions are equivalent also to

(4) ∃ x0 ∈ SH : ‖Tx0‖ = ‖T‖, Tx0⊥εSx0.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 11 / 28

Page 40: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Approximate orthogonality in C0(K )

L(H) Let K be a locally compact topological space.

C0(K ) := {f : K → R cont. : ∀ ε > 0, {t ∈ K : |f (t)| ≥ ε} compact}

– with the supremum norm. For f ∈ C0(K ), Mf := {t ∈ K : |f (t)| = ‖f ‖}(nonempty and compact).

Theorem

Let f , g ∈ C0(K ), f 6= 0 6= g . Assume that Mf is connected. Then, thefollowing conditions are equivalent:

(a) f⊥εBg ,

(b) ∃ t1 ∈ Mf : |g(t1)| ≤ ε‖g‖.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 12 / 28

Page 41: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Approximate orthogonality in C0(K )

L(H) Let K be a locally compact topological space.

C0(K ) := {f : K → R cont. : ∀ ε > 0, {t ∈ K : |f (t)| ≥ ε} compact}

– with the supremum norm. For f ∈ C0(K ), Mf := {t ∈ K : |f (t)| = ‖f ‖}(nonempty and compact).

Theorem

Let f , g ∈ C0(K ), f 6= 0 6= g . Assume that Mf is connected. Then, thefollowing conditions are equivalent:

(a) f⊥εBg ,

(b) ∃ t1 ∈ Mf : |g(t1)| ≤ ε‖g‖.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 12 / 28

Page 42: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Approximate orthogonality in C0(K )

L(H) Let K be a locally compact topological space.

C0(K ) := {f : K → R cont. : ∀ ε > 0, {t ∈ K : |f (t)| ≥ ε} compact}

– with the supremum norm. For f ∈ C0(K ), Mf := {t ∈ K : |f (t)| = ‖f ‖}(nonempty and compact).

Theorem

Let f , g ∈ C0(K ), f 6= 0 6= g . Assume that Mf is connected. Then, thefollowing conditions are equivalent:

(a) f⊥εBg ,

(b) ∃ t1 ∈ Mf : |g(t1)| ≤ ε‖g‖.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 12 / 28

Page 43: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Approximate orthogonality in C0(K )

L(H) Let K be a locally compact topological space.

C0(K ) := {f : K → R cont. : ∀ ε > 0, {t ∈ K : |f (t)| ≥ ε} compact}

– with the supremum norm. For f ∈ C0(K ), Mf := {t ∈ K : |f (t)| = ‖f ‖}(nonempty and compact).

Theorem

Let f , g ∈ C0(K ), f 6= 0 6= g . Assume that Mf is connected. Then, thefollowing conditions are equivalent:

(a) f⊥εBg ,

(b) ∃ t1 ∈ Mf : |g(t1)| ≤ ε‖g‖.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 12 / 28

Page 44: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Approximate orthogonality in C0(K )

L(H) Let K be a locally compact topological space.

C0(K ) := {f : K → R cont. : ∀ ε > 0, {t ∈ K : |f (t)| ≥ ε} compact}

– with the supremum norm. For f ∈ C0(K ), Mf := {t ∈ K : |f (t)| = ‖f ‖}(nonempty and compact).

Theorem

Let f , g ∈ C0(K ), f 6= 0 6= g . Assume that Mf is connected. Then, thefollowing conditions are equivalent:

(a) f⊥εBg ,

(b) ∃ t1 ∈ Mf : |g(t1)| ≤ ε‖g‖.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 12 / 28

Page 45: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Approximate orthogonality in C0(K )

L(H) Let K be a locally compact topological space.

C0(K ) := {f : K → R cont. : ∀ ε > 0, {t ∈ K : |f (t)| ≥ ε} compact}

– with the supremum norm. For f ∈ C0(K ), Mf := {t ∈ K : |f (t)| = ‖f ‖}(nonempty and compact).

Theorem

Let f , g ∈ C0(K ), f 6= 0 6= g . Assume that Mf is connected. Then, thefollowing conditions are equivalent:

(a) f⊥εBg ,

(b) ∃ t1 ∈ Mf : |g(t1)| ≤ ε‖g‖.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 12 / 28

Page 46: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Approximate symmetry of B-orthogonality

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 13 / 28

Page 47: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Symmetry of ⊥B

Birkhoff orthogonality ⊥B is generally not symmetric.

x

y

x+λy

y+λx

Figure: R2 with the maximum norm; x⊥By , y 6⊥Bx

If dimX ≥ 3 and ⊥B – symmetric, then X is an inner product space.If dimX = 2, then the symmetry of ⊥B is possible even if the norm doesnot come from an inner product (Radon plane).

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 14 / 28

Page 48: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Symmetry of ⊥B

Birkhoff orthogonality ⊥B is generally not symmetric.

x

y

x+λy

y+λx

Figure: R2 with the maximum norm; x⊥By , y 6⊥Bx

If dimX ≥ 3 and ⊥B – symmetric, then X is an inner product space.If dimX = 2, then the symmetry of ⊥B is possible even if the norm doesnot come from an inner product (Radon plane).

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 14 / 28

Page 49: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Symmetry of ⊥B

Birkhoff orthogonality ⊥B is generally not symmetric.

x

y

x+λy

y+λx

Figure: R2 with the maximum norm; x⊥By , y 6⊥Bx

If dimX ≥ 3 and ⊥B – symmetric, then X is an inner product space.If dimX = 2, then the symmetry of ⊥B is possible even if the norm doesnot come from an inner product (Radon plane).

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 14 / 28

Page 50: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Symmetry of ⊥B

Birkhoff orthogonality ⊥B is generally not symmetric.

x

y

x+λy

y+λx

Figure: R2 with the maximum norm; x⊥By , y 6⊥Bx

If dimX ≥ 3 and ⊥B – symmetric, then X is an inner product space.

If dimX = 2, then the symmetry of ⊥B is possible even if the norm doesnot come from an inner product (Radon plane).

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 14 / 28

Page 51: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Symmetry of ⊥B

Birkhoff orthogonality ⊥B is generally not symmetric.

x

y

x+λy

y+λx

Figure: R2 with the maximum norm; x⊥By , y 6⊥Bx

If dimX ≥ 3 and ⊥B – symmetric, then X is an inner product space.If dimX = 2, then the symmetry of ⊥B is possible even if the norm doesnot come from an inner product (Radon plane).

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 14 / 28

Page 52: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Approximate symmetry of ⊥B

J. Chmielinski, P. Wojcik, Approximate symmetry of the Birkhofforthogonality, J. Math. Anal. Appl. 461 (2018), 625–640.

Definition

The Birkhoff orthogonality relation in a normed space X is calledε-symmetric (for some ε ∈ [0, 1)), if for any x , y ∈ X :

x⊥By =⇒ y⊥εBx .

⊥B is ε-symmetric for some ε ∈ [0, 1) if and only if:

x⊥By =⇒ ∃ z ∈ Lin {x , y} : y⊥Bz , ‖z − x‖ ≤ ε‖x‖.

The approximate symmetry of ⊥B does not imply that the norm comesfrom an inner product (even if dimX ≥ 3).

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 15 / 28

Page 53: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Approximate symmetry of ⊥B

J. Chmielinski, P. Wojcik, Approximate symmetry of the Birkhofforthogonality, J. Math. Anal. Appl. 461 (2018), 625–640.

Definition

The Birkhoff orthogonality relation in a normed space X is calledε-symmetric (for some ε ∈ [0, 1)), if for any x , y ∈ X :

x⊥By =⇒ y⊥εBx .

⊥B is ε-symmetric for some ε ∈ [0, 1) if and only if:

x⊥By =⇒ ∃ z ∈ Lin {x , y} : y⊥Bz , ‖z − x‖ ≤ ε‖x‖.

The approximate symmetry of ⊥B does not imply that the norm comesfrom an inner product (even if dimX ≥ 3).

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 15 / 28

Page 54: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Approximate symmetry of ⊥B

J. Chmielinski, P. Wojcik, Approximate symmetry of the Birkhofforthogonality, J. Math. Anal. Appl. 461 (2018), 625–640.

Definition

The Birkhoff orthogonality relation in a normed space X is calledε-symmetric (for some ε ∈ [0, 1)), if for any x , y ∈ X :

x⊥By =⇒ y⊥εBx .

⊥B is ε-symmetric for some ε ∈ [0, 1) if and only if:

x⊥By =⇒ ∃ z ∈ Lin {x , y} : y⊥Bz , ‖z − x‖ ≤ ε‖x‖.

The approximate symmetry of ⊥B does not imply that the norm comesfrom an inner product (even if dimX ≥ 3).

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 15 / 28

Page 55: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Approximate symmetry of ⊥B

J. Chmielinski, P. Wojcik, Approximate symmetry of the Birkhofforthogonality, J. Math. Anal. Appl. 461 (2018), 625–640.

Definition

The Birkhoff orthogonality relation in a normed space X is calledε-symmetric (for some ε ∈ [0, 1)), if for any x , y ∈ X :

x⊥By =⇒ y⊥εBx .

⊥B is ε-symmetric for some ε ∈ [0, 1) if and only if:

x⊥By =⇒ ∃ z ∈ Lin {x , y} : y⊥Bz , ‖z − x‖ ≤ ε‖x‖.

The approximate symmetry of ⊥B does not imply that the norm comesfrom an inner product (even if dimX ≥ 3).

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 15 / 28

Page 56: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Approximate symmetry of ⊥B

J. Chmielinski, P. Wojcik, Approximate symmetry of the Birkhofforthogonality, J. Math. Anal. Appl. 461 (2018), 625–640.

Definition

The Birkhoff orthogonality relation in a normed space X is calledε-symmetric (for some ε ∈ [0, 1)), if for any x , y ∈ X :

x⊥By =⇒ y⊥εBx .

⊥B is ε-symmetric for some ε ∈ [0, 1) if and only if:

x⊥By =⇒ ∃ z ∈ Lin {x , y} : y⊥Bz , ‖z − x‖ ≤ ε‖x‖.

The approximate symmetry of ⊥B does not imply that the norm comesfrom an inner product (even if dimX ≥ 3).

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 15 / 28

Page 57: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Sufficient conditions for approximate symmetry of ⊥B

A modulus of convexity of a normed space X , δX : [0, 2]→ [0, 1]:

δX (ε) := inf{

1−∥∥∥x + y

2

∥∥∥ : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x − y‖ ≥ ε}.

Theorem

If δX (1) > 0 and 1− 2δX (1) ≤ ε < 1, relation ⊥B is ε-symmetric.

Corollary

Suppose that for any ε ∈ [0, 1) the relation ⊥B is not ε-symmetric. Then

ε0(X ) := sup{ε ∈ [0, 2] : δX (ε) = 0} ≥ 1.

Moreover, if X is finite-dimensional, then R(X ) ≥ 1.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 16 / 28

Page 58: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Sufficient conditions for approximate symmetry of ⊥B

A modulus of convexity of a normed space X , δX : [0, 2]→ [0, 1]:

δX (ε) := inf{

1−∥∥∥x + y

2

∥∥∥ : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x − y‖ ≥ ε}.

Theorem

If δX (1) > 0 and 1− 2δX (1) ≤ ε < 1, relation ⊥B is ε-symmetric.

Corollary

Suppose that for any ε ∈ [0, 1) the relation ⊥B is not ε-symmetric. Then

ε0(X ) := sup{ε ∈ [0, 2] : δX (ε) = 0} ≥ 1.

Moreover, if X is finite-dimensional, then R(X ) ≥ 1.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 16 / 28

Page 59: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Sufficient conditions for approximate symmetry of ⊥B

A modulus of convexity of a normed space X , δX : [0, 2]→ [0, 1]:

δX (ε) := inf{

1−∥∥∥x + y

2

∥∥∥ : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x − y‖ ≥ ε}.

Theorem

If δX (1) > 0 and 1− 2δX (1) ≤ ε < 1, relation ⊥B is ε-symmetric.

Corollary

Suppose that for any ε ∈ [0, 1) the relation ⊥B is not ε-symmetric. Then

ε0(X ) := sup{ε ∈ [0, 2] : δX (ε) = 0} ≥ 1.

Moreover, if X is finite-dimensional, then R(X ) ≥ 1.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 16 / 28

Page 60: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Sufficient conditions for approximate symmetry of ⊥B

A modulus of convexity of a normed space X , δX : [0, 2]→ [0, 1]:

δX (ε) := inf{

1−∥∥∥x + y

2

∥∥∥ : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x − y‖ ≥ ε}.

Theorem

If δX (1) > 0 and 1− 2δX (1) ≤ ε < 1, relation ⊥B is ε-symmetric.

Corollary

Suppose that for any ε ∈ [0, 1) the relation ⊥B is not ε-symmetric. Then

ε0(X ) := sup{ε ∈ [0, 2] : δX (ε) = 0} ≥ 1.

Moreover, if X is finite-dimensional, then R(X ) ≥ 1.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 16 / 28

Page 61: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Sufficient conditions for approximate symmetry of ⊥B

Theorem

Let X be a real, uniformly convex normed space.Then, ⊥B is approximately-symmetric.

Theorem

Let X be a finite-dimensional real smooth normed space.Then, ⊥B is approximately-symmetric.

Theorem

Let X be a real uniformly convex and smooth Banach space. Then, theBirkhoff orthogonality relations in X , X ∗ and X ∗∗ are approximatelysymmetric (actually, with the same ε).

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 17 / 28

Page 62: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Sufficient conditions for approximate symmetry of ⊥B

Theorem

Let X be a real, uniformly convex normed space.Then, ⊥B is approximately-symmetric.

Theorem

Let X be a finite-dimensional real smooth normed space.Then, ⊥B is approximately-symmetric.

Theorem

Let X be a real uniformly convex and smooth Banach space. Then, theBirkhoff orthogonality relations in X , X ∗ and X ∗∗ are approximatelysymmetric (actually, with the same ε).

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 17 / 28

Page 63: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Sufficient conditions for approximate symmetry of ⊥B

Theorem

Let X be a real, uniformly convex normed space.Then, ⊥B is approximately-symmetric.

Theorem

Let X be a finite-dimensional real smooth normed space.Then, ⊥B is approximately-symmetric.

Theorem

Let X be a real uniformly convex and smooth Banach space. Then, theBirkhoff orthogonality relations in X , X ∗ and X ∗∗ are approximatelysymmetric (actually, with the same ε).

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 17 / 28

Page 64: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

There are spaces in which the Birkhoff orthogonality is not approximatelysymmetric, i.e., for any ε ∈ [0, 1), ⊥B is not ε-symmetric.

Example

X = R2 with the maximum norm.

x

yz

y+λx

y + λz

Figure: x⊥By , y 6⊥Bx , y 6⊥Bz , y 6⊥εBx

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 18 / 28

Page 65: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

There are spaces in which the Birkhoff orthogonality is not approximatelysymmetric, i.e., for any ε ∈ [0, 1), ⊥B is not ε-symmetric.

Example

X = R2 with the maximum norm.

x

yz

y+λx

y + λz

Figure: x⊥By , y 6⊥Bx , y 6⊥Bz , y 6⊥εBx

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 18 / 28

Page 66: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

There are spaces in which the Birkhoff orthogonality is not approximatelysymmetric, i.e., for any ε ∈ [0, 1), ⊥B is not ε-symmetric.

Example

X = R2 with the maximum norm.

x

yz

y+λx

y + λz

Figure: x⊥By , y 6⊥Bx , y 6⊥Bz , y 6⊥εBx

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 18 / 28

Page 67: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Geometrical properties connected with approximatesymmetry of B-orthogonality

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 19 / 28

Page 68: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

R(X ) := sup{‖x − y‖ : conv {x , y} ⊂ SX}.

We consider the following property of X :

x , y ∈ X , x 6= y , conv {x , y} ⊂ SX =⇒ X is smooth at x − y . (∗)

Examples

Each smooth or strictly convex space satisfies (∗).R2 with the supremum norm (which is neither strictly convex nor smooth)also satisfies (∗).X = R2 with the norm for which the unit ball is a symmetric polygon suchthat sides are not parallel to diagonals, the condition (∗) is satisfied.

Theorem

Let X be a two-dimensional strictly convex normed space and let Y be astrictly convex and smooth normed space. Then the space L (X ,Y )satisfies (∗).

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 20 / 28

Page 69: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

R(X ) := sup{‖x − y‖ : conv {x , y} ⊂ SX}.

We consider the following property of X :

x , y ∈ X , x 6= y , conv {x , y} ⊂ SX =⇒ X is smooth at x − y . (∗)

Examples

Each smooth or strictly convex space satisfies (∗).R2 with the supremum norm (which is neither strictly convex nor smooth)also satisfies (∗).X = R2 with the norm for which the unit ball is a symmetric polygon suchthat sides are not parallel to diagonals, the condition (∗) is satisfied.

Theorem

Let X be a two-dimensional strictly convex normed space and let Y be astrictly convex and smooth normed space. Then the space L (X ,Y )satisfies (∗).

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 20 / 28

Page 70: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

R(X ) := sup{‖x − y‖ : conv {x , y} ⊂ SX}.

We consider the following property of X :

x , y ∈ X , x 6= y , conv {x , y} ⊂ SX =⇒ X is smooth at x − y . (∗)

Examples

Each smooth or strictly convex space satisfies (∗).

R2 with the supremum norm (which is neither strictly convex nor smooth)also satisfies (∗).X = R2 with the norm for which the unit ball is a symmetric polygon suchthat sides are not parallel to diagonals, the condition (∗) is satisfied.

Theorem

Let X be a two-dimensional strictly convex normed space and let Y be astrictly convex and smooth normed space. Then the space L (X ,Y )satisfies (∗).

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 20 / 28

Page 71: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

R(X ) := sup{‖x − y‖ : conv {x , y} ⊂ SX}.

We consider the following property of X :

x , y ∈ X , x 6= y , conv {x , y} ⊂ SX =⇒ X is smooth at x − y . (∗)

Examples

Each smooth or strictly convex space satisfies (∗).R2 with the supremum norm (which is neither strictly convex nor smooth)also satisfies (∗).

X = R2 with the norm for which the unit ball is a symmetric polygon suchthat sides are not parallel to diagonals, the condition (∗) is satisfied.

Theorem

Let X be a two-dimensional strictly convex normed space and let Y be astrictly convex and smooth normed space. Then the space L (X ,Y )satisfies (∗).

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 20 / 28

Page 72: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

R(X ) := sup{‖x − y‖ : conv {x , y} ⊂ SX}.

We consider the following property of X :

x , y ∈ X , x 6= y , conv {x , y} ⊂ SX =⇒ X is smooth at x − y . (∗)

Examples

Each smooth or strictly convex space satisfies (∗).R2 with the supremum norm (which is neither strictly convex nor smooth)also satisfies (∗).X = R2 with the norm for which the unit ball is a symmetric polygon suchthat sides are not parallel to diagonals, the condition (∗) is satisfied.

Theorem

Let X be a two-dimensional strictly convex normed space and let Y be astrictly convex and smooth normed space. Then the space L (X ,Y )satisfies (∗).

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 20 / 28

Page 73: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

R(X ) := sup{‖x − y‖ : conv {x , y} ⊂ SX}.

We consider the following property of X :

x , y ∈ X , x 6= y , conv {x , y} ⊂ SX =⇒ X is smooth at x − y . (∗)

Examples

Each smooth or strictly convex space satisfies (∗).R2 with the supremum norm (which is neither strictly convex nor smooth)also satisfies (∗).X = R2 with the norm for which the unit ball is a symmetric polygon suchthat sides are not parallel to diagonals, the condition (∗) is satisfied.

Theorem

Let X be a two-dimensional strictly convex normed space and let Y be astrictly convex and smooth normed space. Then the space L (X ,Y )satisfies (∗).

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 20 / 28

Page 74: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Theorem

Let X be a real normed space satisfying (∗) and let ε ∈ (0, 1). If theorthogonality relation ⊥B in X is ε-symmetric, then R(X ) ≤ 2ε.

Corollary

If X is a real normed space satisfying (∗) and R(X ) = 2, then the Birkhofforthogonality in X is not approximately symmetric.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 21 / 28

Page 75: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Theorem

Let X be a real normed space satisfying (∗) and let ε ∈ (0, 1). If theorthogonality relation ⊥B in X is ε-symmetric, then R(X ) ≤ 2ε.

Corollary

If X is a real normed space satisfying (∗) and R(X ) = 2, then the Birkhofforthogonality in X is not approximately symmetric.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 21 / 28

Page 76: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Symmetry constant S(X )

Definition

S(X ) := inf{ε ∈ [0, 1] : ∀ x , y ∈ X x⊥By ⇒ y⊥εBx}.

S(X ) ∈ [0, 1]S(X ) = 0 means that ⊥B is symmetric.S(X ) = 1 means that ⊥B is not approximately symmetric.

S(X ) = sup{S(X0) : X0 is a two-dimensional subspace of X}.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 22 / 28

Page 77: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Symmetry constant S(X )

Definition

S(X ) := inf{ε ∈ [0, 1] : ∀ x , y ∈ X x⊥By ⇒ y⊥εBx}.

S(X ) ∈ [0, 1]S(X ) = 0 means that ⊥B is symmetric.S(X ) = 1 means that ⊥B is not approximately symmetric.

S(X ) = sup{S(X0) : X0 is a two-dimensional subspace of X}.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 22 / 28

Page 78: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Symmetry constant S(X )

Definition

S(X ) := inf{ε ∈ [0, 1] : ∀ x , y ∈ X x⊥By ⇒ y⊥εBx}.

S(X ) ∈ [0, 1]

S(X ) = 0 means that ⊥B is symmetric.S(X ) = 1 means that ⊥B is not approximately symmetric.

S(X ) = sup{S(X0) : X0 is a two-dimensional subspace of X}.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 22 / 28

Page 79: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Symmetry constant S(X )

Definition

S(X ) := inf{ε ∈ [0, 1] : ∀ x , y ∈ X x⊥By ⇒ y⊥εBx}.

S(X ) ∈ [0, 1]S(X ) = 0 means that ⊥B is symmetric.

S(X ) = 1 means that ⊥B is not approximately symmetric.

S(X ) = sup{S(X0) : X0 is a two-dimensional subspace of X}.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 22 / 28

Page 80: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Symmetry constant S(X )

Definition

S(X ) := inf{ε ∈ [0, 1] : ∀ x , y ∈ X x⊥By ⇒ y⊥εBx}.

S(X ) ∈ [0, 1]S(X ) = 0 means that ⊥B is symmetric.S(X ) = 1 means that ⊥B is not approximately symmetric.

S(X ) = sup{S(X0) : X0 is a two-dimensional subspace of X}.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 22 / 28

Page 81: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Symmetry constant S(X )

Definition

S(X ) := inf{ε ∈ [0, 1] : ∀ x , y ∈ X x⊥By ⇒ y⊥εBx}.

S(X ) ∈ [0, 1]S(X ) = 0 means that ⊥B is symmetric.S(X ) = 1 means that ⊥B is not approximately symmetric.

S(X ) = sup{S(X0) : X0 is a two-dimensional subspace of X}.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 22 / 28

Page 82: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

If X is uniformly convex, then S(X ) < 1 (the reverse is not true).

If X satisfies (∗), then1

2R(X ) ≤ S(X ).

If X is a real uniformly convex and smooth Banach space, then

S(X ) = S(X ∗) = S(X ∗∗) < 1.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 23 / 28

Page 83: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

If X is uniformly convex, then S(X ) < 1 (the reverse is not true).

If X satisfies (∗), then1

2R(X ) ≤ S(X ).

If X is a real uniformly convex and smooth Banach space, then

S(X ) = S(X ∗) = S(X ∗∗) < 1.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 23 / 28

Page 84: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

If X is uniformly convex, then S(X ) < 1 (the reverse is not true).

If X satisfies (∗), then1

2R(X ) ≤ S(X ).

If X is a real uniformly convex and smooth Banach space, then

S(X ) = S(X ∗) = S(X ∗∗) < 1.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 23 / 28

Page 85: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Example

Let X = R2 with an l1-l∞ norm.

For δ > 0 let Y = Yδ = R2 with the norm such that the unit sphere is ahexagon with vertices at

y1 = (1, 0), y2 = (0, 1), y3 = (−1− δ, 1− δ), y4 = (−1, 0),

y5 = (0,−1), y6 = (1 + δ,−1 + δ).

x1 = y1

x2 = y2

x3

y3

x4 = y4

x5 = y5 x6

y6

Figure: Unit spheres in X and Y

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 24 / 28

Page 86: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Example

Let X = R2 with an l1-l∞ norm.For δ > 0 let Y = Yδ = R2 with the norm such that the unit sphere is ahexagon with vertices at

y1 = (1, 0), y2 = (0, 1), y3 = (−1− δ, 1− δ), y4 = (−1, 0),

y5 = (0,−1), y6 = (1 + δ,−1 + δ).

x1 = y1

x2 = y2

x3

y3

x4 = y4

x5 = y5 x6

y6

Figure: Unit spheres in X and Y

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 24 / 28

Page 87: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Example

Let X = R2 with an l1-l∞ norm.For δ > 0 let Y = Yδ = R2 with the norm such that the unit sphere is ahexagon with vertices at

y1 = (1, 0), y2 = (0, 1), y3 = (−1− δ, 1− δ), y4 = (−1, 0),

y5 = (0,−1), y6 = (1 + δ,−1 + δ).

x1 = y1

x2 = y2

x3

y3

x4 = y4

x5 = y5 x6

y6

Figure: Unit spheres in X and Y

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 24 / 28

Page 88: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

It can be checked that the Banach-Mazur distance d(X ,Y ) can bearbitrarily close to 1; namely:

d(X ,Y ) ≤ 1 + δ

1− δ.

The space X is a Radon plane, therefore S(X ) = 0.

No matter how small is δ > 0, the space Y satisfies (∗), whence

S(Y ) ≥ 1

2R(Y ) >

1

2.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 25 / 28

Page 89: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

It can be checked that the Banach-Mazur distance d(X ,Y ) can bearbitrarily close to 1; namely:

d(X ,Y ) ≤ 1 + δ

1− δ.

The space X is a Radon plane, therefore S(X ) = 0.

No matter how small is δ > 0, the space Y satisfies (∗), whence

S(Y ) ≥ 1

2R(Y ) >

1

2.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 25 / 28

Page 90: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

It can be checked that the Banach-Mazur distance d(X ,Y ) can bearbitrarily close to 1; namely:

d(X ,Y ) ≤ 1 + δ

1− δ.

The space X is a Radon plane, therefore S(X ) = 0.

No matter how small is δ > 0, the space Y satisfies (∗)

, whence

S(Y ) ≥ 1

2R(Y ) >

1

2.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 25 / 28

Page 91: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

It can be checked that the Banach-Mazur distance d(X ,Y ) can bearbitrarily close to 1; namely:

d(X ,Y ) ≤ 1 + δ

1− δ.

The space X is a Radon plane, therefore S(X ) = 0.

No matter how small is δ > 0, the space Y satisfies (∗), whence

S(Y ) ≥ 1

2R(Y ) >

1

2.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 25 / 28

Page 92: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

S(lpn ) (p > 1)

The Banach-Mazur distance between lpn and l2n is equal to:

d := d(lpn , l2n ) = n

∣∣∣ 1p− 1

2

∣∣∣.

We were able to estimate that for p > 1, sufficiently close to 2, we have

S(lpn ) ≤ max

{(2p −

(1 +

1

d2

)p) 1p

,

(2q −

(1 +

1

d2

)q) 1q

}

(with q such that 1p + 1

q = 1).If p → 2, then q → 2 and d → 1.Therefore

limp→2

S(lpn ) = 0 = S(l2n ).

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 26 / 28

Page 93: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

S(lpn ) (p > 1)

The Banach-Mazur distance between lpn and l2n is equal to:

d := d(lpn , l2n ) = n

∣∣∣ 1p− 1

2

∣∣∣.

We were able to estimate that for p > 1, sufficiently close to 2, we have

S(lpn ) ≤ max

{(2p −

(1 +

1

d2

)p) 1p

,

(2q −

(1 +

1

d2

)q) 1q

}

(with q such that 1p + 1

q = 1).If p → 2, then q → 2 and d → 1.Therefore

limp→2

S(lpn ) = 0 = S(l2n ).

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 26 / 28

Page 94: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

S(lpn ) (p > 1)

The Banach-Mazur distance between lpn and l2n is equal to:

d := d(lpn , l2n ) = n

∣∣∣ 1p− 1

2

∣∣∣.

We were able to estimate that for p > 1, sufficiently close to 2, we have

S(lpn ) ≤ max

{(2p −

(1 +

1

d2

)p) 1p

,

(2q −

(1 +

1

d2

)q) 1q

}

(with q such that 1p + 1

q = 1).If p → 2, then q → 2 and d → 1.Therefore

limp→2

S(lpn ) = 0 = S(l2n ).

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 26 / 28

Page 95: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

S(lpn ) (p > 1)

The Banach-Mazur distance between lpn and l2n is equal to:

d := d(lpn , l2n ) = n

∣∣∣ 1p− 1

2

∣∣∣.

We were able to estimate that for p > 1, sufficiently close to 2, we have

S(lpn ) ≤ max

{(2p −

(1 +

1

d2

)p) 1p

,

(2q −

(1 +

1

d2

)q) 1q

}

(with q such that 1p + 1

q = 1).

If p → 2, then q → 2 and d → 1.Therefore

limp→2

S(lpn ) = 0 = S(l2n ).

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 26 / 28

Page 96: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

S(lpn ) (p > 1)

The Banach-Mazur distance between lpn and l2n is equal to:

d := d(lpn , l2n ) = n

∣∣∣ 1p− 1

2

∣∣∣.

We were able to estimate that for p > 1, sufficiently close to 2, we have

S(lpn ) ≤ max

{(2p −

(1 +

1

d2

)p) 1p

,

(2q −

(1 +

1

d2

)q) 1q

}

(with q such that 1p + 1

q = 1).If p → 2, then q → 2 and d → 1.

Thereforelimp→2

S(lpn ) = 0 = S(l2n ).

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 26 / 28

Page 97: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

S(lpn ) (p > 1)

The Banach-Mazur distance between lpn and l2n is equal to:

d := d(lpn , l2n ) = n

∣∣∣ 1p− 1

2

∣∣∣.

We were able to estimate that for p > 1, sufficiently close to 2, we have

S(lpn ) ≤ max

{(2p −

(1 +

1

d2

)p) 1p

,

(2q −

(1 +

1

d2

)q) 1q

}

(with q such that 1p + 1

q = 1).If p → 2, then q → 2 and d → 1.Therefore

limp→2

S(lpn ) = 0 = S(l2n ).

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 26 / 28

Page 98: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Thank you!

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 27 / 28

Page 99: On approximate Birkhoff orthogonality in normed spaceskafedra.schoolsite.org.ua/BOOK/CHMIELINSKI.pdf · 2019. 7. 4. · On approximate Birkho orthogonality in normed spaces Jacek

Bibliography

J. Alonso, H. Martini, S. Wu, On Birkhoff orthogonality and isosceles orthogonality in normed linear spaces, Aequationes

Math. 83, No. 1-2 (2012), 153-189.

R. Bhatia, P. Semrl, Orthogonality of matrices and some distance problems, Linear Algebra Appl. 287 (1999), 77-85.

G. Birkhoff, Orthogonality in linear metric spaces, Duke Math. J., 1 (1935), 169–172.

J. Chmielinski, On an ε-Birkhoff orthogonality, J. Inequal. Pure and Appl. Math., 6(3) (2005), Art. 79.

J. Chmielinski, T. Stypu la, P. Wojcik, Approximate orthogonality in normed spaces and its applications, Linear Algebra

Appl. 531 (2017), 305–317.

J. Chmielinski, P. Wojcik, Approximate symmetry of the Birkhoff orthogonality, J. Math. Anal. Appl. 461 (2018),

625–640.

R.C. James, Orthogonality in normed linear linear spaces, Duke Math. J. 12 (1945), 291–301.

R.C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc., 61 (1947), 265–292.

R.C. James, Inner products in normed linear spaces, Bull. Am. Math. Soc. 53 (1947), 559-566.

J. Chmielinski (Krakow, Poland) Approximate Birkhoff orthogonality Lviv 2019 28 / 28