1
Optimization of Power Supply Systems with Large-Scale Solar and Wind Energy in Zambia ザンビアにおける大規模太陽エネルギーと風力エネルギーを用いた電力供給システムの最適化 Biness LUKWESA *1 , Yutaka TABE *1 , and Takemi CHIKAHISA *1 *1 Division of Energy and Environmental System, Hokkaido University Power storage systems are cost-effective auxiliary equipment necessary for the effective deployment of large-scale Solar PV and Wind power; Pumped hydropower storage is more effective than battery storage due to a higher efficiency and higher energy to power ratio; Power storage effective in mitigating the effect of reduced hydropower generation during a dry year; Discussion and Conclusion J05317P Results Objective Analytical Model 北海道大学工学院、エネルギー環境システム部門、エネルギー変換システム研究室 日本機械学会2019年度年次大会、2019年9月8日(日)~11日(水)、秋田大学手形キャンパス Power Generation Cost Power Capacity Power generation Cost minimization Model Constraints CO 2 emission reduction rate Charge and discharge rate Output of hydro power Hourly Time-series data Electricity demand Output (Wind and Solar power) Parameters Thermal efficiency Cycle efficiency and hourly self-loss of storages Life time Costs Construction cost Maintenance cost Running cost Fuel cost Simulation Cases (B) Scenario B with Pumped hydropower storage; Power fluctuation of Solar PV and Wind; Power storage options introduced to mitigate power fluctuations; NaS storage batteries Pumped Hydropower storage Current power generation mix only consists of hydro, coal and fuel oil This study focuses on 2050 Need for diversification of power supply options by introducing large scale solar PV and wind to meet increasing power demand; Item Unit Hydro Coal Biomass Geothermal Fuel Oil Solar PV Wind Battery Capital Cost [US$/kW] 2679 2869 2500 3501 2600 2671 1970 1200 Capital Cost [US$/kWh] - - - - - - - 40 Fixed O&M [US$/kW/yr] 8.72 20.00 15.00 15.00 12.00 27.00 35.00 12 Variable O&M [US$/MWh] 6.00 14.30 20.00 5.00 15.00 20.10 17.40 2.10 Lifespan [Years] 50 35 25 25 25 25 20 15 Maximum Capacity [MW] 7000 2000 150 50 - - - - CO2 Emission [kg/MWh] 0.013 0.850 0.270 - 0.625 - - - Charge loss factor - - - - - - - 0.92 Self-discharge loss factor - - - - - - - 0.99 Capacity Factor 0.70, 0.55* 0.80 0.50 0.60 0.80* 0.20* 0.29* - C-rate - - - - - - - 0.16 Key Input Parameters; Scenario B Case A Case B Case C Case D [Dry Year Effect] NaS Battery Storage × × Pumped Hydro Storage × × Hydropower load-following Scenario A Case 1 Case 2 Case 3 Seasonal variation of Hydropower [Dry Year Effect] × NaS Battery Storage × × Hydropower load-following × × × (A) Comparison of power Capacity, generation and cost;

Optimization of Power Supply Systems with Large …ene-lab/research/...Optimization of Power Supply Systems with Large-Scale Solar and Wind Energy in Zambia ザンビアにおける大規模太陽エネルギーと風力エネルギーを用いた電力供給システムの最適化

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Optimization of Power Supply Systems with Large …ene-lab/research/...Optimization of Power Supply Systems with Large-Scale Solar and Wind Energy in Zambia ザンビアにおける大規模太陽エネルギーと風力エネルギーを用いた電力供給システムの最適化

Optimization of Power Supply Systems with Large-Scale Solar and Wind Energy in Zambia

ザンビアにおける大規模太陽エネルギーと風力エネルギーを用いた電力供給システムの最適化

○ Biness LUKWESA*1, Yutaka TABE*1, and Takemi CHIKAHISA*1

*1 Division of Energy and Environmental System, Hokkaido University

▪ Power storage systems are cost-effective auxiliary equipment necessary forthe effective deployment of large-scale Solar PV and Wind power;

▪ Pumped hydropower storage is more effective than battery storage due to ahigher efficiency and higher energy to power ratio;

▪ Power storage effective in mitigating the effect of reduced hydropowergeneration during a dry year;

Discussion and Conclusion

J05317P

ResultsObjective

Analytical Model

北海道大学工学院、エネルギー環境システム部門、エネルギー変換システム研究室 日本機械学会2019年度年次大会、2019年9月8日(日)~11日(水)、秋田大学手形キャンパス

Power Generation Cost

Power Capacity

Power generation

Cost minimization

Model

Constraints• CO2 emission reduction rate

• Charge and discharge rate• Output of hydro power

Hourly Time-series data▪ Electricity demand▪ Output (Wind and Solar

power)

Parameters▪ Thermal efficiency▪ Cycle efficiency and hourly

self-loss of storages▪ Life time

Costs▪ Construction cost▪ Maintenance cost▪ Running cost▪ Fuel cost

Simulation Cases

(B) Scenario B with Pumped hydropower storage;

▪ Power fluctuation of Solar PV and Wind;

▪ Power storage options introduced to mitigate power fluctuations;

• NaS storage batteries

• Pumped Hydropower storage

Current power generation mix only

consists of hydro, coal and fuel oil This study focuses on 2050

▪ Need for diversification of power supply options by introducing

large scale solar PV and wind to meet increasing power demand;

Item Unit Hydro Coal Biomass Geothermal Fuel Oil Solar PV Wind Battery

Capital Cost [US$/kW] 2679 2869 2500 3501 2600 2671 1970 1200

Capital Cost [US$/kWh] - - - - - - - 40

Fixed O&M [US$/kW/yr] 8.72 20.00 15.00 15.00 12.00 27.00 35.00 12

Variable O&M [US$/MWh] 6.00 14.30 20.00 5.00 15.00 20.10 17.40 2.10

Lifespan [Years] 50 35 25 25 25 25 20 15

Maximum Capacity [MW] 7000 2000 150 50 - - - -

CO2 Emission [kg/MWh] 0.013 0.850 0.270 - 0.625 - - -

Charge loss factor - - - - - - - 0.92

Self-discharge loss factor - - - - - - - 0.99

Capacity Factor 0.70, 0.55* 0.80 0.50 0.60 0.80* 0.20* 0.29* -

C-rate - - - - - - - 0.16

Key Input Parameters;

Scenario B Case A Case B Case C Case D

[Dry Year Effect] 〇 〇 〇 〇

NaS Battery Storage × 〇 × 〇

Pumped Hydro Storage × × 〇 〇

Hydropower load-following 〇 〇 〇 〇

Scenario A Case 1 Case 2 Case 3

Seasonal variation of Hydropower

[Dry Year Effect]× 〇 〇

NaS Battery Storage × × 〇

Hydropower load-following × × ×

(A) Comparison of power Capacity, generation and cost;