38
Optimum Operasi dan Keandalan Sistem Tenaga Listrik Oleh : Prof. Ontoseno Penangsang, Ph.D Dr. Eng. Rony Seto Wibowo Laboratorium Simulasi Sistem Tenaga Listrik Teknik Elektro – ITS Surabaya

Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

Embed Size (px)

Citation preview

Page 1: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

Optimum Operasi dan KeandalanSistem Tenaga Listrik

Oleh :Prof. Ontoseno Penangsang, Ph.D

Dr. Eng. Rony Seto Wibowo

Laboratorium Simulasi Sistem Tenaga ListrikTeknik Elektro – ITS Surabaya

Page 2: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

Contents

• Basic Probability Theory• Application of Binomial Distribution• Generation System Reliability Analysis• Transmission System Reliability Analysis• Distribution System Reliability Analysis

Page 3: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

DAFTAR PUSTAKA

• Roy Billinton, Ronald N Allan, “Reliability Evaluation of Engineering Systems” Plenum Press : New York, 1992

• Roy Billinton, Ronald N Allan, “Reliability Evaluation of Power Systems” Plenum Press : New York, 1996

• Robert L. Sullivan, “Power System Planning”, McGraw-Hill, 1977

Page 4: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

Basic Probability Theory

Oleh :Dr. Eng. Rony Seto Wibowo

Laboratorium Simulasi Sistem Tenaga ListrikTeknik Elektro – ITS Surabaya

Page 5: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

Probability Concept

• Mathematically, it is a numerical index that can vary between zero to unity

• Probability of success and failure can formulated as follows:

Page 6: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

Example

• Anggap kita melempar dua buah dadusekaligus, berapa peluang kita mendapatkanangka total dadu 9?

Page 7: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

Permutations and Combinations

• The number of permutations of n different items is the number of ways these items can be arranged

• The number of combinations of n different items is the number of different selections of r items, each without regard to the order or arrangement of the items in the groups

Page 8: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

Example

• Anggap kita mempunyai 3 buah buku dengannama A, B dan C. Berapa kemungkinan kitamenyusun ketiga buku tersebut?

• Berapa kemungkinan komposisi panitia yang terdiri dari 3 orang, dimana jumlah orang yang akan kita pilih adalah 4 orang?

Page 9: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

Rules for Combining Probabilities

• Rule 1 – Independent events• Rule 2 – Mutually exclusive events• Rule 3 – Complementary events• Rule 4 – Conditional events• Rule 5 – Simultaneous occurrence of events• Rule 6 – Occurrence of at least one if two

events• Rule 7 – Application of conditional probability

Page 10: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

Example

• Suatu pabrik mempunyai 2 plant. Plant 1 membuat 70% barang yang dibutuhkan danplant lainnya menghasilkan 30%. Jika 90 % produk plant 1 memenuhi standard dan 80% produk plant 2 memenuhi standard. Berapapeluang pabrik tersebut menghasilkan produkyang memenuhi standard?

Page 11: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

Probability Density Function• The summation of

probabilities should equal unity

• Probability density Function (a) Separate data (b) Grouped data

Page 12: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

Probability Distributions Function

• PDF is obtained by summating the density function (numerically, integrating)

• Discrete random variable : (a) Separate data (b) Grouped data

Page 13: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

Probability Distributions

• Continuous random variable : (a) Probability distribution function f(x) (b) Probability density function F(x)

Page 14: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

Mathematical Expectation

• Moments of distribution, also known as expected value, is referred to as the average value or population mean

Page 15: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

Example

• The data of copper length measurement are as follows :

5,97 5,97 5,98 5,98 5,98 5,99 5,99 5,99 5,99 5,99 6 6 6 6 6 6,01 6,01 6,02 6,02 6,02

• Determine the average length of the copper?

Page 16: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

Variance and Standard Deviation

• A measure of dispersion of a distribution is defined as Variance V(x)

• Standard deviation

Page 17: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

Example

• The data of copper length measurement are as follows :

5,97 5,97 5,98 5,98 5,98 5,99 5,99 5,99 5,99 5,99 6 6 6 6 6 6,01 6,01 6,02 6,02 6,02

• Determine the variance and standard deviation?

Page 18: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

Application of the Binomial Distribution

Oleh :Dr. Eng. Rony Seto Wibowo

Laboratorium Simulasi Sistem Tenaga ListrikTeknik Elektro – ITS Surabaya

Page 19: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

General Characteristic

• Binomial distribution can be represented by general expression :

(p+q)2

• Required conditions are :– Fixed number of trial– Two possible outcomes : success ad failure– Probabilities of success and failure are remain

constant– All trial must be independent

Page 20: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

Example

Page 21: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

Binomial Coefficients

• One essential aspect of the binomial distribution is to evaluate nCr

11 1

1 2 11 3 3 1

1 4 6 4 1

Page 22: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

Expected value

• Expected value of binomial distribution can be expressed as follows:

• Finally,E(x) = np

Page 23: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

Example

• A small generating plant is to be designed to satisfy a constant 10 MW load. Four alternatives are being considered:1. 1 x 10 MW unit2. 2 x 10 MW unit3. 3 x 5 MW unit4. 4 x 3 1/3 MW unitUnavailable probability of each unit is equal to0.02 and therefore, the probability of available is0.98. Please develop capacity outage probabilitytables.

Page 24: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

Capacity Outage Probability

Page 25: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

Expected Load Losses

Page 26: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

Investment Costs of Plant

Page 27: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

Expected Load Curtailment

Page 28: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

Effect of Unavailability

Page 29: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

System Risk with One Unit in Reserve

Page 30: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik
Page 31: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

Generation System Reliability Analysis

Oleh :Dr. Eng. Rony Seto Wibowo

Laboratorium Simulasi Sistem Tenaga ListrikTeknik Elektro – ITS Surabaya

Page 32: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

Introduction

• Generation system planning is one of the crucial steps in modern electric utility.

• Generation expansion plan must satisfy customer needs for reasonably price, reliable and quality.

• The electricity industry is a very capital intensive industry

• Expansion plan should attract new investors

Page 33: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

Expansion Plan Consideration

• Uncertainty of load in the future• Unit reliability and maintenance schedules• Fuel Costs• Environment Issues• Construction Costs• Construction Times• Financial Support

Page 34: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

Reliability Indices

Reliability indices mostly used in generation system expansion are :

• Loss of Load Probability (LOLP)• Expected Value of Demand not served (DNS)• Frequency and Duration (FD)

Page 35: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

Practical Generation Planning

In Practical, the considerations are :• Load Growth• Construction Time• Availability of Sites• Availability of Fuelthen, detailed reliability analysis is required to ensure that all satisfying the desired reliability level

Page 36: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

Probabilistic Generating Unit Models

Mainly, generation systems consist of many type of generators. They can be categorized as the following :• Based Load units. Capacity factor : 90 – 95 %.

Nuclear, Coal Steam Turbine units• Midrange units. Capacity factor : 30 – 75 %.

Combine Cycle units, Steam Turbine Units• Peakers. Capacity factor : 5 – 10 %. Gas

turbines and Hydro units

Page 37: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

Transmission System Reliability Analysis

Oleh :Dr. Eng. Rony Seto Wibowo

Laboratorium Simulasi Sistem Tenaga ListrikTeknik Elektro – ITS Surabaya

Page 38: Optimum Operasi Dan Keandalan Sistem Tenaga Listrik

Distribution System Reliability Analysis

Oleh :Dr. Eng. Rony Seto Wibowo

Laboratorium Simulasi Sistem Tenaga ListrikTeknik Elektro – ITS Surabaya