32
Physics with Exotic Nuclei Hans-Jürgen Wollersheim

Physics with Exotic Nuclei - GSI Wikiwolle/TELEKOLLEG/KERN/LECTURE/...V C P (cm) v a Z e Q L 1 cos θ 4 2 0 2 max ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ ∆ ≅ angular momentum transfer: collective

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • Physics with Exotic Nuclei Hans-Jürgen Wollersheim

  • Scattering Experiments with RIBs – Nuclear Structure Results Experimental evidence for closed-shell nuclei Scattering experiments at relativistic energies Projectile-like identification (Z, A) and scattering angle θ Doppler-shift correction of the emitted γ-rays

    Outline

  • +12

    E

    )02;2( 1++ →EB

    Physics with Exotic Nuclei Experimental evidence for magic numbers close to stability

    Maria Goeppert-Mayer & J. Hans D. Jensen

  • high energy of 21+ state

    Nuclei with magic numbers of neutrons/protons

    +12

    E

    low B(E2; 21+→0+) values transition probability measured in single particle units (spu)

    If we move away from stability? )02;2( 1 ++ →EB

    Physics with Exotic Nuclei Experimental evidence for magic numbers close to stability

  • Production, Separation, Identification

    abrasion

    projectile

    target nucleus ablation

    projectile fragment SIS

    FRS

    TPC-x,y position @ S2,S4

    Plastic scintillator (TOF) @ S4

    MUSIC (ΔE) @ S4

    Standard FRS detectors

    FRagment Separator

  • Scattering Experiment at Relativistic Energies

    104Sn, 100 MeV/u

    124Xe, 793MeV/u

    standard scintillator (SC21) finger segmented detector

    104Sn fragments using 124Xe at 793 MeV/u

    high rate at S2 ~106 s-1 ~2400 % more tracking efficiency good A/Q resolving power

    Frederic Ameil

    new digital readout

  • Scattering Experiment at Relativistic Energies

    impact parameter: b

    Au

    fmCCD TP 5min ++>

    Rutherford scattering only if distance of closest approach Dmin is large compared to nuclear radii + surfaces:

    CP, CT half-density radii

    Dmin fragment

    beEBMeVE

    255.0)10;1(3.13

    ≅→

    ≅−

    WuEBMeVE

    9)20;2(086.4

    =→

    =+

    WuEBMeVE

    34)30;3(615.2

    =→

    =−

    ( ) ( )( )

    =≥−

    ⋅→⋅⋅

    − 1/ln2210;

    1

    222

    22

    λλλ

    λπλπσ λπλ forbbforB

    beceZ

    a

    P

  • Atomic Background Radiation

    Bremsstrahlung: slowing down of a moving point-charge

    Radiative electron capture (REC) capture of target electrons into bound states of the projectile:

    Primary Bremsstrahlung (PB) capture of target electrons into continuum states of the projectile:

    Secondary Bremsstrahlung (SB) Stopping of high energy electrons in the target: 22~ tp ZZ ⋅σ

    tp ZZ ⋅2~σ

    tp ZZ ⋅2~σ

  • Scattering Experiment at Relativistic Energies

    197Au-target 104Sn

    124Xe, 793MeV/u

    relativistic Coulomb excitation

    xy position from LYCCA

  • Scattering Experiment at Relativistic Energies

    104Sn

    124Xe, 793MeV/u

    exp. observables: Z, A, θ

    RIB from FRS

    secondary 197Au target

    DSSSD DSSSD

    CsI

    CsI

    time-of-flight

    (x,y,ΔE) (x,y,ΔE) diamond/plastic

    Lund-York-Cologne CAlorimeter

  • Scattering Experiment at Relativistic Energies

    exp. observables: Z, A, θ

    RIB from FRS

    secondary 9Be target

    DSSSD DSSSD

    CsI

    CsI

    time-of-flight

    (x,y,ΔE) (x,y,ΔE) diamond/plastic

  • Scattering Experiment at Relativistic Energies

    exp. observables: Z, A, θ

    RIB from FRS

    secondary 9Be target

    DSSSD DSSSD

    CsI

    CsI

    time-of-flight

    (x,y,ΔE) (x,y,ΔE) diamond/plastic

    12

    −=⋅γ

    kinEcm

    DSSSDCsIkin EEE ∆+=

    ( )211

    cv−

    with

    and

    with v from LYCCA-ToF

  • Lund-York-Cologne CAlorimeter

    PreSPEC target chamber variable target position (13cm, 23cm)

    Pavel Golubev

    start ToF DSSSD

    Au target

  • HECTOR BaF2

    prompt ΔE-E

    Coulomb excitation: A/Q - 37Ca all Ca detected in ΔE-E

    prompt Fragmentation: A/Q - 37Ca K detected (mainly 36K)

    37Ca beam at 196 MeV/u

    Additional γ-Ray Background Radiation

    1‰ interaction target most γ-rays from CATE

    time spectrum

  • Scattering Experiment at Relativistic Energies

    Doppler effect 80Kr → 197Au, 150 AMeV

    2

    0

    1

    cos1

    β

    ϑβ γγ

    γ

    ⋅−=

    ab

    EE

  • Scattering Experiment at Relativistic Energies

    2

    0

    1

    cos1

    β

    ϑβ γγ

    γ

    ⋅−=

    ab

    EE 00≅pϑfor

    2

    0

    =

    ΩΩ

    γ

    γ

    EE

    dd

    lab

    rest

    Lorentz boost:

    beam

    Doppler effect:

  • Doppler-Shift Correction 238U on 197Au (386 mg/cm2) at 183 AMeV

    66.372 79 Au Kα3 0.033

    66.991 79 Au Kα2 27.5

    68.806 79 Au Kα1 46.4

    77.577 79 Au Kβ3 5.57

    77.982 79 Au Kβ1 10.70

    80.130 79 Au Kβ2 3.84

    cos θ

    γ

    Au19779

    http://ie.lbl.gov/atomic/x2.pdf Michael Reese

  • Doppler-Shift Correction 238U on 197Au (386 mg/cm2) at 183 AMeV

    20 1

    cos1

    β

    ϑβ γγγ

    ⋅−⋅=

    ab

    EE

    93.844 92 U Kα3 0.099

    94.654 92 U Kα2 28.2

    98.434 92 U Kα1 45.1

    110.421 92 U Kβ3 5.65

    111.298 92 U Kβ1 10.70

    114.445 92 U Kβ2 4.15

    cos θ

    γ

    U23892

    http://ie.lbl.gov/atomic/x2.pdf Michael Reese

  • Doppler Broadening

    ⋅⋅−⋅

    =∆

    γ

    γ

    γ

    γ

    ϑβϑβ

    cos1sin

    0

    0

    EE

    γϑ∆⋅ ( ) ( ) ⋅⋅−⋅−−

    =∆

    γ

    γ

    γ

    γ

    ϑββϑβ

    cos11cos

    20

    0

    EE

    β∆⋅

    opening angle: slowing down in target:

  • beam

    target

    γ-ray set-up with higher efficiency

    Ivan Kojouharov

  • Advanced GAmma Tracking Array

    Signals from 36 segments + core are measured as a function of time (γ-ray interaction point)

    John Strachan

    Encapsulation

  • LYCCA

    Au, Be target

    HECTOR BaF2 array

    AGATA Cluster array

  • HECTOR team

  • preprocessor computer farm

    digitiser

    Damian Ralet, Stephane Pietri

    AGATA

    AGATA at PreSPEC

  • T.R. Saito et al. Phys.Lett. B669 (2008), 19

    High-energy Coulomb excitation triaxiality in even-even nuclei (N=76)

    21+→0+

    22+→21+

    22+→0+

    22+→21+

    22+→0+

    First observation of a second excited 2+ state populated in a Coulomb experiment at 100 AMeV using EUROBALL and MINIBALL Ge-detectors.

    shape symmetry collective strength

    )3(sin89)3(sin231

    )3(sin89)3(sin

    720

    )02;2()22;2(

    2

    2

    2

    2

    1

    12

    γγγ

    γ

    −+

    −=→→

    EBEB

    )3(sin89)3(sin231

    )3(sin89)3(sin231

    )02;2()02;2(

    2

    2

    2

    2

    1

    2

    γγγγ

    −+

    −−

    =→→

    EBEB

    γ

    γ

    3sin893

    3sin893)2()2(

    2

    2

    1

    2

    −−

    −+=

    EE

  • Ivan Kojouharov, Michael Reese, Namita Goel, Liliana Cortes, Frederic Ameil, Bogdan Szczepanczyk H.-J. W., Damian Ralet, Pushpendra Singh, Stephane Pietri, Tobias Habermann, Edana Merchan, Giulia Guastalla, Plamen Boutachkov, Adolf Brünle,

    Ian Burrows, Jonathan Strachan, (Paul Morral), Jürgen Gerl, (Henning Schaffner, Magda Gorska)

  • Slowed down beams – new experimental perspectives

    VC ( )cmP av

    QeZL θcos14 2

    02

    max −⋅⋅⋅⋅⋅⋅

    ≅∆

    angular momentum transfer:

    collective strength nuclear shape

  • Slowed down beams – beam characteristics

    64Ni 700 AMeV

    109 pps 107 pps 3∙106 pps 105 pps

    62Co ~ 13 AMeV

    ΔEnergy 5.2 AMeV Δθ 35 mrad

  • Slowed down beams – experimental set-up

    target degrader

    electrostatic mirror + MCP detector

    position resolution ~ 1 mm time resolution ~ 100 ps

    TPC-1 TPC-2 SC41 (x1 y1 t1) (x2 y2 t2)

    ( )12

    2/311 /78.2/ss

    AEtAE

    −⋅=

    ∆∆

    (x3 y3 t3)

    experimental results:

    velocity β beam energy E/A1 scattering angle θcm

  • Slowed down beams – experimental set-up

    target degrader

    TPC-1 TPC-2 SC41 (x1 y1 t1) (x2 y2 t2) (x3 y3 t3)

    MCP DSSSD TOF between MCP and DSSSD

    Time resolution 200 ps for one of the 256 detector pixels Akhil Jhingan (IUAC)

  • Reactions with Relativistic Radioactive Beams – R3B

    𝐸𝐸∗ = �𝑚𝑚𝑖𝑖2𝑖𝑖

    + �𝑚𝑚𝑖𝑖𝑚𝑚𝑗𝑗𝛾𝛾𝑖𝑖𝛾𝛾𝑗𝑗 1− 𝛽𝛽𝑖𝑖𝛽𝛽𝑗𝑗𝑐𝑐𝑐𝑐𝑐𝑐𝜗𝜗𝑖𝑖𝑗𝑗𝑖𝑖≠𝑗𝑗

    − 𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗 𝑐𝑐2 + 𝐸𝐸𝛾𝛾,𝑠𝑠𝑠𝑠𝑠𝑠

    Excitation energy E* from kinematically complete measurement of all outgoing particles

  • Dipole strength distribution of 68Ni

    O. Wieland et al.; Phys. Rev. Lett 102, 092502 (2009)

    direct γ-decay branching ratio: Γ0/Γ = 7(2)%

    D. Rossi et al.; Phys. Rev. Lett 111, 242503 (2013)

    mean field calculation

    E.Litvinova et al.; PRC 79, (2009) 054312

    γ-ray decay data

    neutron decay data

    Pygmy resonance

    Foliennummer 1Foliennummer 2Foliennummer 3Foliennummer 4Foliennummer 5Foliennummer 6Foliennummer 8Foliennummer 9Foliennummer 10Foliennummer 11Foliennummer 12Foliennummer 13Foliennummer 14Foliennummer 15Foliennummer 16Foliennummer 17Foliennummer 18Foliennummer 19Foliennummer 20Foliennummer 21Foliennummer 22Foliennummer 23Foliennummer 24Foliennummer 25Foliennummer 26Foliennummer 27Foliennummer 28Foliennummer 30Foliennummer 32Foliennummer 33Foliennummer 34Foliennummer 36