Pkl Seminar

Embed Size (px)

Citation preview

  • 8/16/2019 Pkl Seminar

    1/53

    Runtime Analysis of Evolutionary Algorithms

    Per Kristian Lehre

    School of Computer ScienceUniversity of Nottingham

    Functional Programming Laboratory Seminar

    Nottingham, November 25th 2011

  • 8/16/2019 Pkl Seminar

    2/53

    Black Box Optimisation

    Function class  F 

    f   : X → R

    Photo: E. Gerhard (1846).

    f (x1), f (x2), f (x3),...,f (xt)   x1, x2, x3,...,xt

    [Droste et al., 2006]

  • 8/16/2019 Pkl Seminar

    3/53

    Evolutionary Algorithms

    Selection

    Variation

  • 8/16/2019 Pkl Seminar

    4/53

    Meta-heuristics in Operations Research

    Meta-heuristics are   practical optimisation-techniques

     a pragmatic approach to NP-hard optimisation problems

     easy to implement, adaptable to many problem domains

     often produces solutions of strikingly good quality

  • 8/16/2019 Pkl Seminar

    5/53

    A Theory of Meta-heuristics?

    Weak theoretical foundation  has been a major critique

      lack of performance guarantees

      impact of parameter settings poorly understood

     no deep understanding of how and why they work

    Largely ignored by the general theory community

     not “real algorithms”

     no guarantees about performance

     mathematically very challenging

  • 8/16/2019 Pkl Seminar

    6/53

    An Important Challenge...

    “Developing the mathematical methodology for 

    explaining and  predicting the performance  of these and 

    other heuristics is  one of the most important challenges 

    facing the fields of optimization and algorithms today.”

    Papadimitriou and Steiglitz (1998)

  • 8/16/2019 Pkl Seminar

    7/53

    Outline

    Introduction

    Runtime AnalysisBasic DefinitionsOverview of Results

    Evolutionary AlgorithmsExploration vs ExploitationAnalytical Techniques

    Directions for Further Work

    Heuristic UnderstandingSystems to Build Systems

    Conclusion

  • 8/16/2019 Pkl Seminar

    8/53

    Runtime Analysis of Meta-heuristics

    General Practical Question

      Under what conditions will a given heuristic returnsolutions of acceptable quality within reasonable time?

  • 8/16/2019 Pkl Seminar

    9/53

    Runtime Analysis of Meta-heuristics

    General Practical Question

      Under what conditions will a given heuristic returnsolutions of acceptable quality within reasonable time?

    Theoretical Approach  The runtime of a heuristic on a problem is

    iterations until optimal (or approximate) solution found

     Analysis of how the runtime depends on

    1.   problem characteristics2.  parameters of the heuristic

  • 8/16/2019 Pkl Seminar

    10/53

    Meta-heuristics are Randomised Algorithms

    (1+1) EA on Easy FSM instance (n=200).

    Number of iterations.

          D     e     n     s      i      t     y

    1000 1500 2000 2500 3000 3500 4000

          0     e    +      0      0

          4     e   −      0      4

          8     e   −      0      4

    DefinitionThe   expected runtime  of an algorithm  A on function class  F   is

    T A,F   := maxf ∈F 

    E [T A,f ]

    where  T A,f   is number of  f -evaluations before optimum found.

  • 8/16/2019 Pkl Seminar

    11/53

    Expected runtime as a function of problem instance size

    4 5 6 7 8 9 11 13 15 17 19 21 23 25

       0  e  +   0   0

       4  e  +   0   6

       8  e  +   0   6

    RS on Easy FSM instance class.

    Number of states in FSM (n).

       I   t  e  r  a   t   i  o  n  s  o   f   R   S .

      Exponential  =⇒ Algorithm impractical on problem.

  • 8/16/2019 Pkl Seminar

    12/53

    Expected runtime as a function of problem instance size

    10 60 160 260 360 460 560 660 760

       0

       2   0   0   0

       6   0

       0   0

       1   0   0   0   0

    (1+1) EA on Easy FSM instance class.

    Number of states in FSM (n).

       I   t  e  r  a   t   i  o  n  s

      o   f   (   1  +   1   )   E   A .

      Exponential  =⇒ Algorithm impractical on problem.   Polynomial  =⇒  Possibly efficient algorithm.

  • 8/16/2019 Pkl Seminar

    13/53

    Analytical Tool Box

     Artificial Fitness Levels

    [Wegener and Witt, 2005, Lehre, 2011a]  Concentration of measure

    [Dubhashi and Panconesi, 2009]

      Typical Runs

     Expected Multiplicative Weight Decrease[Neumann and Wegener, 2007]

      Drift Analysis [Hajek, 1982]

      Branching Processes [Lehre and Yao, 2009]

      Electrical Resistive Networks[Lehre and Haddow, 2006]

      Yao’s Minimax Principle[Motwani and Raghavan, 1995]

  • 8/16/2019 Pkl Seminar

    14/53

    OneMax   (1+1) EA   O(n log n)   [Mühlenbein, 1992](1+λ) EA   O(λn +  n log n)   [Jansen et al., 2005](µ+1) EA   O(µn +  n log n)   [Witt, 2006]

    1-ANT   O(n2)  w.h.p.   [Neumann and Witt, 2006](µ+1) IA   O(µn +  n log n)   [Zarges, 2009]

    Linear Functions (1+1) EA   Θ(n log n)   [Droste et al., 2002] and[He and Yao, 2003]

    cGA   Θ(n2+ε), ε >  0  const.   [Droste, 2006]

    Max. Matching (1+1) EA   eΩ(n), PRAS   [Giel and Wegener, 2003]

    Sorting (1+1) EA   Θ(n2 log n)   [Scharnow et al., 2002]

    SS Shortest Path (1+1) EA   O(n3 log(nwmax))   [Baswana et al., 2009]

    MO (1+1) EA   O(n3)   [Scharnow et al., 2002]

    MST (1+1) EA   Θ(m2 log(nwmax))   [Neumann and Wegener, 2007]

    (1+λ) EA   O(nλ log(nwmax)), λ  =  m2n     [Neumann and Wegener, 2007]1-ANT   O(mn log(nwmax))   [Neumann and Witt, 2008]

    Max. Clique (1+1) EA   Θ(n5)   [Storch, 2006]

    (rand. planar) (16n+1) RLS   Θ(n5/3)   [Storch, 2006]

    Eulerian Cycle (1+1) EA   Θ(m2 logm)   [Doerr et al., 2007]

    MinCut ACO with   h   =  O(1)   O(n2(h/))   [Kötzing et al., 2010]

    Partition (1+1) EA PRAS, avg.   [Witt, 2005]

    Vertex Cover (1+1) EA   eΩ(n), arb. bad approx.   [Friedrich et al., 2007] and

    [Oliveto et al., 2007]Set Cover (1+1) EA   eΩ(n), arb. bad approx.   [Friedrich et al., 2007]

    SEMO Pol.   O(log n)-approx.   [Friedrich et al., 2007]

    MaxLeafST (1+1) EA   mΩ(k) [Kratsch et al., 2011]

    (k   leaves) (1+1) EA edge-exch.   O(215k2 log k)

    Intersection of (1+1) EA   1/p-approximation in   [Reichel and Skutella, 2008]

    p  ≥  3  matroids   O(|E|p+2 log(|E|wmax))

    UIO/FSM conf. (1+1) EA   eΩ(n) [Lehre and Yao, 2007]

  • 8/16/2019 Pkl Seminar

    15/53

    What about population-based EAs?

  • 8/16/2019 Pkl Seminar

    16/53

    What about population-based EAs?

    “  G i v e n t he  mat he mat i c al  d i ffi c ul t y  o f 

    t he  i nfi ni t e  p o p ul at i o n s i z e  mo d e l , w e 

    d o ub t  t hat  a mat he mat i c al  anal y s i s o f  fi ni t e  p o p ul at i o ns  w i l l 

     b e  p o s s i b l e .”

    [ M ̈  uhl e nb e i n, 19 9 7  ] 

  • 8/16/2019 Pkl Seminar

    17/53

    Exploration vs Exploitation...

    Selection

    Variation

  • 8/16/2019 Pkl Seminar

    18/53

    Exploration vs Exploitation...

    E l i E l i i

  • 8/16/2019 Pkl Seminar

    19/53

    Exploration vs Exploitation...

    E l i Al i h f ( )

  • 8/16/2019 Pkl Seminar

    20/53

    Evolutionary Algorithm  maxx∈{0,1}n f (x)

    P tx

    for t = 0, 1, 2, . . .  until termination condition  dofor i = 1  to  λ  do

    Sample  i-th parent  x  according to  psel(P t, f )Sample  i-th offspring  P t+1(i)  according to  pmut(x)

    end forend for

    S l ti d V i ti

  • 8/16/2019 Pkl Seminar

    21/53

    Selection and Variation

    H l t t i k?

  • 8/16/2019 Pkl Seminar

    22/53

    How large tournament size  k?

    k = 1  No selective pressure

     Unbiased random walk

     Efficient optimisation is impossible

    k = λ  Highest selective pressure

     Only fittest individual reproduced

     No population diversity

    Ho la ge to a e t si e k?

  • 8/16/2019 Pkl Seminar

    23/53

    How large tournament size  k?

     p0   2n

    k

    1

    7

    exp 

    poly 

    Runtime

    Example

    The runtime  T  of a non-elitist EA with   tournament size  k

     bit-wise mutation rate  p

      population size  λ >  log(nr)

    on  any  unimodal function with   n  Boolean variables

      r  distinct function values

    has expected value

    E [T ] =

    eΩ(n) if  k < e pn

    O(λ2r + nr)   if  k > e pn

    Lehre (PPSN’10), Lehre (GECCO’11)

    How large tournament size k?

  • 8/16/2019 Pkl Seminar

    24/53

    How large tournament size  k?

     p0   2n

    k

    1

    7

    exp 

    poly 

    Runtime

    Example

    The runtime  T  of a non-elitist EA with   tournament size  k

     bit-wise mutation rate  p

      population size  λ >  log(nr)

    on  any  unimodal function with   n  Boolean variables

      r  distinct function values

    has expected value

    E [T ] =

    eΩ(n) if  k < e pn

    O(λ2r + nr)   if  k > e pn

    Lehre (PPSN’10), Lehre (GECCO’11)

    k  > e  p n

    How close to the global optimum in polynomial time?

  • 8/16/2019 Pkl Seminar

    25/53

    How close to the global optimum in polynomial time?

    Theorem ([Lehre, 2011b])

    W.o.p., the Hamming-distance from any individual in the first  ecngenerations to the global optimum is at least 

    n

    1

    2 −

     ln k

    4 pn 2 −

      ln k

     pn

    .

    Other Example Applications

  • 8/16/2019 Pkl Seminar

    26/53

    Other Example Applications

    Expected runtime of EA with bit-wise mutation rate  χ/n

    Selection Mechanism High Selective Pressure

    Fitness Proportionate   ν > f max ln(2eχ)

    Linear Ranking   η > eχ

    k-Tournament   k > eχ(µ, λ)   λ > µeχ

    Cellular EAs

    OneMax   O(nλ2)

    LeadingOnes   O(nλ2 + n2)

    Linear Functions   O(nλ2 + n2)r-Unimodal   O(rλ2 + nr)

    Jumpr   O(nλ2 + (n/χ)r)

    Other Example Applications

  • 8/16/2019 Pkl Seminar

    27/53

    Other Example Applications

    Expected runtime of EA with bit-wise mutation rate  χ/n

    Selection Mechanism High Selective Pressure Low Selective Pressure

    Fitness Proportionate   ν > f max ln(2eχ)   ν < χ/ ln 2  and  λ ≥ n3

    Linear Ranking   η > eχ η < eχ

    k-Tournament   k > eχ k < eχ(µ, λ)   λ > µeχ λ < µeχ

    Cellular EAs   ∆(G) < eχ

    OneMax   O(nλ2)   eΩ(n)

    LeadingOnes   O(nλ2 + n2)   eΩ(n)

    Linear Functions   O(nλ2 + n2)   eΩ(n)

    r-Unimodal   O(rλ2 + nr)   eΩ(n)

    Jumpr   O(nλ2 + (n/χ)r)   eΩ(n)

    Markov Chain Analysis often Difficult

  • 8/16/2019 Pkl Seminar

    28/53

    Markov Chain Analysis often Difficult

    Drift Analysis: Long-term behaviour of X from ∆

  • 8/16/2019 Pkl Seminar

    29/53

    Drift Analysis: Long term behaviour of  X   from  ∆

    Theorem (Positive drift)

    If exists  δ > 0  st for all  t ≥ 0

      E [∆t | 0 < g(X t)] ≥ δ 

      ...

    then  E [T ] ≤ smax/δ .

    Theorem (Negative drift)

    If exists  δ > 0  st for all  t ≥ 0

      E [∆t  | 0 < g(X t) < s] ≤ −δ 

      ...

    then  E [T ] ≥ ecs

    [Hajek, 1982, Oliveto and Witt, 2010,  He and Yao, 2001]

    State Aggregation Problem

  • 8/16/2019 Pkl Seminar

    30/53

    State Aggregation Problem

    How to come up with an appropriate distance function  g?

     Should reflect the progress of the heuristic, given its state.

     Often hard to find for single-individual heuristics.

     Highly non-trivial to find for population-based heuristics.

    A new Approach for Finite Populations

  • 8/16/2019 Pkl Seminar

    31/53

    A new Approach for Finite Populations

    Fitness Levels  (upper bounds)

     Concentration of measure

      Drift analysis

    A new Approach for Finite Populations

  • 8/16/2019 Pkl Seminar

    32/53

    A new Approach for Finite Populations

    Fitness Levels  (upper bounds)

     Concentration of measure

      Drift analysis

    Population Drift  (lower bounds)

     Branching processes

      Drift analysis

    Population Drift

  • 8/16/2019 Pkl Seminar

    33/53

    p

    Central Parameters  Reproductive rate

    α0  = max1≤ j≤λ

    E [#offspring from parent  j],

     Drift of variation operator

    X t+1∼  pmut(X t)

    ∆mut= g(X t) − g(X t+1)

    Population Drift

  • 8/16/2019 Pkl Seminar

    34/53

    p

    Central Parameters  Reproductive rate

    α0  = max1≤ j≤λ

    E [#offspring from parent  j],

     Drift of variation operator

    X t+1∼  pmut(X t)

    ∆mut= g(X t) − g(X t+1)

    Population Drift

  • 8/16/2019 Pkl Seminar

    35/53

    p

    Central Parameters  Reproductive rate

    α0  = max1≤ j≤λ

    E [#offspring from parent  j],

     Drift of variation operator

    X t+1∼  pmut(X t)

    ∆mut= g(X t) − g(X t+1)

    Population Drift

  • 8/16/2019 Pkl Seminar

    36/53

    p

    Central Parameters  Reproductive rate

    α0  = max1≤ j≤λ

    E [#offspring from parent  j],

     Drift of variation operator

    X t+1∼  pmut(X t)

    ∆mut= g(X t) − g(X t+1)

    Population Drift:1 Decoupling Selection & Variation

  • 8/16/2019 Pkl Seminar

    37/53

    Population drift  [Lehre, 2011b]

    If there exists a  κ > 0  such that

    M ∆mut (κ) <  1/α0

    where

    ∆mut= g(X t) − g(X t+1)

    X t+1∼  pmut(X t)

    and

    α0 = maxj E [#offspring from parent  j],

    then the runtime is exponential.

    1This slide only shows the main conditions of the theorems.

    Population Drift:1 Decoupling Selection & Variation

  • 8/16/2019 Pkl Seminar

    38/53

    Population drift  [Lehre, 2011b]

    If there exists a  κ > 0  such that

    M ∆mut (κ) <  1/α0

    where

    ∆mut= g(X t) − g(X t+1)

    X t+1∼  pmut(X t)

    and

    α0 = maxj E [#offspring from parent  j],

    then the runtime is exponential.

    Classical drift  [Hajek, 1982]

    If there exists a  κ > 0  such that

    M ∆(κ) <  1

    where

    ∆ = h(P t) − h(P t+1),

    then the runtime is exponential.

    1This slide only shows the main conditions of the theorems.

    Population Drift - Implications

  • 8/16/2019 Pkl Seminar

    39/53

    M ∆mut (κ) <  1

    α0=⇒   Inefficient algorithm

     High negative drift induced by the variation operator,must be compensated with high reproductive rate.

     Analysis of algorithm can be decoupled into analyses of  the drift of the variation operator  ∆mut the reproductive rate of the selection mechanism  α0

     Feasible to analyse highly complex processes!

    Proof Idea

  • 8/16/2019 Pkl Seminar

    40/53

     Population drift as a multi-type branching process.

     The Perron root of the mean matrix satisfies

    ∀κ

  • 8/16/2019 Pkl Seminar

    41/53

    Heuristics

    RuntimeAnalysis

    PerformanceGuarantees

    Explicit ProblemStructure

    HeuristicUnderstanding

    Directions for Further Work

  • 8/16/2019 Pkl Seminar

    42/53

    Heuristics

    IndustrialProblems

    ProblemCharacterisation

    RuntimeAnalysis

    PerformanceGuarantees

    ProblemInsight

    HeuristicUnderstanding

    DesignGuidelines

    Combine Runtime Analysis with Fitness Landscape Theory   “Heuristic Understanding”  cluster

      “Systems to Build Systems”  cluster

    Conclusion

  • 8/16/2019 Pkl Seminar

    43/53

     Strong empirical evidence for the benefit of meta-heuristics  Recently, it has become possible to prove mathematical

    statements that describe the relationship between

    a)  Problem characteristics & Parameters of the meta-heuristicb)  The expected runtime of the meta-heuristic

     Progress made possible by appropriate analytical tools Population drift theorem

    Questions?

  • 8/16/2019 Pkl Seminar

    44/53

    References I

  • 8/16/2019 Pkl Seminar

    45/53

    Baswana, S., Biswas, S., Doerr, B., Friedrich, T., Kurur, P. P., and Neumann, F.(2009).

    Computing single source shortest paths using single-objective fitness.In  FOGA 09: Proceedings of the tenth ACM SIGEVO workshop on Foundations of genetic algorithms , pages 59–66, New York, NY, USA. ACM.

    Doerr, B., Klein, C., and Storch, T. (2007).Faster evolutionary algorithms by superior graph representation.In  Proceedings of the 1st IEEE Symposium on Foundations of Computational Intelligence (FOCI 2007), pages 245–250.

    Droste, S. (2006).A rigorous analysis of the compact genetic algorithm for linear functions.Natural Computing , 5(3):257–283.

    Droste, S., Jansen, T., and Wegener, I. (2002).On the analysis of the (1+1) Evolutionary Algorithm.

    Theoretical Computer Science , 276:51–81.

    Droste, S., Jansen, T., and Wegener, I. (2006).Upper and lower bounds for randomized search heuristics in black-boxoptimization.Theory of Computing Systems , 39(4):525–544.

    References II

  • 8/16/2019 Pkl Seminar

    46/53

    Dubhashi, D. and Panconesi, A. (2009).Concentration of Measure for the Analysis of Randomized Algorithms .Cambridge University Press.

    Friedrich, T., Hebbinghaus, N., Neumann, F., He, J., and Witt, C. (2007).Approximating covering problems by randomized search heuristics usingmulti-objective models.In  Proceedings of the 9th annual conference on Genetic and evolutionary computation (GECCO 2007), pages 797–804, New York, NY, USA. ACM Press.

    Giel, O. and Wegener, I. (2003).Evolutionary algorithms and the maximum matching problem.In  Proceedings of the 20th Annual Symposium on Theoretical Aspects of Computer Science (STACS 2003), pages 415–426.

    Hajek, B. (1982).Hitting-time and occupation-time bounds implied by drift analysis with

    applications.Advances in Applied Probability , 14(3):502–525.

    He, J. and Yao, X. (2001).Drift analysis and average time complexity of evolutionary algorithms.Artificial Intelligence , 127(1):57–85.

    References III

  • 8/16/2019 Pkl Seminar

    47/53

    He, J. and Yao, X. (2003).Towards an analytic framework for analysing the computation time of evolutionary algorithms.

    Artificial Intelligence , 145(1-2):59–97.

    Jansen, T., Jong, K. A. D., and Wegener, I. (2005).On the choice of the offspring population size in evolutionary algorithms.Evolutionary Computation, 13(4):413–440.

    Kötzing, T., Lehre, P. K., Neumann, F., and Oliveto, P. S. (2010).

    Ant colony optimization and the minimum cut problem.In  Proceedings of the 12th annual conference on Genetic and evolutionary computation (GECCO 2010), pages 1393–1400, New York, NY, USA. ACM.

    Kratsch, S., Lehre, P. K., Neumann, F., and Oliveto, P. S. (2011).Fixed parameter evolutionary algorithms and maximum leaf spanning trees: Amatter of mutations.

    In  Proceedings of Parallel Problem Solving from Nature - (PPSN XI), volume6238 of  LNCS , pages 204–213. Springer Berlin / Heidelberg.

    Lehre, P. K. (2011a).Fitness-levels for non-elitist populations.To appear in Proceedings of 2011 Genetic and Evolutionary ComputationConference (GECCO 2011).

    References IV

  • 8/16/2019 Pkl Seminar

    48/53

    Lehre, P. K. (2011b).Negative drift in populations.In  Proceedings of Parallel Problem Solving from Nature - (PPSN XI), volume

    6238 of  LNCS , pages 244–253. Springer Berlin / Heidelberg.Lehre, P. K. and Haddow, P. C. (2006).Accessibility and runtime between convex neutral networks.In Wang, T.-D., Li, X., Chen, S.-H., Wang, X., Abbass, H. A., Iba, H., Chen, G.,and Yao, X., editors,  SEAL, volume 4247 of  Lecture Notes in Computer Science ,pages 734–741. Springer.

    Lehre, P. K. and Yao, X. (2007).Runtime analysis of (1+1) EA on computing unique input output sequences.In  Proceedings of 2007 IEEE Congress on Evolutionary Computation(CEC 2007), pages 1882–1889. IEEE Press.

    Lehre, P. K. and Yao, X. (2009).On the impact of the mutation-selection balance on the runtime of evolutionary

    algorithms.In  Proceedings of the tenth ACM SIGEVO workshop on Foundations of genetic algorithms (FOGA 2009), pages 47–58, New York, NY, USA. ACM.

    Motwani, R. and Raghavan, P. (1995).Randomized Algorithms .Cambridge University Press.

    References V

  • 8/16/2019 Pkl Seminar

    49/53

    Mühlenbein, H. (1992).How genetic algorithms really work I. Mutation and Hillclimbing.

    In  Proceedings of the Parallel Problem Solving from Nature 2, (PPSN-II), pages15–26. Elsevier.

    Mühlenbein, H. (1997).The equation for response to selection and its use for prediction.Evoluationary Computation, 5(3):303–346.

    Neumann, F. and Wegener, I. (2007).

    Randomized local search, evolutionary algorithms, and the minimum spanningtree problem.Theoretical Computer Science , 378(1):32–40.

    Neumann, F. and Witt, C. (2006).Runtime analysis of a simple ant colony optimization algorithm.In  Proceedings of The 17th International Symposium on Algorithms and 

    Computation (ISAAC 2006), number 4288 in LNCS, pages 618–627.

    Neumann, F. and Witt, C. (2008).Ant colony optimization and the minimum spanning tree problem.In  Proceedings of Learning and Intelligent Optimization (LION 2008), pages153–166.

    References VI

  • 8/16/2019 Pkl Seminar

    50/53

    Oliveto, P. and Witt, C. (2010).Simplified drift analysis for proving lower bounds inevolutionary computation.Algorithmica, pages 1–18.10.1007/s00453-010-9387-z.

    Oliveto, P. S., He, J., and Yao, X. (2007).Evolutionary algorithms and the vertex cover problem.In  In Proceedings of the IEEE Congress on Evolutionary Computation(CEC 2007).

    Reichel, J. and Skutella, M. (2008).Evolutionary algorithms and matroid optimization problems.Algorithmica.

    Scharnow, J., Tinnefeld, K., and Wegener, I. (2002).Fitness landscapes based on sorting and shortest paths problems.In  Proceedings of 7th Conf. on Parallel Problem Solving from Nature 

    (PPSN–VII), number 2439 in LNCS, pages 54–63.

    Storch, T. (2006).How randomized search heuristics find maximum cliques in planar graphs.In  Proceedings of the 8th annual conference on Genetic and evolutionary computation (GECCO 2006), pages 567–574, New York, NY, USA. ACM Press.

    References VII

  • 8/16/2019 Pkl Seminar

    51/53

    Wegener, I. and Witt, C. (2005).On the analysis of a simple evolutionary algorithm on quadratic pseudo-booleanfunctions.Journal of Discrete Algorithms , 3(1):61–78.

    Witt, C. (2005).Worst-case and average-case approximations by simple randomized searchheuristics.In  In Proceedings of the 22nd Annual Symposium on Theoretical Aspects of Computer Science (STACS 05), number 3404 in LNCS, pages 44–56.

    Witt, C. (2006).Runtime Analysis of the (µ  +  1) EA on Simple Pseudo-Boolean Functions.Evolutionary Computation, 14(1):65–86.

    Zarges, C. (2009).

    On the utility of the population size for inversely fitness proportional mutationrates.In  FOGA 09: Proceedings of the tenth ACM SIGEVO workshop on Foundations of genetic algorithms , pages 39–46, New York, NY, USA. ACM.

    Drift Analysis - Upper bounds

  • 8/16/2019 Pkl Seminar

    52/53

    0   B

    g(X t+1

    )   g(X t)

    Theorem ([He and Yao, 2001])

    Given a stochastic process  X t≥0 ∈ Ω  and  g : Ω → R+0 .Define  T   to be the first time  t  such that  g(X t) = 0.If there exists a constant  D > 0  such that  ∀t ≥ 0

    1.   Pr [g(X t) < B] = 1, and 

    2.  E

    [g(X t) − g(X t+1) | T > t] ≥ D,then

    E [T ]   ≤  B

    D.

    Negative Drift for Populations

    Theorem ([Lehre 2011b])

  • 8/16/2019 Pkl Seminar

    53/53

    Theorem ([Lehre, 2011b])Given the Population Selection-Variation Algorithm with

      transition matrix  pmut   over search space  Ω  and distance function  g  : Ω →  N+

      runtime  T   := min{t ≥  0  |  g(P 0) ≥  b  and  g(P t) < a},  b − a = Ω(n)

    if there exists a  κ > 0, and constants  α0, δ1, δ2  > 0, st for all  t ≥  0,

    1.   E [Rt(i) |  a < g(P t(i)) < b] ≤  α0   for all   i,   1 ≤  i  ≤  λ,

    2.   E

    e−κ∆t(i) | a < g(X t)  < b

     <  1

    α0(1 +

     δ1)

    3.   E

    e−κ(g(Xt+1)−b) |  g(X t) ≥  b

     =  O(1)

    4.   ∀ 1  ≤    + k  ≤ j,  Pr[∆t(i) = − ∧ ∆t+1(i − ) = −k]

    Pr[∆t(i) = − − k]  ≤ eκ(b−a)(1−δ2)

    5.   ∀ 1  ≤    + k  ≤ j,  Pr[∆t(i) = − j]

    Pr[∆t(i − k) = −]

      = O(1)

    where 

      Rt(i) := λ

    j=1[I t( j) = i]   is the number of offspring from individual   i

      X t≥0   is the Markov process on  Ω  associated with  pmut , and 

      ∆t(i) := (g(X t+1) − g(X t) |  g(X t) = i),

    then the runtime satisfies  Pr [T  ≤  ecn] = e−Ω(n), for some constant  c > 0.