9
Plasticity Models 1 Phase2 Theory Plasticity Models In this document, the expressions for yield surface and plastic potential are based on a compression positive sign convention. Mohr-Coulomb Yield (failure) surface: 1 2 1 sin cos sin sin cos 3 3 s I f J c Plastic potential flow surface: 1 2 1 sin cos sin sin cos 3 3 s dil I g J c For associated flow use dil Where: 3 2 1 1 I 2 2 2 2 2 2 2 2 1 zx yz xy z y x s s s J 2 2 2 3 2 xy z xz y yz x zx yz xy z y x s s s s s s J 1 1 3 i i s I 1 3 3 2 2 1 33 sin 3 2 J J

Plasticity Models

Embed Size (px)

DESCRIPTION

GEOTECNIA

Citation preview

  • Plasticity Models 1

    Phase2 Theory

    Plasticity Models In this document, the expressions for yield surface and plastic potential are based on a compression positive sign convention.

    Mohr-Coulomb

    Yield (failure) surface:

    1 21sin cos sin sin cos

    3 3sIf J c

    Plastic potential flow surface:

    1 21sin cos sin sin cos

    3 3s dilIg J c

    For associated flow use dil

    Where:

    3211 I

    2222222 21

    zxyzxyzyx sssJ

    2223 2 xyzxzyyzxzxyzxyzyx ssssssJ

    113i i

    s I

    1 33

    22

    1 3 3sin3 2

    J

    J

  • Plasticity Models 2

    Phase2 Theory

    Hoek-Brown

    Yield (failure) surface:

    0.5

    1 222cos sin 3 cos3 3s c c

    I Jmf J s

    Plastic potential flow surface:

    0.5

    1 222cos sin 3 cos3 3

    dils c

    c

    m I Jg J s

    For associated flow use mmdil , recommended 4mmdil

    Generalized Hoek-Brown

    Yield (failure) surface:

    1 222cos sin 3 cos3 3

    a

    s cc

    I Jmf J s

    Plastic potential flow surface:

    1 222cos sin 3 cos3 3

    a

    dils c

    c

    m I Jg J s

    For associated flow use bbdil mm , recommended: 4b

    bdilmm

  • Plasticity Models 3

    Phase2 Theory

    Drucker-Prager

    Yield (failure) surface:

    12 3s

    If J q k

    Plastic potential flow surface:

    12 3s dil

    Ig J q k

    For associated flow use qq dil

    Cam Clay

    Material constants:

    M, , , (or N), constant G or (Poissons ratio)

    vpK

    If G is provided then 3 22 6K GG K

    If is provided then (3 6 )2(1 )

    KG

    User supplied input parameters:

    op , initp , initq

    ( )( )

    NN

    Determine the initial specific volume, vinit, and the equation for the initial Swelling Line (Unloading-Reloading Line):

    lno ov N p

  • Plasticity Models 4

    Phase2 Theory

    lninit

    inito

    o

    pv vp

    lno ov v p

    Yield Function:

    0

    ln 0pF q Mpp

    1 2 313

    p

    2 2 21 2 2 3 3 112

    q

    Plastic Potential:

    0

    ln 0pP q Mpp

    Critical State Line (CSL):

    q Mp

    Intermediate parameters:

    qp

    Hardening/softening rule (increment/decrement in op once strength envelope is exceeded):

    p

    o vo

    p vp

    Elastic strains:

  • Plasticity Models 5

    Phase2 Theory

    13

    ev

    es

    pvp

    qG

    Set of elastoplastic constitutive equations considering an explicit scheme over a finite time increment (step n to 1n ),:

    0

    ln 0pF q Mpp

    Yield function and plastic potential

    0dF The consistency condition

    1e e

    n n n D Hookes law

    e p The additivity postulate

    p

    n

    Fd

    The flow rule

    0 01 expp

    n vn n

    p p

    Hardening/softening rule

    The derivative of the yield function with respect to the stress tensor/vector:

    F F p F qp q

    ; 1nnn n

    qF FMp p q

    The set of constitutive equations presented above can be simplified in one nonlinear equation with one independent variable, i.e. d , which can be calculated as

    0

    0

    e

    epv

    F

    dpF F F F

    p p

    D

    D

  • Plasticity Models 6

    Phase2 Theory

    Modified Cam Clay

    Material constants:

    M, , , (or N), constant G or (Poissons ratio)

    vpK

    If G is provided then 3 22 6K GG K

    If is provided then (3 6 )2(1 )

    KG

    User supplied input parameters:

    op , initp , initq

    ( ) ln 2( ) ln 2

    NN

    Determine the initial specific volume, vinit, and the equation for the initial Swelling Line (Unloading-Reloading Line):

    lno ov N p

    lninit

    inito

    o

    pv vp

    lno ov v p

    Yield Function:

    22

    2 1 0opqF M

    p p

    , where

    1 2 313

    p

    2 2 21 2 2 3 3 112

    q

  • Plasticity Models 7

    Phase2 Theory

    Plastic Potential Function:

    22

    2 1 0opqP M

    p p

    Critical State Line (CSL):

    q Mp

    Hardening/softening rule (increment/decrement in op once strength envelope is exceeded):

    p

    o vo

    p vp

    Nonlinear elastic behavior:

    vpK

    e ev vvpp K

    Integrating the above equation over a finite time increment (step n to 1n ), assuming that the change in specific volume is insignificant, results in the following incremental equation

    1 expen

    n n vv

    p p

    Assuming an average bulk modulus from step n to 1n :

    1e

    n n vp p p K

    exp 1en n vev

    p vK

    In case the shear modulus is not constant, i.e. the poisons ration is constant, the shear modulus can be calculated as

    (3 6 )2(1 )

    G rK K

  • Plasticity Models 8

    Phase2 Theory

    Set of elastoplastic constitutive equations, in terms of stress invariants, considering an implicit scheme over a finite time increment (step n to 1n ),:

    2

    11 1 1 02 1

    0nn n n nqF p p pM

    Yield function and plastic potential

    1

    1 3

    en n v

    en n q

    p p Kq q G

    Hookes law

    e pv v v

    e pq q q

    The additivity postulate

    1 0 11 1

    12

    1 1

    ; 2

    2;

    pv n n

    n n

    p nq

    n n

    F Fd p pp p

    qF Fdq q M

    The flow rule

    0 01 expp

    n vn np p

    Hardening/softening rule

    The set of constitutive equations presented above can be simplified in a nonlinear set of equations with 4 equations and 4 unknowns

    ( 1 1 0 1, , ,n n np q p d ) 4 independent unknowns

    1 1 1 0 1

    12 1 2

    21

    3 1 1 02 1

    4 0 0 1 01 1

    exp 2 0

    23 0

    0

    exp 2 0

    nn n v n n

    nn n q

    nn n n

    nnn n n

    g p p d p p

    qg q q G dM

    qg p p p

    M

    g p p d p p

    4 independent nonlinear equations

  • Plasticity Models 9

    Phase2 Theory

    The integration/solution algorithm for a material point starts from an initial state of stress and hardening parameters ( 0, , ,n n nnp q p ) with the introduction of the increment of strains ( v , q ).

    The solution algorithm is based on a Newton iterative technique and follows these steps, sequentially:

    1- Initializing the unknown variables:

    1n np p , 1n nq q , 0 01n np p , 0d

    2- Calculate the ig functions, and check if they are all close enough to zero. If yes terminate the process, if not go to step 3 to modify the current values of unknowns.

    3- Update the unknowns by solving the linear system of equations presented below, and then go to step2. The term ,i jg represents the partial derivative of the function

    ig with respect to the j th variable.

    11,1 1,2 1,3 1,4 1

    12,1 2,2 2,3 2,4 2

    03,1 3,2 3,3 3,4 31

    4,1 4,2 4,3 4,4 41

    n

    n

    n

    n

    pg g g g gqg g g g gpg g g g g

    g g g g gdp

    After finding the updated state of stress and state variables, i.e. 1 1 0 1, , ,n n np q p , the transformation to general state of stress, , is straightforward.