1
PM グループ Cross-ministerial Strategic Innovation Promotion Program: SIP「革新的燃焼技術」公開シンポジウム@一橋大学一橋講堂 2017年7月6日 制御チーム 大分大学理工学部 橋本 淳 「ガソリンエンジンでの低温始動時 PM/PN予測モデルの構築」 予定,将来展望 研究概要 目的 直噴ガソリンエンジン冷間始動時のプール燃焼条件に対応したPM/PN排出量予 測モデルを構築・検証し,実用設計計算を可能とする. 4.0 6.0 8.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 [110 -6 ] Distance [mm] Mole Fraction [-] i-C 8 H 18 CRECK A 3 Exp. Cal. A 4 A 5 x5 A 6 x5 A 7 x5 A 3 /5 A 4 /5 B1/5 4.0 6.0 8.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 [110 -6 ] Distance [mm] Mole Fraction [-] i-C 8 H 18 KM1 A 3 Exp. Cal. A 4 A 5 x5 A 6 x5 A 7 x5 A 3 A 4 A 5 x5 A 6 x5 A 7 A 7 Original 4.0 6.0 8.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 [110 -6 ] Distance [mm] Mole Fraction [-] i-C 8 H 18 P.AN Mech A 3 Exp. Cal. A 4 A 5 x5 A 6 x5 A 7 x5 A 3 x100 A 4 x100 4.0 6.0 8.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 [110 -6 ] Distance [mm] Mole Fraction [-] PMGS3 CRECK A 3 Exp. Cal. A 4 A 5 x5 A 6 x5 A 7 x5 A 3 /30 A 4 /10 B1/5 4.0 6.0 8.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 [110 -6 ] Distance [mm] Mole Fraction [-] PMGS3 KM1 A 3 Exp. Cal. A 4 A 5 x5 A 6 x5 A 7 x5 A 3 /5 A 4 /5 A 5 A 6 A 7 4.0 6.0 8.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 [110 -6 ] Distance [mm] Mole Fraction [-] PMGS3 P.AN Mech A 3 Exp. Cal. A 4 A 5 x5 A 6 x5 A 7 x5 A 3 /15 A 4 /15 i-C 8 H 18 , CRECK i-C 8 H 18 , KM1 i-C 8 H 18 , P.AN M PMGS3, CRECK PMGS3, KM1 PMGS3, P.AN M 4.0 6.0 8.0 0.0 1.0 2.0 3.0 [110 -6 ] Particle Volume Fraction [cm 3 /cm 3 ] Distance [mm] CRECKx10: KM1/10: PANMx10 4 : i-C 8 H 18 4.0 6.0 8.0 0.0 1.0 2.0 3.0 [110 -6 ] Particle Volume Fraction [cm 3 /cm 3 ] Distance [mm] CRECKx5: KM1/10: PANM/10: PMGS3 i-C 8 H 18 PMGS3 0.0 1.0 2.0 3.0 50 100 Time after SOI [ms] Penetration Length [mm] :Experiment :Calculation 120 mm 0 1 2 3 4 5 6 0 10 20 30 40 50 0 1 2 3 4 5 6 0 10 20 30 40 50 -30 deg. ATDC -15 deg. ATDC 0 1 2 3 4 5 6 0 10 20 30 40 50 0 deg. ATDC 0 1 2 3 4 5 6 0 10 20 30 40 50 15 deg. ATDC 0 1 2 3 4 5 6 0 10 20 30 40 50 30 deg. ATDC 0 1 2 3 4 5 6 0 10 20 30 40 50 45 deg. ATDC 0 1 2 3 4 5 6 0 10 20 30 40 50 60 deg. ATDC 75 deg. ATDC 90 deg. ATDC 0 1 2 3 4 5 6 0 10 20 30 40 50 0 1 2 3 4 5 6 0 10 20 30 40 50 105 deg. ATDC 120 deg. ATDC 0 1 2 3 4 5 6 0 10 20 30 40 50 0 1 2 3 4 5 6 0 10 20 30 40 50 0 30 60 0.05 0.10 0.15 Crank Angle [deg. ATDC] Soot [mg] :Experiment :Calculation x 3 -180 -120 -60 0 60 120 180 0.0 1.0 2.0 3.0 Crank Angle [deg. ATDC] Pressure [MPa] :Experiment :Calculation すすモデルの改良と検証 Bore [mm] 78 Stroke [mm] 67 Displacement Volume [cm 3 ] 320 Compression Ratio [-] 9 Engine Specification Engine Speed [rpm] 600 Intake Valve Close [deg. ATDC] -180 Injection Pressure [MPa] 5 Injection Timing [deg. ATDC] -27 Injection Duration [deg.] 17 Spark Timing [deg. ATDC] -5 Intake Pressure [MPa] Time Varying Measured Value Intake Temperature [K] 329 Global Equivalence Ratio [-] 1.1 Fuel PM Surrogate 3 Species i -C 8 H 18 / 65 % n -C 7 H 16 / 10 % Toluene / 25 % Experimental Condition Solver ANSYS Forte R18.1 Turbulence model RNG k-e model Spray atomization and droplet breakup model KH-RT hybrid breakup model Droplet size distribution / Rosin-Rammler Distribution modified by OkayamaU Vaporization model Discrete Multi-Component fuel vaporization model Wall film model O'Rourke and Amsden model Ignition model Discrete Particle Ignition Kernel flame model Flame propagation Model G-Equation model Laminar flame speed / Dynamic flame speed table Soot model Method of moments Gas phase reaction / KAUST 1 modified by OitaU , 233 species and 1375 reactions Surface reaction / KAUST 2 modified by NihonU , 8 pre cursors Mesh control Global mesh size / 2.0 mm Solution Adaptive Mesh, gradient of velocity field / 0.5 mm Solution Adaptive Mesh, gradient of fuel field / 0.5 mm Solution Adaptive Mesh, gradient of temperature field / 0.5 mm Numerical Method ペネトレーションと噴霧形状 急速圧縮膨張装置 定容器(大気圧) 非燃焼場における当量比分布 火炎伝ぱと筒内圧力 観測視野内の すす生成挙動 Fuel O 2 CO 2 H 2 O 10nm100nm0.5nmGas Phase Kinetics Hydrocarbons Gas Phase Kinetics Hydrocarbons MoM PAH MoM Soot MoM Soot MoM (only) Soot Sectional Method PAH-Soot-Aggregates Sectional Method Soot-Aggregates Aggregates Aggregates Gas Phase Kinetics PAH ? ? Model HPC Systems HPC5000 CPU Xeon E5-2697v2 (2.7 GHz, 12 Core), 2 CPU Memory 128 GB Parallel number 24 Total wall clock time 5 days from intake stroke to expansion stroke Wall clock time in chemistry 1 day Maximum memory usage 29 GB Maxiumu cell number approx. 900,000 Computational Resources 燃料組成に対して柔軟に対応できるモデル 火神の検証(基本モデルは組み込み済み) マスターモデルとリダクションモデル 単気筒エンジンの統合シミュレーション 0.0E+00 1.0E-13 2.0E-13 3.0E-13 4.0E-13 5.0E-13 0.0E+00 1.0E+07 2.0E+07 3.0E+07 4.0E+07 5.0E+07 6.0E+07 7.0E+07 8.0E+07 9.0E+07 1.0E+08 0.0E+00 1.0E-05 2.0E-05 3.0E-05 4.0E-05 5.0E-05 Particle Volume Fraction [cm3/cm3] Particle Number Density [#/cm3] Time [s] CKP-PND HNC-PND CKP-PVF HNC-PVF Burnout Model未導入 ここはその影響 大分大・日大・横国大・群大 大分大・岡大・群大・北大 大分大・明治大・日大 大分大・明治大・日大 大分大・明治大・日大・横国大・群大 大分大・日大・横国大・群大・JAXA 大分大・千葉大・日大・横国大・群大 燃料組成変動を考慮し,すすモデルを構築した ペネトレーションの検証を行った 当量比分布の検証を行った 燃え広がりおよび圧力変化の検証を行った 観察視野内におけるすす生成挙動を再現した -10 0 10 20 30 40 50 -60 -30 0 30 60 90 120 150 180 Apparant Heat Release Rate [J/deg.] Crank Angle [deg. ATDC] No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1 10 100 1000 Log PN [-] Log D [nm] No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 熱発生率 粒径分布

PM :Experiment - jst.go.jp filePM グループ Cross-ministerial Strategic Innovation Promotion Program: SIP「革新的燃焼技術」公開シンポジウム@一橋大学一橋講堂

Embed Size (px)

Citation preview

Page 1: PM :Experiment - jst.go.jp filePM グループ Cross-ministerial Strategic Innovation Promotion Program: SIP「革新的燃焼技術」公開シンポジウム@一橋大学一橋講堂

PMグループ

Cross-ministerial Strategic Innovation Promotion Program: SIP「革新的燃焼技術」公開シンポジウム@一橋大学一橋講堂 2017年7月6日

制御チーム 大分大学理工学部橋本 淳

「ガソリンエンジンでの低温始動時PM/PN予測モデルの構築」

予定,将来展望

研究概要 目的

研 究 成 果

課 題

直噴ガソリンエンジン冷間始動時のプール燃焼条件に対応したPM/PN排出量予測モデルを構築・検証し,実用設計計算を可能とする.

4.0 6.0 8.00.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

[110-6

]

Distance [mm]

Mo

le F

ract

ion

[-]

i-C8H18CRECK A3

Exp. Cal.

A4

A5x5

A6x5

A7x5

A3/5

A4/5

B1/5

4.0 6.0 8.00.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

[110-6

]

Distance [mm]

Mo

le F

ract

ion

[-]

i-C8H18KM1 A3

Exp. Cal.

A4

A5x5

A6x5

A7x5

A3

A4

A5x5

A6x5

A7

A7 Original

4.0 6.0 8.00.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

[110-6

]

Distance [mm]

Mo

le F

ract

ion

[-]

i-C8H18P.AN Mech A3

Exp. Cal.

A4

A5x5

A6x5

A7x5

A3x100

A4x100

4.0 6.0 8.00.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

[110-6

]

Distance [mm]

Mo

le F

ract

ion

[-]

PMGS3CRECK A3

Exp. Cal.

A4

A5x5

A6x5

A7x5

A3/30

A4/10

B1/5

4.0 6.0 8.00.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

[110-6

]

Distance [mm]

Mo

le F

ract

ion

[-]

PMGS3KM1 A3

Exp. Cal.

A4

A5x5

A6x5

A7x5

A3/5

A4/5

A5

A6

A7

4.0 6.0 8.00.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

[110-6

]

Distance [mm]

Mo

le F

ract

ion

[-]

PMGS3P.AN Mech A3

Exp. Cal.

A4

A5x5

A6x5

A7x5

A3/15

A4/15

i-C8H18, CRECK i-C8H18, KM1 i-C8H18, P.AN M

PMGS3, CRECK PMGS3, KM1 PMGS3, P.AN M

4.0 6.0 8.00.0

1.0

2.0

3.0

[110-6

]

Par

ticl

e V

olu

me

Fra

ctio

n [

cm3/c

m3]

Distance [mm]

CRECKx10:

KM1/10:

PANMx104:

i-C8H18

4.0 6.0 8.00.0

1.0

2.0

3.0

[110-6

]

Par

ticl

e V

olu

me

Fra

ctio

n [

cm3/c

m3]

Distance [mm]

CRECKx5:

KM1/10:

PANM/10:

PMGS3

i-C8H18 PMGS3

0.0 1.0 2.0 3.0

50

100

Time after SOI [ms]

Pe

ne

tra

tio

n L

en

gth

[m

m]

:Experiment:Calculation

12

0 m

m

0 1 2 3 4 5 60

10

20

30

40

50

0 1 2 3 4 5 60

10

20

30

40

50

-30 deg. ATDC

-15 deg. ATDC

0 1 2 3 4 5 60

10

20

30

40

50

0 deg. ATDC

0 1 2 3 4 5 60

10

20

30

40

50

15 deg. ATDC

0 1 2 3 4 5 60

10

20

30

40

50

30 deg. ATDC

0 1 2 3 4 5 60

10

20

30

40

50

45 deg. ATDC

0 1 2 3 4 5 60

10

20

30

40

50

60 deg. ATDC

75 deg. ATDC

90 deg. ATDC

0 1 2 3 4 5 60

10

20

30

40

50

0 1 2 3 4 5 60

10

20

30

40

50105 deg. ATDC

120 deg. ATDC

0 1 2 3 4 5 60

10

20

30

40

50

0 1 2 3 4 5 60

10

20

30

40

50

0 30 60

0.05

0.10

0.15

Crank Angle [deg. ATDC]

So

ot

[mg

]

:Experiment:Calculation x 3

-180 -120 -60 0 60 120 1800.0

1.0

2.0

3.0

Crank Angle [deg. ATDC]

Pre

ssu

re [

MP

a]

:Experiment:Calculation

すすモデルの改良と検証

Bore [mm] 78

Stroke [mm] 67

Displacement Volume [cm3] 320

Compression Ratio [-] 9

Engine Specification

Engine Speed [rpm] 600

Intake Valve Close [deg. ATDC] -180

Injection Pressure [MPa] 5

Injection Timing [deg. ATDC] -27

Injection Duration [deg.] 17

Spark Timing [deg. ATDC] -5

Intake Pressure [MPa] Time Varying Measured Value

Intake Temperature [K] 329

Global Equivalence Ratio [-] 1.1

Fuel PM Surrogate 3 Species

i -C8H18 / 65 %

n -C7H16 / 10 %

Toluene / 25 %

Experimental Condition

Solver ANSYS Forte R18.1

Turbulence model RNG k-e model

Spray atomization and droplet breakup model KH-RT hybrid breakup model

Droplet size distribution / Rosin-Rammler Distribution modified by OkayamaU

Vaporization model Discrete Multi-Component fuel vaporization model

Wall film model O'Rourke and Amsden model

Ignition model Discrete Particle Ignition Kernel flame model

Flame propagation Model G-Equation model

Laminar flame speed / Dynamic flame speed table

Soot model Method of moments

Gas phase reaction / KAUST 1 modified by OitaU, 233 species and 1375 reactions

Surface reaction / KAUST 2 modified by NihonU, 8 pre cursors

Mesh control Global mesh size / 2.0 mm

Solution Adaptive Mesh, gradient of velocity field / 0.5 mm

Solution Adaptive Mesh, gradient of fuel field / 0.5 mm

Solution Adaptive Mesh, gradient of temperature field / 0.5 mm

Numerical Method

ペネトレーションと噴霧形状

急速圧縮膨張装置

定容器(大気圧)

非燃焼場における当量比分布

火炎伝ぱと筒内圧力観測視野内のすす生成挙動

Fuel

O2

CO2

H2O

10nm~ 100nm~0.5nm~

Gas Phase KineticsHydrocarbons

Gas Phase Kinetics Hydrocarbons

MoM PAH MoM Soot

MoM Soot

MoM (only) Soot

Sectional Method PAH-Soot-Aggregates

Sectional Method Soot-Aggregates

Aggregates

AggregatesGas Phase KineticsPAH

? ?

Model HPC Systems HPC5000

CPU Xeon E5-2697v2 (2.7 GHz, 12 Core), 2 CPU

Memory 128 GB

Parallel number 24

Total wall clock time 5 days

from intake stroke to expansion stroke

Wall clock time in chemistry 1 day

Maximum memory usage 29 GB

Maxiumu cell number approx. 900,000

Computational Resources

• 燃料組成に対して柔軟に対応できるモデル• 火神の検証(基本モデルは組み込み済み)

• マスターモデルとリダクションモデル• 単気筒エンジンの統合シミュレーション

0.0E+00

1.0E-13

2.0E-13

3.0E-13

4.0E-13

5.0E-13

0.0E+00

1.0E+07

2.0E+07

3.0E+07

4.0E+07

5.0E+07

6.0E+07

7.0E+07

8.0E+07

9.0E+07

1.0E+08

0.0E+00 1.0E-05 2.0E-05 3.0E-05 4.0E-05 5.0E-05

Par

ticl

e V

olu

me

Frac

tio

n [

cm3

/cm

3]

Par

ticl

e N

um

ber

Den

sity

[#/

cm3

]

Time [s]

PNDとPVF

CKP-PND HNC-PND CKP-PVF HNC-PVF

Burnout Model未導入ここはその影響

大分大・日大・横国大・群大

大分大・岡大・群大・北大 大分大・明治大・日大

大分大・明治大・日大 大分大・明治大・日大・横国大・群大

大分大・日大・横国大・群大・JAXA

大分大・千葉大・日大・横国大・群大

燃料組成変動を考慮し,すすモデルを構築した ペネトレーションの検証を行った 当量比分布の検証を行った 燃え広がりおよび圧力変化の検証を行った 観察視野内におけるすす生成挙動を再現した

-10

0

10

20

30

40

50

-60 -30 0 30 60 90 120 150 180

Ap

par

ant

Hea

t R

elea

se R

ate

[J/d

eg.]

Crank Angle [deg. ATDC]

No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1 10 100 1000

Log

PN

[-]

Log D [nm]

No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8

熱発生率

粒径分布