56
Pokusy v učebnách Vážení pomáhá pochopit zákony přírody Fyzika Chemie Biologie Praktické pokusy v učebnách

Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

Poku

sy v

uče

bnác

h

Vážení pomáhá pochopit zákony přírody

FyzikaChemieBiologie

Praktické pokusy

v učebnách

Page 2: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají
Page 3: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

1

3

Předmluva

8

Historie

Výpočet hustoty pevných těles z měření objemu a hmotnosti 6Hustota pevných těles (vztlaková metoda) 7Závislost hustoty vody na teplotě 9Hustota vzduchu 11Hustota plynů 12Vztlak plynů 13Hustota kapalin 15Síla a protisíla 16Vychylovací síla 17Síla odporu ve vzdušném proudění 20Síly působící na profil křídla 22Závislost síly magnetického pole cívky na intenzitě proudu 25Měkké železo v magnetickém poli 26

Fyzika

Kolik hydrogenuhličitanu sodného obsahuje šumivá tableta? 28Stanovení obsahu tuku v sóji a ořechových plodech 29Stanovení obsahu křídy ve vzorcích kamenů a půdy 30Stanovení obsahu vody při krystalizaci solí 31Termolýza solí 33Syntéza síranu měďnatého 35Stanovení molární hmotnosti zkapalněného plynu 37Rychlost odpařování 39Homogenní katalýza: rozklad H2O2 41

Chemie

Před

mlu

va

Transpirace rostlin 45Absorpce vodní páry lišejníkem 47Absorpce a ztráta vody v mechorostech 48Obsah vody a popílku v různých orgánech rostlin 49O lihovém kvašení 51

Biologie

Page 4: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

2

Page 5: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

Před

mlu

va

3

Deskriptivní pokusy v učebnách a nezávislé experimenty v praktických kurzech: to je pro přírodní vědy podstata teoretického studia přírodních zákonů. Koncepci prokázanou na pokusu není jen snazší převést na abstraktní vzorce, ale je pro studenty i snáze zapamatovatelná.

S pomocí elektronické váhy můžete působivě předvádět význam fyzikálních, chemických a biologických zákonitostí, vzorců a jevů.

Při konstrukci našich vah jsme se zaměřili především na snadné nastavení pokusů s využitím jednoduchých zdrojů. Kromě toho jsme každý pokus několikrát sami vyzkoušeli. Jednoduché ovládání elektronické váhy vyžaduje v průběhu pokusu pouze minimum pozornosti, takže se můžete plně soustředit na výklad.

Zbývá nám jen popřát mnoho úspěchů a radosti z práce.

METTLER TOLEDO, s. r. o.Třebohostická 2283/2100 00 Praha 10

Page 6: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

Hist

orie

4

Přesné měřicí přístroje představují nejen základ vědeckého výzkumu, ale hrají nezastupitelnou roli i v našich každodenních životech. Setkáváme se s nimi takřka na každém kroku. Lidé, kteří přesně měří délku, čas a hmotnost, jsou důvěryhodní. Lidé, kterým je dovoleno určovat míru a hmotnost, jsou mocní.

Zatímco časové a délkové míry bylo možno odvozovat biologicky nebo fyzicky, zavádění jednotek hmotnosti bývalo nesystematické. Státy, knížectví i města měla často své vlastní jednotky, které si uchovala až do moderních dějin.

Teprve v roce 1875 se konala konala Mezinárodní metrická konvence, kterou již v současnosti podepsalo více než 50 zemí a která umožnila standardizaci soustavy vah a měr.

Naše základní jednotka 1 kilogramu odpovídá hmotnosti mezinárodního prototypu kilogramu. Prototyp kilogramu je uložen v Mezinárodním úřadu pro míry a váhy ve městě Sèvres v blízkosti Paříže, kde spočívá v extrémně přísně kontrolovaných klimatických podmínkách. Jedná se o válec s výškou 39 mm a průměrem 39 mm, který je vyroben ze slitiny obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají s prototypem kilogramu. Porovnávání není častější, aby nedocházelo k zbytečnému opotřebení prototypu.

Váhy ve své historii ušly velmi dlouhou cestu. Zbytky nejstarší známé váhy byly objeveny v prehistorickém egyptském hrobě: nález je datován přibližně do doby 5000 let před naším letopočtem. Jednotlivá kamenná závaží jsou známa dokonce i z dob ještě dřívějších. Na základě vědeckých poznatků lze předpokládat, že člověk používá vážení již více než 7000 let.

Nejznámější typ váhy je rovnoramenná váha. Vážený vzorek se na ní jednoduše porovnává pomocí běžných závaží 1:1. Na historických kresbách však lze najít i jednoduché váhy s jednou pákou a nerovnoramenné váhy s různým převodním poměrem. Dalšími důležitými typy vah jsou silniční váhy, dobře známé poštovní váhy nebo pružinové váhy, které na stupnici zobrazují tíhovou sílu, která závisí na gravitaci.

Váha pro lidstvo představuje nejen nejběžnější a různorodý měřicí přístroj, ale od nepaměti i symbol rovnosti a spravedlivého rozhodování. Váha tedy zaujímá v rukou bohyně Justicie stejnou pozici jako meč coby symboly nezávislého a spravedlivého rozhodování.

Metrologie aneb umění měřit

Kulturní historie

Page 7: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

5

Dalším zajímavým symbolickým využitím váhy je posmrtné vážení duší ve starém Egyptě a Řecku. Staroegyptské posmrtné schránky a svitky obsahují mnoho vyobrazení vážení duší, které bylo symbolem posmrtného soudu. Na základě výsledku byla duše, kterou na váze představovala malá loďka, souzeného předána buď bohu zatracení, který duši zničil, nebo bohu světla k věčnému životu. Na druhé misce vah se nachází pírko, které symbolizuje pravdu (hieroglyf pera znamená „pravda“).

Obdobné vyobrazení je vlastní i křesťanství, které znázorňuje Svatého Michaela coby spravedlivého obhájce v posledním soudu.

Že něco lehkého, či dokonce nehmotného může mít velkou váhu, je patrné například ze slovního spojení „těžké rozhodnutí“. Nesprávné slovo však může mít závažné důsledky, ale na to, abychom neztratili smysl pro rovnováhu, dohlíží dobří přátelé, kterým jsou misky vah nakloněny. Takový přítel nám může dát i dobrou radu, například dvakrát měř a jednou řež. Lidé, kteří váží každé slovo, jsou často považování za moudré, avšak mnozí z nich jednají často pedanticky a není snadné s nimi vycházet.

Lidová rčení

Page 8: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

Fyzi

ka

6

Tento pokus ilustruje koncept hmotnosti a hustoty a současně slouží i coby úvod do technik vážení.

Výpočet objemu z rozměrů těles pravidelných tvarů. Hmotnost je stanovena vážením. Hustota se vypočítává z objemu a hmotnosti.

Přesná váha METTLER TOLEDO (odečitatelnost 0,01 g)Kvádrová, kulová, kónická nebo válcová tělesa (neporézní)Délková měřidla, posuvná měřítka, třmenové mikrometry

Každý student obdrží vzorek, u kterého stanoví rozměry a vypočítá jeho objem. Poté vzorek zváží (pod dohledem učitele) a následně vyhodnotí výsledky.

Hustota je kvocientem hmotnosti a objemu

mρ = jednotky: g/cm3, kg/m3

V

U školních pokusů lze jednotlivé vzorky od všech studentů vyhodnocovat postupně (nebo ve skupinách po 2 studentech).

Relativní nejistota výsledku by měla být odhadnuta na základě výpočtu nejistoty:– Zanedbatelné nejistoty vážení– Přesnost geometrického tvaru?– Relativní nejistota měření délky?– Relativní nejistota vážení?

– Váha zobrazuje přesnou hmotnost vzorku pouze v případě, jestliže hustota vzorku činí 8 000 kg/m3. Při stanovování těles s menší hustotou (např. polystyrenová pěna) je třeba použít vzorec ke korekci vztlaku. V opačném případě vzniká relativní chyba.

– U tenkých drátů nebo plátů známé hustoty lze vážení použít k výpočtu jejich tloušťky (měděný drát, hliníková fólie).

– Ze známé hustoty válcových nebo kulových těles lze vypočítat hodnotu π.

Hustota pevných látek na základěměření objemu a hmotnosti

Cíle výuky

Zadání

Materiál

Postup

Vyhodnocení

Závěry

Poznámka

Page 9: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

7

Tento pokus slouží coby názorná ukázka vztahu mezi hmotností, vztlakem a hustotou těles.

Stanovení objemu pevných těles nepravidelných tvarů ze vztlaku a hmotnosti stanovené vážením. Tyto dvě veličiny se používají k výpočtu střední hustoty tělesa.

Přesná váha METTLER TOLEDO (odečitatelnost 0,01 g), alternativně sada METTLER TOLEDO pro stanovení hustotyKádinka s vodouStojan s kroužkem a ramenemTenký motouzKošík s velkými oky z tenkého drátuPinzetaTěleso libovolného tvaru (např. šroub, klíč, mince)

Prázdný košík zavěšenýna motouzu je ponořendo vody, aniž by se dotýkalstěny kádinky.

Váha je vytárována. Těleso se umístí na vážicí misku vedle kádinky a je stanovena jeho hmotnost m. Poté se těleso pomocí pinzety umístí do košíku. Nesmí dojít ke ztrátám vody vystříknutím, ani ulpěním na pinzetě. Z blízkosti košíku a tělesa je třeba odstranit vzduchové bubliny. Na těleso působí vztlaková síla F

L směrem vzhůru a samotné těleso působí na vodu silou F stejné velikosti směrem dolů.

Váha zobrazuje hodnotu a FL = . g

Dle Archimédova zákona FA = V

tělesa · ρ

kapaliny · g = . g

ρkapaliny = =

. ρtělesa

Vtělesa

m tělesa

ρtělesa = ρ

kapaliny .

m tělesa

Příklad: Matice kola osobního vozidla Teplota vody 20 °C Hmotnost matice m = 52,74 g Vztlak = 6,74 g

ρ = 1,00 g/cm3 .

52,74 g= 7,83 g/cm3

6,74 g

Cíle výuky

Zadání

Materiál

Uspořádání na počátku pokusu

Postup

Vyhodnocení

Hustota pevných látek (vztlaková metoda)

Motouz

Drátěný košíkStojan

Page 10: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

Fyzi

ka

8

Při teplotě 20 °C je hustota vody o 0,2 % menší než 1 g/cm3. I bez zohlednění závislosti hustoty na teplotě lze objem a střední hustotu i malých mincí stanovit s nejistotou nižší než 1 %.U zlatých a stříbrných mincí lze standard vypočítat, je-li známa (střední) hustota materiálu slitiny.Platí:

m = mx + m

R

V · ρ = Vx · ρ

x + (V – V

x) · ρ

R

Vx

= ρ – ρ

R

nebo mx / m = …

V ρx

– ρR

Závěry

Hmotnost Objem (Střední hustota)

mince m V ρzlato, stříbro m

x V

x ρ

x

zbytky mR

ρR

Page 11: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

9

Závislost hustoty vody na teplotěHustota vody se mění s teplotou. Nejvyšší hustoty dosahuje při teplotě 4 °C

(anomálie vody).

Hustota vody se v teplotním rozsahu 0–50 °C stanovuje pomocí specifického pyknometru a váhy. Výsledky pokusu by měly být vyjádřeny graficky.

Přesná váha METTLER TOLEDO (odečitatelnost 0,01 g)Specifický pyknometr s objemem 50 ml nebo 100 ml, pokud možno z křemenného skla, a teploměrem vybaveným kuželovou spojkouKádinka s objemem 1000 mlPokud možno teploměr se stupnicí 0–50 °C a dílkováním po 1/

10 nebo 1/

5 stupně

Topná deskaPolystyrenová destička coby tepelná izolaceRučníkKostky ledu

Na vážicí misku se umístí polystyrenová destička coby tepelná izolace. Přesvědčte se, zda destička nezakrývá váhový můstek, kde by mohla být příčinou elektrostatického rušení.Váha se vytáruje prázdným specifickým pyknometrem. Poté se specifický pyknometr naplní ponořením do kádinky obsahující ledovou vodu a zarážka (nebo teploměr s kuželovou spojkou) se ponoří pod vodu. Změří se teplota vody ϑ.Následně se pyknometr vyjme z vody, osuší a umístí na váhu. Zaznamená se hmotnost vody m. Zbylý led se poté vyjme z vody, která se šetrně zahřeje. V rozmezí 0–10 °C se měření ϑ a m provádí nejdříve přibližně po každých dvou stupních a poté v intervalech přibližně 10 stupňů. Obsah specifického pyknometru se po dokončení každého měření přelije zpět do kádinky a voda se důkladně promíchá.

V případě specifického pyknometru z jenského skla (součinitel délkové roztažnosti α = 3,2 · 10–6/K) kalibrovaného na objem 50 cm3 při 20 °C by měly být výsledkem pokusu tyto hodnoty:

Cíle výuky

Zadání

Materiál

Postup

Vyhodnocení

Teplota Hmotnost Hustota ϑ ve °C m v g ρ v g/cm3

0 49,991 0,99984 2 49,996 0,99994 4 49,997 0,99997 6 49,996 0,99994 8 49,992 0,99985 10 49,984 0,99970 20 49,910 0,99821 30 49,783 0,99565 40 49,612 0,99222 50 49,405 0,98805

Bod s nejvyšší hustotou

Pokles hustoty

o 1 %

Page 12: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

Fyzi

ka

10

Pomocí specifického pyknometru a váhy lze stanovit hustotu široké škály kapalin, například hexanu, etanolu, chloroformu atd.

– Dle tabulky se v teplotním intervalu 0–4 °C mění hustota vody o 0,00013 g/cm3, což odpovídá 13 ‰. Ve stejném intervalu se objem jenského skla mění o 0,04 ‰, ale objem křemíkového skla dokonce sedmkrát méně. Není-li specifický pyknometr vyroben z křemíkového skla, doporučuje se započítat korekci objemu.

– Je-li specifický pyknometr plněn vodou při teplotě přibližně 2 °C, lze při zahřívání pozorovatpokles hladiny vody v kapiláře zátky. Při obejmutí specifického pyknometru teplou dlaní dochází ke smrštění do několika sekund.

– Hustotu vody při 20 °C je třeba měřit s obzvláštní přesností, jelikož se jedná o kalibrační teplotu byret, pipet a odměrných válců.Hustota při této teplotě je přibližně o 2 ‰ nižší než při teplotě 4 °C.

Závěry

Poznámka

Page 13: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

11

Hustota vzduchu

Hmotnost a hustotu lze měřit dokonce i u vzduchu!

Z baňky se vysaje vzduch a jeho hustota se určí z jeho hmotnosti a objemu. Hustota by se měla převádět na standardní teplotu a atmosférický tlak.

Přesná váha METTLER TOLEDO (odečitatelnost 0,01 g)Vývěva (vodní čerpadlo)Skleněná baňka s 2 kohouty (objem cca 1 litr)Kbelík s vodouOdměrný válec (objem 1 litr)Teploměr (k měření teploty vody)Teploměr (k měření teploty vzduchu v místnosti)Barometr (nejustovaný na tlak vzduchu u hladiny moře)

K usnadnění výpočtů by teplota vody měla být shodná s teplotou vzduchu v místnosti.Suchá baňka naplněná vzduchem se vytáruje na váze. Poté se vzduch z baňky odčerpá a baňka znovu zváží. Zaznamená se hmotnost vzduchu m.Baňka se poté přidrží v kbelíku s vodou, pomalu se otevře kohout a voda se nechá vnikat do baňky, dokud se tlak v baňce nevyrovná s vnějším tlakem. Hladina vody v baňce se v takovém přípa-dě nachází ve stejné výšce jako hladina vody v kbelíku. Objem vody V, která vnikla do baňky, se rovná objemu odsátého vzduchu a lze jej stanovit pomocí odměrného válce nebo zvážením.

Hustota se stanovuje coby kvocient hmotnosti a objemu

v g/dm3 nebo v kg/m3

Hmotnost odsátého vzduchu m v gObjem odsátého vzduchu V v dm3

Teplota okolního vzduchu θ ve ºC tudíž T v KTlak vzduchu p v milibarechPro hustotu při teplotě okolního vzduchu

a pro standardní hustotu

mV .

1 013 mbar .

o = (hodnota uváděná v literatuře 1,293 kg/m3)V 273,1 K

– Je-li k měření objemu použit odměrný válec, nejnižší možná nepřesnost měření činí 1 %.– Korekce atmosférické vlhkosti a obsahu CO

2 je obtížná; jejich vliv činí přibližně 1 %.

ρ =

m

V

Cíle výuky

Zadání

Materiál

Postup

Vyhodnocení

Poznámka

ρ =

m

V

Page 14: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

Fyzi

ka

12

Hustota plynů

Tento pokus vysvětluje měření hustoty plynných látek.

Hustota plynných látek se stanovuje z jejich objemu a hmotnosti a převádí se na standardní teplotu a tlak.

Přesná váha METTLER TOLEDO (odečitatelnost 0,01 g)Kuželovitá baňka (objem cca 1 litr)Odměrný válec (objem cca 1 litr)Nádoba s vodouCO

2, He, H

2 nebo O

2 z válce

Teploměr (k měření teploty vzduchu v místnosti)Barometr (nejustovaný na tlak vzduchu u hladiny moře)

Kónická baňka se táruje naplněná vzduchem. Do baňky se po několik sekund pouští plyn prostřednic-tvím pryžové hadičky opatřené skleněnou trubičkou, která se dotýká dna baňky. Jakmile se hodnota na displeji váhy ustálí, přívod vzduchu se zastaví a odečte se hmotnost Δm zobrazená na displeji váhy.Kónická baňka se poté naplní vodou a pomocí odměrného válce se stanoví objem V. Objem lze přesněji a pohodlněji stanovit s pomocí váhy, pracujeme-li s hustotou vody 1,00 g/cm3.

Hustota plynu je kvocientem jeho hmotnosti a objemu. Hmotnost plynu nebyla změřena přímo, ale lze ji vypočítat:

m plyn = m (baňka s plynem) – m (baňka se vzduchem) + m vzduch

= Δm + m vzduch

Rozdíl hmotnosti plynu a vzduchu Δm v gHmotnost vzduchu (neměřená) m vzduch v gObjem kónické baňky V v dm3

Teplota okolního vzduchu ϑ ve ºC tudíž T v KTlak vzduchu p v milibarech

Za pokusných podmínek činí hustota plynu a za standardních podmínek

při ρvzduch

= 1,293 g/dm3

– Kónická baňka musí být zcela suchá.– Teplota válců s plynem by měla být shodná s okolní teplotou.– Plyny lehčí než vzduch (např. vodík) lze plnit zespodu do baňky otočené dnem vzhůru.

ρo plyn

=

· · + ρ

o vzduch

Δm 1 013 mbar T

V p 273,1 K

ρplyn

=

=m

plyn Δm + m

vzduch

V V

Cíle výuky

Zadání

Materiál

Postup

Vyhodnocení

Poznámka

Page 15: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

13

Vztlak plynů

Je-li těleso váženo ve vzduchu, velikost vztlakové síly se rovná hmotnosti vytlačeného vzduchu.Stejné pravidlo se vztahuje i na jiné plynné a kapalné látky. Při měření hmotnosti těles s nízkou hustotou je proto třeba do výsledku měření započítat i korekci vztlakové síly.

– Stanovení rozdílu mezi vztlakem vzduchu a vodíku při použití baňky s objemem 1 litr naplněné vzduchem.

– Stanovení rozdílu mezi vztlakem vzduchu a vodíku při použití baňky s objemem 1 litr naplněné vodíkem.

Přesná váha METTLER TOLEDO (odečitatelnost 0,01 g)1 baňka s kulatým dnem, objem 1 l, zátka (do poloviny provrtaná)1 malý kbelík (51)StojanVodík nebo oxid uhličitý z válceKovová trubička ∅ 6 mm s délkou 20 cm, na základně

Trubička se vloží do zátky s vývrtem příslušného průměru a umístí se na váhu. Poté se baňka s kulatým dnem připojí k zátce a odečte se hmotnost. Poté se kbelík obrátí nad baňkou a do kbelíku se zdola pouští vodík, dokud se hodnota na vázeneustálí. Baňka „ztěžkla“!Baňka se nyní naplní vodíkem a opět umístí na váhu. Váha zobrazí menší hmotnost, protože hmotnost vodíku v baňce je nižší než hmotnost vzduchu. Je-li baňka obklopena vodíkovou atmosférou, váha zobrazí stejnou hodnotu jako v případě baňky naplněné vzduchem a obklopené vzduchovou atmosférou.

Cíle výuky

Zadání

Materiál

Postup

Nebezpečí výbuchu

Page 16: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

Fyzi

ka

1414

Střední molární hmotnost vzduchu (28,8 g/mol) je přibližně čtrnáctkrát vyšší než molární hmotnost vodíku.Na litrovou baňku tak působí poměrně různé síly:

hmotnost cca 1,15 g vzduchu nebo cca 0,08 g vodíku.

Zkoumané síly lze schématicky znázornit takto:

V těchto experimentech lze vodík nahradit oxidem uhličitým CO2. Jelikož měrná hmotnost CO

2 je vyšší

než měrná hmotnost vzduchu, je třeba uspořádání jednotlivých pomůcek obrátit.

– Kbelík se nachází zcela dole.– Baňa s kulatým dnem je zavěšená na váze a ponořená do kbelíku.– Váha je umístěna na stojanu nebo na stoličce s otvorem pro ruku. Baňka s kulatým dnem je zavěše-

ná na háku umístěném pod váhou. Nejprve je třeba zapnout váhu.

Litrová baňka obsahuje přibližně 1,75 g oxidu uhličitého. Proto jsou „hmotnostní rozdíly“ u CO2 přibližně

poloviční než v případě H2; tuto skutečnost potvrzuje porovnání molárních hmotností.

44–28,8

28,8–2 = 0,57

Vyhodnocení

Rozvedení

Vzduch Vzduch

VzduchVzduch

Vzduch

Vzduch Vzduch

Vzduch

VZTLAK

Vodík Vodík

VodíkVodík

TÍHA

Počáteční podmínky Težší Lehčí Stejně jako na počátku

Page 17: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

15

Hustota kapalin

Stanovit hustotu kapalin na základě měření objemu a hmotnosti.

Zadání: Zkoumání hustoty různých kapalin, například vody, alkoholu, chloroformu, hexanu a benzínu.

Přesná váha METTLER TOLEDO (odečitatelnost 0,01 g)Odměrné válce, volumetrické baňky, pipety, specifické pyknometry, kádinkyRůzné kapaliny, viz výše

Skleněné pomůcky, například specifický pyknometr, kádinka nebo odměrný válec, se vytárují a poté naplní zkoumanou kapalinou. Hmotnost se poznamená.

Hustota se stanovuje coby kvocient hmotnosti a objemu.

ρt = hustota při teplotě t

m = hmotnostV = objemt,ϑ = teplota kapaliny

Jelikož hustota kapalin závisí na jejich teplotě, je třeba jejich teplotu nejdříve stanovit.Pro účely vysoce přesných měření je třeba započítat i korekci vztlaku.

Kapaliny používané ve školních pokusech nesmí být dráždivé či toxické.Je zakázáno pracovat s chloridem uhličitým, benzenem a koncentrovanými kyselinami a zásadami.

ρt =

m

V

Cíle výuky

Zadání

Materiál

Postup

Vyhodnocení

Závěry

Poznámka

15

Odměrnýválec

Specifický pyknometrPipetaVolumetrická baňka

Page 18: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

Fyzi

ka

16

„Síly vždy působí ve dvojicích – působí-li těleso silou na jiné těleso, druhé těleso působí na první tělesoa) silou stejné velikosti,b) silou, která působí přesně opačným směrem: „opačná síla“, c) silou, která působí stejným směrem.“(Newtonův zákon akce a reakce)

a) Obě váhy se používají bez zatížení (!) v souladu s pokyny.b) Těleso je zavěšeno na horní váze a laboratorní zvedák s kádinkou jsou umístěny na dolní váze.c) Kádinku lze nyní zvedat tak, aby zavěšené těleso bylo postupně ponořováno do kapaliny.d) Jak zobrazuje horní váha, těleso je nadlehčováno kapalinou a jeho tíhová síla se očividně zmenšuje. Jak zobrazuje dolní váha, kapalina (a kádinka a laboratorní zvedák) jsou ponořeným tělesem

tlačeny dolů a jejich tíhová síla se očividně zvětšuje. Velikost obou změn je zcela totožná.

a) Negativní: Použití dvou elektronických vah není právě běžné. Ve škole střední nebo větší velikosti by mělo být snadné najít druhou váhu.b) Pozitivní:

1) Uspořádání experimentu je zcela srozumitelné, bez potřeby dalších vysvětlení.2) Ovládání sestavy je jednoduché a neskýtá žádná nepříjemná překvapení.3) Ukázku lze předvést bez zbytečných časových ztrát.4) Experiment snadno udrží pozornost žáků díky spouštění a zvedání části sestavy, tárování

i opakovanému zobrazování nových hodnot, jejichž platnost dle Newtonova zákona lze zkontrolovat rychlým výpočtem zpaměti, někdy i bez výpočtu.

5) Další pokusy „akce“ a „reakce“ jsou méně zábavné a vyžadují podrobnější vysvětlení.

16

Síla a opačná síla

Téma

Uspořádání na počátku pokusu

Postup

Kritické poznámky

1 Přesná váha METTLER TOLEDO (odečitatelnost 0,01 g)2 Podložka, stojan apod.2 Zavěšené těleso4 Kádinka s kapalinou, např. vodou5 Nastavitelný laboratorní zvedák6 Přesná váha METTLER TOLEDO (odečitatelnost 0,01 g)

1

2

3

4

5

6

Page 19: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

17

Laboratorní stůl

Vychylovací síla

Změna směru průtoku vyžadujeběžnou sílu (kolmou ke směrurychlosti).

Zkoumání síly, která mění směrtoku vody

Přesná váha METTLER TOLEDO (odečitatelnost 0,01 g)Plastové potrubí, vnější průměr např. 12 mm, vnitřní průměr 8 mm,délka dle potřebyKonektor pro potrubí na vodovodní kohoutPrvní vodicí trubka, délka přibližně 20 cm, vnitřní průměr mírně větší než vnější průměr potrubíNeklouzavý stojan a svorky, které potrubí udrží ve vodorovné polozePlastová nádoba, objem 5 litrůVáha METTLER TOLEDO, vážicí rozsah 0...6 kg, nebo odměrný válec,objem 1 000 mlStopkyDruhá vodicí trubka ze dřeva (k zajištění potrubí na váze), např.

Cíle výuky

Zadání

Materiál

Uspořádání na počátku pokusu

17

Místo pro závaží

1 Plastové potrubí2 První vodicí trubka připevněná ke stojanu3 Druhá vodicí trubka vyrobená ze dřeva4 Závaží k pevnému uchycení dřevěné trubky

k váze5 Plastová nádoba6 Umyvadlo s vodovodní baterií

Page 20: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

Fyzi

ka

18

První vodicí trubka se připevní ke stojanu ve stejné výšce jako druhá trubka na váze. Trubka musí být uchycena tak, aby se na váze nemohla posunovat. Dle potřeby může být nezbytné použít přídavné závaží. Ačkoli delší potrubí se snáze vychýlí, při dvojnásobné délce potrubí se sníží maximální průtok přibližně o polovinu a maximální síla se sníží přibližně na čtvrtinu!

U tohoto pokusu je důležité, aby vážicí miska kompenzační váhy METTLER TOLEDO zůstávala neustále ve stejné výšce nad pracovním stolem, a to i při proměnlivém zatížení. Předejdete tak kroucení plastové hadice a zkreslení měření v důsledku deformačních sil. Voda je přiváděna potrubím a vyvíjí opačnou sílu směrem vzhůru na pravé straně potrubí. Pomocí váhy se změří svisle působící složka síly. Síla závisí na středním průtoku v– vody, který lze vypočítat z průtokového objemu ΔV za dobu Δt a vnitřního průřezu potrubí A:

a) Nechejte vodu protékat velmi pomalu, tj. rychlostí, která zabrání vnikání vzduchových bublin do potrubí volným koncem. Vytárujte váhu.

b) Pootevřete vodovodní kohout a změřte sílu F.c) Podržte prázdnou nádobku v proudu vody po vhodný časový úsek Δt. Současně je třeba pozorně sledovat displej váhy, protože vstupní tlak vody může krátkodobě kolísat.d) Objem vody v nádrži se stanoví buď pomocí odměrného válce nebo zvážením na druhé váze, což je

rychlejší a přesnější.e) Opakujte úkony b) až d) u ostatních průtoků.

Tabulka obsahující F, Δt, ΔV, v–

Za nerigorózního, ale zjednodušujícího předpokladu, že každá částice vodymá stejnou driftovou rychlost.

Objem, který protéká průřezem A za čas δt ,je dán: Příslušná hmotnostmá hybnou sílu

Nejprve směřuje vodorovně, posléze dolů. Proto síla potrubí (–F›

) vytváří během doby změnu hybné síly δt:

a odečet hodnoty na váze

18

Teoretickéaspekty

Postup

Vyhodnocení

F · δt = δp = ρ · A · v2 · δt

F = ρ · A · v2 = ρ · (ΔV/Δt)2

A

(Δm/Δt)2

ρ · AF =

=Fg

(Δm/Δt)2

ρ · A · g=

(2)

(3)

v– = ΔV / ΔtA

δV = A · v · δt.δm = ρ · δVδp = v · δm = ρ · A · v2 · δt.

(1)v– = ΔV / ΔtA

v =

Page 21: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

19

Vznikne křivka se sklonem 2. Body experimentu leží na přímo na křivce, čímž se potvrzuje kvadratický vztah mezi Δm/Δt a .Hodnoty ve výše uvedené tabulce samozřejmě nejsou vymyšlené, jednáse o skutečné hodnoty naměřené při použití plastové trubky s vnitřním průřezem 8 mm. Jak je lze použít v rovnici (3)? Například v pátém měření získáme

Shoda se zdá být vysoká, nicméně ne všechny částice vody se pohybují stejnou rychlostí.

Experiment trvá 20 minut. Nabízí příležitost praktické ukázky těchto jevů: „akce a reakce“ a „změna hybnosti se rovná síle impulzu“.

Závěry

19

Příklad měření

Voda v nádrži Hodnota na váze

Δm/Δt = 99,8 g/sρ

voda = 1,00 g/cm3

Apotrubí

= π · (0,40 cm)2

g = 981 cm/s2 } vloženo do (3) vypočítaná

= 20,2 g namísto

naměřená = 20,0 g ±0,2 g

Změřený vztah mezi Δm/Δt a I (F) lze nejlépe vyjádřit na grafu s dvojitou logaritmickou stupnicí.

Page 22: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

Fyzi

ka

2020

Síla odporu ve vzdušném proudění

Na těleso v proudícím médiu působí odpor F, jehož síla závisí na velikosti (A) a tvaru (cr) tělesa a současně i na hustotě ρ a relativní rychlosti v proudícího média.

Zkoumání síly odporu různých těles ve vzdušném proudu větrného generátoru.

Přesná váha METTLER TOLEDO (odečitatelnost 0,01 g)Větrný generátorDle možností Prandtlova trubice s tlakoměrem k měření rychlosti vzduchuTělesa s různým odporem (upevněná na tyči)– pokud možno shodný průtočný profil (největší průřez) jako těleso; např. kruhový disk, koule, plná

polokoule, dutá polokoule, aerodynamická tělesa, modely letadel– shodný tvar, např. malé, středně velké a velké kruhové disky nebo pravoúhlé desky– samotná tyč, bez tělesa Upevnění měřených těles, např.

1) Zatížená základna s doplňujícím příčným otvorem o průměru 8,2 mm ∅ 2) Hliníková tyč o průměru 8 mm ∅, délka 400 mm3) Otvor k uchycení tyče s upevněným měřeným tělesem4) Šroub M3 proti kroucení5) Protizávaží dle potřeby

K ochraně váhy proti proudění vzduchu můžete použít například box o rozměrech 60 cm x 60 cm x 40 cm s těmito vlastnostmi:– volný přístup pro uživatele/studenty,– upevnění k pracovnímu stolu dvěma příchytkami,– výřez ve dnu, který umožní váze stát přímo

na pracovním stole,– malý postranní otvor na hliníkovou

tyč (2).

Při použití výkonného větrného generátoru jeochranný box naprostou nutností, protože vzdušnýproud se odráží od stropu a vzdušné víry mohouváhu zasáhnout shora (vyzkoušejte sami zapálenou svíčkou!).

1. Větrný generátor2. Box3. Upevněné měřené těleso

Cíle výuky

Zadání

Materiál

Uspořádání na počátku pokusu

Page 23: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

21

◗●

Postup

Vyhodnocení

Závěry

21

pdyn

= · v2ρ2

F = cr · p

dyn · A

ρ = hustota proudícího médiac

r = parametr odporu (tvarový faktor)

A = největší průřez (plocha tělesa na rovině kolmé ke směru průtoku média)

a) Prvotní zkouška: Ke stanovení oblasti vzdušného proudění s konstantní rychlostí se použije pitotstatická trubka.

b) Poznámka pro všechny další pokusy: v následujícím postupu nás zajímá měření odporu F(těleso), který klade samotné měřené těleso. Proud vzduchu působí tlakem i na tyč, ke které je těleso uchyceno, a váha zobrazuje sílu F(měření). Proto je posléze třeba provést i měření bez tělesa, tj. měření samotné tyče, a stanovit sílu F(tyč). Síla F(těleso) se následně vypočítá dle vzorce F(měření) – F(tyč).

c) Síla odporu F se u tělesa měří za různých rychlostí vzdušného proudu v.Tabulka obsahující hodnoty v, F(měření) a F(těleso).Dle potřeby lze pokus opakovat s tělesy různých tvarů a velikostí.

d) Hodnota F(těleso) se u těles různých velikostí (A) a stejného tvaru stanovuje za stálé rychlosti proudění vzduchu. Tabulka obsahující hodnoty A, F(těleso) a F(těleso)/A.Lze opakovat i s tělesy různých tvarů.

e) Hodnota F(těleso) se stanovuje u těles různého tvaru a se shodnou odporovou plochou A (maximální průřez) za stálé rychlosti proudění vzduchu.Tabulka obsahující nákres tvaru a hodnoty F(těleso).Lze opakovat i za různých rychlostí proudění vzduchu.

f) Doba jednoho měření činí jednu nebo dvě minuty a její délka do značné míry závisí na zručnosti a zkušenostech obsluhy.

U turbulentního průtoku teorie předpovídá

pro dynamickýtlak

a prosílu odporu

proto lze očekávat, že:při c) úměrnosti mezi v2 a sílou odporu [F(měření), F(tyč), F(těleso)];

při d) stabilním kvocientu F(těleso)/A;

při e) cw

> cw

l >cw • > c

w

Díky rychlosti provedení je pokus velmi vhodný k předvedení v hodině. Jsou-li potrubí a tlakoměr připevněny (!) ke stolu, lze pokus bez obav svěřit i nezkušeným studentům.

Page 24: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

Fyzi

ka

2222

Síly působící na profil křídla

Na asymetrické těleso vystavené proudění vzduchu působí síla složky, která je kolmá k síle odporu (aerodynamický odpor) F

R ve směru proudění. V případě leteckého křídla se tato síla projevuje v podobě

síly vztlakové (aerodynamický vztlak) FA.

Zkoumání požadované vztlakové síly FL, nežádoucího aerodynamického odporu F

R a jejich kvocientu F

L/

FR při úhlu náběhu α za použití ploché desky a leteckého křídla.

Přesná váha METTLER TOLEDO (odečitatelnost 0,01 g)Větrný generátorDle možností Prandtlova trubice s tlakoměrem k měření rychlosti vzduchuModel leteckého křídla s velmi tenkými, paralelními lamelami a otočným uchycenímMalá deska (dřevěná, plastová nebo kovová) s lamelami a otočným uchycenímNeklouzavá základna se svislým vývrtemDržák k vodorovnému uchycení modelu, např. dřevěná kostka

1) Tyč, ke které je uchycen otočný model 2) Dřevěná kostka, 180 mm x 100 mm x 30 mm 3) Vývrt k zasunutí tyče 1) 4) Dle potřeby šroub; zajišťuje tyč 1) proti kroucení 5) Tyč, ∅ 10 mm; tyč se musí pohodlně zasouvat do kostky 6) Protizávaží cca 1 kg, např. zvážený podstavec

K ochraně váhy proti proudění vzduchu můžete použít například box o rozměrech 60 cm x 60 cm x 40 cm s těmito vlastnostmi:– volný přístup pro experimentátory,– upevnění k pracovnímu stolu dvěma příchytkami,– výřez ve dnu, který umožní váze stát přímo na pracovním stole,– malý postranní otvor na hliníkovou tyč 1).

Cíle výuky

Zadání

Materiál

Page 25: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

23

Měření vztlaku a aerodynamickéhoodporu vyžadují použitírůzných uspořádání.

Vztlak

Aerodynamický odpor

a) Rozložení rychlostního profilu ve vzdušném proudu před větrným generátorem se zkoumá pomocí Prandtlovy trubice.

b) Vztlak FL: lze teoreticky vypočítat takto:

Zjistěte závislost vztlaku na rychlosti větru.Tabulka obsahující v, F

L a graf.

Dle potřeby opakujte s použitím jiného profilu nebo pod jiným úhlem náběhu.

c) Pro potřeby následujících měření je třeba udržovat stálou rychlost proudění vzduchu; tuto rychlost budeme u profilu označovat v*.

Závislost vztlakové síly na úhlu náběhu α se měří nejprve u malé desky..

Uspořádání na počátku pokusu

Postup

23

CA = parametr vztlaku, závisí na tvaru

A = největší průřez (plocha tělesa na rovině kolmé ke směru průtoku média)

ρ = hustota vzduchuv = rychlost větru (relativní vlhkost vzduchu vůči tělesu)

Při použití výkonného větrného generátoru jeochranný box naprostou nutností, protože vzdušný proud se odráží od stropu a vzdušné víry mohou váhu zasáhnout shora (vyzkoušejte sami zapálenou svíčkou).

FA = c

A · A · · v2

ρ

2

Page 26: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

Fyzi

ka

2424

d) Aerodynamický odpor FR: I odpor je přímo úměrný dynamickému tlaku

Dle časových možností doporučujeme provést kontrolu.

e) Jelikož vzdušný proud naráží nejen na pokusné těleso, ale i na jeho uchycení, je třeba v přípravném experimentu změřit hodnotu FW(uchycení) bez použití tělesa, tj. pouze samotné uchycení. U následných měření FR(celkem) je třeba provést korekci:

f) V následných měřeních je rychlost vzduchu v místě zkoušeného tělesa opět upravena na v = v*, jak je uvedeno výše. Závislost FR(celkem) na úhlu náběhu α se změří u desky a u křídla.

Tabulka obsahující α, FR (celkem) a FR (model), grafy.

Provedení samotných měření trvá zkušené osobě přibližně 45 minut. Je-li součástí experimentu i závěrečné vyhodnocení, bude výuková skupina potřebovat tři až čtyři hodiny.

K zobrazení hodnot FL a FR křídlase zpravidla používají polární křivky podle Lilienthala.K další interpretaci výsledků doporučujemepoužít odbornou literaturu, napříkladdokumentaci z kurzů pro piloty kluzáků.

Obsluha aparatury je snadná, alepráce související s experimentem vyžadujevysokou míru pečlivosti, stejně jakoi závěrečné vyhodnocení. Navzdory náročným požadavkůmje tento experiment velmi oblíbený.

Vyžadovaná doba

Vyhodnocení

Závěry

(pdyn

= · v2), tudíž FR ~ v2.

ρ

2

FR

(model) = FR

(celkem) – FR

(uchycení)

Deska Profil

Deska Profil

Page 27: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

25

Závislost síly magnetického pole cívky na intenzitě proudu

Síla magnetického pole cívky je přímo úměrná intenzitě elektrického proudu.

Měření závislosti síly, která působí na malý tyčový magnet v magnetickém poli cívky, na intenzitě elektrického proudu přiváděného do cívky.

Přesná váha METTLER TOLEDO (odečitatelnost 0,01 g)Vzduchová cívka (např. délka 7 cm, průměr 4 cm, počet závitů vinutí 250)Zdroj stejnosměrného proudu dodávající přibližně 5–10 APotenciometr (např. 6 Ω), jestliže napětí ve zdroji stejnosměrného proudu nelzeregulovatVypínačAmpérmetrElektrický kabelStojanMalý permanentní magnet, např. válcová tyčNemagnetická tyč (hliníková ty, dřevo), délka cca 15 cm, upevněná do nemagnetického podstavce

K horní části tyče je připevněn magnet s trochou vazelíny. Cívka je umístěná tak, aby se magnet nacházel přímo pod jedním z konců cívky.

Nejprve se provede prvotní zkouška, která zjistí, zda magnetické pole cívky přímo ovlivňuje váhu. Pokud ano, hodnota na displeji váhy by se po zapnutí proudu měnila. Zjistíme, že váhy METTLER TOLEDO jsou vůči magnetickému poli zcela netečné!Dále je třeba pamatovat, že magnet se nesmí vůči cívce během řady měření pohybovat, protože magnetické pole cívky je nehomogenní. V tomto ohledu nevznikají potíže s váhami, které fungují na kompenzačním principu, protože u těchto vah zůstává vážicí miska, bez ohledu na zatížení, vždy ve stejné výšce nad pracovním stolem.Po vytárování váhy se intenzita elektrického proudu postupně, v krocích, zvyšuje. Související hodnoty I a F (síla) se poznamenají do tabulky a následně znázorní v grafu. Je zřejmé, že síla je přímo úměrná intenzitě proudu.Proto je intenzitě proudu přímo úměrná i síla magnetického pole.

Cíle výuky

Zadání

Materiál

Uspořádání na počátku pokusu

Postup

25

M MagnetR TyčB Základna

Q Zdroj prouduSw VypínačR PotenciometrA Ampérmetr

Page 28: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

Fyzi

ka

26

Měkké železo v magnetickém poli

Měkké železo se zmagnetizuje externím magnetickým polem a v nehomogenním poli na ně působí přitažlivá síla.

Měření závislosti síly, která působí na měkké železo v magnetickém poli cívky, na intenzitě elektrického proudu přiváděného do cívky.

Stejný materiál jako v předchozím pokusu na straně 25, avšak tentokrát je namísto magnetu použito měkké železo, např. železný šroub, přibližně stejné velikosti.

Stejné jako v předchozím pokusu na straně 25.

Postup měření je zcela shodný jako při pokusu, jakož popis je uveden na straně 25. Vztah mezi veličinami I a m (namísto F) však není v žádném případě lineární.

Příklad měření s inbusovým klíčem M8, délka 25 mm:

Cíle výuky

Zadání

Materiál

Uspořádání na počátku pokusu

Postup a vyhodnocení

Závěry

Proudl

Displej váhySíly při použití 3 A a 6 A vykazují kvadratický vztah:

Tento vztah lze nejsnáze zkontrolovat na grafu s dvojitou logaritmickou stupnicí:

= k · l2

Sklon přímky činí právě 2. Jelikož body experimentu leží přesně na přímce, je předpoklad potvrzen F ~ l2

V experimentu na straně 25 působí na stálý magnet v externím magnetickém poli síla, která je přímo úměrná intenzitě elektrického proudu. V tomto experimentu je však železo nejprve zmagnetizováno magnetickým polem cívky. Poté na ně působí síla F, která na jedné straně závisí na síle magnetického pole cívky H a na druhé straně magnetizaci železa J.Vztahy F~H⋅J, H ~ l a F ~ l2 dovolují logický závěr J ~I, tj. ve sledovaném rozsahu síly pole je magnetizace železa přímo úměrná síle elektrického proudu.

Page 29: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

27

Page 30: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

Chem

ie

28

Kolik hydrogenuhličitanu sodnéhoobsahuje šumivá tableta?

Šumivé tablety (vitamínové tablety, šumivé nápoje apod.) obsahují kromě aktivní látky i cukr, ochucovadla, potravinářská barviva, jakož i kyselinu vinnou a hydrogenuhličitan sodný. Při vhození tablety do vody reaguje hydrogenuhličitan sodný s kyselinou vinnou. Výsledkem reakce je velmi snadno rozpustný vinan sodný, oxid uhličitý a voda. Oxid uhličitý se uvolňuje v plynném skupenství a tableta se rozpouští.

Obsah hydrogenuhličitanu sodného lze odvodit z množství uvolněného oxidu uhličitého.

Přesná váha METTLER TOLEDO (odečitatelnost 0,01 g), kuželovitá baňka s širokým hrdlem 300 ml, skleněná tyčinka, šumivé tablety, kapesní kalkulátor, jednorázové pohárky na pití, utěrky na nádobí, kbelík na odpad.

1. Do kuželovité baňky napusťte přibližně 2 dl vodovodní vody, vnější stěny baňky dobře osušte, umístěte baňku na váhu a vytárujte.

2. Na vážicí misku položte vedle kuželovité baňky šumivou tabletu, určete její hmotnost a výsledek si poznamenejte.

3. Váhu s tabletou opět vytárujte.4. Opatrně (bez vystříknutí vody) vhoďte tabletu do vody, vyčkejte na dokončení reakce, dobře

zamíchejte skleněnou tyčinkou a stanovte hmotnost uvolněného oxidu uhličitého. Výsledek si poznamenejte.

5. Nápoj můžete přelít do pohárku a vypít. V opačném případě roztok vylijte.6. Kuželovitou baňku důkladně vypláchněte a vnější stěny baňky pečlivě osušte. Nyní je baňka

připravena k dalšímu pokusu.

Teorie

Materiál

Postup při pokusu

Výsledky a vyhodnocení

Číselný příklad

27

Zjištění v rámci experimentu:Hmotnost tablety: a = 4,38 g; hmotnost CO

2:b = 0,23 g

Procentuální obsah NaHCO3 v tabletě činí: 1,91 · 0,23 · 100 4,38

% = 10,03 % ~ 10 %

Hmotnost tablety: a = …g; hmotnost CO2:b = …g

1 g uvolněného oxidu uhličitého odpovídá obsahu NaHCO3 1,91 g

b g uvolněného oxidu uhličitého odpovídá obsahu NaHCO3 1,91· b g

Procentuální obsah NaHCO3 v tabletě činí: 1,19 · b · 100

a %

H H H H

2 NaHCO3 + HOOC C C COOH → NaOOC C C COO Na + 2 CO

2 + 2 H

2O

CH CH O HO H

hydrogenuhličitan kyselina vinná vinan sodný oxid uhličitý sodný

Page 31: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

2928

Stanovení obsahu tuku v sóji a ořechových plodech

Mnoho rostlinných potravin, například sójové boby, arašídy, lískové ořechy, slunečnicová semena apod. obsahují rostlinné tuky, které lze poměrně snadno extrahovat pomocí lipofilního rozpouštědla. Tyto potraviny se také ve velkém rozsahu používají k výrobě pokrmových olejů a tuků.Ke stanovení obsahu tuku se ořechy, semena nebo boby najemno rozemelou a poté se provede jejich extrakce pomocí petroléteru, hexanu apod. Poté se přidá bezvodý síran hořečnatý, který naváže veškerou vodu. Roztok se poté přefiltruje a následným odpařením rozpouštědla získáme čistý tuk, který se zváží.

Přesná váha METTLER TOLEDO (odečitatelnost 0,01 g), kuželovitá baňka 100 ml s kohoutkem nebo vodný odměrný válec, petroléter nebo hexan, bezvodý síran hořečnatý, nálevka, filtrační papír nebo vata, kádinka 100 ml, pipeta 10 ml. Sójová, lískooříšková nebo arašídová moučka.

1. Odvažte přibližně 3 g sójové, lískooříškové nebo arašídové moučky.2. Nasypte moučku do kuželovité baňky nebo do odměrného válce, poté přidejte 40 ml petroléteru nebo

hexanu, 5 g bezvodého síranu hořečnatého a důkladně protřepte. Počkejte přibližně 5 minut a po tuto dobu protřepání občas opakujte. Před protřepáním a po jeho dokončení krátce otevřete kohout baňky k vyrovnání tlaku.

3. Část získané suspenze přefiltrujte přes filtrační papírek nebo vatu do suché, uzavíratelné nádobky (např. kuželovité baňky s kohoutem nebo kádinky s víkem z průhledného skla). Zavření nádobky předchází odpařování rozpouštědla.

4. Nyní pomocí pipety nadávkujte přesně 10 ml přefiltrovaného roztoku do malé, zvážené kádinky a nechejte vzorek odpařovat ve skříňové digestoři na vodní lázni, dokud zápach rozpouštědla zcela nezmizí.

5. Poté nechejte vzorek zchladnout a opět jej zvažte.

Obsah tuku lze odvodit od hmotnosti potraviny (a = … g) a hmotnosti zbytkové hmoty (b = … g), která je tvořena čistým tukem:

Ze 3,00 g zvážené (= a) lískooříškové moučky zbylo po odpaření10 ml přefiltrovaného výtažku 0,52 g (= b) tuku. To odpovídá obsahu tukucca 70 %.

Teorie

Materiál

Postup při pokusu

Výsledky a vyhodnocení

Číselný příklad

Obsah tuku = %100 · 4 · ba

Page 32: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

Chem

ie

30

Stanovení obsahu křídy ve vzorcíchkamenů a půdy

Obsah křídy ve vzorcích kamenů a půdy lze stanovit reakcí uhličitanu vápenatého s kyselinou chlorovodíkovou. Vápník reakcí tvoří chlorid vápenatý, vodu a oxid uhličitý. Množství oxidu uhličitého uvolněného při reakci se váží:

CaCO3 + 2 HCI › CaCI

2 + H

2O + CO

2

Jedná se o jednoduchou a velmi přesnou metodu stanovení.

Přesná váha METTLER TOLEDO (odečitatelnost 0,01 g), kuželovitá baňka 100 ml, koncentrovaná HCl, destilovaná voda, pryžová zátka s otvorem, vápenec (cca 1 g).

1. V kuželovité baňce smíchejte přibližně 8 ml koncentrované HCl a přibližně 10 ml destilované vody.2. Baňka obsahující kyselinu chlorovodíkovou postavte na váhu a vytárujte.3. Na vážicí misku vedle baňky položte vápenec, poznamenejte si jeho hmotnost a váhu opět vytárujte.4. Poté přidejte vápenec do roztoku. Následuje prudká reakce, při které se uvolní oxid uhličitý.5. Po dokončení reakce se pomocí pipety prostřednictvím pryžové zátky vpraví do baňky nad hladinu

roztoku malé množství vzduchu vzduchu, který vypudí přítomný CO2.

6. Poté se baňka opět zváží a stanoví se množství uniklého CO2.

Kuželovitá baňka s kyselinou chlorovodíkovou a vápencem

Z 1,58 g vápence se uvolní 0,386 g CO2. Na základě rovnice reakce a příslušného stechiometrického

složení lze očekávat:

Jelikož však z hmotnosti 0,695 g se uvolnilo pouze 0,386 g CO2, tj. 55,54 %, obsah uhličitanu

vápenatého ve zkoumaném vzorku vápence činí 55,54 %.

Přesnost této metody lze zkontrolovat pomocí čistého CaCO3.

Teorie

Materiál

Postup při pokusu

Výsledky a vyhodnocení

Poznámka

29

CaCO3 + 2 HCI › CaCl

2 + H

2O + CO

2

100 g/mol 44 g/mol1,58 g x g

z 1,58 g čistého CaCO3, = = x = 0,695 g CO

2

1,58 g · 44 g/mol100 g/mol

Page 33: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

3130

Stanovení obsahu vody při krystalizaci solí

Krystalická forma mnoha solí obsahuje vázanou vodu, kterou lze uvolnit zahříváním. Molekuly vody se odštěpí od hydratované soli a odpaří se. Zůstane tedy jen bezvodá sůl:

sůl s chemicky vázanou vodou teplo

bezvodá sůl + voda

Po přesném zvážení úbytku vody lze vypočítat množství molekul tzv. „krystalové vody“.Poznámka: Nadměrné nebo příliš dlouhé zahřívání může způsobit boční reakci. Jestliže například stanovujete obsah krystalové vody v síranu měďnatém(II), z bezvodé soli se může tvořit oxid měďnatý(II) a uvolňovat oxid sírový. Průvodním jevem je tmavnutí bílého produktu:

CuSO4 (bezvodý)

teplo CuO + SO

3

Tato boční reakce způsobuje nižší hmotnost produktu reakce, jejíž příčinou je zjevně nadměrný úbytek hmotnosti, který způsobuje použití vyšší hodnoty ve výpočtu množství krystalové vody.

Přesná váha METTLER TOLEDO (odečitatelnost 0,01 g), porcelánový kelímek s víčkem, trojnožka, kahan, žíhací triangl (velikost dle kelímku), kelímkové kleště, skleněná tyčinka, krystalická sůl – například síran měďnatý, kamenec, sádra apod.

1. Zvažte prázdný kelímek s víčkem.2. Do kelímku vsypte krystalickou sůl (cca 1 g) a zvažte.3. Poté kelímek zahřívejte malým, nesvítivým plamenem. Přidržte otevřený kelímek kleštěmi

a zamíchejte jeho obsah skleněnou tyčinkou.4. Jakmile je sůl zbavena vody, což lze rozpoznat změnou barvy, např. u síranu měďnatého nebo

dokončením reakce (žádné odpařování vody, žádná tvorba „kráterů“), kelímek se zakryje a ochladí při laboratorní teplotě.

5. Zchladlý kelímek se opět zváží.6. Postup se opakuje s vážením 2, 3 a 4 g.

Uspořádání na počátku pokusu

1. Úbytek vody se u každého pokusu vypočítává v g z výsledku přesného vážení a hmotnosti zbylé látky.2. Úbytek vody se zaznamená do grafu a porovná s výsledky příslušného vážení. Body experimentu

by měly ležet, s možností mírného rozptylu, na přímce procházející počátkem souřadnic. Graf slouží coby kontrola přesnosti měření.

Teorie

Materiál

Postup při pokusu

Výsledky a vyhodnocení

Page 34: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

Chem

ie

32

3. Na základě rovnice reakce a příslušného stechiometrického složení lze očekávat:

sůl s chemicky vázanou vodou = bezvodá sůl + voda

a = ...g b = ...g c = ...g (vážení) (zbytek) (úbytek vody)

počet molekul chemicky vázané krystalové vody „x“ je stanoven takto:

kde MMsůl

představuje molární hmotnost bezvodé soli.

4. Hodnota x se vypočítává v každém experimentu odděleně a porovnává se s hodnotamiuvedenými v literatuře.

V experimentu s krystalickým síranem měďnatým(II) byly zjištěny tyto hodnoty: Hmotnost soli: a = 2,48 g; zbytek: b = 1,57 g Úbytek hmotnosti: c = (a–b)g = 0,91 g

Síran měďnatý tedy krystalizuje s 5 molekulami krystalové vody.Vzorec: CuSO

4 · 5 H

2O.

Číselný příklad

31

g Úbytek vody

g Hmotnost

x = =c · MMsůl

(a–c) · 18

(a–b) · MMsůl

b · 18

x = = 5,140,91 · 159,5

1,57 · 18

Page 35: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

3332

Termolýza solí

Termolýzou se rozumí tepelné štěpení látek („tepelný rozklad“). Termolýza může v některých případech probíhat velmi prudce a nekontrolovaně nebo paralelně s reakcemi probíhajícími při relativně vysokých teplotách. Tato skutečnost komplikuje, či dokonce vylučuje stechiometrické vyhodnocení výsledků vážení. Ke stechiometrickému zkoumání jsou proto vhodné zejména látky, které se rozkládají za mírného ohřevu. Na dvou modelových látkách, hydrogenuhličitanu sodném a uhličitanu hořečnatém, byly vyzkoušeny následující pokusné postupy. „Historický“ postup, který spočívá v termolýze oxidu rtuťnatého(II) nebyl proveden z důvodu technické bezpečnosti a ekologie.

Při termolýze hydrogenuhličitanu sodného se tvoří uhličitan sodný („soda“) a současně dochází ke štěpení na vodní páru a oxid uhličitý.

Tento proces hraje důležitou roli při průmyslové výrobě sody („kalcinovaná soda“).Při termolýze uhličitanu hořečnatého dochází k uvolňování oxidu uhličitého:

Tato reakce probíhá souběžně s výrobou páleného vápna z uhličitanu vápenatého:

Termolýza uhličitanu hořečnatého proto představuje modelovou reakci průmyslově významné kalcinace vápence při výrobě cementu. Rozklad MgCO

3 na oxid však nastává při nižší teplotě, takže tato reakce je

vhodnější ke zkoumání v laboratorních podmínkách.

Přesná váha METTLER TOLEDO (odečitatelnost 0,01 g), trojnožka, kahan, žíhací triangl, porcelánový kelímek (pokud možno více), kelímkové kleště, uhličitan hořečnatý, hydrogenuhličitan sodný (bezvodý).

1. Prázdný kelímek se zváží, přidá se cca 0,5 g uhličitanu hořečnatého nebo hydrogenuhličitanu sodného a poté se kelímek znovu zváží.

2. Poté se kelímek opatrně zahřívá nesvítivým plamenem. Z reakční směsi se uvolňuje vodní pára a oxid uhličitý; tento jev je provázen tvorbou „kráterů“. Vzorek je třeba zpočátku zahřívat velmi opatrně, aby únik plynů nezpůsoboval úbytek materiálu z kelímku v důsledku rozstříkání.

3. Jakmile se reakce začne blížit ke konci, což lze rozpoznat dle úniku menšího množství plynu, použije se velmi výkonný ohřev červeným žárem. Jakmile únik plynu zcela ustane, vypneme ohřev.

4. Kelímek necháme vychladnout na laboratorní teplotu a zvážíme včetně produktu reakce.5. Postup se opakuje s vážením 1, 1,5 ,2 a 2,5 g.

Teorie

Materiál

Postup při pokusu

2 NaHCO3 Na

2CO

3 + H

2O + CO

2

ΔT

MgCO3 MgO + CO

2

ΔT

CaCO3 CaO + CO

2

ΔT

Page 36: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

Chem

ie

34

Uspořádání na počátku pokusu

1. Závislost hmotnosti zbytku na výsledcích vážení je zobrazena v grafu.Body experimentu leží na přímce procházející počátkem souřadnic.

2. Na základě rovnice reakce a příslušné stechiometrie vypočítáme teoretickou hodnotu pro výsledek vážení, např. 1,000 g hydrogenuhličitanu sodného:

Z 1,00 g hydrogenuhličitanu sodného teoreticky vznikne:

Pro uhličitan hořečnatý platí následující:

z čehož vyplývá, že v případě 1,000 g uhličitanu hořečnatého

3. Hodnoty získané pokusem porovnáme s hodnotami z teoretických výpočtů.

Výsledky a vyhodnocení

33

g Zbytek

g Hmotnost

2 NaHCO3 Na

2CO

3 + CO

2 + H

2O

2 · 84 g/mol 106 g/mol

ΔT

g = 0,631 g uhličitanu sodného106168

MgCO3 MgO +CO

2

84,31 g/mol 40,31 g/mol

ΔT

g = 0,478 g vytvořeného oxidu hořečnatého.40,3184,31

Page 37: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

3534

Syntéza síranu měďnatého

Při sloučení kovu, například mědi, s nekovovým prvkem, například sírou, vznikne produkt podobný soli. Poměr použitého kovu k chemicky vázanému nekovovému prvků zůstává konstantní bez ohledu na použité množství mědi (zákon stálých poměrů). Účelem tohoto experimentu, který by měl být proveden opakovaně i coby cvičení studentů, je tento zákon potvrdit. Dále by měl být stanoven empirický vzorec sloučeniny. Zákon stálých poměrů se vztahuje pouze na homogenní produkty, tj. na produkty stejné, například krystalické formy. Zde se sice nejedná o tento případ (síran měďnatý není daltonská sloučenina), ale experiment je cenný z didaktických důvodů.Pro účely syntézy je použita měď coby kovový prvek a síra coby nekovový prvek a společně utvoří síran měďnatý: měď + síra = síran měďnatýSyntéza se provádí s přesně stanoveným množstvím mědi a s vyšším množstvím síry. Tím je zajištěno, že veškerá měď zreaguje se sírou. Síra reaguje s přítomnou mědí ihned po svém roztavení.Zbytek síry sublimuje nebo se spálí do SO

2, který unikne v plynném skupenství.

síra + kyslík= oxid siřičitýJelikož oxid siřičitý je toxický, pokus musí probíhat ve skříňové digestoři.Reakce probíhá v porcelánovém kelímku. Po zvážení zbytku se stanoví poměr množství spotřebované mědi k množství vázané síry, procentuální zastoupení prvků ve sloučenině a empirický vzorec. Je třeba provést minimálně tři, ale doporučujeme provést mnohem vyšší počet měření. Grafické znázornění zvyšuje přesnost vyhodnocení.

Přesná váha METTLER TOLEDO (odečitatelnost 0,01 g), trojnožka, Bunsenův kahan, porcelánový kelímek s víčkem, kleště na kelímek, žíhací triangl, měděný plátek, prášková síra.

1. Z měděného plátku odřízněte proužky o hmotnostech přibližně 0,5 g, 1 g, 1,5 g a 2 g, proužky zvažte a hodnotu zaokrouhlete na nejbližší miligram.

2. Jeden proužek rozdělte na menší kousky s rozměry cca 1,5 cm x 1,5 cm; tyto kousky vložte do prázdného kelímku (již zváženého včetně víčka), zasypte mírně nadměrným množstvím síry a na trojnožce ve skříňové digestoři zahřívejte malým, nesvítivým plamenem.

3. Po úplném odpaření nadbytečného množství síry, které lze rozpoznat absencí plamene nebo hnědožluté páry, kelímek zavřete víčkem a 2 minuty prudce zahřívejte.

4. Poté vypněte kahan, kelímek nechte vychladnout na laboratorní teplotu (chlazení vzduchem) a poté zvažte.

Teorie

Materiál

Postup při pokusu

Page 38: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

Chem

ie

36

Uspořádání pokusu

Hodnoty zjištěné při školním experimentu:

Z těchto výsledků je patrné, že poměr hmotnosti mědi k hmotnosti síry je konstantní a není závislý na množství použitých surovin. Série experimentů navíc prokázala, že navzdory jistému rozptylu jednotlivých měření, bráno za celou sérii coby celek, nedochází k nejednoznačnostem. Body experimentu leží na přímce procházející počátkem souřadnic.

K výpočtu empirického vzorce se použije toto složení:

Výsledky a vyhodnocení

35

Měření a g Měď b g Síra % Měď % Síra a : b (vázaná)

1 1,162 0,282 80,47 19,53 4,122 1,450 0,370 79,67 20,33 3,923 0,745 0,203 78,58 21,45 3,674 1,715 0,436 79,73 20,27 3,935 1,631 0,441 78,72 21,28 3,706 0,585 0,166 77,90 22,10 3,527 1,408 0,343 80,41 19,59 4,10

1,242 0,320 79,51 20,49 3,88

g Vázaná síra

g Měď

Cu: 79,51 %: 63,54 g/mol = 1,251 = 2S: 20,49 %: 32,06 g/mol = 0,629 = 1 } empirický vzorec: Cu

2S

Kelímek bezvíčka na začátkua během reakce

Kelímek s víčkempo dokončení reakce;pro ohřev, ochlazenía vážení

Page 39: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

3736

Stanovení molární hmotnosti zkapalněného plynu

Stanovení molární hmotnosti plynu se provádí evakuací obsahu nádoby se známou hmotností, např. 1litrové baňky s kulatým dnem opatřené na jedné straně uzavíracím kohoutem, naplněné příslušným plynem a měřením objemové hmotnosti tohoto plynu. Konverzí získaného objemu na standardní podmínky (STP: teplota T = 273 K; tlak = 1 013 mbar) získáme objem naměřeného množství plynu při STP. Ze všeobecného plynového zákona vyplývá, že objem 1 molu libovolného plynu činí při STP 22,4 dm3. Tato skutečnost umožňuje jednoduché odvození molární hmotnosti. Níže uvedené experimenty se nezabývají stanovením molární hmotnosti plynů všeobecně, ale spíše stanovením molární hmotnosti konkrétního typu plynu, přesněji řečeno zkapalněného plynu. K pokusu použijeme butan, který je snadno dostupný v běžné obchodní síti. Tento zkapalněný plyn se používá k doplňování plynových zapalovačů. Pokus ukazuje metodu stanovení molární hmotnosti butanu a současně je vhodný coby úvod do stechiometrie a plynových zákonů.

Přesná váha METTLER TOLEDO (odečitatelnost 0,01 g), pneumatická vana s 1l odměrným válcem coby jímací nádobou, krátké a tenké přívodní vedení, stříkačka s objemem 100 nebo 200 ml, stojan, klema, tlakoměr, teploměr, nádoba se zkapalněným plynem.

Měření s pneumatickou vanou1. Jímací nádobu představuje odměrný válec s objemem 1 l. Otvor válce se uzavře pryžovou zátkou

a válec se ponoří dnem vzhůru do vody v pneumatické vaně.2. Poté válec pod vodou otevřeme. Do válce nesmí vniknout žádný vzduch.3. Poté se odměrný válec připevní do klemy na stojanu, tak aby vzdálenost mezi okrajem válce a dnem

pneumatické vany činila přibližně 1 cm.4. Nyní stanovte hmotnost láhve se zkapalněným plynem.5. Do odměrného válce se přes krátkou a tenkou trubičku přivede plyn (cca 800–900 ml).6. Jelikož plyn se mimo prostředí láhve roztahuje, dochází k jeho ohřátí na laboratorní teplotu. Před

odečtením hodnoty objemu plynu vyčkejte alespoň pět minut.7. Mezitím opět zvažte láhev s kapalným plynem.8. Vypočítejte objem plynu, který jste vpustili do odměrného válce.

Teorie

Materiál

Postup při pokusu

Odměrný válec

Propojení

Plynový válec

Vstupní hadička

Pružná nádobas vodou

Page 40: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

Chem

ie

38

V experimentu s využitím pneumatické vany bylo do válce vpuštěno 1,908 g plynu. Naměřený objem činil 830 ml při 20,5 °C a tlaku vzduchu 988 mbar.

Vypočítaný objem v STP činí

V 753 ml 0,753 dm3, 1,908 g přítomného plynu.

Objem 22,4 dm3 tudíž obsahuje g = 56,8 g

Experimentální hodnota molární hmotnosti plynu tedy činí 56,8 g/mol. Vypočítaná hodnota butanu (C4H10) činí 58 g/mol. Jestliže uvážíme, že bychom ve výpočtech mohli zohlednit i objem přívodní hadičky, je výsledek měření překvapivě kvalitní. Ve vyhodnocení však nebyla zohledněna skutečnost, že byl měřen objem „mokrého“ plynu, tj. plynu v atmosféře vodní páry.Rovněž je třeba zohlednit, že stupnice na standardních válcích a stříkačkách nejsou dokonale přesné. Přesnější určení molární hmotnosti lze provést pouze za použití skleněné koule k vážení plynů (viz kapitolu „Hustota vzduchu“). Objem skleněné koule lze stanovit zvážením maximálního objemu vody, kterým lze kouli naplnit.Vyhodnocení výsledků experimentu provedeného s použitím stříkačky je obdobné. Toto měření je i poměrně přesné; v rámci experimentu byly zjištěny hodnoty 60,5 a 60,9 g/mol. Tlak skleněného pístu na plyn se nezohledňuje.

Výsledky a vyhodnocení

37

Vo =

Vexp.

· pexp.

· To

po · T

exp.

830 ml · 988 mbar · 273 K

1 013 mbar · 293,5 K=

1,908 · 22,40,753

Měření s použitím stříkačky1. Stříkačka s objemem 100 ml nebo 200 ml se zajistí

ve stojanu způsobem, který zajistí pohodlné zavádění plynu z láhve do otvoru ve stříkačce.

2. Válec se zváží, do stříkačky se vpustí 100 nebo 200 ml plynu a ihned se odečte objem (únik ze stříkačky má výrazně nepříznivý vliv na výsledky pokusu než malá chyba vznikající při ochlazování plynu, který vychází z láhve).

3. Poté se láhev opět zváží a vypočítá se objem odpuštěného plynu.

= 753 ml

Page 41: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

3938

Rychlost odpařování

Odpařování kapalných nebo těkavých pevných látek je jev, který souvisí s pohybem částic, přesněji řečeno s kinetickou energií molekul. Rychlost odpařování závisí na několika faktorech, ale především na okamžité teplotě a tlaku, jakož i na silách mezi jednotlivými molekulami. Svoji roli hrají i molární hmotnost a tvar molekul, které ovlivňují velikost molekulárních sil. Odpařování a jeho rychlost lze pohodlně sledovat a měřit na váze.

Přesná váha METTLER TOLEDO (odečitatelnost 0,01 g), 1 velká Petriho miska (průměr 8–12 cm), různé kapaliny, jako například aceton, etanol, hexan apod.

Petriho miska se umístí na váhu, naplní se příslušnou kapalinou do výšky cca 5 mm, váha se vytáruje a odpařené množství kapaliny se odečítá každých 15 sekund. Po 3 minutách se měření ukončí.Důležité: Ve všech měřeních musí být použita stejná Petriho miska, aby byla zajištěna shodná odpařovací plocha.Současně je třeba zajistit, aby během měření nevznikal průvan, např. otevřenými okny nebo dveřmi. Dále doporučujeme neprovádět měření na přímém slunci.

1. Naměřené hodnoty znázorníme graficky na milimetrovém papíru. Porovnáváme množství odpařené kapaliny a uplynulý čas.Při měření acetonu na Petriho misce s průměrem 9 cm a při teplotě 21 °C jsme naměřili tyto hodnoty:

Teorie

Materiál

Postup při pokusu

Výsledky a vyhodnocení

Doba: 0 15 30 45 60 75 90 105 120 135 150 s

Množství: 0 4 8 12 15 19 22 26 30 33 37 mg

Petriho miskas kapalinou

Přesná váhaMETTLER TOLEDO

Page 42: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

Chem

ie

40

Stejným způsobem byla stanovena i rychlost odpařování etanolu, etylacetátu a butylacetátu.Byly zjištěny tyto hodnoty:

Aceton: 15,0 mg za minutu b.p. 56 °CEtanol: 3,7 mg za minutu b.p. 78 °CEtylacetát: 6,5 mg za minutu b.p. 77 °CButylacetát: 1,7 mg za minutu b.p. 126 °C

Interpretace těchto hodnot je obtížná z důvodu rozsahu, jakým různé faktory, uvedené v odstavci Teorie, přispívají k měření jakožto celku.Nicméně o interpretaci se alespoň pokusíme.

1. Nejrychleji se odpařuje aceton. Mezimolekulární síly jsou zjevně poměrně slabé a tato skutečnost se odráží i v nízkém bodu varu acetonu. Tyto síly jsou v každém případě menší u acetonu než u eta-nolu, protože etanol dokáže tvořit mezimolekulární vodíkové vazby, které zpomalují odpařování.

2. Odpařování etanolu je pomalejší než v případě etylacetátu, ačkoli molární hmotnost etanolu je nižší a bod varu obou látek je přibližně shodný. I zde jsou pravděpodobně příčinou vodíkové vazby při hladině etanolu, které „zadržují“ odpařující se molekuly. To však není případ etylacetátu; zde působí pouze mnohem slabší van der Waalsovy síly.

3. Rychlost odpařování etylacetátu je vyšší než v případě butylacetátu.Tato skutečnost souvisí s bodem varu, molární hmotností a velikostí molekul obou látek. Za pomalejší odpařování butylacetátu jsou odpovědné pravděpodobně silnější van der Waalsovy síly.

Interpretace

39

mg Odpařené množství

Čas v s

Page 43: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

41

Teorie

40

Homogenní katalýza:Rozklad H

20

2

Katalyzátor je látka, která spouští nebo urychluje reakci, ze které sama vychází nezměněná. Zrychlující účinek katalyzátoru je důsledkem snížení aktivační energie příslušné reakce.Je-li katalyzátor odlišného skupenství než látky, které se účastní reakce, hovoříme o heterogenní katalýze. Je-li naopak katalyzátor stejného skupenství jako reaktanty, hovoříme o homogenní katalýze.Rozklad H

2O

2 vyjadřuje tato rovnice:

Může probíhat s heterogenní i homogenní katalýzou. Coby heterogenní katalyzátory se používají látky, jako jsou stříbro, oxid manganičitý(IV) (MnO

2 neboli „pyrolusit“). Mezi příklady homogenních

katalyzátorů můžeme uvést například roztok jodidu draselného nebo roztok katalázy.V následujících pokusech budeme zkoumat homogenní katalýzu reakce s využitím jodidu draselného a závislost uvolňování kyslíku na čase. Změnou množství katalyzátoru lze stanovit jeho vliv na reakci. Současně lze odvodit i způsob průběhu reakce samotné. Tedy jestliže proces probíhá jednorázově dle všeobecného schématu

R (reaktanty) = P (produkty)

molekuly kyslíku se začnou uvolňovat bezprostředně po přidání katalyzátoru. Jestliže však proces probíhá dvoufázově, tj. prostřednictvím intermediátu, dle schématu:

R (reaktanty) = I (meziprodukt) = P (produkty)

molekuly kyslíku se začnou uvolňovat teprve po uplynutí určité doby, tzv. „indukční periody“.Tento rozdíl mezi dvěma modely reakce lze vyčíst i ze sklonu křivky průběhu experimentu, kterou získáme sestrojením grafu s hmotností uvolněného kyslíku v závislosti na uplynulé době.

V těchto experimentech váha nepředstavuje pouhý váhový přístroj, ale přejímá funkci měřicího přístroje pro sledování procesu, který se odehrává v průběhu reakce. Hodnoty získané v rámci experimentu lze přirozeně vyhodnotit i na počítači. Je-li k dispozici i displej METTLER TOLEDO pro zpětný projektor, lze celou sérii experimentů provádět i coby ukázku a výsledky pohodlně interpretovat a vyhodnotit ve spolupráci se studenty.

Možstvíproduktu

Čas

Reakce bez meziproduktu

Možstvíproduktu

Čas

Reakce s meziproduktem

2 H2O

2 2H

2O + O

2

katalyzátor

Page 44: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

Chem

ie

42

Přesná váha METTLER TOLEDO (odečitatelnost 0,01 g; případně displej pro zpětný projektor), 1 kádinka 250 ml, stříkačka nebo dělená pipeta 0–10 ml, skleněná tyčinka, 500 ml čerstvě připraveného 1% roztoku H

2O

2, sat. roztok Kl, hodiny se sekundovou ručičkou,

milimetrový papír pro účely vyhodnocení.

1. Na váhu umístěte kádinku a váhu vytárujte.2. Přidejte 100 g 1% roztoku H

2O

2.

3. Pomocí pipety nebo stříkačky přidejte sat. roztok Kl (2,0 ml), krátce zamíchejte skleněnou tyčinkou a poté váhu opět vytárujte.

4. Ztrátu hmotnosti v důsledku uvolňování kyslíku odečítejte každých 15 sekund a hodnoty si průběžně poznamenávejte. Měření můžete ukončit po uplynutí 5–6 minut.

5. Proveďte další série měření se 4,0 ml a 8,0 ml sat. roztoku Kl. Dle potřeby proveďte i další měření se 3,0 ml, 6,0 ml a 9,0 ml roztoku Kl. Nedoporučujeme používat větší množství katalyzátoru, protože zvyšování celkového objemu reakčního roztoku způsobuje ředění; tento jev je třeba ve výpočtech kompenzovat. U uvedených koncentrací katalyzátoru se kompenzace ředění nevyžaduje.

6. Zjištěné hodnoty hmotnosti a časů se zakreslí do grafu.

Poznámka: Jestliže nedostatek času (např. jsou-li měření předváděna studentům) vyžaduje rychlejší průběh reakce, lze celé série experimentů provádět i s 50 ml 3% H

2O

2 za použití 0,75 ml, 1,5 ml a 3,0 ml

roztoku Kl coby katalyzátoru. Hodnoty zjištěné při experimentu jsou však v takovém případě ovlivněny určitou chybou, jelikož roztoky se v důsledku exotermního procesu mírně zahřívají. Nicméně výsledné hodnoty jsou dostatečně přesné, aby je bylo možno použít k vyhodnocení.

V sériích experimentů se 100 ml čerstvě připraveného 1% H2O

2 a 2,0 ml, 4,0 ml nebo 8,0 ml sat. roztoku

Kl coby katalyzátorem byly při teplotě T = 21 °C zjištěny tyto hodnoty:

Materiál

Postup při pokusu

Výsledky a vyhodnocení

41

Časv sekundách

Množství vzniklého kyslíku v mgs s s

Page 45: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

4342

Z výsledků experimentu a z grafu lze odvodit následující skutečnosti:1. Zkoumaná reakce neprobíhá v jedné, nýbrž spíše ve dvou fázích,

a to dle schématu: R (reaktanty) = l (intermediát) = P (produkty)2. Rychlosti reakce získané stanovením sklonu křivek L

1, L

2 a L

3

u inflexních bodů příslušných křivek jsou přímo úměrné množství katalyzátoru.

Sklon L1: rychlost reakce v

1 ≈ 40 mg O

2 za minutu

Sklon L2: rychlost reakce v

2 ≈ 80 mg O

2 za minutu

Sklon L3: rychlost reakce v

3 ≈ 120 mg O

2 za minutu

Obdobné chování lze často pozorovat i u enzymatických reakcí. Uvedenou reakci můžeme použít jakožto model pro takové reakce.

3. S nižší koncentrací katalyzátoru klesá nejen rychlost reakce, ale současně se zpožďuje i začátek uvolňování kyslíku. Indukční perioda reakce je jednoznačně delší.

Vysvětlení těchto skutečností najdeme v profilu reakce:

Interpretace

Page 46: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

Chem

ie

44

V první fázi reagují jodidové ionty a H2O

2 a tvoří jodnanové ionty:

Tyto ionty poté reagují dále s druhou molekulou H2O

2; výslednými produkty jsou voda, kyslík a jodidové

ionty:

Jodidové ionty vytvořené v druhé fázi reakce jsou opět k dispozici pro první fázi reakce. Jelikož obě jednotlivé fáze reakce probíhají rychleji než reakce bez přidání jodidu, lze konstatovat, že jodidové ionty mají katalytický vliv na tvorbu intermediátu IO- (jodnan). Tyto ionty snižují aktivační energii rozkladu H

2O

2

na vodu a kyslík.

Další reakce probíhá, přinejmenším bezprostředně po přidání jódu, souběžně s dříve zmíněnou reakcí, ale brzy dosáhne rovnovážného stavu, a tudíž se zastaví. Zde se jodid oxiduje a vzniká kyslík a elementární jód:

Vznik elementárního jódu lze rozpoznat dle žloutnutí reakční směsi. Ionty H30+ vznikají z vody:

Jelikož ionty H30+ se spotřebují při tvorbě jodidu, jejich koncentrace se rychle snižuje, takže tvorba jódu

skončí po dosažení rovnovážné koncentrace. Tato paralelní reakce nemá vliv na vyhodnocení výsledků uvedeného pokusu.

43

I– + H2O

2 = IO– + H

2O,

IO–+ H2O

2 = I– + H

2O + O

2.

2 H3O+ + 2 I– + [O] = 3 H

2O + I

2

2 H2O = H

3O+ + OH–

Poznámka

Page 47: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

45

Biol

ogie Transpirace rostlin

– Detekce ztrát vody přes list rostliny– Závislost transpirace rostliny na ekotypu a podmínkách prostředí– Závislost transpirace na šířce a roztažení průduchů

Přesná váha METTLER TOLEDO (minimální odečitatelnost 0,01 g)Kuželovité baňky s úzkým hrdlem, 100 nebo 200 mlZátky s vývrtemVataParafínový olej (pokud možno obarvený lipofilním barvivem)Stolní lampaVysoušeč vlasůU citlivých vah, a jsou-li vyžadovány krátké intervaly měření, doporučujeme sestavit tunel z plexiskla proti proudění vzduchu (lze zakoupit nařezané na požadované rozměry a lze je i snadno slepit pomocí vhodného lepidla)Rostlinný materiál: V letním semestru existuje široká škála možností. Minimálním požadavkem je jedna větev rostliny z teplého a suchého místa a jedna větev rostliny z vlhkého místa. V průběhu celého roku najdeme v parcích a zahradách:Tis (vhodné jsou i jiné jehličnany)Stálezelené rostliny rodu kalina (Viburnum rhytidophyllum – kalina vrásčitolistá, V. fragrans – kalina vonná)Stálezelené rostliny rodu skalník (např. Cotoneaster salicifolius – skalník vrbolistý)Střemcha vavřínolistá (neboli bobkovišeň lékařská, Prunus laurocerasus) je obzvláště vhodná pro přípravu tenkých řezů pod mikroskopCesmínaOleandr

Naplňte kuželovitou baňku vodou. Vložte do ní čerstvě uříznutou větev. Opatrně přidejte pipetou na hladinu vody (tak předejdete přímému odpaření) malé množství parafínového oleje. Volnou a vzpřímenou polohu větve zajistí zátka s otvorem nebo vata, případně obojí.

Připravená větev se ve vhodných časových intervalech (v závislosti na citlivosti váhy a velikosti a typu větve) váží a hodnoty se zapisují do tabulky.

Úbytek hmotnosti závisí zejména na ploše listů, času a relativní atmosférické vlhkosti. Proto doporučujeme vypočítat množství transpirované vody na cm2 plochy listů za minutu. Zůstává tedy určit plochu listů, což lze provést takto: listy se položí na nehybný list papíru a obkreslí tužkou. Poté se obrysy listů vystříhají a stanoví se jejich hmotnost.Dále stanovíme gramáž plochy papíru, např. 100 cm2.

Cíle

Materiál

Uspořádání na počátku pokusu

Postup

Vyhodnocení

Page 48: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

Biol

ogie

4646

Příklad:Větev pelargónie Čas Hmotnost nádobky Hmotnostní s větví a vodou rozdíl

0 min 108,187 g – 5 min 108,135 g 52 mg 65 min 107,585 g 550 mg

Gramáž papíru: 2,927 gHmotnost papírových obrysů listů: 1,172 g (100 cm2)

Specifická transpirace = hmotnostní úbytek na cm2 za minutu

= 0,0370 mg/cm–2/min–1

Postup lze zjednodušit vztažením úbytku vody k hmotnosti rostliny (transpirované množství na gram hmotnosti čerstvě uříznuté rostliny za minutu). Tento způsob práce umožňuje rychleji porovnat jednotlivé rostliny.

Větvě uchované v temnu se rychle zváží; jsou-li průduchy otevřené, transpirace probíhá rychleji.Stanoví se specifická transpirace jednotlivých rostlin. U této metody lze využít i řezy listů pod mikroskopem. Lze i měnit podmínky prostředí a pracovat stále se stejnými rostlinami:vlhký vzduch (skleněný zvon vyložený savým papírem nebo přikrytí výše uvedeného tunelu proti proudění vzduchu)suchý (pokojový) vzduchteplý vzduch (s využitím topné žárovky)proudící vzduch (s použitím vysoušeče vlasů)

Větvě by se měly umístit do vody ihned po oddělení od rostliny; rovněž doporučujeme rostlinu ještě jednou zaříznout pod vodou. Větve se doporučuje řezat v období, kdy je rostlina dobře zásobena vodou, v opačném případě voda sice vodu nabere, ale v okamžiku, kdy jsou stomata zavřená, ji nebude transpirovat. Úbytek hmotnosti tudíž bude pouze nepatrný. Této situaci lze předejít několikahodinovou přípravou rostlin před zahájením experimentu.

Rozšíření experimentu

Závěrečné poznámky

Plocha listů v cm2: · 100 = 250 cm2gramáž papíru

hmotnost papírových obrysů listů

úbytek hmotnosti

čas v minutách · plocha listů

602

65 · 250= =

Page 49: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

47

Absorpce vodní páry lišejníkem

Tento experiment lze využít coby ukázku, jak rostliny absorbují vodu ze vzdušné vlhkosti. Dále experiment zdůvodní, proč stromy, které se nacházejí ve vlhkém (neznečištěném!) prostředí, a které bývají často vystavovány mlze, zpravidla obrůstají lišejníkem.

Přesná váha METTLER TOLEDO (minimální odečitatelnost 0,01 g)Petriho miska (vysokostěnná) s 12 cm ∅ Petriho miska nebo plastové víčko s cca 6 cm ∅ Filtrační papírNa vzduchu vysušené lišejníky s lupenitou nebo keříčkovitou stélkou (např. Pseudoevernia furfuracea, cetraria nebo stereocaulon)

Vlhká komůrka se připraví dle nákresu.

Poté je třeba přesně zvážit stélku lišejníku vysušeného na vzduchu. Zvážená stélka se umístí do vlhké komůrky, která se dobře utěsní. Po uplynutí 1/

2 h se stélka znovu zváží

(pracujte velmi rychle!) a poté se vrátí do vlhké komůrky. Vážení nejprve opakujte každé 1/

2 h a poté v delších

intervalech, dokud dochází ke změně hmotnosti.

Závislost absorpce vody na čase se zakreslí do grafu dle následujících souřadnic:

Ve vlhké komůrce se na stélce lišejníku tvoří kondenzát. Kondenzovaná voda se zpočátku rychle absorbuje prostřednictvím pórů ve stélce lišejníku (strmý úsek křivky). Póry jsou zpočátku naplněny vzduchem. Stěny hyf následně bobtnají, dokud nedosáhnout úplné nasycenosti vodou (méně strmý úsek křivky). Zpočátku křehká a drobivá stélka lišejníku absorpcí vody měkne a získává pružnost.

Cíle

Materiál

Postup

Vyhodnocení

47

Filtrační papír

Voda

Hmotnoststélky (g)

Čas (h)

Page 50: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

Biol

ogie

4848

Absorpce a ztráta vody v mechorostech

Mechorosty absorbují vodu z půdy pouze v nevýznamném objemu. Absorbují vodu především z deště, rosy, mlhy a vodní páry. Experimenty ukazují, jak významné množství vody mechorosty zadržují a proč tyto rostliny hrají v různých ekosystémech nezastupitelnou roli. Experimenty představují i kvalitní úvod do problematiky anatomické stavby a fyziologie mechorostů.Porovnání vodní bilance mechorostů a rostlin s tobolkovými plody je velmi poučné.

Přesná váha METTLER TOLEDO (minimální odečitatelnost 0,01 g)Skleněné miskyAbsorpční papírRůzné mechorosty (např. ploník, bělomech, rašeliník)

Mech vysušený na vzduchu se zváží a poté zcela ponoří do skleněné misky naplněné vodou. Mech se zpočátku častěji a posléze v delších intervalech vyjme z vody a krátkým otřepáním a následně i šetrným přiložením absorpčního papíru se osuší od povrchové vody. Jakmile mezi dvěma měřeními již nedochází k rozdílům hmotnosti, byla dosažena maximální úroveň absorpce.

Výsledkem může být např. tato tabulka:

V laboratorních podmínkách lze získat i extrémní hodnoty. V přírodním prostředí lze maximální absorpce dosáhnout pouze na krátký okamžik během silných srážek. V tomto okamžiku doporučujeme nepropásnout příležitost ukázat studentům vodní buňky rašeliníku a bělomechu. Viz též STEINECKE a AUGE (1963).

Mechorosty nasycené vodou lze rovněž použít k měření úbytku vody. Mech se umístí na suchou podložku a v pravidelných intervalech se po několik hodin (nebo dnů) váží. Výše uvedení autoři rovněž popisují pokusy s vedením vody v mechorostech.Pro účely porovnání lze absorpci a úbytek vody stejným způsobem sledovat i u hub a lišejníků.

Cíle

Materiál

Postup

Vyhodnocení

Rozšíření experimentu

Rostlina Čas (min)

Hmotnost (g)

Voda (%)

Page 51: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

49

Obsah vody a popílkuv různých orgánech rostlin

Následující pokusy jsou vhodné ke skupinové výuce a k dosažení těchto výukových cílů:– získání znalostí o materiálovém složení těla rostliny,– obeznámení s analytickými metodami,– praktické vysvětlení pojmů hmotnost čerstvé a suché hmoty, obsah vody, organické a anorganické

látky, obsah popelovin.Studenti by již měli být obeznámeni s těmito tématy: absorpce vody a minerálních solí, fotosyntéza; současně by měli disponovat základními znalostmi chemie.

Přesná váha METTLER TOLEDO (minimální odečitatelnost 0,01 g)Petriho misky nebo kádinkyPorcelánové miskyKomorová sušárnaBunsenův kahan s trojnožkou, porcelánový triangl, hořčíková nebo skleněná tyčinka, dle možností muflová pecRostlinný materiál, například listy, cibule nebo hlízy, kořeny, ovoce

Technický postup je založen na následujícím schématu:

Rostlinný materiál, co nejčerstvější, se zváží a poté rychle umístí do komorové sušárny. Zde se materiál vysouší při 105 °C po dobu 10 minut (rychlá destrukce tkáně předchází respiračním ztrátám) a následně se vysouší při 80 °C na stabilní hmotnost (1–2 dny). Použití stabilní teploty sušení 105 °C je nevhodné, protože různé rostlinné látky (např. éterické oleje) se při této teplotě odpařují nebo procházejí tepelným rozkladem. Po vysušení materiálu se stanoví jeho suchá hmotnost.Je-li k dispozici muflová pec, lze vysušenou rostlinnou hmotu zpopelnit přibližně při 500 °C. V opačném případě tak lze učinit v porcelánové míse nad Bunsenovým kahanem. Zpočátku použijte malý a posléze výhřevnější plamen. Karbonizující materiál občas zamíchejte. Případné shluky částic uhlíku lze odstranit takto: nechejte materiál vychladnout, navlhčete jej několika kapkami alkoholu, rozmělněte hrudky na prášek a celou směs znovu zahřejte. Zbylý popel se zváží.

Cíle, předpoklady

Materiál

Postup

49

Obsah vody Organické látky

Suchá hmotnost Anorganické látkySpáleníSušení

Počáteční hmotnost

Váha Váha Váha

Page 52: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

Biol

ogie

5050

Obsah vody se vypočítá ze vzorce: obsah vody = hmotnost čerstvé hmoty – hmotnost suché hmoty.Obsah popelovin je vyjádřen v procentech hmotnosti čerstvé a suché hmoty.Jakožto základ lze použít následující tabulku:

Je-li pokus prováděn v rámci praktické výuky, je velmi důležité, aby součástí výuky byla i diskuse nad možnými zdroji chyb ve vyhodnocení.

– Kvalitativní analýza popela– Zkoumání různých typů listů (opadavé, stálezelené, sukulenty)– Slunné a stinné listy nebo listy rostoucí v různých výškách, listy jednoho druhu

rostliny chráněné a vystavené větru.

Vyhodnocení

Další možnosti

Vzorek Obsah popelovin

Hlávkový salátJablkoPšeničné zrno

Obsah vody(g) (%)

Hmotnostčerstvéhmoty (g)

Hmotnostsuchéhmoty (g) (g) (% such.) (% čerst.) (% čerst.)

Page 53: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

51

O lihovém kvašení

Během lihového kvašení vzniká oxid uhličitý. Tento jev provází úbytek hmotnosti kvasného substrátu, což lze snadno zjistit vážením. Jsou-li vnější podmínky stabilní, lze uvolňování oxidu uhličitého za určitou časovou jednotku použít coby měřítko metabolické činnosti kvasinek. Úpravou základního experimentu lze zkoumat vlivy různých externích faktorů na fermentační činnost. Základní problematika však zůstává vždy stejná: stanovení vztahu mezi hmotností a časem s využitím vážení.Předpokládané znalosti studentů: respirace a fermentace – průběh, význam a chemické jevy v oblasti empirických vzorců.Jsou-li experimenty prováděny v rámci praktické výuky, mohou studenti sami plánovat a provádět jednotlivé série měření. V teoretické hodině o délce 45 minut lze provést ukázku vlivu teploty: jedna baňka v místnosti, další v sušárně a třetí v chladničce. V teoretické hodině však nelze sestrojit úplnou křivku průběhu fermentace.

Přesná váha METTLER TOLEDO (odečitatelnost 0,01 g)Lisované droždíGlukózaKuželovitá baňka s objemem 100 ml, zátka s vývrtem a volnou vatovou náplníSušárna a chladnička; dle potřeby vodní lázeň nebo výhřevné svítilny.

Do kuželovité baňky načerpejte vodovodní vodu (90 ml) a vložte 10 g lisovaného droždí. Poté droždí třepáním a mícháním rozpusťte. Bezprostředně před zahájením pokusu a poté, kdy suspenze dosáhne požadovanou reakční teplotu, přidejte 5 g glukózy. Proveďte první vážení (se zátkou); druhé vážení proveďte po 10 minutách, třetí po 20 minutách atd. Po každém vážení je třeba suspenzi důkladně zamíchat.Jestliže výuka vyžaduje dosažení typických fermentačních křivek ve dvouhodinové lekci, je důležité pracovat při optimální teplotě 3 °C. Důležité je i jednotné, dobře regulované protřepání, které je třeba provést alespoň po každém vážení. Je-li pokus provádět při pokojové teplotě, doporučujeme použití magnetického míchátka.

Vyhodnocení probíhá pomocí metody uvedené na příkladu níže. Hodnoty byly získány při pokojové teplotě 19 °C. Vyhodnocení tedy prokazuje, jakých výsledků lze na poli fermentační činnosti dosáhnout s velmi jednoduchou soustavou.

Cíle a formulaceproblematiky

Materiál

Postup

Vyhodnocení

51

Celková hmotnostsuspenze (g)

Čas (min)

Page 54: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

Biol

ogie

5252

Po pomalém začátku (indukční fáze) se reakce zrychluje a poté probíhá stabilní rychlostí; tato rychlost se posléze snižuje společně s obsahem cukru. Dokončení reakce trvá několik hodin.Při 35 °C lze během 90 minut získat mírně esovitě prohnutou křivku.Množství CO

2 získané z určitého množství cukru lze vypočítat stechiometricky (48,8 %). V našem

experimentu by tudíž mělo být uvolněno 2,44 g oxidu uhličitého (je třeba pamatovat, že určitá část lisovaného droždí obsahuje zkvasitelné látky).

Lze určit závislost fermentace na následujících okolnostech:– teplota

např. v rozmezí 0–60 °C a se stanovením optimální teploty. Zde lze studentům demonstrovat i pravidlo, které určuje závislost rychlosti reakce na teplotě.

– množství kvasničných buněk nebo enzymuExperimenty s různým množstvím droždí, např. 2–20 g.

– množství cukruNapříklad experimenty s 2,5, 5, 10 a 20 g cukru.

– typ cukru– hodnota pH

Z fosforečnanu sodného a dihydrofosforečnanu sodného lze připravit pufry a stanovit jejich pH. Optimální hodnota leží ve slabě kyselé oblasti.

– třepáníDo jaké míry podporuje fermentaci důkladné třepání nebo míchání?

– živinyVliv masového výtažku, síranu amonného a dihydrofosforečnanu draselnéhona substrát.

– konzervanty a dezinfekční prostředkyLze například vyzkoušet účinek konzervantu kyseliny sorbové v různém množství (100, 250, 500, 1 000 a 2 000 mg).

Dosažení porovnatelných výsledků předpokládá dodržení těchto pokynů:– ve všech pokusech musí být použit stejný typ kvasinek, které musejí být čerstvé.– při zvedání, přenášení a pokládání kuželovitých baněk je třeba si počínat velmi opatrně a předcházet

nárazům, které mohou negativně ovlivnit výsledky pokusů.– jsou-li pokusy prováděny při různých teplotách, vážení by mělo být co nejrychlejší, aby bylo ochlazení

a ohřívání substrátu udrženo v přijatelných mezích.

Další možnosti

Závěrečné poznámky

Page 55: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají
Page 56: Pokusy v učebnách · obsahující 90 % platiny a 10 % iridia. Tato slitina umožňuje zajištění stabilní hmotnosti. Národní etalony se v pravidelném intervalu 25 let porovnávají

Další informace

www.mt.com/education-line

Česko Mettler-Toledo, s. r. o.Třebohostická 2283/2, 100 00 Praha 10Tel.: +420 226 808 150, Fax: +420 226 808 170Servis: +420 226 808 163, E-mail: [email protected]

Slovensko Mettler-Toledo s. r. o.Hattalova 12, 831 03 BratislavaTel.: +421 2 44 44 12 20, 22, Fax: +421 2 44 44 12 23Servis: +421 2 44 44 12 21, E-mail: [email protected]

Technické změny vyhrazeny, 11795683© 12/2014 Mettler-Toledo, s.r.o.Vytištěno v České republice