26
Poznamka: Velmi se omlouvam se za zpozdeni, zakon schvalnosti pracuje az priliz dobre. Prezentace jeste neni dokonale kompletni. Velmi bych velmi ocenil jakekoli primominky, navrhy a rady. Omlouvam se a mnohokrat dekuji, Jindrich Fixa

Poznamka: Velmi se omlouvam se za zpozdeni, zakon schvalnosti pracuje az priliz dobre. Prezentace jeste neni dokonale kompletni. Velmi bych velmi ocenil

Embed Size (px)

Citation preview

Poznamka:Velmi se omlouvam se za zpozdeni, zakon

schvalnosti pracuje az priliz dobre. Prezentace jeste neni dokonale kompletni. Velmi bych velmi ocenil jakekoli primominky, navrhy a rady.

Omlouvam se a mnohokrat dekuji,Jindrich Fixa

Jindrich Fixa

04/19/23 2

Fusion the energy of the future?

I. Fusion

II. Tokamaks

III. History vs. the future

Fusion the energy of the future?

I. Fusion <-

II. Tokamaks

III. History vs. the future

I. Fusion:a) Why fusion ?b) Fusion reactionsc) Plasma in natured) Plasma definition

a)Why fusion ?

Ecology

Safety

Fuel effective

Fuel resources

a)Why fusion ? – Fuel resourcesGigajoules (109 joules) Divided by world annual

energy consumption per year

( Present consumption 3 * 1011 1 year

Coal 1.0 * 1014 300 years

Oil 1.2 * 1013 40 years

Natural gas 1.4 * 1013 50 years

Uranium 235 (fission) 1013 30 years

Uranium 238 and thorium 232 (breeder reactors) 1016 30 000 years

Lithium (D-T fusion reactors)- Land- Oceans

1016

1019

30 000 years30* 106 years

b) Fusion reactions:

D + D -> 3He + n + 3.2 MeV

D + D -> T + p + 4.0 MeV

D + T -> 4He + n + 17.6 MeV

d) Plasma definition

The plasma approximation

Bulk interactions

Plasma frequency

c) Plasma in nature

99% of the space is made up form plasma

yet there is almost none on Earth

Fusion the energy of the future?

I. Fusion

II. Tokamaks <-

III. History vs. the future

II. Tokamaks:a) Fusion and tokamaksb) Ignition conditionc) Plasma confinementd) Tokamak reactore) Tokamak economics

a) Fusion and tokamaksD + T -> 4He + n + 17.6 MeV

Most promising method of supplying energy

b) Ignition conditionignition temperature is 10-20 keV -+10%

c) Plasma confinementPoloidal coil(Primary + toroidal

coil)

d) Tokamak reactorBlanket Vacuum Vessel

e) Tokamak economics

Fusion the energy of the future?

I. Fusion

II. Tokamaks

III. History vs. the future <-

III. History vs. the futurea) Historical milestones

b) Tokamak development

c) ITER on it’s way

a) Historical milestones1905 – A. Einstein: E = m * c2

1920 - A.S. Eddington: Energy source in stars1928 - I. Langmur: “Plasma”1934 – E. Rutherford: D+D fusion1957 - J.D. Lawson: Lawson criteria1960 – I.A.Kuechatov: Lecture at Harvell

1983 – JET1991 – JET – D-T combination as a fuel

b) Tokamak development2015 – ITER – first physic experiments2014 – DEMO – project begins2024 – ITER – technological experiments2024 – DEMO – construction2032 – DEMO – start2034 – ITER – deconstruction2046 – DEMO – deconstruction2050 – First fusion power plant?

c) ITER on it’s wayWhere? - France - CadaracheWhen? - First experiments are planed to

2014How? - Together and with class 500-

700MW

RecapitulationSo why is it not here yet ?

Expensive developmentInitial investment

Is fusion the energy of the future ?SafeEffectiveResourcefulCheap to run

Source:Tokamaks - John Wesson (Oxford science publications)

Focus On: JET - The European Center of Fusion Research- Jan Mlynář

The science of JET - John Wesson

Úvod do fyziky plazmatu - Francis F. Chen

Řízená termojaderná syntéza pro kazdeho - Milan Řípa, Vladimír Weinzettl, Jan Mlynář, František

Žáčekg

Web of scienceScience Direct

Thanks to :Milan Řípa

Jan Mlynář

Jan Horácek

Vojtěch Svoboda

Jindrich Fixa

04/19/23 30