17
Integrated design study for DEMO concept defini7on Y. Sakamoto, K. Tobita, H. Utoh, N. Asakura, Y. Someya, K. Hoshino, M. Nakamura, S. Tokunaga and the DEMO Design Team Japan Atomic Energy Agency 3rd IAEA DEMO Programme Workshop InsGtute of Plasma Physics, Chinese Academy of Sciences (ASIPP) 1115, May 2015

Presentation Sakamoto DEMOWS2015 v1.1 · 2016. 5. 5. · 11N15,#May#2015# # 1. ... TriGum#breeding#rao#>1# 1.!Recent!situa7on!on!DEMO!development!in!JA " Previous#DEMO#reactor#study#on#SlimCS#focused#on#asteady#state#

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Presentation Sakamoto DEMOWS2015 v1.1 · 2016. 5. 5. · 11N15,#May#2015# # 1. ... TriGum#breeding#rao#>1# 1.!Recent!situa7on!on!DEMO!development!in!JA " Previous#DEMO#reactor#study#on#SlimCS#focused#on#asteady#state#

 Integrated  design  study  for  DEMO  concept  defini7on

Y.  Sakamoto,  K.  Tobita,  H.  Utoh,  N.  Asakura,  Y.  Someya,    K.  Hoshino,  M.  Nakamura,  S.  Tokunaga  and  the  DEMO  Design  Team  

Japan  Atomic  Energy  Agency  

3rd  IAEA  DEMO  Programme  Workshop    InsGtute  of  Plasma  Physics,  Chinese  Academy  of  Sciences  (ASIPP)  

11-­‐15,  May  2015    

Page 2: Presentation Sakamoto DEMOWS2015 v1.1 · 2016. 5. 5. · 11N15,#May#2015# # 1. ... TriGum#breeding#rao#>1# 1.!Recent!situa7on!on!DEMO!development!in!JA " Previous#DEMO#reactor#study#on#SlimCS#focused#on#asteady#state#

1.   Recent  situa7on  on  DEMO  development  ü  Broader  Approach  Ac7vity  ü  Joint  Core  Team  Ac7vity  

2.   DEMO  concept  development  ü  Basic  outline  of  DEMO  concept  ü  Assessment  of  relevant  technologies    

3.   Summary

Contents

Page 3: Presentation Sakamoto DEMOWS2015 v1.1 · 2016. 5. 5. · 11N15,#May#2015# # 1. ... TriGum#breeding#rao#>1# 1.!Recent!situa7on!on!DEMO!development!in!JA " Previous#DEMO#reactor#study#on#SlimCS#focused#on#asteady#state#

Broader  Approach  (BA)  Ac7vity  (2007.6  –  2017.5)

In  parallel  to  the  ITER  project,  BA  acGviGes  are  being  implemented  by  EU  and  JA.

l  IFERC  project  (DEMO  design  and  R&D,  CSC,  REC)    l  IFMIF/EVEDA  project  l  STP  project  (JT-­‐60SA)  

“Joint  Core  Team”  organized  by  Fusion  Research  WG  under  MEXT  (2013.7  –  2015.1  )

l  The  team  is  composed  of    8  members  from  JAEA,  NIFS,  Univ.,  Industry. l Mission   is   to   develop   strategy   for   establishment   of   technology   bases  

required  for  DEMO  by  considering  the  status  of  ongoing  projects  (incl.  ITER)

l  “Report  of  Joint  Core  Team  (July,  2014)  defines  requirements  for  DEMO  

ü  Steady  and  stable  power  generaGon  with  several  100s  of  MWe      ß  reduced  from  1GWe  in  AEC  report  

ü  Plant  availability  leading  to  commercializaGon  ü  TriGum  breeding  raGo  >  1  

1.  Recent  situa7on  on  DEMO  development  in  JA

Page 4: Presentation Sakamoto DEMOWS2015 v1.1 · 2016. 5. 5. · 11N15,#May#2015# # 1. ... TriGum#breeding#rao#>1# 1.!Recent!situa7on!on!DEMO!development!in!JA " Previous#DEMO#reactor#study#on#SlimCS#focused#on#asteady#state#

l  Previous  DEMO  reactor  study  on  SlimCS  focused  on  a  steady  state  and  relaGvely  compact  reactor  (Rp=5.5m)  that  is  capable  of  producing  a  Pfus=3GW  and  Pnet=1GWe.    

Ø  To  respond  the  requirement,  JAEA  DEMO  design  team  has  begun  to  look  into  the  feasibility  of    ü  a  medium  size  DEMO  with  full  size  CS  coil,  ü  lower  fusion  power  for  miGgaGng  heat  load,  

           by  assessing  the  relevant  technologies.  

l  However,  the  design  study  in  recent  years  suggests  that  such  a  compact  and  high  power  reactor  has  intractable  problems  in  ü  Huge  power  exhaust  in  the  divertor  ü  Capability  of  CS  flux  (ΔIpCS  /  Ip  =0.23  in  SlimCS)  

l  For  commissioning  operaGon  and  early  demonstraGon  of  electric  generaGon,  full  size  CS  coil  is  favarable.  

2.  DEMO  concept  development    –  Introduc7on  –

Page 5: Presentation Sakamoto DEMOWS2015 v1.1 · 2016. 5. 5. · 11N15,#May#2015# # 1. ... TriGum#breeding#rao#>1# 1.!Recent!situa7on!on!DEMO!development!in!JA " Previous#DEMO#reactor#study#on#SlimCS#focused#on#asteady#state#

l  To  minimize  the  development  subjects  by  uGlizing  exisGng  technologies  

Tokamak  (Medium  size  &  low  power) l  Reactor  size:  Rp  >  8.0m  l  Fusion  output:  ~1.5GW  l  Steady-­‐state  operaGon  l  TriGum  self-­‐sufficiency  (TBR>1.05)  l  Water-­‐cooled  solid  breeder  blanket

l     Cooling  water:  PWR  condiGon         15.5  MPa、290-­‐325℃  l     Thermal  output:  ~1.7GW  

       (fBLK=1.45,  SBLK=0.8)  l     Net  electricity:  0.2-­‐0.3  GWe                                                                                                    (ηth  〜30%)  

BoP (Balance of plant)

EffecGve  uGlizaGon  of  nuclear  reactor  technologies

Based  on  ITER  technologies  as  much  as  possible  (conv.  Div,  TF,  TBM,,,)  

Basic  outline  of  DEMO  design  concept

Page 6: Presentation Sakamoto DEMOWS2015 v1.1 · 2016. 5. 5. · 11N15,#May#2015# # 1. ... TriGum#breeding#rao#>1# 1.!Recent!situa7on!on!DEMO!development!in!JA " Previous#DEMO#reactor#study#on#SlimCS#focused#on#asteady#state#

DEMO  design

l  In  Tokamak  design,  ITER  technologies  will  be  uGlized  as  much  as  possible.  

l  However,  principal  differences  from  ITER  have  a  large  impact  on  DEMO  design,  which  are  related  to  each  other.  

Large  neutron  fluence  

•  Several  Gmes  larger  than  ITER  Ø  Different  maintenance  scenario  Ø  RadioacGve  waste  management  

Large  power  handling

•  Several  Gmes  larger  than  ITER  Ø  Severe  condiGon  for  divertor

ConducGng  shell  for  VS

•  ITER  decided  to  install  in-­‐vessel  coils  for  verGcal  stability.  

Ø  No  in-­‐vessel  coils  in  DEMO  due  to  neutron  irradiaGon  and  maintainability.

Ø  The  shell  posiGon  is  far  from  plasma  due  to  existence  of  thick  breeding  blanket  

Breeding  blanket  

•  No  breeding  BLK  in  ITER  Ø  Roles  of  BLK  are  triGum  breading  and  

heat  extracGon  for  electric  generaGon

Design  issues  raised  by  gaps  between  ITER  and  DEMO

Page 7: Presentation Sakamoto DEMOWS2015 v1.1 · 2016. 5. 5. · 11N15,#May#2015# # 1. ... TriGum#breeding#rao#>1# 1.!Recent!situa7on!on!DEMO!development!in!JA " Previous#DEMO#reactor#study#on#SlimCS#focused#on#asteady#state#

l  Size  of  CS  coil  required  for  several  hours-­‐long  operaGon  

l  Thickness  of  breeding  blanket  required  for  overall  TBR>1.05  l  Capability  of  heat  removal  in  divertor  

l Maximum  toroidal  field  generated  in  the  medium  size  DEMO  

Possible  DEMO  design  parameter  has  been  developed  through  the  assessment  of  technologies.  

l  Amount  of  radioacGve  waste  and  waste  management  

l Maintenance  scheme  suitable  for  the  medium  size  DEMO  

l  Impact  of  conducGng  shell  on  device  configuraGon  

Mainly  related  to  fusion  power

Mainly  Related  to  reactor  size

Viewpoints  of  technology  assessment

Page 8: Presentation Sakamoto DEMOWS2015 v1.1 · 2016. 5. 5. · 11N15,#May#2015# # 1. ... TriGum#breeding#rao#>1# 1.!Recent!situa7on!on!DEMO!development!in!JA " Previous#DEMO#reactor#study#on#SlimCS#focused#on#asteady#state#

Basic  concept  of  divertor l  Water-­‐cooling  and    W  mono-­‐block    l  ConvenGonal  divertor  configuraGon  

l  Heat  removal  capability   l  ReducGon  of  heat  load  ü  Assessment  of  

allowable  heat  flux  ü  Div.  simulaGon  study  

q  div

Technology

Plasma physics (detachment & high frad)

Design point

Approaches  for  divertor  design

similar  to  ITER  design

! Large  reducGon  of  heat  load  on  divertor  target  is  required  for  DEMO  than  ITER.    

Divertor  design

Page 9: Presentation Sakamoto DEMOWS2015 v1.1 · 2016. 5. 5. · 11N15,#May#2015# # 1. ... TriGum#breeding#rao#>1# 1.!Recent!situa7on!on!DEMO!development!in!JA " Previous#DEMO#reactor#study#on#SlimCS#focused#on#asteady#state#

Assessment  of  reduc7on  of  heat  load

Assessment  of  heat  removal  capability

ü  Neutronics  analysis:  Pfus  <  ~1.5  GW  allows  the  parGal  use  of  Cu  alloy  near  high  heat  flux  region  with  dpa/FPY  <  ~1.5.  (EU  proposal,  originally)

l  To  reduce  qdiv<10MW,  simulaGon  study  of  the  convenGonal  divertor  for  Rp=5.5  m  indicates  frad>0.8  is  required  for  Pfus=1.5  –  2.0GW.  

Ø   frad=0.7  could  be  consistent  with  Pfus=1.5  GW  and  larger  Rp~8m  (qtarget∝Pout/Rp).  

l  F82H  cooling  pipe:  qtarget  ~  5  MW/m2  l  Cu  alloy  cooling  pipe:  qtarget  ~  10  MW/m2  

Cu  alloy

F82H

q  div  (MW/m2)

Cooling pipe

Possible design point for Pfus=1.5GW & Rp=8m

5 10

F82H Cu    alloy

70% 80%

Radiation fraction

SONIC  simulaGon

Divertor  heat  load  and  compa7ble  heat  removal  technology  are  important  key  reactor  design

Page 10: Presentation Sakamoto DEMOWS2015 v1.1 · 2016. 5. 5. · 11N15,#May#2015# # 1. ... TriGum#breeding#rao#>1# 1.!Recent!situa7on!on!DEMO!development!in!JA " Previous#DEMO#reactor#study#on#SlimCS#focused#on#asteady#state#

Basic  concept  of  blanket

ü  Cooling  water:  PWR  condiGon  (290-­‐325  ℃,  15.5  MPa)  ü  Breeding  materials:  neutron  mulGplier  (Be12Ti  pebbles)  

         and  solid  breeder  (Li2TiO3  pebbles)

Water  cooled  solid  breeder  based  on  ITER-­‐TBM  strategy  

Assessment  of  blanket  thickness  for  overall  TBR~1.05 l  Layout  of  cooling  pipe  should  be  opGmized  along  with  

profile  of  neutron  wall  load  (NWL),  because  local  TBR  decreases  with  increasing  the  cooling  pipe  area.  

l  Overall  TBR  >1.05  is  evaluated  for  blanket  thickness  of  0.6m  and  Pfus  <  2.0  GW.  

Op7miza7on  of  blanket  cooling  pipe  and  determina7on  of  its  thickness  for  overall  TBR~1.05

Page 11: Presentation Sakamoto DEMOWS2015 v1.1 · 2016. 5. 5. · 11N15,#May#2015# # 1. ... TriGum#breeding#rao#>1# 1.!Recent!situa7on!on!DEMO!development!in!JA " Previous#DEMO#reactor#study#on#SlimCS#focused#on#asteady#state#

Waste  by  periodic  replacements The  amount  of  radioacGve  wastes  generated  in  every  replacement  (4  years)  is  esGmated  to  over  9,000  tons  (BLK:  5723  ton,  DIV:  924  x  4  =  3696  ton).  

Assessment  of  waste  management  strategy

The  amount  of  wastes  can  be  reduced  to  1879  ton  (20%)    by  ü  reusing  back  plate  (F82H:  3776.6  ton),  conducGng  shell  (CuCrZr:  372.4  ton)    and  

divertor  cassese  body  (F82H:  627.8  ton),  ü   recycling  mixed  breeder  (Li2TiO3  &  Be12Ti:  881  ton)  

Component DPA/FPY Limit  value

Blanket  (FW)   9.0 <  20  dpa

ConducGng  shell 0.2 <  2  dpa

Back  plate 0.2 <  3  dpa

Divertor  (CuCrZr  pipe) 1.5 <  1  dpa

Divertor  (cassese  body) 0.6 <  20  dpa

Pfus  =  1.35  GW

Reuse  &  recycle  of  components  are  a  key  strategy  to  reduce  radioac7ve  wastes

Page 12: Presentation Sakamoto DEMOWS2015 v1.1 · 2016. 5. 5. · 11N15,#May#2015# # 1. ... TriGum#breeding#rao#>1# 1.!Recent!situa7on!on!DEMO!development!in!JA " Previous#DEMO#reactor#study#on#SlimCS#focused#on#asteady#state#

Maintenance  scheme

Various maintenance options

Sector  m

ainten

ance  

port

BLK  port

DIV  po

rt

l Maintenance  scheme  should  be  different  from  ITER  and  significantly  impacts  on  torus  configuraGon.  ü  In-­‐vessel  components,  PF  and  TF  coils,,,  ü  Reactor  buildings  incl.  hot  cell  and  waste  

management  scenario.  l  Various  concepts  have  been  assessed  to  

narrow  down  the  concept.  

Page 13: Presentation Sakamoto DEMOWS2015 v1.1 · 2016. 5. 5. · 11N15,#May#2015# # 1. ... TriGum#breeding#rao#>1# 1.!Recent!situa7on!on!DEMO!development!in!JA " Previous#DEMO#reactor#study#on#SlimCS#focused#on#asteady#state#

Blanket  maintenance

ü  Ease  of  handling  due  to  lightweight    ü  Smaller  size  of  TF  coil  ü  Support  of  TFC  turnover  force  by  wide  area  intercoil  structure  ü  MagneGc  energy  of  PF  coils  (68GJ  à  27GJ) ü  Separately-­‐maintenance  of  blanket  and  divetor  

At  present,  it  is  considered  that  the  segmented  maintenance  scheme  provides  a  lot  of  advantages  for  medium  size  DEMO

Divertor  maintenance

•  3  DIV  casseses  /sector   •  2  modules  /  inboard  sector  •  3  modules  /  outboard  sector  

Segmented  maintenance  scheme  provides  advantage  for  medium  size  DEMO

Inboa

rd se

gmen

t

Outbo

ard

segm

ent

Divertor cassette

Page 14: Presentation Sakamoto DEMOWS2015 v1.1 · 2016. 5. 5. · 11N15,#May#2015# # 1. ... TriGum#breeding#rao#>1# 1.!Recent!situa7on!on!DEMO!development!in!JA " Previous#DEMO#reactor#study#on#SlimCS#focused#on#asteady#state#

Similar  to  ITER  technologies:  ü  Radial  plate,  and  wedge  support  structure    ü  Cable-­‐in-­‐conduit  type  conductor  (68kA)  ü  Withstand  voltage  of  20kV  and  operaGon  

temperature  of  5K  

The  choice  of  SC  strand  material  should  be  considered  by:  ü  Strain  property  of  Jc  ü  Manufacturability  (R&W  or  W&R)  

Conductor Design  stress BTmax

Nb3Sn 667  MPa 11.5  T

800  MPa 12.1  T

Nb3Al 667  MPa 11.7  T

800  MPa 12.4  T

Basic  concept  of  TF  coil  design

14.1m

20.1m

9m

13.5m

BTmax  is  evaluated  for  Nb3Sn  and  Nb3Al  at  design  stress  of  667  and  800  MPa  by  SCONE  code.  

Assessment  of  maximum  BT  (BTmax)

ü  Difference  in  BTmax  between  Nb3Al  and  Nb3Sn  decreases  with  increasing  Rp.  

ü   Design  stress  (Sm)  has  a  large  impact  on  BTmax.  

Sm=800MPa  could  be  foreseeable  by  raising  the  raGo  of  high  quality  material.    

BTmax  decreases  with  Rp,  but  >12T  can  be  generated  at  

Rp~8.5m  by  both  Nb3Sn  and  Nb3Al  with  Sm=800MPa

Page 15: Presentation Sakamoto DEMOWS2015 v1.1 · 2016. 5. 5. · 11N15,#May#2015# # 1. ... TriGum#breeding#rao#>1# 1.!Recent!situa7on!on!DEMO!development!in!JA " Previous#DEMO#reactor#study#on#SlimCS#focused#on#asteady#state#

Elonga7on  (κ)

l  ConducGng  shell  has  essenGal  role  in  verGcal  and  high  beta  stabiliGes,  especially  in  DEMO  due  to  no  in-­‐vessel  coils.  

l  The  posiGon  is  far  from  plasma,  typically    rW/ap~1.35  due  to  thick  BLK  of  0.6  m    

         "  large  impact  on  device  configuraGon  (κ,  A).  

ΔBLK ΔSOL Δgap

l  Plasma  elongaGon  is  one  of  the  key  factors  in  determining  absolute  plasma  performance,  while  highly  elongated  plasma  is  verGcally  unstable.  

l  VerGcal  stability  analysis  indicates  design  elongaGon  of  κ95  ~  1.65.  

Requirement  of  conduc7ng  shell  posi7on  has  a  large  impact  on  device  configura7on  (κ,  A)

Back  plate

ConducGng  shell

Blanket

Aspect  raGo  (A)

l  The  shell  posiGon  determines  the  max  A.  e.g.)  rw/ap<1.35,  rw  =a+ΔSOL+ΔBLK+Δgap  =  a+0.2+0.6+0.05  

A≦0.35Rp/(ΔSOL  +  ΔBLK  +  Δgap  )  à  A≦3.5  at  Rp~8.5m.  v  The  required  CS  size  determines  the  min  A,  typically  A>3.1  

at  Rp~8.5m  and  q95~4.1.

Page 16: Presentation Sakamoto DEMOWS2015 v1.1 · 2016. 5. 5. · 11N15,#May#2015# # 1. ... TriGum#breeding#rao#>1# 1.!Recent!situa7on!on!DEMO!development!in!JA " Previous#DEMO#reactor#study#on#SlimCS#focused#on#asteady#state#

Parameter Pulse    2  hrs S.S.   Ref.  

ITER

Size  &  Con

figuraG

on Rp  (m) 8.5 ß 6.35

ap  (m) 2.42 ß 1.85 A 3.5 ß 3.43 κ95 1.65 ß 1.85 q95 4.1 ß 5.3 Ip  (MA) 12.3 ß 9.0 BT  (T) 5.94 ß 5.18 BTmax  (T) 12.1 ß 11.8

Absolute  

Performance

Pfus  (MW) 1085 1462 356 Pnet  (MWe) 185 303 -­‐ Q 13 17.5 6 PADD  (MW) 83.5 83.7 59 ne    (1019m-­‐3) 6.5 6.6 6.7

Normalize

d  Pe

rformance

HH98y2 1.13 1.31 1.57 βN 2.6 3.4 2.95 fBS 0.46 0.61 0.48 fCD 0.32 0.39 0.52 ne/nGW 1.2 1.2 0.82 fHe 0.07 0.07 0.04

Based  on  the  assessment  of  technologies,  possible  design  parameter  set  are  analyzed  by  systems  code.  

l  BTmax>12T  based  on  Nb3Sn  or  Nb3Al,  Sm=800MPa  

l  BLK  thickness  of  ~0.6m  for  net  TBR>1.05  l  Considering  the  conducGng  shell  (rW/ap~1.35),  ü  κ95=1.65  for  verGcal  stability  ü  A=3.5  to  increase  nGW  for  DIV  detachment

l  Steady-­‐state  and  pulse  operaGon  in  the  same  device  design  including  CD  power.  

ü  Rp=8.5m  for  full  inducGve  Ip  ramp  up  and  2hrs  pulse  by  expanding  CS  size  

Ø  OperaGonal  flexibility  for  commissioning/  early  demonstraGon  of  electric  power.

Key  concept  /consideraGon

l  Pfus<1.5GW  and  Pnet~0.2-­‐0.3GWe  to  demonstrate  electric  generaGon  and  to  be  compaGble  with    

ü  Divertor  heat  removal  capability  ü  neutron  flux  on  BLK  for  enhancement  of  TBR  

Design  parameters  for  steady-­‐state  and  2  hours  pulse  opera7on  in  the  same  device  design

l  Segmented  maintenance  scheme  

Page 17: Presentation Sakamoto DEMOWS2015 v1.1 · 2016. 5. 5. · 11N15,#May#2015# # 1. ... TriGum#breeding#rao#>1# 1.!Recent!situa7on!on!DEMO!development!in!JA " Previous#DEMO#reactor#study#on#SlimCS#focused#on#asteady#state#

The  DEMO  concept  has  been  developed  through  the  assessment  of  relevant  technologies  from  the  viewpoints  of  the  fusion  power  and  the  reactor  size,  to  minimize  the  development  subjects  by  extending  the  present  technologies.    

l  Rp  >  8.0  m  for  full  inducGve  Ip  ramp  up  by  CS  coil    ü  OperaGonal  flexibility  from  pulse  to  steady-­‐state  

l  Pfus  =  1.5  GW  and  Pgross  ~  0.5  GW  is  foreseeable  from  the  viewpoints  of      ü   Divertor  heat  removal  capability  and  triGum  self-­‐sufficiency  in  blanket.  

By  considering  above  and  other  assessments,  DEMO  concept  design  study  shows,  ü  Pfus~1.5  GW  &  Rp  ~  8.5  m  could  demonstrate  Pnet  ~  0.3  GWe.  ü  frad  =  70%  will  be  compaGble  with  Pfus=1.5  GW,  Rp  >  8.0  m  and  parGal  use  of  Cu  alloy  

as  cooling  pope  near  high  qtarget  and  low  dpa/year  region  ü  Water  cooled  solid  breeder  blanket  with  its  thickness  of  0.6  m  for  TBR  >1.05  ü  Segmented  maintenance  scheme  ü  Reuse  &  recycle  of  components  are  a  key  strategy  to  reduce  radioacGve  wastes.  ü  BTmax  >  12T  based  on  Nb3Sn  or  Nb3Al,  Sm=800MPa  ü  ConducGng  shell  posiGon  and  CS  size  constrains  3.1<A<3.5,  and  A=3.5  for  high  nGW  ü  κ~1.65  for  verGcal  stability  

3.  Summary