14
Principia and Design of Heat Exchanger Device 热交换器原理与设计 School of Energy and Power Engineering, SDU Presented: 杜文静 E-mail: [email protected] Telephone: 88399000-2511

Principia and Design of Heat Exchanger Device&ÁG£1 b dQ Gdi Therefore Gdi ( Ldt tdL)c The first item is heat released caused by the water temperature dt. The second item is the heat

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Principia and Design of Heat Exchanger Device&ÁG£1 b dQ Gdi Therefore Gdi ( Ldt tdL)c The first item is heat released caused by the water temperature dt. The second item is the heat

Principia and Design of Heat Exchanger

Device

热交换器原理与设计

School of Energy and Power Engineering, SDU

Presented: 杜文静E-mail: [email protected]

Telephone: 88399000-2511

Page 2: Principia and Design of Heat Exchanger Device&ÁG£1 b dQ Gdi Therefore Gdi ( Ldt tdL)c The first item is heat released caused by the water temperature dt. The second item is the heat

Chapter 5 Direct Contact Heat Exchanger

直接接触式换热器,混合式换热器

Page 3: Principia and Design of Heat Exchanger Device&ÁG£1 b dQ Gdi Therefore Gdi ( Ldt tdL)c The first item is heat released caused by the water temperature dt. The second item is the heat

直接接触式换热器,混合式换热器

Chapter 5 Direct Contact Heat Exchanger

Page 4: Principia and Design of Heat Exchanger Device&ÁG£1 b dQ Gdi Therefore Gdi ( Ldt tdL)c The first item is heat released caused by the water temperature dt. The second item is the heat

1. Principle

Two fluid streams come into direct contact, exchange heat, and are then separated.

Advantage: Very high heat transfer coefficient; the heater construction is relatively

inexpensive; the fouling problem is nonexistent, due to the absence of the

heat transfer surface between the two fluids.

Disadvantage: The application is limited to those cases where a direct contact of the two

fluid streams is permissible.

混和式热交换器是依靠冷热流体的直径接触进行传热。

Classification:

1)Cooling tower 冷却塔:

Natural draft, force draft. Cooling air by using water

利用自然通风或机械通风的方式,用空气将热水进行冷却降温

2)Scrubbing tower 洗涤塔:

Using liquid (water) to cool air 用液体(水)来冷却空气,或吸收去除某些组分

3)Spray heat exchanger 喷射式热交换器:

由较高压力的流体和较低压力的流体在扩散管中混和形成一种流体

4)Direct Mixing condenser 混和式冷凝器:

水和蒸汽直接接触使蒸汽冷凝,得到的是水和冷凝液的混和物

Chapter 5 Direct Contact Heat Exchanger

Page 5: Principia and Design of Heat Exchanger Device&ÁG£1 b dQ Gdi Therefore Gdi ( Ldt tdL)c The first item is heat released caused by the water temperature dt. The second item is the heat

Cooling Tower 冷却塔

In counterflow cooling towers, water is distributed at the top of the tower and falls

through the tower as splash or film. As the water falls downwards it exposes the

maximum water surface to the upward forced or induced air. This creates both heat and

mass transfer processes. Heat transfer occurs as a result of a difference in water and air

temperatures. Mass transfer occurs owing to the difference in partial water vapour

pressure between the bulk air and the air-water interface, which results in evaporation of

some of the water into the air. The enthalpy needed for this evaporation is taken from the

remaining water, which (as a result) is cooled.

Chapter 5 Direct Contact Heat Exchanger

Page 6: Principia and Design of Heat Exchanger Device&ÁG£1 b dQ Gdi Therefore Gdi ( Ldt tdL)c The first item is heat released caused by the water temperature dt. The second item is the heat

1. Classification:

dry cooling tower 干式冷却塔,把循环水送到安装于冷却塔中的散热器内被空气

冷却(效率低)

Wet cooling tower 湿式冷却塔,让水于空气直径接触,把水中的热量传给空气

(水的损耗)

2.Structure:

1)drip system 淋水装置:

To distribute the water evenly, increase the contacting surface area and contacting

time between the water and air

a)点滴式:主要靠下落的水滴和飞溅的水滴散热

风速:机械通风冷却塔 1.3~2 m/s,自然通风 0.5~1.5m/s

风速大,水滴降落速度慢,停留时间长,传热效果好

风速太大,水的携带,电耗增加

b)薄膜式:主要利用波纹或平膜板形成的水膜散热,见 book,图 4.3

c)水滴薄膜式:水滴和模板共同的作用

2)water distribution system 配水系统:将热水均匀的分配到整个淋水盘上

槽式、管式和池式(盘式)

3)tower 通风筒(塔):气流的通道,创造良好的空气动力条件

Chapter 5 Direct Contact Heat Exchanger

Page 7: Principia and Design of Heat Exchanger Device&ÁG£1 b dQ Gdi Therefore Gdi ( Ldt tdL)c The first item is heat released caused by the water temperature dt. The second item is the heat

3.工作原理:

水温决定于水和空气的传热。

由分子动力学知,水的蒸发速度取决于水分子由水面附近向空气深处的扩散速度

水分子向空气中蒸发扩散的推动力:

p=p"-p,

p" 紧贴水面的饱和空气层(温度和水面的温度相同)的饱和水蒸汽的分压力。

即水面温度下饱和水蒸汽压力

p 温度为0C 的空气层中的蒸汽分压力, Pa

=空气相对湿度和空气温度为时的饱和蒸汽压力 p”的乘积 p=p”

只要 p" > p 水的表面就会蒸发,而于水面的温度是高于还是低于水面上的空气

的温度无关。

冷却塔中蒸发所消耗的热量总是由水传给空气

Q=p(p”-p)F Q由蒸发产生的传热量

汽化潜热

p以分压差表示的传质系数 kg/m2·s ·Pa

用含湿差代替分压差:

Q=x(x”-x)F x以含湿差表示的传质系数 kg/m2·s

x” 于温度 t 对应的饱和空气含湿量,kg/kg

Chapter 5 Direct Contact Heat Exchanger

Page 8: Principia and Design of Heat Exchanger Device&ÁG£1 b dQ Gdi Therefore Gdi ( Ldt tdL)c The first item is heat released caused by the water temperature dt. The second item is the heat

Heat transfer caused by the temperature difference

Q=(t-)F t temperature at the water surface,

air temperature

When the water temperature t > air temperature, Q >0

Q= Q+Q 水温下降

When the water temperature t = air temperature, Q=0

Q= Q 水温下降

When the water temperature t < air temperature, Q<0

Q= Q-Q when Q>Q, 水温仍然下降

when Q=Q时水温不再下降,这时的水温为水的冷却极限

即湿球温度

注意:平衡态是动态平衡,仍然伴随着蒸发和冷凝

蒸发冷却过程中伴随着物质交换,水可以被冷却到比冷却它的空气还要低的温度

以含湿差代替分压差,以含湿差表示的传质系数x代替p,引入淋水材料的体积 V,

以及和体积相应的传质系数xv和换热系数v

总的传热量 VxxVtQ xVV "

Chapter 5 Direct Contact Heat Exchanger

Page 9: Principia and Design of Heat Exchanger Device&ÁG£1 b dQ Gdi Therefore Gdi ( Ldt tdL)c The first item is heat released caused by the water temperature dt. The second item is the heat

4.Thermal calculation 冷却塔的热力计算

Calculation of the thermal performance of cooling towers requires the determination of

heat, mass and momentum transport during the direct contact of air with water. The

mathematical model widely used for this purpose so far is the Merkel theory.

Chapter 5 Direct Contact Heat Exchanger

Page 10: Principia and Design of Heat Exchanger Device&ÁG£1 b dQ Gdi Therefore Gdi ( Ldt tdL)c The first item is heat released caused by the water temperature dt. The second item is the heat

4.冷却塔的热力计算

a)迈克尔焓差方程

AdZxxAdZtdQ xl )()( "

填料的比表面积 m2/m

3

x"、x 于水温 t 相应的饱和空气的

湿量以及于水接触的空气的

含湿量 kg/kg

x 以含湿量表示的传质系数

根据相似理论分析,换热系数和传质

系数之间应保持一定的关系,即

x

x

l c

(cx 湿空气比热)

含湿量为 x 的湿空气的焓 ix=cx+x

水面饱和空气的含 i"=cxt+x"

代入上式,得

AdZiidQ x )( " (a)

迈克尔焓差方程表明塔内任何部位的水、气之间交换的总热量与该点水温下饱和空

气焓 i”与该处空气焓 i 之差成正比

L x2 空气 水 i t

+d

x+dx i+di t+dt

G, , x, i t

G,1,x1,i1 L-dL t2

dz

z

Chapter 5 Direct Contact Heat Exchanger

Page 11: Principia and Design of Heat Exchanger Device&ÁG£1 b dQ Gdi Therefore Gdi ( Ldt tdL)c The first item is heat released caused by the water temperature dt. The second item is the heat

b)the heat balance between the water and air

the heat released from water = the heat absorbed by air without considering heat loss

在没有热损失的情况下,水放出的热量等于空气增加的热量

The heat released from water in the macro zone dZ 在微段 dZ 内水放出的热量为

ctdLLdtctdLLdttLcdQ )()()(

the heat absorbed by air 在该段的空气吸热量等于

GdidQ

Therefore

ctdLLdtGdi )(

The first item is heat released caused by the water temperature dt. The second item is the

heat carried out by evaporation of water dL

第一项为水温降低 dt 所放出的热量,第二项为蒸发了 dL 的水量后带走的热量,

较小,在第一项中通过乘以系数 1/K 来考虑,简化后该微段的热平衡方程,

cLdtK

Gdi1

(b)

代入上式得 G d i

c t d LK 1

对全塔进行积分,得到 )(

)(),()(

12

2112iiG

ttcLKortt

K

cLiiG

21  

Chapter 5 Direct Contact Heat Exchanger

Page 12: Principia and Design of Heat Exchanger Device&ÁG£1 b dQ Gdi Therefore Gdi ( Ldt tdL)c The first item is heat released caused by the water temperature dt. The second item is the heat

对全塔进行积分,得到 )(

)(),()(

12

2112iiG

ttcLKortt

K

cLiiG

21  

Based on the heat balance between the water and gas. We have

Q

Qr

ctK

a1

1 2 please see the figure 4.11 for the value of the K

3)the basic equation of the cooling tower calculation

由迈克尔焓差方程(a)和热平衡方程(b)

cLdtK

AdZiix

1)( "

积分

L

AZdZ

L

A

ii

dt

K

cx

z

x

t

t

0"

1

2

The left side the right side

1

2"

t

t ii

dt

K

cN 冷却数

L

AZN x

' 水塔特性数

Chapter 5 Direct Contact Heat Exchanger

Page 13: Principia and Design of Heat Exchanger Device&ÁG£1 b dQ Gdi Therefore Gdi ( Ldt tdL)c The first item is heat released caused by the water temperature dt. The second item is the heat

在气量和水量之比相同时, 冷却数 N 值越大,表示要求散发的热量更多,所需淋水装

置的体积越大;水塔特性数中的x 反应了淋水装置的散热能力,反应了淋水塔所具有

的冷却能力。冷却塔的设计计算问题,就是要求冷却任务与冷却能力相适应,因而在

设计中应保证 N=N’,以保证冷却任务的完成。

4)冷却数的确定。(i”-i)与水温 t 之间的关系非常复杂。一般求近似解

)1

...241

(3 210 niiiinK

tcN

分成 n 段,每段的水温变化为t/n, 这样于各温度相应的焓值可以查到。

对t<15 0C 用简化公式,两段公式

)141

(6 2

"

2

"

1

"

1 iiiiiiK

tcN

mm

i1"、i2"、im" 与水温 t2、t1,tm=(t1+t2)/2 对应的饱和空气焓

i1、i2 分别为空气进、出口处的焓

5)特征数的确定

L

VN xV' xv容积传质系数

Chapter 5 Direct Contact Heat Exchanger

Page 14: Principia and Design of Heat Exchanger Device&ÁG£1 b dQ Gdi Therefore Gdi ( Ldt tdL)c The first item is heat released caused by the water temperature dt. The second item is the heat

6)气水比的确定

气水比是指冷却一公斤水所需的空气公斤数,气水比越大,冷水塔的冷却能力越

大。

空气焓与气水比有关,冷却数也就与气水比有关,同时特征数也与气水比有关,

因此要求被确定的气水比能使 N=N’。用作图法画出 N~曲线以及 N’~曲线,交叉点

符合 N=N’,所以是工作点

5.冷却塔的通风阻力计算

a)机械通风,(流体力学), 表 4.1

b)自然通风,阻力等于抽力

抽力: )( 210 gHZ

阻力: 2

2

mmwP

Chapter 5 Direct Contact Heat Exchanger