95
Online-routing on the butterfly network Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008

Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

  • Upload
    others

  • View
    32

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Online-routing on the butterfly networkProbabilistic analysis

Andrey Gubichev

Ferienakademie im Sarntal 2008Saint-Petersburg State University

September 2008

Page 2: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Overview

1 IntroductionUseful definitionsGreedy algorithm efficiency and worst cases

2 The Average-Case BehaviorBounds on congestionBounds on running time

3 Conclusion

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 2 / 65

Page 3: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Overview

1 IntroductionUseful definitionsGreedy algorithm efficiency and worst cases

2 The Average-Case BehaviorBounds on congestionBounds on running time

3 Conclusion

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 3 / 65

Page 4: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

The Butterfly

The r-dimensional butterfly consists of(r + 1)2r nodes andr2r+1 edges

such thatnode is 〈w , i〉: i is a level, w - r -bit number of row〈w , i〉 and 〈w ′, i ′〉 are linked ⇔ (w=w’ OR w and w’ differ in i th bit)AND i’=i+1

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 4 / 65

Page 5: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

The Butterfly

The r-dimensional butterfly consists of(r + 1)2r nodes andr2r+1 edges

such thatnode is 〈w , i〉: i is a level, w - r -bit number of row〈w , i〉 and 〈w ′, i ′〉 are linked ⇔ (w=w’ OR w and w’ differ in i th bit)AND i’=i+1

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 4 / 65

Page 6: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Example: three-dimensional butterfly

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 5 / 65

Page 7: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Routing Problem

routing N packetsstart — node 〈u, 0〉 on level 0destination — node 〈π(u), log N〉 on level log N

π : [1, N] −→ [1, N] is a permutation

on-line algorithms: no global controller

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 6 / 65

Page 8: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Greedy algorithm

the unique path of length log N from 〈u, 0〉 to 〈π(u), log N〉 —greedy pathgreedy routing algorithm: each packet follows its greedy path

main problem: routing many packets in parallel ⇒ many greedypaths might pass through a single node or edge: Congestion!

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 7 / 65

Page 9: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Greedy algorithm

the unique path of length log N from 〈u, 0〉 to 〈π(u), log N〉 —greedy pathgreedy routing algorithm: each packet follows its greedy pathmain problem: routing many packets in parallel ⇒ many greedypaths might pass through a single node or edge: Congestion!

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 7 / 65

Page 10: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Overview

1 IntroductionUseful definitionsGreedy algorithm efficiency and worst cases

2 The Average-Case BehaviorBounds on congestionBounds on running time

3 Conclusion

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 8 / 65

Page 11: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Fact: greedy algorithm efficiency

The algorithm that chooses greedy paths, can solve any routingproblem in O(

√N)

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 9 / 65

Page 12: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Overview: worst-case behavior

if π is the bit-reversal permutation:

π(u1 · · ·ulog N) = ulog N · · ·u1

then the greedy algorithm will take O(√

N) steps (and congestionC ≥

√N/2)

the same result holds for transpose permutation

π(u1 · · ·u log N2

u log N2 +1 · · ·ulog N) = u log N

2 +1 · · ·ulog Nu1 · · ·u log N2

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 10 / 65

Page 13: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Overview: worst-case behavior

if π is the bit-reversal permutation:

π(u1 · · ·ulog N) = ulog N · · ·u1

then the greedy algorithm will take O(√

N) steps (and congestionC ≥

√N/2)

the same result holds for transpose permutation

π(u1 · · ·u log N2

u log N2 +1 · · ·ulog N) = u log N

2 +1 · · ·ulog Nu1 · · ·u log N2

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 10 / 65

Page 14: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Example: bit-reversal permutation

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 11 / 65

Page 15: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Average-case behavior: problem statement

we need to route packets in the butterflyall packets start at level 0each packet has a destination at level log N,considered as random

p is the number of packets at each inputif p = 1: standard N-packet routing problemif p = log N: network is more heavily loaded

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 12 / 65

Page 16: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Average-case behavior: problem statement

we need to route packets in the butterflyall packets start at level 0each packet has a destination at level log N,considered as randomp is the number of packets at each input

if p = 1: standard N-packet routing problemif p = log N: network is more heavily loaded

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 12 / 65

Page 17: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Plan of analysis

obtain bounds on congestionobtain bounds on running time

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 13 / 65

Page 18: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Overview

1 IntroductionUseful definitionsGreedy algorithm efficiency and worst cases

2 The Average-Case BehaviorBounds on congestionBounds on running time

3 Conclusion

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 14 / 65

Page 19: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Upper bound on Pr(v)

Pr (v) = Probability(r or more packet paths pass through node von level i), r > 0, 0 ≤ i ≤ log N

we are randomizing routing problems!

at most p2i packets pass through vthere are 2log N−i choices of destinations that will cause thesepackets to pass through v=⇒ each of p2i pass through v with probability 2−i

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 15 / 65

Page 20: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Upper bound on Pr(v)

Pr (v) = Probability(r or more packet paths pass through node von level i), r > 0, 0 ≤ i ≤ log N

we are randomizing routing problems!

at most p2i packets pass through vthere are 2log N−i choices of destinations that will cause thesepackets to pass through v=⇒ each of p2i pass through v with probability 2−i

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 15 / 65

Page 21: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Example: choices of inputs and outputs

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 16 / 65

Page 22: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Upper bound on Pr(v)

Pr (v) ≤(

p2i

r

)(2−i)r ≤

(p2ie

r

)r

2−ir =(pe

r

)r

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 17 / 65

Page 23: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Notes about upper bound on Pr(v)

Pr (v) ≤(pe

r

)r

The bound does not depend on v or on i

=⇒ for any randomrouting problem r or more packets pass through any node withprobability ≤ N log N

(per

)r

we can make this probability be very low by choosing large r

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 18 / 65

Page 24: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Notes about upper bound on Pr(v)

Pr (v) ≤(pe

r

)r

The bound does not depend on v or on i =⇒ for any randomrouting problem r or more packets pass through any node withprobability ≤ N log N

(per

)r

we can make this probability be very low by choosing large r

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 18 / 65

Page 25: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Notes about upper bound on Pr(v)

Pr (v) ≤(pe

r

)r

The bound does not depend on v or on i =⇒ for any randomrouting problem r or more packets pass through any node withprobability ≤ N log N

(per

)r

we can make this probability be very low by choosing large r

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 18 / 65

Page 26: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Two particular cases of upper bound on Pr(v): case 1

if p ≥ log N2 , we choose r = 2ep = O(p):

N log N(pe

r

)r≤ N log N

(12

)e log N

= N1−e log N ≤ 1/N3/2

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 19 / 65

Page 27: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Two particular cases of upper bound on Pr(v): case 2

if p ≤ log N2 , we choose r = 2e log N

log�

log Np

� and omit technical details:

N log N(pe

r

)r≤ 1/N2

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 20 / 65

Page 28: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Result: outline of the analysis

bound for Pr (v)

it does not depend on v and i ⇒ bound for all nodesit decreases when r increaseschoose r (for different p) large enough to make the bound small:1/N3/2

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 21 / 65

Page 29: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Result: bound on congestion

For all but at most a 1/N3/2 fraction of the possible routing problems atmost C packets pass through each node during a greedy routing where

C =

2ep, if p ≥ log N

2

2e log N/ log(

log Np

), if p ≤ log N

2

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 22 / 65

Page 30: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Result: simple form of a bound

With high probability the congestion in a random problem is at most

C = O(p) + o(log N)

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 23 / 65

Page 31: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Generalization of the result

Corollary. For any α > 0, the congestion of all but 1/Nα of thepossible routing problems with p packets per input in alog N-dimensional butterfly is at most O(αp) + o(α log N)

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 24 / 65

Page 32: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Two special cases

p = 1: the maximum number of packets that pass through anynode is O(log N/ log log N) with high probability

compare this bound with the worst case congestion: O(√

N)

p = Θ(log N): at most O(log N) packets will pass through anynode with high probability

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 25 / 65

Page 33: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Two special cases

p = 1: the maximum number of packets that pass through anynode is O(log N/ log log N) with high probability

compare this bound with the worst case congestion: O(√

N)

p = Θ(log N): at most O(log N) packets will pass through anynode with high probability

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 25 / 65

Page 34: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Conclusion: first bound on running time

The time needed to deliver every packet to its destination is at most(C − 1) log N in most routing problems, where

C = O(p) + o(log N)

.

Now we will show that the running time is log N + O(p) + o(log N) foralmost all routing problems.

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 26 / 65

Page 35: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Conclusion: first bound on running time

The time needed to deliver every packet to its destination is at most(C − 1) log N in most routing problems, where

C = O(p) + o(log N)

.Now we will show that the running time is log N + O(p) + o(log N) foralmost all routing problems.

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 26 / 65

Page 36: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Overview

1 IntroductionUseful definitionsGreedy algorithm efficiency and worst cases

2 The Average-Case BehaviorBounds on congestionBounds on running time

3 Conclusion

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 27 / 65

Page 37: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Random-rank protocol: motivation

If two or more packets are waiting to exit a node, we need to specify aprotocol for deciding which packet will move forward out of the nodefirst.

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 28 / 65

Page 38: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Random-rank protocol: details

random priority key r(P) ∈ [1, K ] for each packet Pdefine total order on the packets: t(P) is the rank of packet P

define w(P) = (r(P), t(P))

order w(P):if P 6= P ′ we say that w(P) < w(P ′) ⇔ (r(P) < r(P ′)) OR(r(P) = r(P ′) AND t(P) < t(P ′))

the packet with smallest w exits the node first

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 29 / 65

Page 39: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Random-rank protocol: details

random priority key r(P) ∈ [1, K ] for each packet Pdefine total order on the packets: t(P) is the rank of packet Pdefine w(P) = (r(P), t(P))

order w(P):if P 6= P ′ we say that w(P) < w(P ′) ⇔ (r(P) < r(P ′)) OR(r(P) = r(P ′) AND t(P) < t(P ′))

the packet with smallest w exits the node first

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 29 / 65

Page 40: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Random-rank protocol: details

random priority key r(P) ∈ [1, K ] for each packet Pdefine total order on the packets: t(P) is the rank of packet Pdefine w(P) = (r(P), t(P))

order w(P):if P 6= P ′ we say that w(P) < w(P ′) ⇔ (r(P) < r(P ′)) OR(r(P) = r(P ′) AND t(P) < t(P ′))

the packet with smallest w exits the node first

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 29 / 65

Page 41: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Random-rank protocol: naive question

Why do we need both r and t?

r is random ⇒ sometimes not uniquet is not randomw(P) = (r(P), t(P)) is random and unique

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 30 / 65

Page 42: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Random-rank protocol: naive question

Why do we need both r and t?

r is random ⇒ sometimes not uniquet is not randomw(P) = (r(P), t(P)) is random and unique

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 30 / 65

Page 43: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Example: random-rank protocol

Figure: initial configuration: 〈destination, name, random key〉

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 31 / 65

Page 44: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Example: random-rank protocol

Figure: after step 1

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 32 / 65

Page 45: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Example: random-rank protocol

Figure: after step 2

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 33 / 65

Page 46: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Example: random-rank protocol

Figure: after step 3

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 34 / 65

Page 47: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Example: random-rank protocol

Figure: after step 4

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 35 / 65

Page 48: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Theorem about running time

If we use random-rank protocol, the congestion equals C, then therunning time is T with probability at least 1− 1/N7, where

T =

O(C), if C ≥ log N

2

log N + O(log N/ log(

log NC

)), if C ≤ log N

2

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 36 / 65

Page 49: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Proof: preliminaries

We consider routing problem with congestion number C, random keysr(P) and running time T . We will show that T satisfies the bound fromthe theorem.

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 37 / 65

Page 50: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Delay path

P0 is the last packet to reach its destination v0, it was last delayedat the node v1, l0 is the number of steps in the path v1 → v0

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 38 / 65

Page 51: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Example: delay path

Figure: P0 = F , v0 = 〈11, 2〉

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 39 / 65

Page 52: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Delay path

P0 is the last packet to reach its destination v0, it was last delayedat the node v1, l0 is the number of steps in the path v1 → v0

P1 is the packet responsible for delaying P0. P1 itself was delayedat the node v2, l1 is the number of steps in the path v2 → v1

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 40 / 65

Page 53: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Example: delay path

Figure: P1 = B, v1 = 〈10, 1〉

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 41 / 65

Page 54: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Delay path

P0 is the last packet to reach its destination v0, it was last delayedat the node v1, l0 is the number of steps in the path v1 → v0

P1 is the packet responsible for delaying P0. P1 itself was delayedat the node v2, l1 is the number of steps in the path v2 → v1

we proceed in a similar fashion until the sequence of delays endsat vs

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 42 / 65

Page 55: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Example: delay path

Figure: P2 = A, v2 = 〈00, 0〉

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 43 / 65

Page 56: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Delay path

P0 is the last packet to reach its destination v0, it was last delayedat the node v1, l0 is the number of steps in the path v1 → v0

P1 is the packet responsible for delaying P0. P1 itself was delayedat the node v2, l1 is the number of steps in the path v2 → v1

we proceed in a similar fashion until the sequence of delays endsat vs. Ps moves forward from vs during step 1.P = vs → . . . → v1 → v0 is the delay path

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 44 / 65

Page 57: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Delay path and running time

T − l0 − l1 − . . .− ls−1 − (s − 1) = 1 andl0 + . . . + ls−1 = log N ⇒ s = T − log N

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 45 / 65

Page 58: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Delay sequence

A delay sequence consists of

a delay path P

integers l0 ≥ 1, l1 ≥ 0, . . . , ls−1 ≥ 0, l0 + . . . + ls−1 = log Nnodes v0,v1,. . .,vs: vi is the node of P on level log N− l0− . . .− ls−1

different packets P0, P1, . . . , Ps: the greedy path for Pi contains vi

keys k0, k1, . . . , ks for the packets: ks ≤ ks−1 ≤ . . . ≤ k0,ki ∈ [0, K ].

A delay sequence is active, if r(Pi) = ki for 0 ≤ i ≤ s.

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 46 / 65

Page 59: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Delay sequence

A delay sequence consists of

a delay path Pintegers l0 ≥ 1, l1 ≥ 0, . . . , ls−1 ≥ 0, l0 + . . . + ls−1 = log N

nodes v0,v1,. . .,vs: vi is the node of P on level log N− l0− . . .− ls−1

different packets P0, P1, . . . , Ps: the greedy path for Pi contains vi

keys k0, k1, . . . , ks for the packets: ks ≤ ks−1 ≤ . . . ≤ k0,ki ∈ [0, K ].

A delay sequence is active, if r(Pi) = ki for 0 ≤ i ≤ s.

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 46 / 65

Page 60: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Delay sequence

A delay sequence consists of

a delay path Pintegers l0 ≥ 1, l1 ≥ 0, . . . , ls−1 ≥ 0, l0 + . . . + ls−1 = log Nnodes v0,v1,. . .,vs: vi is the node of P on level log N− l0− . . .− ls−1

different packets P0, P1, . . . , Ps: the greedy path for Pi contains vi

keys k0, k1, . . . , ks for the packets: ks ≤ ks−1 ≤ . . . ≤ k0,ki ∈ [0, K ].

A delay sequence is active, if r(Pi) = ki for 0 ≤ i ≤ s.

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 46 / 65

Page 61: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Delay sequence

A delay sequence consists of

a delay path Pintegers l0 ≥ 1, l1 ≥ 0, . . . , ls−1 ≥ 0, l0 + . . . + ls−1 = log Nnodes v0,v1,. . .,vs: vi is the node of P on level log N− l0− . . .− ls−1

different packets P0, P1, . . . , Ps: the greedy path for Pi contains vi

keys k0, k1, . . . , ks for the packets: ks ≤ ks−1 ≤ . . . ≤ k0,ki ∈ [0, K ].

A delay sequence is active, if r(Pi) = ki for 0 ≤ i ≤ s.

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 46 / 65

Page 62: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Delay sequence

A delay sequence consists of

a delay path Pintegers l0 ≥ 1, l1 ≥ 0, . . . , ls−1 ≥ 0, l0 + . . . + ls−1 = log Nnodes v0,v1,. . .,vs: vi is the node of P on level log N− l0− . . .− ls−1

different packets P0, P1, . . . , Ps: the greedy path for Pi contains vi

keys k0, k1, . . . , ks for the packets: ks ≤ ks−1 ≤ . . . ≤ k0,ki ∈ [0, K ].

A delay sequence is active, if r(Pi) = ki for 0 ≤ i ≤ s.

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 46 / 65

Page 63: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Example: active delay sequence

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 47 / 65

Page 64: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Main property of an active delay sequence

Pr(T ≤ s + log N) ≤

≤ Pr(there is an active delay sequence with s + 1 packets)

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 48 / 65

Page 65: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Number of possible delay sequences Nd

There are many possible delay sequences!N2 choices for delay path P

(s+log N−2s−1

)choices for l0 ≥ 1, l1 ≥ 0 . . . , ls ≥ 0,

∑li = log N

Why?

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 49 / 65

Page 66: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Number of possible delay sequences Nd

There are many possible delay sequences!N2 choices for delay path P(s+log N−2

s−1

)choices for l0 ≥ 1, l1 ≥ 0 . . . , ls ≥ 0,

∑li = log N

Why?

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 49 / 65

Page 67: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Number of possible delay sequences Nd

There are many possible delay sequences!N2 choices for delay path P(s+log N−2

s−1

)choices for l0 ≥ 1, l1 ≥ 0 . . . , ls ≥ 0,

∑li = log N

Why?

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 49 / 65

Page 68: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Combinatorial explanation

There is one-to-one correspondence between choices for li and(s + log N − 2)-bit binary string t with s − 1 zeros:

li is the number of "1" between (i + 1)st and (i + 2)nd zeros in thestring 01t0

if log N = 3, s = 5, t = 001100, then

01t0 = 010011000

and l0 = 1, l1 = 0, l2 = 2, l3 = 0, l4 = 0

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 50 / 65

Page 69: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Combinatorial explanation

There is one-to-one correspondence between choices for li and(s + log N − 2)-bit binary string t with s − 1 zeros:

li is the number of "1" between (i + 1)st and (i + 2)nd zeros in thestring 01t0if log N = 3, s = 5, t = 001100, then

01t0 = 010011000

and l0 = 1, l1 = 0, l2 = 2, l3 = 0, l4 = 0

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 50 / 65

Page 70: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Number of possible delay sequences Nd

There are many possible delay sequences!N2 choices for delay path P(s+log N−2

s−1

)choices for l0, . . . , ls

after that v0, . . . , vs are completely determined and there are atmost C choices for each Pi . Hence, at most Cs+1 ways to chooseP0, . . . , Ps.(s+K

s+1

)ways to choose k0, . . . , ks, ks ≤ ks−1 ≤ . . . ≤ k0, ki ∈ [0, K ]

Why?

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 51 / 65

Page 71: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Number of possible delay sequences Nd

There are many possible delay sequences!N2 choices for delay path P(s+log N−2

s−1

)choices for l0, . . . , ls

after that v0, . . . , vs are completely determined and there are atmost C choices for each Pi . Hence, at most Cs+1 ways to chooseP0, . . . , Ps.

(s+Ks+1

)ways to choose k0, . . . , ks, ks ≤ ks−1 ≤ . . . ≤ k0, ki ∈ [0, K ]

Why?

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 51 / 65

Page 72: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Number of possible delay sequences Nd

There are many possible delay sequences!N2 choices for delay path P(s+log N−2

s−1

)choices for l0, . . . , ls

after that v0, . . . , vs are completely determined and there are atmost C choices for each Pi . Hence, at most Cs+1 ways to chooseP0, . . . , Ps.(s+K

s+1

)ways to choose k0, . . . , ks, ks ≤ ks−1 ≤ . . . ≤ k0, ki ∈ [0, K ]

Why?

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 51 / 65

Page 73: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Number of possible delay sequences Nd

There are many possible delay sequences!N2 choices for delay path P(s+log N−2

s−1

)choices for l0, . . . , ls

after that v0, . . . , vs are completely determined and there are atmost C choices for each Pi . Hence, at most Cs+1 ways to chooseP0, . . . , Ps.(s+K

s+1

)ways to choose k0, . . . , ks, ks ≤ ks−1 ≤ . . . ≤ k0, ki ∈ [0, K ]

Why?

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 51 / 65

Page 74: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Combinatorial explanation

There is one-to-one correspondence between choices for ki and(s + K )-bit binary string u with s + 1 zeros:

ki is the number of "1" to the left of the (s + 1− i)th zero in thestring 1u

if s + 1 = 6, K = 1, u = 000110010, then

1u = 1000110010

and k0 = 1, k1 = 1, k2 = 1, k3 = 3, k4 = 3, k5 = 4

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 52 / 65

Page 75: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Combinatorial explanation

There is one-to-one correspondence between choices for ki and(s + K )-bit binary string u with s + 1 zeros:

ki is the number of "1" to the left of the (s + 1− i)th zero in thestring 1uif s + 1 = 6, K = 1, u = 000110010, then

1u = 1000110010

and k0 = 1, k1 = 1, k2 = 1, k3 = 3, k4 = 3, k5 = 4

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 52 / 65

Page 76: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Number of possible delay sequences Nd

Nd = N2(

s + log N − 2s − 1

)Cs+1

(s + Ks + 1

)

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 53 / 65

Page 77: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Probability to find an active delay sequence

NdPr(r(Pi) = ki for all i) = NdK−(s+1)

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 54 / 65

Page 78: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Proof: results

This probability becomes smaller than o(N−7), when the number ofpackets is

s + 1 =

O(C), if C ≥ log N

2

O(log N/ log(

log NC

)), if C ≤ log N

2

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 55 / 65

Page 79: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Proof: final details

With probability 1− o(N−7)

T ≤ s + log N =

O(C) + log N, if C ≥ log N

2

log N + O(log N/ log(

log NC

)), if C ≤ log N

2

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 56 / 65

Page 80: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Can we use another contention-resolution protocol?

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 57 / 65

Page 81: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Nonpredicting Contention-Resolution Protocols

Contention is resolved by a deterministic algorithm based on thehistory of contending packets, it doesn’t depend on information aboutdestinations.

FIFOrandom-rank protocol is not non-predictiveif we use a specific setting for random keys in RRP, it isnon-predictive

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 58 / 65

Page 82: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Nonpredicting Contention-Resolution Protocols

Contention is resolved by a deterministic algorithm based on thehistory of contending packets, it doesn’t depend on information aboutdestinations.

FIFO

random-rank protocol is not non-predictiveif we use a specific setting for random keys in RRP, it isnon-predictive

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 58 / 65

Page 83: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Nonpredicting Contention-Resolution Protocols

Contention is resolved by a deterministic algorithm based on thehistory of contending packets, it doesn’t depend on information aboutdestinations.

FIFOrandom-rank protocol is not non-predictiveif we use a specific setting for random keys in RRP, it isnon-predictive

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 58 / 65

Page 84: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

History of edge activity

R — routing problemQ — non-predictive contention-resolution protocolH(R, Q) = {(e, t)| packet traverses edge e at step t}

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 59 / 65

Page 85: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Properties of H(R, Q) (1/2)

Lemma 1. Q; R and R′ with p packets per input. H(R, Q) = H(R′, Q)for steps in [1, T ] ⇒ the location of packets after T steps of R is thesame as the location of packets after T steps of R′

Proof.

T = 0: doneT − 1 7→ T :the same packets move forward the same direction forR and R′

Corollary. R 6= R′ ⇒ H(R, Q) 6= H(R′, Q)

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 60 / 65

Page 86: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Properties of H(R, Q) (1/2)

Lemma 1. Q; R and R′ with p packets per input. H(R, Q) = H(R′, Q)for steps in [1, T ] ⇒ the location of packets after T steps of R is thesame as the location of packets after T steps of R′

Proof.T = 0: done

T − 1 7→ T :the same packets move forward the same direction forR and R′

Corollary. R 6= R′ ⇒ H(R, Q) 6= H(R′, Q)

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 60 / 65

Page 87: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Properties of H(R, Q) (1/2)

Lemma 1. Q; R and R′ with p packets per input. H(R, Q) = H(R′, Q)for steps in [1, T ] ⇒ the location of packets after T steps of R is thesame as the location of packets after T steps of R′

Proof.T = 0: doneT − 1 7→ T :the same packets move forward the same direction forR and R′

Corollary. R 6= R′ ⇒ H(R, Q) 6= H(R′, Q)

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 60 / 65

Page 88: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Properties of H(R, Q) (2/2)

Fact. Q, Q′; R with p packets per input ⇒ ∃R′ with p packets per input:H(R, Q) = H(R′, Q′)

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 61 / 65

Page 89: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Running time of non-predictive protocol

Theorem. nT (Q) — number of problems for which the greedyalgorithm runs in T steps using Q. Then nT (Q) = nT (Q′) for anyT > 0, Q, Q′.Proof.

NpN different routing problems with p packets per input

NpN different historiesthe set of all histories is the same for any Q′ as it is for Qeach history defines the running time ⇒ nT (Q) = nT (Q′) for anyT > 0

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 62 / 65

Page 90: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Running time of non-predictive protocol

Theorem. nT (Q) — number of problems for which the greedyalgorithm runs in T steps using Q. Then nT (Q) = nT (Q′) for anyT > 0, Q, Q′.Proof.

NpN different routing problems with p packets per inputNpN different histories

the set of all histories is the same for any Q′ as it is for Qeach history defines the running time ⇒ nT (Q) = nT (Q′) for anyT > 0

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 62 / 65

Page 91: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Running time of non-predictive protocol

Theorem. nT (Q) — number of problems for which the greedyalgorithm runs in T steps using Q. Then nT (Q) = nT (Q′) for anyT > 0, Q, Q′.Proof.

NpN different routing problems with p packets per inputNpN different historiesthe set of all histories is the same for any Q′ as it is for Q

each history defines the running time ⇒ nT (Q) = nT (Q′) for anyT > 0

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 62 / 65

Page 92: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Running time of non-predictive protocol

Theorem. nT (Q) — number of problems for which the greedyalgorithm runs in T steps using Q. Then nT (Q) = nT (Q′) for anyT > 0, Q, Q′.Proof.

NpN different routing problems with p packets per inputNpN different historiesthe set of all histories is the same for any Q′ as it is for Qeach history defines the running time ⇒ nT (Q) = nT (Q′) for anyT > 0

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 62 / 65

Page 93: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

What does it mean?

the distribution of running time T is the same for any nonpredictiveprotocolthe average time is the same

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 63 / 65

Page 94: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Can we use another protocol?

We can set priority keys in RRP such that T will be at mostlog N + O(p) + o(log N)⇒ greedy algorithm has the same average time T for anynonpredictive protocol.

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 64 / 65

Page 95: Probabilistic analysis Andrey Gubichev - TUM · Probabilistic analysis Andrey Gubichev Ferienakademie im Sarntal 2008 Saint-Petersburg State University September 2008. Overview 1

Conclusion

"Typical" routing problem (in a mathematical sense) is likely tohave reasonable running time"Typical" routing problem (in practice: with bit-reversal andtranspose permutations) has very bad estimation of running time

A.Gubichev (Ferienakademie im Sarntal 2008) Online-routing on the butterfly network Sept. 2008 65 / 65