ProvlimataSinoriakonTimon(Hiu Lahana)

Embed Size (px)

DESCRIPTION

μαθηματικα

Citation preview

  • -

    2006

  • 1.

    .... ....- Cauchy

    .... -

    2.

    3.

    i

  • 4. LAPLACE

    Laplace

    Laplace ( )

    ii

  • 1 -

    1.1

    , (...). .

    Laplace ( )

    2F (x) = 0 (1)

    { (, - , ).

    { ( ).

    { ( - ).

    ..

    Poisson

    2F (x) = q (2)

    { Poisson Laplace ( ..)

    2F (x, t) = 1a2

    F (x, t))

    t(3)

    { .

    1

  • { ()

    { ( ).

    { .

    { Maxwell ( )

    .

    k 2F (x, t) +k F (x, t) = cF (x, t)t

    (4)

    k , c .

    2F (x, t) = 1c2

    2F (x, t)

    t2(5)

    { c ,

    { ,( , ) c2 = T

    .

    Helmholtz

    (2 + k2)F (x) = 0 (6)

    Helmholtz .

    ( ,, ..)

    2F (x, t) = 1c2

    2F (x, t)

    t2+ G(x, t) (7)

    2

  • - , , .

    :

    LF (x, t) + kF (x, t) = G(x, t) (8)

    L (,).G(x, t) F (x, t) . (8)

    ( F (x, t) )

    .

    G(x, t) = 0 ..

    1.2 ....

    ....

    F (u(xi), xi,u(xi)

    xi,2u(xi)

    xixj, ...,

    Nu(xi)

    xl11 xl22 ....x

    lnn

    ) = q(xi) (9)

    xi ,u(xi) , , l1 + l2 + l3 + ...ln = N .. F u(xi) - .. . q(xi) = 0 . , . ,

    3

  • , ( -). ..(...) ... . .... (n) (m) - (n) . (m 1) . - , . -, , ( ...). .... Cauchy-Kovalevski , . , , , u(xi) - Taylor. (-Cauchy) . .... :

    A (x, y)2F (x, y)

    x2+ 2 B(x, y)

    2F (x, y)

    xy+ C(x, y)

    2F (x, y)

    y2=

    G (x, y, F (x, y),F (x, y)

    x,F (x, y)

    y) (10)

    A(x, y) , B(x, y) C(x, y)

    4

  • x,y G(x, y, F (x, y), F (x,y)

    x, F (x,y)

    y)

    F (x, y) - .

    1.3 ....

    .... .... = B(x, y)2 A(x, y)C(x, y) (x, y) :

    1. = B(x, y)2 A(x, y) C(x, y) > 0

    2. = B(x, y)2 A(x, y) C(x, y) = 0

    3. = B(x, y)2 A(x, y) C(x, y) < 0

    ( 10 ) (x, y), B(x, y)2 A(x, y) C(x, y) (x, y) , . Ticomi, yuxx + uyy = 0, y < 0 y > 0 .

    .... .

    5

  • (. 10 ) , Cauchy-Kovalevski, - Cauchy (x, y) .

    Cauchy

    Cauchy (. 10 ) -, s. u(s) -

    0.5 1 1.5 2 2.5 3

    1.6

    1.8

    2

    2.2

    2.4

    2.6

    2.8

    3

    tn s

    y

    1: Chauchy

    N(s) .

    x = x(s), y = y(s), u(s) N(s)

    6

  • N(s) = u. (11)

    = dy(s)ds

    ex +dx(s)

    dsey (12)

    N(s) = (dy(s)ds

    ex +dx(s)

    dsey).(

    u

    xex +

    u

    yey)

    = ux

    dy

    ds|s +u

    y

    dx

    ds|s (13)

    t

    t =dx(s)

    dsex +

    dy(s)

    dsey (14)

    du(s)

    ds=

    u

    x

    dx

    ds|s +u

    y

    dy

    ds|s (15)

    (13) (15) ( Cauchy) - u ,

    p(s) = ux|s

    q(s) = uy|s .

    2ux2

    , 2uy2

    , 2uxy

    - ( 10 )

    dp(s) = (p

    xdx +

    p

    ydy) = (

    2u

    x2dx +

    2u

    xydy) |s (16)

    dq(s) = (q

    xdx +

    q

    ydy) = (

    2u

    y2dx +

    2u

    xydy) |s (17)

    7

  • , (10 ,16 ,17 ),

    A(x, y) 2B(x, y) C(x, y)dx dy 00 dx dy

    s

    .

    A(x, y)(dy

    dx)2 2B(x, y)dy

    dx+ C(x, y) |s = 0 (18)

    , - , - - , s. (. 18). Taylor s

    u(x, y) = u(s) + (x x(s))ux|s +(y y(s))u

    y|s

    +(x x(s))2u2

    x2|s +(y y(s))2u

    2

    y2|s +(x x(s))(y y(s)) u

    2

    xy|s +...(19)

    -

    ..

    (x, y) .. - :

    A(x, y)(dy

    dx)2 2B(x, y)dy

    dx+ C(x, y) = 0 (20)

    8

  • .... ( > 0) - , (x, y) =. (x, y) =. , , (x, t) = x + ct (x, t) = x ct. (=0) (x, y) = (x, y) =, - ( < 0) . . - ( ), , - - . Caushy . ( ) - , .

    :

    Cauchy : - , , - . Cauchy .

    Dirichlet : -.

    Neumann : .

    9

  • . . .. .

    Cauchy .

    . Dirichlet Neu-mann .

    .. Dirichlet Neu-mann .

    , , Laplace , , 1 ....

    1.

    2F (x,t)x2

    = 1c2

    2F (x,t)t2

    :

    B(x, t) = 0, A(x, t) = 1 C(x, t) = 1c2

    > 0. .. Cauchy Cauchy Dirichlet Neu-mann 2

    2. Laplace

    1 2U-

    10

  • 2F (x,y)x2

    + 2F (x,y)y2

    = 0

    :

    B(x, y) = 0, A(x, y) = 1 C(x, y) = 1 < 0.

    Laplace .. - Dirichlet .

    3.

    2F (x,t)x2

    = 1c2

    F (x,t)t

    :

    B(x, t) = 0, A(x, t) = 1 C(x, t) = 0 = 0. .. - Dirichlet Neu-mann .

    ( 1 , 3 , 5) (x, t).

    1.4 ....

    .... , .

    , ,

    11

  • = (x, y) = (x, y).

    2u

    = F (u, , ,

    u

    ,u

    ) (21)

    .

    , ,

    = (x, y) = x.

    2u

    2= F (u, , ,

    u

    ,u

    ) (22)

    -

    = (x,y)+(x,y)2i

    = (x,y)(x,y)2i

    .

    2u

    2+

    2u

    2= F (u, , ,

    u

    ,u

    ) (23)

    (Laplace) . ,

    12

  • A(x, t) = 1 , B(x, t) = 0 C(x, t) = 1c2

    (. 20) (dx

    dt)2 1

    c2= 0 (24)

    (x, t) = x + ct =.

    (x, t) = x ct =.

    -3 -2 -1 1 2 3

    -2

    2

    4

    6xctxct

    x

    t

    2:

    , (x, t) = x + ct (x, t) = x ct,

    2u

    = 0 (25)

    (x, t) 1

    c 1

    c.

    .

    13

  • 1.5 - -

    - . , . :

    1. , ,

    2.

    3. ,

    4.

    ... , . :

    . Laplace,Fourier

    Green

    Fourier

    , .

    14

  • L . -, , - (.. ) . L - . , .

    (x1, x2, x3) x1 = c1 x2 = c2 x3 = c3 , c1, c2, c3, F (x1 = c1, x2, x3) = a a = 0 x1 = c1 nodal nodes F . x1 = c1 nodal F (x1, x2, x3) :

    F (x1, x2, x3) = F1(x1)F2(x1, x2) (26)

    nodal .. x2 = c2 :

    F (x1, x2, x3) = F1(x1)F2(x1)F3(x3) (27)

    F1(x1)F2(x1)F3(x3) . . .

    15

  • a = 0

    F (x1, x2, x3) = Fp(x1, x2, x3) + F (x1, x2, x3) (28)

    Fp(x1, x2, x3) Fp(x1 = c1, x2, x3) = a F (x1, x2, x3) nodes . (. 28) .. . , , Poisson ..

    .. - ( , ).

    16

  • 2

    2.1

    ().

    0.5 1 1.5 20.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    TA

    A

    B

    TB

    TAy

    TBy

    w1

    w2

    x xdx

    ds

    y

    3:

    A(x, y) B(x+ dx, y) - ds. TA( ) TB, y

    TAy = TAcosw1 = TAdyds T dy

    dx, dx ds (29)

    TBy = TBsinw2 = TB dy

    ds T dy

    dx|x

    17

  • dy= y + dy, dx|x = x + dx

    TAy + TBy = T (dy

    dx|x

    dy

    dx) = Tdx

    d2y

    dx2= Tdx

    2y(x, t)

    x2(30)

    dmd2y

    dt2= dx

    2y(x, t)

    t2= Tdx

    2y

    x2(31)

    2y(x,t)x2

    = 1c2

    2y(x,t)t2

    c2 =

    T, ( = dm

    dx).

    , f(x, t), ,

    2y(x, t)

    x2 1

    c22y(x, t)

    t2=

    1

    c2f(x, t) (32)

    (2 1c2

    2

    t2)u(x, t) 1

    c2f(x, t) (33)

    . P, v . t0 , (P,, v) .

    (2 1c2

    2

    t2)(x, t) =

    1

    c2. f(x, t) (34)

    18

  • f(x, t) . c2 c2 = P

    |t0 .

    2.2

    - u(x, t = 0) = a(x) u(x,t)

    t|t=0= b(x) .

    .

    - ( y < x < ). (. 5) u(x, t) . - Cauchy t = 0 (Cauchy) .., x ct =. - .

    2 u(x, t)

    x2=

    1

    c22 u(x, t)

    t2(35)

    . (, ) : = x + ct = x ct3. (. 35) :

    2 u(, )

    = 0 (36)

    3 (x, t) = = x + ct (x, t) = = x ct . , . .

    19

  • . (36) :

    u(, ) = f1() + f2() = f1(x + ct) + f2(x ct) (37) f1(), f2() .

    :

    u(x, t = 0) = a(x)

    u(x,t)t

    |t=0= b(x)

    x1 x x2. t = 0 :

    a(x) = f1(x) + f2(x)

    b(x) = u

    t|t=0 + u t |t=0 = cdf1d cdf2d

    df1(x)dx

    = 12[da(x)

    dx+ b(x)

    c]

    df2(x)dx

    = 12[da(x)

    dx b(x)

    c]

    x1 x x :

    f1(x) =1

    2[a(x) +

    1

    c

    xx1

    b(x)dx + A1] (38)

    f2(x) =1

    2[a(x) 1

    c

    xx1

    b(x)dx + A2] (39)

    20

  • A1, A2 . f1(x) + f2(x) = a(x)

    A1 + A2 = 0. (38) (39) x

    x1 x x2 ( )

    (x, t) xct : x1 xct x2 :

    f1(x + ct) =1

    2[a(x + ct) +

    1

    c

    x+ctx1

    b(x)dx + A1] (40)

    f2(x ct) = 12[a(x ct) 1

    c

    xctx1

    b(x)dx + A2] (41)

    u (x, t) = f1(x + ct) + f2(x ct) ==

    1

    2[a(x + ct) + a(x ct) + 1

    c

    x+ctx1

    b(x)dx 1c

    xctx1

    b(x)dx + A1 + A2]

    =1

    2[a(x + ct) + a(x ct) + 1

    c

    x+ctxct

    b(x)dx] (42)

    :

    u(x, t) = 12[a(x + ct) + a(x ct) + 1

    c

    x+ctxct b(x

    )dx]

    (42) DAlembert - ( x, t) (x ct) ( ) (x1, x2). (x1, x2) . . x1 , x2 DAlembert (x, t). : f1(x+ct)

    21

  • c, f2(x ct) .

    1 - u(x, t = 0) = Exp[4x2]. t. DAlembert

    u(x, t) = 12(Exp[4(x ct)2] + Exp[4(x + ct)2]).

    - .. c = 4 . ( 4)

    -20 -10 10 20

    0.5

    1t1

    xctxct

    -20 -10 10 20

    0.5

    1t1

    xcxct

    -20 -10 10 20

    0.5

    1t0

    -20 -10 10 20

    0.5

    1t1

    xctxct

    4: Exp[4x2] (t1 = 0 < t2 < t3 < t4)

    22

  • . - . , .

    2

    u(x, t = 0) = f(x) =

    0 : < x < L

    a(1 x2L2

    ) : L < x < L0 : L < x 0 u(x, t)

    u(x, t) =1

    2f(x + ct) + f(x ct)) (43)

    f(xct) f(x) x xct.

    f(xct) =

    0 : < xct < La(1 (xct)2

    L2) : L < xct < L0 : L < xct

  • -4 -2 2 4

    1

    2

    3

    4

    5

    6

    I II III

    IV VI

    V

    xctxct

    xL L

    t

    to

    xoxo

    5:

    t < to =. t > L

    c

    3L.

    2.3

    0 x < , .

    u(x, t = 0) = f(x) , ut|t=0 = g(x) 0 x 0 (

    24

  • ). , - Dirichlet Neumann t .. u(x, t = 0) = 0, (x, t) ( ) 4. 5

    -. DAlembert . f(x) g(x) u(x, t) x.

    f(x) = f(x) , g(x) = g(x)

    u(x, t) = 12[f(x + ct) + f(x ct) + 1

    c

    x+ctxct

    g(x)dx] (44)

    x y

    u(x, t) = 12[f(x ct) + f(x + ct) 1

    c

    xctx+ct

    g(y)dy]

    =1

    2[f(x ct) + f(x + ct) = 1

    c

    x+ctxct

    g(y)dy]

    = u(x, t) (45)

    f(x) g(x) u(x, t) u(x, t) =u(x, t) . u(x = 0, t) = 0 u(x, t) x < 0 f(x) g(x) x < 0

    4 U Cauchy Dirichlet

    5 x = 0

    25

  • -4 -2 2 4

    -4

    -2

    2

    4 xctxct

    x

    III

    III

    IV

    6: x, t x ct = 0

    (x, t) x ct ( ) .

    x ct > 0

    u(x, t) =1

    2[f(x + ct) + f(x ct) + 1

    c

    x+ctxct

    g(x)dx] (46)

    x ct < 0

    u(x, t) =1

    2[f(x ct) f(x + ct) 1

    c

    x+ctxct

    g(x)dx] (47)

    x ct < 0 x + ct > 0

    u(x, t) =1

    2[f(x+ ct) f(x+ ct) 1

    c

    0xct

    g(x)dx+x+ct0

    g(x)dx]

    (48)

    26

  • IV x ct > 0 x + ct < 0

    u(x, t) =1

    2(f(xct)+f(xct)+ 1

    c

    0xct

    g(x)dxx+ct0

    g(x)dx)(49)

    (0 < x 0 . f(x) g(x) , u(x, t) .

    u(x, t) = U(x, t) + (x, t)

    U(x, t),(x, t)

    U(x, t = 0) = f(x), Ut(x, t) |t=0= g(x) ,U(x = 0, t) = 0

    (x, t = 0) = 0, t(x, t) |t=0= 0 ,(x = 0, t) = (t) U(x, t) 1 (x, t) ( DAlembert

    (x, t) = f1(x + ct) + f2(x ct) (50)

    f1(x + ct) f2(x ct) x > 0 t > 0

    ) f1(x) + f2(x) = 0) cf 1(x) cf 2(x) = 0

    ) f1(ct) + f2(ct) = (t) (t) = 0 t < 0

    27

  • () ()

    f1(x) = f2(x) = C = x > 0.

    ()

    f1(z) + f2(z) = (z/c)

    z z

    f1(z) + f2(z) = (z/c) = 0 f1(z) = f2(z) =

    f1(x) f2(x)

    f2(z) = (z/c), z > 0

    z = x + ct > 0

    (x, t) =

    {f2(x ct) = (t xc ) : x < ct

    0 : ct < x

    (x ) .

    2.4

    . , . Fourier. -

    28

  • , , .

    ) L .

    - u(x, t) :

    2u(x, t)

    x2=

    1

    c22u(x, t)

    t2 f(x, t) (51)

    f(x, t) = 0 , f(x, t) = 0 f(x, t). , Cauchy , -

    u(x, t = 0) = f(x)

    u(x,t)t

    |t=0= g(x)

    Cauchy 0xL. - (xct) (0, L). Dirichlet x = 0 x = L , u(x = 0, t) = u(x =L, t) = 0. (. 51) f(x, t) = 0, x=0 x=L nodes u(x, t) -. 6 u(x, t) = X(x).T (t).

    6

    29

  • (. 51) :

    T (t)d2X(x)

    dx2=

    X(x)

    c2d2T (t)

    dt2(52)

    X(x)T (t) = 01

    X(x)

    d2X(x)

    dx2=

    1

    c2T (t)

    d2T (t)

    dt2(53)

    (. 53) x t ,

    1

    X(x)

    d2X(x)

    dx2= (54)

    1

    c2T (t)

    d2T (t)

    dt2= (55)

    . d

    2X(x)dx2

    =

    X(x):

    1. = k2 > 0

    X(x) = c1ekx + c2e

    kx (56)

    X(x = 0) = 0 X(x = L) = 0 c1 + c2 = 0 c1ekL + c2ekL = 0. c1 = c2 = 0, .

    30

  • 2. = k2 = 0

    X(x) = c1x + c2 (57)

    X(0) = 0 X(L) = 0 c1 = c2 = 0

    3. = k2 < 0

    X(x) = c1 sin kx + c2 cos kx (58)

    X(0) = 0=c2 = 0 (59)

    X(L) = 0 :

    c1 sin(kL) = 0 (60)

    c1 = 0 , kL =n k = n

    L7.

    (. 2.4) = k2 :

    Tn(t) = ansinnc

    Lt + bncos

    nc

    Lt (61)

    Sturm-Liouville

    u(x, t) =

    n=0

    sin(n

    Lx) (an sin(

    nc

    Lt) + bn cos(

    nc

    Lt)) (62)

    ( ). an, bn - , -. t = 0,

    7. L = d2dx2 X(0) = X(L) = 0 , k2 = n22 1L2 sin kx . Sturm-Liouville

    31

  • u(x, t = 0) = f(x) u(x,t)t

    |t=0= g(x)

    u(x, t = 0) =

    n=0

    sin(n

    Lx) bn = f(x) (63)

    bn Fourier f(x) sin(n

    Lx) :

    bn =2

    L

    L0

    f(x)sin(n

    Lx)dx (64)

    :

    u(x, t)

    t|t=0= g(x) =

    n=0

    nc

    Lsin(

    n

    Lx) an (65)

    an Fourier g(x) :

    nc

    Lan =

    2

    L

    L0

    g(x) sin(n

    Lx)dx (66)

    u(x, t) =

    n=0

    an sin(n

    Lx) sin(

    nc

    Lt) +

    n=0

    bn sin(n

    Lx) cos(

    nc

    Lt) =

    =

    n=0

    1n(x, t) +

    n=0

    2n(x, t) (67)

    1n(x, t) 2n(x, t) - . - Tn = 2Lnc sin(

    nLx).

    n = 2Ln sin(

    nLct) cos(n

    Lct).

    1 = c2L

    32

  • , , , . 1n(x, t) 2n(x, t) . (. 4) - , t = 0 , t = 3 . - Fourier, . bn = 0 ,

    0.5 1 1.5 2 2.5 3

    -1

    -0.5

    0.51

    Sin3x

    0.5 1 1.5 2 2.5 3

    -1

    -0.5

    0.51

    Sin4x

    0.5 1 1.5 2 2.5 3

    0.20.40.60.81

    Sinx0.5 1 1.5 2 2.5 3

    -1

    -0.5

    0.51

    Sin2x

    7: ( - )

    an = 0. - . (. 67) .

    33

  • (.67)

    u(x, t) =

    n=0

    an2

    [ cos(n

    L(x ct)) cos(n

    L(x + ct))] +

    n=0

    bn2

    [ sin(n

    L(x ct)) + sin(n

    L(x + ct))]

    = G(x ct) + F (x + ct) (68)

    G(x ct) =

    n=0

    (an2

    cos(nL

    (x ct)) + bn2

    sin(nL

    (x ct))) (69)

    F (x + ct) =

    n=0

    (an2

    cos(nL

    (x + ct)) + bn2

    sin(nL

    (x + ct))) (70)

    DAlembert. G(x ct) F (x + ct) t = 0

    f(x) = G(x) + F (x) (71)

    g(x) = c(F (x)G(x)) (72)

    f(x), g(x) . DAlembert.

    u(x, t) = G(x ct) + F (x + ct) ==

    1

    2[f(x + ct) + f(x ct) + 1

    c

    x+ctxct

    g(x)dx] (73)

    u(x, t) , (. 68 ) ,

    34

  • f(x) g(x) Fou-rier 0xL.

    L . - . ()

    u(x, t = 0) = f(x) =

    { axh

    : 0 x ha(Lx)(Lh) : h x L

    . .

    x

    ux,t0

    LL2

    ( 62) . , Fourier an = 0 , bn

    bn =2

    L

    L0

    f(x)sin(n

    Lx)dx

    =2aL2

    h(L h)2n2 sin(n

    Lh) (74)

    35

  • n |bn|2 |bn|21 1 12 0.125 03 0.0234 0.014 0.0 05 0.0016 0.001176 0.0015 07 0.00041 0.00038 0 09 0.00015 0.000110 0.0002 0

    1: h = L2( 2)

    h = L2( 3).

    ( 62)

    u(x, t) =2aL2

    h(L h)2

    n=1

    1

    n2sin(

    n

    Lh)sin(

    n

    Lx) cos(

    nc

    Lt) (75)

    :

    |bn|2 = | 2aL2h(Lh)2 1n2 sin(nL h)|2

    , 1n2, ( )

    h = L2,

    . , .. , , , = c

    L

    . - , -. 10 .

    36

  • , .

    )

    L . - .

    2u(x, t)

    x2=

    1

    c22u(x, t)

    t2(76)

    u(x, t = 0) = f(x) ,u(x,t)

    t|t=0= g(x) .

    u(x,t)x

    |x=0= 0 .u(x,t)

    x|x=L= 0 .

    u(x, t) = (A sin(kx) + B cos(kz))(C sin(kct) + D cos(kct)) (77)

    x = 0 A = 0, x = L k = n

    L n = 0, 1, 2, 3, ...

    u(x, t) =

    n=0

    an cos(n

    Lx) sin(

    nc

    Lt) +

    n=0

    bn cos(n

    Lx) cos(

    nc

    Lt) (78)

    an bn .

    37

  • u(x, t = 0) =

    n=0

    cos(n

    Lx) bn = f(x) (79)

    bn Fourier f(x) cos(n

    Lx) :

    bn =2

    L

    L0

    f(x)cos(n

    Lx)dx (80)

    :u(x, t)

    t|t=0= g(x) =

    n=0

    nc

    Lcos(

    n

    Lx) an (81)

    an Fourier g(x) :

    nc

    Lan =

    2

    L

    L0

    g(x) cos(n

    Lx)dx (82)

    :

    g(x) = Asin(5n

    Lx)sin(

    3n

    Lx) (83)

    .

    - . bn = 0. an Fourier 8 .

    nc

    Lan =

    2A

    L

    L0

    sin(5n

    Lx)sin(

    3n

    Lx)cos(

    n

    Lx)dx

    8 - , cos(nL x) - (sin(a) sin(b0 = 12 (cos(a b) cos(a + b))

    38

  • =2A

    L

    L0

    (1

    2(cos(

    2

    Lx) cos(8

    Lx)) cos(

    n

    Lx)dx

    =A

    2(2n n8) (84)

    a22 = (

    AL4c

    )2 2 = 2cL a28 = (

    AL16c

    )2 8 = 8cL .

    2.5

    , T , :

    E =1

    2

    L0

    (|u(x, t)t

    |2 + T |u(x, t)x

    |2)dx (85)

    u(x, t) . (.85) . :

    u(x, t) =

    n=0

    an sin(n

    Lx) sin(nt) +

    n=0

    bn sin(n

    Lx) cos(nt) (86)

    n = nL

    T . (. 86)

    (. 85) sin(n

    Lx) [0, L]

    :E =

    2T

    4L

    n=0

    n2(|an|2 + |bn|2) (87)

    . dE

    dt= 0. ,

    (. ), .

    39

  • 2.6

    - f(x, t). u(x, t = 0) = a(x) u(x,t)

    t|t=0 = b(x)

    .

    :

    2u(x, t)

    x2 1

    c22u(x, t))

    t2= f(x, t) (88)

    f(x, t) (x, t). (. 88) .. . :

    u(x, t) =

    n=0

    Tn(t) sin(n

    Lx) (89)

    - Sturm-Liouvill - . Fourier f(x, t) .

    f(x, t) =

    n=0

    fn(t) sin(n

    Lx) (90)

    fn(t) Fourier f(x, t). Fourier u(x, t) f(x, t) - . (.88) Tn(t).

    Tn (t) +

    c2n22

    L2T (t) = c2fn(t) (91)

    fn(t) =2

    L

    L0

    f(x, t) sin(n

    Lx)dx (92)

    40

  • (91) -

    Tn(t) = A1T1n(t) + A2T2n(t) + Tp(t) (93)

    T1n(t) , T2n(t) Tp(t) .

    T1n(t) = sin(nc

    Lt) (94)

    T2n(t) = cos(nc

    Lt) (95)

    Tp(t) = T2n(t)

    t0

    c2fn(t)T1n(t)

    W [T1n(t), T2n(t)]dt

    T1n(t)t

    0

    c2fn(t)T2n(t)

    W [T1n(t), T2n(t)]dt (96)

    W [T1n(t), T2n(t)] Wronsky T1n(t) , T2n(t). T1n, T2n Tp(t) (. 93) (. 88).

    u(x, t) =0

    [An sin(nc

    Lt) + Bn cos(

    nc

    Lt)

    +Lc

    n

    t0

    fn(t) sin(

    nc

    L(t t))dt] sin(n

    Lx) (97)

    An, Bn -, .

    An =2

    cn

    L0

    b(x) sin(n

    Lx)dx (98)

    Bn =2

    L

    L0

    a(x) cos(n

    Lx)dx (99)

    41

  • An, Bn Fourier.

    u(x, t) =

    n=0

    (An sin(nc

    Lt) + Bn cos(

    nc

    Lt)) sin(

    n

    Lx) +

    +

    n=1

    Lc

    n

    t0

    fn(t) sin(

    nc

    L(t t))dt sin(n

    Lx) (100)

    . , .

    u(x, t) =

    n=1

    Lc

    n

    t0

    fn(t) sin(

    nc

    L(t t))dt sin(n

    Lx) (101)

    (. 101)

    u(x, t = 0) = 0

    Leibnitz -

    u(x,t)t

    |t=0= 0

    - ( ). . ( ) (. 85) (. 100). (. 100) - .

    42

  • :

    L . ( f(x)). .

    u(x, t)

    2u(x,t)x2

    1c2

    2u(x,t)t2

    = gc2

    g . Fourier g.

    g

    c2=

    n=0

    fn sin(n

    Lx) (102)

    fn =2

    L

    L0

    g

    c2sin(

    n

    Lx)dx =

    2g(1 cosn)nc2

    (103)

    u(x, t) = U(x, t) + u(x, t) U(x, t) . (. 101)

    u(x, t) =1

    Lc

    n

    t0

    fn sin(nc

    L(t t)) dt sin(n

    Lx)

    =

    n=1

    2gL2

    c2n33(1 cos(n)) (1 cos(nct

    L)) sin(

    n

    Lx)

    =

    n=1

    2gL2

    c2n33(1 + (1)n)) cos(nct

    L)) sin(

    n

    Lx)

    +

    n=1

    2gL2

    c2n33(1 + (1)n)) sin(n

    Lx)

    43

  • =

    n=1

    2gL2

    c2n33(1 + (1)n)) cos(nct

    L)) sin(

    n

    Lx)

    +gx

    2c2(L x) (104)

    (. 104) Fourier

    gx

    2c2(L x) =

    n=1

    2gL2

    c2n33(1 + (1)n)) sin(n

    Lx) (105)

    (. 104) , u(x, t) = u1(x) + u2(x, t)

    ( . 100)

    u(x, t) =0

    (An sin(nc

    Lt)) + Bn cos(

    nc

    Lt)) sin(

    n

    Lx) +

    +

    n=1

    2gL2

    c2n33(1 + (1)n)) cos(nct

    L)) sin(

    n

    Lx)

    +gx2

    (L x) (106)

    Fourier An Bn - . u(x, t) = u1(x) + u2(x, t) , - u(x, t) = u1(x) + U(x, t) , U(x, t) u1(x) . f(x) u1(x) , . , . (.5) ( )

    44

  • 0.20.40.60.8 1 x

    -1.2-1

    -0.8-0.6-0.4-0.2

    ux

    00.20.40.60.8 1x 0246810

    t-2-1.5-1-0.50ux,t

    0.20.40.60 8x

    8:

    .9

    2.7

    L . u(x, y, t) - . .. ( -) .

    2u(x, y, t)

    x2+

    2u(x, y, t)

    y2 1

    c22u(x, y, t)

    t2= 0 (107)

    u(x = 0, y, t) = u(x = L, y, t) = u(x, y = 0, t) = u(x, y = L, t) = 0

    u(x, y, t = 0) = f(x, y) ut(x, y, t) |t=0= g(x, y)

    Cauchy Cauchy 0 < x < L 0 < y < L (x, y).

    9. u(x, t) = us(x) + U(x, t)

    45

  • u(x, y, t) = X(x)Y (y)T (t)

    (. 107)

    1

    X(x)

    d2X(x)

    dx2+

    1

    Y (y)

    d2Y (y)

    dy2=

    1

    T (t)

    1

    c2d2T (t)

    dt2= 0 (108)

    (. 108) t, (x, y). ..

    1

    X(x)

    d2X(x)

    dx2= 1 (109)

    1

    Y (y)

    d2Y (y)

    dy2= 2 (110)

    1

    T (t)

    1

    c2d2T (t)

    dt2= (111)

    1 + 2 = . X(0) = X(L) = 0 Y (0) = Y (L) = 0 Sturm-Liouville (x, y) . . Sturm-Liouville ,

    Xn(x) = sin(nxL

    ) Ym(y) = sin(myL )

    n,m = 0, 1, 2, 3... Xn(x) Ym(y)

    u(x, y, t)) =

    n,m=0

    sin(n

    Lx) sin(

    m

    Ly) (anm sin(nmt) + bnm cos(nmt))

    =

    n,m=0

    unm(x, y, t) (112)

    46

  • nm = cLn2 + m2 . 11 -

    ,12 - 21. , - ( ) , u12(x, y, t) = u21(x, y, t), (), . (9) - . u11(x, y, t = 0) ,u12(x, y, t = 0) , u13(x, y, t = 0) , u32(x, y, t = 0) , - u11(x, y, t = 1), u12(x, y, t = 1) ,u13(x, y, t = 1) ,u32(x, y, t = 1). nodal lines - . - . u12(x, y, t = 0) - x , u21(x, y, t = 0) y. - . - ,.. u12(x, y, t) u21(x, y, t) = 0 x = y. - (). (. 112) - anm ,bnm Fourier .

    u(x, y, t = 0) = f(x, y) =

    n,m=0

    bnm sin(n

    Lx) sin(

    m

    Ly) (113)

    bnm =4

    L2

    L0

    sin(n

    Lx) dx

    L0

    f(x, y) sin(m

    Ly) dy (114)

    47

  • ut(x, y, t) |t=0= g(x, y) =

    n,m=0

    anm nm sin(n

    Lx) sin(

    m

    Ly) (115)

    anm =4

    L21

    nm

    L0

    sin(n

    Lx) dx

    L0

    g(x, y) sin(m

    Ly) dy (116)

    9:

    (. 112) . Fou-rier .

    48

  • 2.8

    R . f(, ) - g(, ) (, ) -, u(, , t), .

    u(, , t) ( ) :

    2u(, , t) = 1c2

    2u(, , t))

    t2(117)

    10 11

    2 = 1

    +

    1

    22

    2(118)

    (1

    +

    1

    22

    2 1

    c22

    t2)u(, , t) = 0 (119)

    u(, , t) = X(, )T (t).

    u(, , t) = X(, )T (t) (. 117 ) X(, )

    (2 + k2)X(, ) = 0 (120)

    Helmholtz :

    (1

    +

    1

    22

    2+ k2)X(, ) = 0 (121)

    10 :2 = 1 + 12

    2

    2 +2

    z2 . z = 0 .

    11 . - .

    49

  • T (t) ,

    T (t) + k2c2T (t) = 0 (122)

    k2 12. (. 122) :

    T (t) = C1 sin(kct) + C2 cos(kct) (123)

    (. 121) (, ). = R =. - ( - ) nodal . 2 X(, ) = R()(). (. 121)

    2

    R()

    d2R()

    d2+

    R()

    dR()

    d+

    1

    ()

    d2()

    d2+ k22 = 0 (124)

    (. 124) , . 2 ..

    d2R()

    d2+

    1

    dR()

    d+ (k2

    2

    2)R() = 0 (125)

    d2()

    d2+ 2() = 0 (126)

    - 2, (. 126) 2.

    12 k2 > 0 k2 < 0 . k2 > 0

    50

  • () = ( + 2),(0) = (2) () = ( + 2) .

    ( ) 2 = m2 m = 0,1,2,3,4... (. 126) :

    m() = A1 sin(m) + B1 cos(m) (127)

    m() Fourier sin(m) cos(m) [0,2]. (. 125) =k, (k = 0), :

    d2R()d2

    +1

    dR()d

    + (1 m2

    2)R() = 0 (128)

    (. 128) Bessel m Bessel Jm() Neumann Nm() . Neumann = 0.

    5 10 15 20x-0.2

    0.20.40.6

    J

    5 10 15 20x

    -1-0.75-0.5-0.25

    0.25

    Y

    10: BesselJm(x) Neumann Ym(x)

    , ( - ). (128) AJm() + BNm().

    51

  • , B = 0, R1 < < R2 A,B = 0. Bessel - . (128) -, R()|=R = 0 R() |=R = 0 , R , Sturm-Liouville 13 - Jm(kmnR ). kmn Jm(kR) = 0, kR = kmn( kmn n Bessel, Jm(kR)). - Bessel Jm(kmnR ), , [0, R] . X(, ) umn

    umn(, , t) = J m(kmn

    R)[Amn cos(m) + Bmn sin(m)]

    [ A cos(kmnct

    R) + B sin(

    kmnct

    R)] (129)

    mn = kmncR

    u (, , t) =

    m,n

    Jm(kmn

    R)[Amn cos(m) + Bmn sin(m)] cos(

    kmnct

    R)

    +mn

    Jm(kmn

    R)[A

    mn cos(m) + B

    mn sin(m)] sin(

    kmnct

    R) (130)

    Amn , Bmn , Amn , B

    mn

    .

    u(, , t = 0) = f(, ) =

    =

    m,n

    Jm(kmn

    R)[Amn cos(m) + Bmn sin(m)] (131)

    u

    t|t=0 = g(, ) =

    13 Sturm-Liouville - = 0 . Bessel Legendre Sturm-Liouville -

    52

  • =

    m,n

    Jm(kmn

    R)[A

    mn cos(m) + B

    mn sin(m)]

    kmn

    R(132)

    (. 131) (. 132) f(, ) g(, ) (, ) Fourier-Bessel (sin(m), Jm(kmnR )), (cos(m), Jm(

    kmnR

    )). Fourier-Bessel Bessel.

    Amn =2

    R2(Jm+1(kmn))2

    20

    d

    R0

    f(, )Jm(kmn

    R) sin(m)d (133)

    Bmn =2

    R2(Jm+1(kmn))2

    20

    d

    R0

    f(, )Jm(kmn

    R) cos(m)d (134)

    kmnc

    RA

    mn =

    2

    R2(Jm+1(kmn))2

    20

    d

    R0

    g(, )Jm(kmn

    R) sin(m)d

    (135)kmnc

    RB

    mn =

    2

    R2(Jm+1(kmn))2

    20

    d

    R0

    g(, )Jm(kmn

    R) cos(m)d

    (136)

    Fourier-Bessel - Bessel(). R = 1cm .

    - m = 0 . (nodal lines) Bessel. m = 0

    53

  • -1-0.5 00.5

    1

    -1-0.5

    00.51

    00.51

    1-0.5 00.5

    1-0.5

    00.5

    -1-0.5 00.5 1-1

    -0.500.51

    -0.5-0.250

    0.250.5

    10.5 00.5

    -1-0.5 00.5

    1-1-0.500.51

    00.250.5

    0.751

    1-0.5 00.5

    -1-0.5 00.5

    1

    -1-0.5

    00.51

    00.51

    1-0.5 00.5

    1-0.5

    00.5

    11:

    n = 1 . .

    - u(, , t = 0) = f() . u(, , t = 0) = f() = 2(R ) t = 0

    54

  • (. 130). Amn Bmn

    . , , - , 14, m = 0. -

    u(, t) =n

    J0(k0n

    R)A0n cos(

    k0nct

    R) (137)

    J0(k0nR ) Bessel k0n J0(k0nR ). Fourier-Bessel A0n

    A0n =1

    R2(J1(k0n))2

    R0

    f()J0(k0n

    R)d (138)

    A0n . - Bessel k01 = 2.4 , k02 = 5.22 , k03 = 8.65 .... R = c = 1 A01 = 0.68 , A0,1 =0.06 , A03 = 0.05 .....

    2.9 ( )

    (. 5) :

    [1

    r2

    rr2

    r+

    1

    r2 sin

    (sin

    ) +

    1

    r2sin2

    2

    2

    14 20

    sin(m)d = 0m

    55

  • 1c2

    2

    t2]u(r, , , t) = 0 (139)

    -. - (r, t). (139) :

    [1

    r2

    rr2

    r 1

    c22

    t2]u(r, t) = 0 (140)

    u(r, t) = R(r,t)r

    (.140) R(r, t) :

    2R(r, t)

    r2 1

    c22R(r, t)

    t2= 0 (141)

    (. 141) 15 R(r, t) = F1(r+ct)+F2(rct) F1(r + ct) F2(r ct) , :

    u(r, t) = F1(r+ct)r

    + F2(r+ct)r

    (. 140) . r =.

    a - . :

    u(r, , , t) = R(r)()()T (t) (142)

    (. 139). - () ()

    15

    56

  • (k, , ) . - k2 > 0 . .. :

    d2T (t)

    dt2= k2c2T (t) (143)

    d2()

    d2= () (144)

    (1

    sin()

    d

    dsin()

    d

    d

    sin2())() = () (145)

    d2R(r)

    dr2+

    2

    r

    dR(r)

    dr+ (k2

    r2)R(r) = 0 (146)

    -. (. 143) k = kc:

    T (t) = Asinkct + Bcoskct

    (. 144) = m2 (m = 0,1,2,3, ...), () 2.

    () = Asin(m) + B

    cos(m)

    (. 145) , x = cos d()

    d= sin d(x)

    dx, 1 x 1, :

    (1 x2)d2(x)

    dx2 2xd(x)

    dx+ ( m

    2

    1 x2 )(x) = 0 (147)

    57

  • (. 147) m = 0 Legendre. Legendre -. = l(l + 1), l = 0, 1, 2, 3, ..., Legen-dre16 Pl(x) Ql(x), Legendre. x = 1 Ql(x) - . Ql(x) . . m = 0 (. 147) - Legendre Pml (x) . 17 Legendre m - |m| l. (. 147) :

    (cos ) = APml (cos )

    (. 146) R(r) = u(r)r

    - Bessel

    d2u(r)dr2

    + 1r

    du(r)dr

    + (k2 (l+ 12 )2r2

    )u(r) = 0

    Bessel (l + 12) , Jl+ 1

    2(kr)

    Nl+ 12(kr).

    R(r) = AJ

    l+12(kr)

    r

    + BN

    l+12(kr)

    r

    16Pl(x) = 12nn!dn

    dxn (x2 1)l

    17Pml (x) = (x2 1)m2 dmdxmPl(x)

    58

  • R(r) = Ajl(kr) + Bnl(kr)

    jl(kr) nl(kr) Bes-sel Neumann . Neumann - r 0 B . l,m ,|m| l:

    u (r, , , t) = R(r)()()T (t) =

    =m,l

    (Asinkct + Bcoskct)(Asin(m) + B

    cos(m))

    Pml (cos )(Ajl(kr) + B

    nl(kr)) =

    =m,l

    (Ajl(kr) + B

    nl(kr))(Asinkct + Bcoskct)

    Y ml (, ) (148)

    Y ml (, )

    Y ml (, ) =

    2l+14

    (lm)!(l+m)!

    Pml ()eim, |m| l

    . :

    20d

    0sin Y ml (, )Y

    m

    l (, )d = llmm

    Fourier Y ml (, ).

    59

  • f(, ) =l=0

    lm=l

    flmYml (, )

    flm Fourier

    flm =20d

    0sin Y ml (, )f(, )d

    (. 148) - .

    :

    a , , - u0 . t = 0 . .

    (z = 0) t < 0. , (u = ) . . - . - .

    .

    - .

    1. :

    60

  • (r, , t = 0) = u0rcos

    2. (r,,t)

    t|t=0 = 0

    3. - .(r,,,t)

    r|r=a = 0

    .

    (. 148). B = 0 = 0 m = 0.

    (r, , t) =l

    (Asinkct + Bcoskct)Pl(cos )jl(kr) (149)

    (r, , , t)

    r|r=a = 0 =

    =l

    (Asinkct + Bcoskct)Pl(cos )d

    Jl+1

    2(kr)

    r

    dr|r=a (150)

    (2) A = 0.

    (r, , t) =l

    (Bcoskct)Pl(cos )Jl+ 1

    2(kr)r

    (151)

    (3)

    Jl+ 1

    2(ka)a

    12a

    32

    Jl+ 12(ka) = 0 (152)

    (r, , t) =l=0

    n=1

    BcoskctPlcos Jl+ 1

    2(klnr

    a)

    r(153)

    61

  • kln = ka (152).

    (r, , t = 0) =l=0

    n=1

    BPl(cos )Jl+ 1

    2(klnr

    a)

    r= u0rcos

    u0r32 cos =

    l=0

    n=1

    BlnPl(cos )Jl+ 12(klnr

    a) (154)

    (. 154) Bln Fourier u0r

    32 cos

    Legendre-Bessel. Legendre,(P0(cos ) = 1, P1(cos ) = cos()) l = 1, .

    u0r32 =

    n=1

    BnJ 32(k1nr

    a) (155)

    Bn =2u0

    r=ar=0

    r52J 3

    2(k1nr

    a)dr

    a2J 32(k1n)(1 2k21n )

    (156)

    (r, , t) =

    n=1

    Bncos J 3

    2(k1nr

    a)

    rcos(

    k1nct

    a) (157)

    u(r, , ) = (r,,)

    r

    2.10

    1. .

    62

  • 2. . t = 0 x = 0 ut(x, t = 0) = a(x) a (x) Dirac. u(x, t) t > 0.

    3. (xct) . t = 0 .

    4. (x = 0) .

    u(x, t = 0) = f(x) =

    0 : 0 < x < L

    hL(x L)(4 x+L

    L) : L < x < 3L0 : 3L < x 0.(. ut (x, t = 0) = A (x x0))

    6. x > 0, , t > 0

    u(x, t = 0) = f(x) , u(x,t)t

    |t=0 = g(x)

    63

  • u(x,t)x

    |x=0= 0

    t = 0 f(x) g(x) x = 0.

    7.

    f(x, t) = 4(x ct)2(x + ct)

    .

    8. L > 2 , -.

    u(x, t = 0) = f(x) =

    {1 : L

    2 1 < x < 1 + L

    2

    0 : 0 < x < L2 1, L

    2+ 1 < x < L

    .

    9. 3a -

    u(x, t = 0) = f(x) =

    exa

    : 0 < x < ae3a2x

    a: a < x < 2a

    ex3aa

    : 2a < x < 3a

    .

    10.

    (2

    x2 1

    c22

    t2)u(x, t) = x sin(x) (158)

    64

  • u(x, t = 0) = 0 ut(x, t) |t=0=0. ;

    11. L g(x) = I(x L

    2).

    (. .. ( 2x2 1

    c22

    t2 h

    c2t

    )u(x, t) = 0)

    12. L1 L2 - ut(x, t) |t=0= 1. .

    13. L u(x, y, t = 0) = sin2( x/L) sin( y/L). .

    14. L - - u(x, y, t = 0) = f(x, y) . - .

    15. - - .

    16. - L . . (. -

    65

  • - ).

    17. ) R = 1 u(, , t = 0) = g J0 () ut(, , t = 0) |t=0) = 0 , J0 () Bessel .

    18. a - u(, , t = 0) = J3 (

    k31a

    ) cos(3) ut(, , t = 0) |t=0) = 0 , k31 Bessel . ) .

    19. R g J1 (k01R ) . (. - Bessel 0 < < R)

    20. a < b . - f()

    21. a - . u(, , t = 0) = AJ0(k01

    a) + g

    4c2(2 a2)

    .

    66

  • 3

    3.1

    V S. dV dQ = cdV , c (x, t) .

    V

    n

    dS

    12:

    Q S t

    Q1 = K(x)(S)(t)(x, t). (159)

    . . K(x) - S. -

    q =Q

    (t)(S)(160)

    67

  • (t1, t2)

    Q1 = t2

    t1

    dtS

    K(x).dS

    = t2

    t1

    dtV

    .(K(x))dV (161)

    dV 1(x, t1) 2(x, t2), Q2 = c(dV)(2 1)

    Q2 =V

    c(2(x, t2)1(x, t1))dV

    = t2

    t1

    dtV

    tcdV

    = t2

    t1

    dtV

    tcdV (162)

    -

    Q3 =

    t2t1

    dtV

    F (x, t)dV (163)

    F(x, t) .

    Q3 = Q1 + Q2 (164)

    (164) (162) (163)

    68

  • (x, t)

    t=

    1

    c[K(x).(x, t) + K(x)2(x, t) + F (x, t) (165)

    - ,

    (x, t)

    t=

    1

    cK2(x, t) (166)

    (166) - (.. ), .

    3.2

    - :

    2T (x, t) = 1a2

    T(x, t)

    t(167)

    (167) Dirichlet ( - - ) Neumann( . - ) Robin( ) -18 T0(x, t = 0) = f(x). t > 019.

    18

    19 - . ,

    69

  • (167) T (x, t) = X(x)T (t) .

    1

    X(x)

    d2X(x)

    dx2=

    1

    a2T (t)

    dT (t)

    dt(168)

    T (t)

    dT (t)

    dt= k2a2T (t) (169)

    k2 . (169) T (t) = ek

    2a2t. k2 > 0 T (t) 0 X(x) = Aeikx + Beikx. k Fourier .

    T (x, t) =

    A(k)eikxk2a2tdk (170)

    A(k) Fourier 20

    T (x, t = 0) = f(x)

    =

    A(k)eikxdk (171)

    A(k) =1

    2

    f(x)eikx

    dx

    (172)

    t > 0 , t > 0. . .

    20

    ei(kk)xdx = 2(k k) (k k)

    Dirac.

    70

  • T (x, t) =1

    2

    dk

    f(x)eik(xx

    )k2a2tdx

    =1

    2

    a2tf(x

    )e

    (xx )24a2t dx

    =

    =

    f(x)T0(x, t)dx

    (173)

    T0(x x , t) . (.173) . - t 0

    limt0T (x, t) =

    limt0

    1

    4a2tf(x

    )e

    (xx )24a2t dx

    = f(x) (174)

    Dirac21

    0.5 1 1.5 2

    0.25

    0.5

    0.75

    1

    1.25

    1.5

    1.75t1

    t2

    t3

    t4

    13: t1 < t2 < t3 < t4

    . Q

    21 limt0

    1

    4a2te (xx

    )2

    4a2t = (x x)

    71

  • x0 , . 2 Q = 2cT0, T0 . Q t :

    T (x, t) =

    T0e(xx )2

    4a2t

    2at

    dx

    =Q

    2c2at

    x0+x0

    e(xx )2

    4a2t dx (175)

    0 - x0 t = 0 .

    lim0

    1

    2

    x0+x0

    e(xx )2

    4a2t dx= e

    (x0x)24a2t (176)

    lim0T (x, t) T0(x, t) (177)

    . t = 0 x0 Q. -

    T (x, t)dx =Q

    pc

    T0(x, t)dx =Q

    pc(178)

    . 22

    22

    e(x0x)2

    4a2t dx = 2a

    t

    72

  • 3.3

    Dirichlet L T0(x) . t - . T (x, t) (167), - T (x = 0, t) = T (x = L, t) = 0 T (x, t = 0) = T0(x). (167) T (x, t) = X(x)T (t) . T (t) T (t) = ek2a2t ,k2 , - t > . X(x)

    d2X(x)

    dx2+ k2X(x) = 0 (179)

    X(0) = X(L) = 0 ( ) - Sturm-Liouville sin(n

    Lx)

    kn =nL

    . (. 167) - ( )

    T (x, t) =n

    An sin(n

    Lx)ek

    2na

    2t (180)

    An Fourier .

    T (x, t = 0) = T0(x) =n

    An sin(n

    Lx)

    73

  • An =2

    L

    L0

    T0(x) sin(n

    Lx)dx (181)

    100 Fourier (. 181) :

    An =

    {400n

    : n = 2k + 10 : n = 2k

    T (x, t) =

    k=0

    400

    (2k + 1)sin(

    (2k + 1)

    Lx)e(

    (2k+1)aL

    )2t (182)

    t e( (2k+1)aL )2t -.

    T (x, t) 400

    sin(

    Lx)e(

    aL

    )2t (183)

    t (182 ) 23, t T (x, t) 0 ( ).. 1

    e -

    . 23

    .

    74

  • - :

    1

    = lim

    t1

    tln|T (x, t)| (184)

    .

    : - . (. 180) :

    T (x, t) = A1 sin(

    Lx)e(

    aL

    )2t +

    n=2

    An sin(n

    Lx)e(

    naL

    )2t

    = A1sin(

    Lx)e(

    aL

    )2t[1 + O(e(3aL

    )2t)]

    ln|T (x, t)| = lnA1 + lnsin(xL

    ) + lne(aL

    )2t + ln[1 + O(e(3aL

    )2t)]

    1

    = lim

    t1

    tln|T (x, t)| (a)

    2

    L2(185)

    (.185) - , ( t) , ( ) . - .

    Neumann

    75

  • L T0(x) - . , - t .

    :

    T (x, t) = X(x)T (t)

    T (t) = ek2a2t ( k2 > 0 ) X(x) = A sin(kx) + B cos(kx). . :

    T (x,t)x

    |x=0 = T (x,t)x |x=L = 0

    A = 0 k = n

    L. Sturm-

    Liouville cos(nLx) kn = nL .

    (167) -

    T (x, t) =

    n=0

    Bn cos(n

    Lx)ek

    2na

    2t (186)

    Bn Fourier .

    T (x, t = 0) = T0(x) =

    n=0

    Bn cos(n

    Lx)

    76

  • Bn =2

    L

    L0

    T0(x) cos(n

    Lx)dx (187)

    n = 0

    B0 =1

    L

    L0

    T0(x)dx (188)

    :

    T (x, t) = B0 +

    n=1

    Bn cos(n

    Lx)ek

    2na

    2t (189)

    - :

    limt T (x, t) = B0 =

    1

    L

    L0

    T0(x)dx (190)

    ( . 190) , - , , .

    Robin ( )

    L T (x, t = 0) = T0(x). ( ) - . .

    77

  • T (x,t)x

    hT (x, t)|x=0 = 0

    T (x,t)x

    + hT (x, t)|x=L = 0

    - - .

    T (x, t) = X(x)ek2a2t

    X(x)

    d2X(x)

    dx2+ k2

    dX(x)

    dt= 0 (191)

    dX(x)dx

    hX(x)|x=0 = 0dX(x)

    dx+hX(x)|x=L = 0 (192)

    (. 191) , X(x) = A sin(kx) + B cos(kx). A = hB

    k

    cot =(2 h2L2)

    2hL(193)

    = Lk . (. 193) n Sturm-Liouville

    Xn(x) = Bn[hL

    nsin(

    nx

    L) + cos(

    nx

    L)] (194)

    Xn(x) (0, L).

    78

  • 24 Xn(x)

    X(x) =

    n=1

    Bn(hL

    nsin(

    nx

    L) + cos(

    nx

    L))e

    2a2t

    L2 (195)

    2 4 6 8 10 12

    -30

    -20

    -10

    10

    20

    30

    m

    Cotm

    14: (. 193)

    3.4

    L . : T (x = 0, t) = T1(t) , T (x =L, t) = T2(t) T (x, t = 0) =T0(x) . t > 0.

    ( ) .

    24 Xn(x) (0, L) .

    79

  • ( ). ( , - .)

    T (x, t) = U(x, t) + U(x, t)

    U(x, t) U(x, t) . .

    T (x = 0, t) = T1(t) T (x = L, t) = T2(t)

    T (x, t) = T0(x)

    :

    T (x, t) = U(x, t) + U(x, t) (196)

    U(x, t) - :

    U(x = 0, t) = T1(t) U(x = L, t) = T2(t)

    U(x, t) :

    U(x = 0, t) = 0 U(x = L, t) = 0

    U(x, t = 0) = T0(x) U(x, t = 0) = (x).

    80

  • U(x, t) :

    U(x, t) =L x

    LT1(t) +

    x

    LT2(t) (197)

    U(x, t)

    2U(x, t)

    x2 1

    a2U(x, t)

    t=

    1

    a2x

    LT2(t) +

    L xa2L

    T1(t) F (x, t) (198)

    (.198) .. - U(x, t) . (. 198) - F (x, t) . (. 198) (.88). sin(n

    Lx) -

    . Fourier F (x, t)

    U(x, t) =n

    An(t) sin(n

    Lx) (199)

    F (x, t) =n

    bn(t) sin(n

    Lx) (200)

    bn(t) =2

    L

    L0

    F (x, t) sin(n

    Lx)dx (201)

    (198). Fourier, An(t) :

    n=1

    [n22

    L2An(t) 1

    a2An(t) bn(t)] sin(n

    Lx) = 0 (202)

    81

  • (202) ..

    An(t) = Cne(n2a22

    L2t) + e(

    n2a22

    L2t)

    t0

    bn(t)e(

    n2a22

    L2t)dt

    (203)

    U(x, t) =n

    [Cne(n2a22

    L2t)

    + e(n2a22

    L2t)

    t0

    bn(t)e(

    n2a22

    L2t)dt] sin(

    n

    Lx) =

    =n

    Cne(n2a22

    L2t) sin(

    n

    Lx)

    +n

    e(n2a22

    L2t)

    t0

    bn(t)e(

    n2a22

    L2t)dt

    sin(

    n

    Lx)

    = U(x, t) + U(x, t) (204)

    Cn -

    Cn =2

    L

    L0

    (x) sin(n

    Lx)dx

    T (x, t) =L x

    LT1(t) +

    x

    LT2(t)

    +n

    Cne(n2a22

    L2t) sin(

    n

    Lx)

    +n

    e(n2a22

    L2t)

    t0

    bn(t)e(

    n2a22

    L2t)dt

    sin(

    n

    Lx)

    (205)

    1 -, T (x = 0, t) = C1 T (x = L, t) = C2 T (x, t = 0) = g(x).

    82

  • (. 205) T1(t) = C1 , T2(t) = C2 .

    T (x, t) =L x

    LC1 +

    x

    LC2

    +n

    Cne(n2a22

    L2t) sin(

    n

    Lx) (206)

    Fourier , Cn

    Cn =2

    L

    L0

    (g(x) L xL

    C1 xLC2) sin(

    n

    Lx)dx

    , . ( ) . , , T(x) :

    d2T(x)

    dx2= 0 (207)

    . (207)

    T(x) = a1x + a2 (208)

    a1, a2 - T(x = 0) = C1 T(x = L) = C2.

    a2 = C1

    a1 =C2 C1

    L

    83

  • T(x) =C2 C1

    Lx + C1 (209)

    :

    T (x, t) =n

    Cnen2a2

    L2t sin(

    n

    Lx) +

    C2 C1L

    x + C1 (210)

    T (x, t = 0) =n

    Cn sin(n

    Lx) +

    C2 C1L

    x + C1 = g(x)

    g(x) C2 C1L

    x C1 =n

    Cn sin(n

    Lx)

    Fourier Cn :

    Cn =2

    L

    L0

    (g(x) C2 C1L

    x C1) sin(nL

    x)dx (211)

    ( 210) :

    limtT (x, t) = limtT(x) + limtTo(x, t) = T(x) (212)

    t limtTo(x, t) 0 :

    limt[T (x, t) T(x)] = 0 (213)

    T(x) . ( ) , .

    T (x, t) - , T(x, t) .. t > 0 :

    limt[T (x, t) T(x, t)] = 0 (214)

    84

  • ( 2) , . C1(t), C2(t)

    T(x, t) =C2(t) C1(t)

    Lx + C1(t) (215)

    Fourier Cn

    Cn =2

    L

    L0

    (g(x) T(x, t = 0)) sin(nL

    x)dx (216)

    3.5

    .. Dirichlet Neumann . L

    T (x = 0, t) = a(t), T (x = L, t) = b(t) T (x, t = 0) = f(x)

    T1(x, t) (167) . T2(x, t) W (x, t) = T1(x, t) T2(x, t), W (x, t) (167) :

    W (x = 0, t) = 0, W (x = L, t) = 0 W (x, t = 0) = 0

    85

  • :L

    0

    W (x, t)2W (x, t)

    x2dx 1

    a2

    L0

    W (x, t)W (x, t)

    tdx = 0 =

    =

    L0

    [

    xW (x, t)

    W (x, t)

    x (W (x, t)

    x)2]dx 1

    2a2

    L0

    W (x, t)2

    tdx =

    = W (x, t)W (x, t)

    x|L0

    L0

    (W (x, t)

    x)2dx 1

    2a2

    L0

    W (x, t)2

    tdx = 0

    (217)

    L

    0

    (W (x, t)

    x)2dx =

    1

    2a2d

    dt

    L0

    W (x, t)2dx (218)

    t

    t

    0

    dt

    L0

    (W (x, t)

    x)2dx =

    1

    2a2

    L0

    W (x, t)2dx (219)

    (219) (). W (x, t) - T1(x, t) =T2(x, t). - .

    3.6

    L R - . T0 ,. .

    :

    (1

    +

    1

    22

    2+

    2

    z2 1

    a2

    t)T (, , z, t) = 0 (220)

    86

  • :

    T ( = R, , z, t) = T (, , z = 0, t) = T (, , z = L, t) = 0

    (220) - .

    T (, , z, t) = R()()Z(z)T (t) (221)

    (221) (220) - . , k2 > 0 ( k2 > 0 ) :

    dT (t)

    dt= a2k2T (t) (222)

    z, , ():

    d2Z(z)

    dz2+ 2Z(z) = 0 (223)

    d2()

    d2+ m2() = 0 (224)

    d2R()

    d2+

    1

    dR()

    d+ (k2 2 m

    2

    2)R() = 0 (225)

    -.

    m 2 ( 2).

    87

  • 2 z, (Z(z = 0) = Z(z = L) = 0).

    k2 - , - .

    (.223) T (, , z = 0, t) = T (, , z = L, t) = 0

    Sturm-Liouville sin(nzL

    ) - 2 = (n

    L)2 . (225) Bessel, (128),

    Bessel Neumann, m (m) ,

    k2 2, :

    R() = AJm(k2 2) + BNm(

    k2 2)

    = 0 Neumann (Nm(x 0) ). ( - ) B = 0

    R() = AJm(k2 2)

    , R( = R) = 0,

    R( = R) = AJm(k2 2R) = 0 (226)

    (.225) (.226) - Sturm-Liouville ( ) Jm(kmiR ) (kmi

    R) , k

    2mi

    R2= k2 n22

    L2. kmi i -

    Bessel m , Jm(kmi) = 0.

    88

  • (220) Sturm-Liouville :

    T ( = R, , z, t) =

    m,n,i

    Jm(kmiR

    )sin(nz

    L)

    [ Amnisin() + Bmnicos()]e(kmi

    2

    R2+n

    22

    L2)a2t (227)

    t = 0 :

    T ( = R, , z, t = 0) = T0 =

    =

    m,n,i

    Jm(kmiR

    )sin(nz

    L)[Amnisin(m) + Bmnicos(m)] (228)

    Amni Bmni Fourier - T0 Jm(

    kmiR

    ), sin(nzL

    ) , sin(m) cos(m).

    Amni = (2

    L)(

    1

    )(

    2

    [RJm+1(kmi)]2)

    L0

    sin(nz

    L)dz

    20

    sin(m)d

    R0

    T0Jm(kmiR

    )d (229)

    Bmni = (2

    L)(

    1

    )(

    2

    [RJm+1(kmi)]2)

    L0

    sin(nz

    L)dz

    20

    cos(m)d

    R0

    T0Jm(kmiR

    )d (230)

    Amni = 0 m Bmni = 0 m m = 0,

    B0ni =16[1 (1)n]Ln2[RJ1(k0i)]

    R0

    T0J0(k0iR

    )d (231)

    B0ni = 0 n = 2l + 1.

    T ( = R, z, t = 0) = T0

    i,l=0

    ea2[

    k20i

    R2+

    (2l+1)22

    L2]tFil(, z) =

    = T0ea2[ k

    201

    R2+

    2

    L2]t(F10(, z) + O(t)) (232)

    89

  • (184)

    1

    = lim

    t1

    tln|T (x, t)| a2(k

    201

    R2+

    2

    L2) (233)

    : |t = 0.1729R2a2 . , , . L L < , L

  • 3.7

    1. - x > 0 x = 0 t .

    2. T (x, t) L, ,

    tT (x, t) a2

    2

    x2T (x, t) = b2T (x, t) (234)

    x = 0 , x = L T (x, t =0) = T0 cos

    2(xL

    )

    3. L T (x, t = 0) = 3 sin(x

    L sin(3x

    L

    -

    ,

    .

    4. L T (x, t = 0) = T0 +T1 cos

    xL

    . - t > 0 -.

    5. k, L . Q0

    91

  • . - , ( T (x,t)

    x|x=0= kQ0 ).

    6. - L , H T (x =0, y, t) = T (x = L, y, t) = 0 , T

    y|y=0= 0 T (x, y = H, t) = g(x)

    T (x, y, t = 0) = f(x, y) . . ( -).

    7. R1 =1cm R2 =

    2cm L1 = 1cm L2 = 0.5cm -

    . 500 . ( ).

    8.

    2(r, , , t) + b(r, , , t) = 1k

    t(r, , , t)

    k, b . 0 . . , ( ).

    9. R . t = 0 - T0 T .

    92

  • , ( -

    tT (x, t) a2 2

    x2T (x, t) = )

    (: T (, , t) = U(, , t) + U())

    93

  • 4 Laplace

    4.1

    Laplace Poisson Helmholtz - .. . Laplace, , - , , ( ). , , - . - . - .

    Laplace - .

    : G Rn . G - Laplace G. - . ( ) .

    94

  • - , . ( ). - ( ) .

    Laplace - Dirichlet Neumann , Cauchy - .

    : T1(x) 2T1(x) =0 V T1|S(V ) = T0 - Laplace, 2T2(x) = 0 - T2|S(V ) = T0.

    (x) = T1(x) T2(x)

    (x)|S(V ) = 0.

    V

    . ((x)(x)) dV =V

    | (x) |2 dV +V

    2(x) dV

    =V

    | (x) |2 dV (235)

    Gauss V

    . ((x)(x)) dV =

    S(V )

    (x) (x) . dS (236)

    95

  • (235) (236) V

    | (x) |2 dV = 0 (237)

    (x) V , .

    T1(x) = T2(x)

    . , ,

    - , , .

    4.2 Laplace

    , , . z. - z (0 x L (0 y L ) . () .

    T (x, y) (x, y) Laplace .

    T (x = 0, y) = g1(y)

    96

  • T (x = L, y) = g2(y)

    T (x, y = 0) = g3(x)

    T (x, y = L) = g4(x)

    g1,2(y) g3,4(x) . ( , Di-richlet, ) . - , - , . , : :

    T (x, y) = T1(x, y) + T2(x, y) + T3(x, y) + T4(x, Y ) (238)

    =2T = 0g4

    g3

    g1

    g2 +2T1 = 00

    0

    g1

    0 +2T2 = 00

    0

    0

    g2 +2T3 = 00

    g3

    0

    0 2T4 = 0g4

    0

    0

    0

    ( )

    Ti(x, y) Laplace - :

    T1(x, y = 0) = g1(x) , T3(x = 0, y) = T3(x, y = L) = T3(x = L, y) = 0

    (239)

    97

  • T2(x = L, y) = g2(y) , T2(x = 0, y) = T2(x, y = 0) = T2(x, y = L) = 0

    (240)T3(x, y = L) = g3(x) , T4(x = 0, y) = T4(x = L, y) = T4(x, y = 0) = 0

    (241)T4(x = 0, y) = g4(y) , T1(x = L, y) = T1(x, y = 0) = T1(x, y = L) = 0

    (242)

    Ti(x, y). - . T4(x, y)

    2T4(x, y)

    x2+

    2T4(x, y)

    y2= 0 (243)

    :

    T4(x = 0, y) = g4(y) , T4(x = L, y) = T4(x, y = 0) = T4(x, y = L) = 0

    (244) :

    T4(x, y) = X4(x)Y4(y) (245)

    (.243)

    1

    X4(x)

    d2X4(x)

    dx2= 1

    Y4(y)

    d2Y4(y)

    dy2= 2 (246)

    y = 0 y = L , Y4(y = 0) = Y4(y = L) =0, 25 Y4(y) :

    Y4n(y) = sin(ny

    L) (247)

    25

    98

  • 2 = (nL

    )2 . X4(x) (.243) :

    X4n(x) = A sinh(nx

    L) + B cosh(

    nx

    L) (248)

    (247)

    T4(x, y) =

    n=1

    [An sinh(nx

    L) + Bn cosh(

    nx

    L)] sin(

    ny

    L) (249)

    x = L

    T4(x = L, y) =

    n=1

    (An sinh(n) + Bn cosh(n)) sin(ny

    L) = 0 (250)

    y An Bn,

    An sinh(n) + Bn cosh(n) = 0 (251)

    An = Bn cosh(n)sinh(n)

    (252)

    x = 0

    T4(x = 0, y) = g4(y) =

    n=1

    Bn sin(ny

    L) (253)

    ( 253) Fourier sin(ny

    L) g4(y) . Bn :

    Bn =2

    L

    L0

    g4(y) sin(ny

    L)dy (254)

    T1(x, y) , T2(x, y) , T3(x, y) .

    : - 75 100 .

    99

  • . . , () :

    =2T = 075

    75

    75

    100 +2T1 = 075

    75

    75

    75 2T2 = 00

    0

    0

    25

    T1(x, y) = 75 . T2(x, y) .

    T2(x = 0, y) = T2(x, y = 0) = T2(x, y = L) = 0 T2(x = L, 0) = 25

    T2(x, y) =

    n=1

    (An sinh(nx

    L) ) sin(

    ny

    L) (255)

    T2(x = L, y) =

    n=1

    (An sinh(n) ) sin(ny

    L) = 25 (256)

    An sinh(n) =2

    L

    L0

    25 sin(ny

    L)dy =

    50

    n(1 (1)n)

    T2(x, y) =

    k=1

    (100

    (2k + 1)sinh(

    (2k + 1)x

    L) ) sin(

    (2k + 1)y

    L) (257)

    T (x, y) = 75 +

    k=1

    (100

    (2k + 1)sinh(

    (2k + 1)x

    L) ) sin(

    (2k + 1)y

    L)

    (258)

    100

  • 4.3 Laplace ( )

    : R - 75 30026.: - Laplace (144) (145), - (146) k = 0 = l(l+1), l = 0, 1, 2, 3.. .

    d2R(r)

    dr2+

    2

    r

    dR(r)

    dr l(l + 1)

    r2R(r) = 0 (259)

    (259) rl r(l+1) 27 . Laplace :

    T (r, , ) =l,m

    (Arl + Br(l+1))Y ml (, ) (260)

    Y ml (, ) . ( ) -.

    T (r, , ) = T1(r, , ) + T2(r, , ) (261)

    :

    T1(r = R, , ) = 75 (262)26: -

    ( ) ( -).

    27 (259) ra. - a,a1 = l a2 = (l + 1)

    101

  • T2(r = R, , ) =

    {0 : 1 < cos < 0

    225 : 0 < cos < 1

    T1(r, , ) T2(r, , ) Laplace T1(r, , ) = 75 . T2(r, , ) m = 0

    T2(r, , ) =l,m

    (Arl + Br(l+1))Y ml (, )

    =l=0

    (Arl + Br(l+1))Pl(cos ) (263)

    , , =0,(Br(l+1) r 0) (Arl r ) A = 0 .

    T2(r, , ) =l,m

    ArlPl(cos ) (264)

    :

    ARl =2l + 1

    2

    11

    Pl(cos )T2(r = R, , )d cos =

    =2l + 1

    2[

    01

    Pl(cos )T2(r = R, , )d cos

    +

    10

    Pl(cos )T2(r = R, , )d cos ] =

    =2l + 1

    2225

    10

    Pl(cos )d cos (265)

    102

  • 28 , .

    T2(r, , ) = 225[1

    2+

    3

    4

    r

    RP1(cos ) 7

    16(r

    R)3P3(cos ) + ..] (266)

    :

    T (r, , ) = 75 + 225[1

    2+

    3

    4

    r

    RP1(cos ) 7

    16(r

    R)3P3(cos ) + ..] (267)

    : - S R, ,

    V (R) = Q4R

    l=0

    Pl(cos )

    Pl(cos ) Legendre Q . S .:

    V (r, , ) Laplace . (260). . . r V (r , , ) 0. r A = 0 :

    V (r, , ) =l,m

    Blr(l+1)Y ml (, ) (268)

    28 Legendre Pl(x) =

    P l+1(x)P l1(x)2l+1

    103

  • R m = 0 :

    V (r, , ) =l=0

    Blr(l+1)Pl(cos ) (269)

    Bl .

    V (r = R, , ) =Q

    4R

    m

    Pm(cos ) =

    =l=0

    BlR(l+1)Pl(cos ) (270)

    BlR(l+1) =

    (2l + 1)Q

    8R

    11

    m

    Pm(cos )Pl(cos )d cos =

    =(2l + 1)Q

    8R

    m

    11

    Pm(cos )Pl(cos )d cos =

    =(2l + 1)Q

    8R

    m

    ml2

    2l + 1=

    Q

    4R(271)

    :

    V (r, ) =l

    Q

    4R(R

    r)l+1Pl(cos ) (272)

    . , ... R.

    S

    E.dS = Qtotal

    .

    En = V (r, )r

    = l=0

    Q

    4R

    Rl+1

    rl+2Pl(cos )(l 1)

    104

  • En .

    Qtotal = 20

    0

    l=0

    Q

    4R

    Rl+1

    Rl+2Pl(cos )(l 1)R2 sin dd =

    =l=0

    Q(l + 1)

    2

    0

    Pl(cos ) sin d =

    =l=0

    Q(l + 1)

    2

    2

    2l + 10l = Q (273)

    - Legendre 29

    290

    Pl(cos )sin d =11

    Pl(cos )P0(cos )d cos = 22l+1l0

    105

  • 4.4

    1. Laplace z = x + iy z = x iy

    2

    x2+

    2

    y2= 4

    2

    zz

    2. L . T1 = 1000 T2 = 250 . T (x, y, z) .

    3. Laplace -. .(2 = 1

    rr

    (r r

    ) + 1r2

    2

    2+

    2

    z2)

    4. R . T (R, , ) = T0 cos() sin() ( ).

    5. L R . - 1000 .

    6. R . T [R, ] = 100(1 cos()) - T (, ) . ,

    106

  • 7. , R1 , R2 , ( R1 < R2 ) V (R1, ) = V0 V2 = V0 (1 + cos ) . .

    107