21
Improving Overhead Transmission Line Usage Efficiency on a Caribbean Island Power System S. Bahadoorsingh, L. Bhairosingh, S. Sharma, M. Ganness The University of the West Indies | Dept of Electrical and Computer Engineering IEEE PES T&D 2014 Chicago, Illinois 16 th  April 2014 1

Ptresentación IEEE Std 738

Embed Size (px)

Citation preview

Page 1: Ptresentación IEEE Std 738

8/20/2019 Ptresentación IEEE Std 738

http://slidepdf.com/reader/full/ptresentacion-ieee-std-738 1/21

Improving Overhead TransmissionLine Usage Efficiency on a

Caribbean Island Power System

S. Bahadoorsingh, L. Bhairosingh, S. Sharma, M. Ganness

The University of the West Indies | Dept of Electrical and Computer Engineering

IEEE PES T&D 2014

Chicago, Illinois

16th April 2014

1

Page 2: Ptresentación IEEE Std 738

8/20/2019 Ptresentación IEEE Std 738

http://slidepdf.com/reader/full/ptresentacion-ieee-std-738 2/21

Transmission Line Rating Factors

2

Page 3: Ptresentación IEEE Std 738

8/20/2019 Ptresentación IEEE Std 738

http://slidepdf.com/reader/full/ptresentacion-ieee-std-738 3/21

Dynamic Line Rating – The Concept

3

• Know true line capacity in real time

• Improve system reliability

• Optimize grid utilization

(Oncor Electric Delivery Company, 2010)

Page 4: Ptresentación IEEE Std 738

8/20/2019 Ptresentación IEEE Std 738

http://slidepdf.com/reader/full/ptresentacion-ieee-std-738 4/21

Standards

1. IEEE Standard for Calculating the Current-

Temperature of Bare Overhead Conductors

(IEEE 738-2006)

2. Cigré “Thermal Behaviour of Overhead

Conductors” 

4

Page 5: Ptresentación IEEE Std 738

8/20/2019 Ptresentación IEEE Std 738

http://slidepdf.com/reader/full/ptresentacion-ieee-std-738 5/21

Heat Balance Equation (IEEE 738)

2 ( )r c s cq q q I R T  

Heat losses Heat gains

Radiated heat loss

Convected heat loss

Solar heat gain

Joule heating

( )

r c s

c

q q q I 

 R T 

Ampacity

Page 6: Ptresentación IEEE Std 738

8/20/2019 Ptresentación IEEE Std 738

http://slidepdf.com/reader/full/ptresentacion-ieee-std-738 6/21

Screenshot of developed MATLAB based DLR software showcasing the steady state calculation window.

6

Page 7: Ptresentación IEEE Std 738

8/20/2019 Ptresentación IEEE Std 738

http://slidepdf.com/reader/full/ptresentacion-ieee-std-738 7/21

7

Page 8: Ptresentación IEEE Std 738

8/20/2019 Ptresentación IEEE Std 738

http://slidepdf.com/reader/full/ptresentacion-ieee-std-738 8/21

T&TEC Case study

Chaguanas East- Chaguanas West Circuit

8

Conductor type: Wolf  

Conductor

diameter (mm) 

AC resistance

@ 25°C (Ωm-1) 

AC resistance

@ 75°C (Ωm-1) 

18.1  0.000183  0.000223 

Manufacturer Rating (temperate climate): 512 A 

Page 9: Ptresentación IEEE Std 738

8/20/2019 Ptresentación IEEE Std 738

http://slidepdf.com/reader/full/ptresentacion-ieee-std-738 9/21

Hourly readings for wind speed based on ARMA model and ambient temperature and for July 18th 2012

9

Actual conductor loading for July 18th 2012 and calculated ampacity

Page 10: Ptresentación IEEE Std 738

8/20/2019 Ptresentación IEEE Std 738

http://slidepdf.com/reader/full/ptresentacion-ieee-std-738 10/21

Results:

o Highest ampacity calculated was 107% greater than manufacturer’s

rating and 197% higher than actual conductor loading

o Lowest ampacity calculated was 42% higher than manufacturer’s rating

and 103% higher than actual conductor rating

10

Page 11: Ptresentación IEEE Std 738

8/20/2019 Ptresentación IEEE Std 738

http://slidepdf.com/reader/full/ptresentacion-ieee-std-738 11/21

Constraints/ Limitations

• Lack of real time updating of climatic data

• More loading data needed for lines with climatic data available

Further Work

• Effects of DLR on:

o  system voltages and losses

o unit commitment

o contingency planning

o protection circuitry

•Cost analysis

11

Page 12: Ptresentación IEEE Std 738

8/20/2019 Ptresentación IEEE Std 738

http://slidepdf.com/reader/full/ptresentacion-ieee-std-738 12/21

Conclusion• Electricity transmission traditionally limited by line’s thermal limit 

• Static ratings challenged as being overly conservative due to load growth

• DLR provides improved asset management

• T&TEC case study:

o Highest ampacity calculated was 107% greater than manufacturer’s

rating and 197% higher than actual conductor loading

o Lowest ampacity calculated was 42% higher than manufacturer’s rating

and 103% higher than actual conductor rating

• DLR provides progression to a smarter grid

12

Page 13: Ptresentación IEEE Std 738

8/20/2019 Ptresentación IEEE Std 738

http://slidepdf.com/reader/full/ptresentacion-ieee-std-738 13/21

ReferencesBernini, Minardo, Persiano, A. Vaccaro, D. Villacci and L. Zeni. 2007. “Dynamic

loading of overhead lines by adaptive learning techniques and distributedtemperature sensing.” IET Generation, Transmission and Distribution 1 (6):

912-919

Ciniglio, Orlando A., and Anjan Deb. 2004. “Optimizing Transmission Path

Utilization in Idaho Power.” IEE Transactions on Power Delivery  19 (2): 830-

834.Hall, J.F., and A.K.Deb. 1988. “Economic Evaluation of Dynamic Line Rating by

Adaptative Forecasting.” IEE Transactions on Power Delivery  3 (4): 2048-

2055.

Kopsidas, Konstantinos. 2009. "Modelling Thermal Rating of Arbitrary

Overhead Line System." Doctoral Thesis. The University of Manchester,United Kingdom.

Kopsidas, K., and S. M. Rowland. 2011. “Evaluating opportunities for

increasing power capacity of existing overhead line systems.” IET

Generation, Transmission and Distribution 5 (1): 1-10.

13

Page 14: Ptresentación IEEE Std 738

8/20/2019 Ptresentación IEEE Std 738

http://slidepdf.com/reader/full/ptresentacion-ieee-std-738 14/21

Appendix

14

Page 15: Ptresentación IEEE Std 738

8/20/2019 Ptresentación IEEE Std 738

http://slidepdf.com/reader/full/ptresentacion-ieee-std-738 15/21

Heat loss- radiation (IEEE 738)

15

4 4273 273

0.0178 -

100 100

[ ]r Tc Ta

q D  

 

Conductor temperature Ambient temperature

Conductor diameter Emissivity

Page 16: Ptresentación IEEE Std 738

8/20/2019 Ptresentación IEEE Std 738

http://slidepdf.com/reader/full/ptresentacion-ieee-std-738 16/21

Heat loss - convection (IEEE 738)

• Wind speed = 0ms-1 (natural convection occurs)

• Wind speed < 0.6096ms-1

• Wind speed > 0.6096ms-1

16

0.52

1   1.01 0.0372 ( )[ ]  f w

c f angle c a

  f  

 D V q k K T T  

  

 

0.6

2   0.0119 ( )[ ]  f w

c f angle c a

  f  

 D V q k K T T  

  

 

0.5 0.750.0205 ( )cn f c aq D T T    

 Air density

Wind speed

 Air viscosity

Thermal conductivity of air Wind direction factor

Page 17: Ptresentación IEEE Std 738

8/20/2019 Ptresentación IEEE Std 738

http://slidepdf.com/reader/full/ptresentacion-ieee-std-738 17/21

Heat Gain (IEEE 738)

• Solar heating

17

'

sin( ) s seq Q A  

 Absorption coefficient

Total solar and sky radiated heat flux rate

 Angle of incidence of sun's rays

Conductor area per unit length

Page 18: Ptresentación IEEE Std 738

8/20/2019 Ptresentación IEEE Std 738

http://slidepdf.com/reader/full/ptresentacion-ieee-std-738 18/21

Heat Gain (IEEE 738)

• Joule heating

• AC resistance

18

2 ( )c I R T 

( ) ( )( ) [ ]( ) ( )high low

c c low low

high low

 R T R T T T 

 R T T T R T 

19

Page 19: Ptresentación IEEE Std 738

8/20/2019 Ptresentación IEEE Std 738

http://slidepdf.com/reader/full/ptresentacion-ieee-std-738 19/21

Non-steady state (IEEE 738)

Fault: Less than 5 minutes

19

2c p

dT mC I R

dt 

Total conductor heat capacity

Change in conductor temperature

No heat exchange between the conductor and its environment.

Ambient temperature has no effect on the conductor’s temperature. 

If line were operating below maximum allowable temperature before fault, the

heat storage capacity of the conductor allows it to tolerate a higher amount of

current for the duration of the fault. 

20

Page 20: Ptresentación IEEE Std 738

8/20/2019 Ptresentación IEEE Std 738

http://slidepdf.com/reader/full/ptresentacion-ieee-std-738 20/21

Non-steady state (IEEE 738)

Non-steady state: Between 5-30 minutes

20

2( )c

c r p c s

dT q q mC I R T q

dt 

Immediately prior to stepchange (t=0-)

• Conductor is in thermal

equilibrium

Heat gains = heat losses

Immediately following stepchange (t=0+)

• Conductor resistance,

temperature, heat losses

(qr, qc)remain unchanged

• Rate of generation of ohmic

losses increase

• Conductor temperature

begins to increase

21

Page 21: Ptresentación IEEE Std 738

8/20/2019 Ptresentación IEEE Std 738

http://slidepdf.com/reader/full/ptresentacion-ieee-std-738 21/21

21

(IEEE 738, 2006)