39
Collaborators Physics seminar at 清華大学 高等研究院 Quantum `spin-metal' phase in an organic Mott insulator in an organic Mott insulator with two-dimensional triangular lattice Takasada Shibauchi 芝内 孝禎 京都大学芝内 孝禎 京都大学Department of Physics, Kyoto University Sakyo-ku Kyoto Japan Sakyo-ku, Kyoto, Japan Kyoto University

QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

  • Upload
    others

  • View
    3

  • Download
    1

Embed Size (px)

Citation preview

Page 1: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

CollaboratorsPhysics seminar at 清華大学 高等研究院

Quantum `spin-metal' phase in an organic Mott insulatorin an organic Mott insulator

with two-dimensional triangular latticeg

Takasada Shibauchi芝内 孝禎 (京都大学)芝内 孝禎 (京都大学)

Department of Physics, Kyoto UniversitySakyo-ku Kyoto JapanSakyo-ku, Kyoto, Japan

Kyoto University

Page 2: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

Current projects in Matsuda-Shibauchi group in KyotoIron-pnictide superconductivity Heavy-fermion superlattices

Nature (2012); Science (2012); PRLs (2009-12) Science (2011); Nature Phys (2012); PRL (2012)Nature (2012); Science (2012); PRLs (2009 12).

Hidden-order mystery in URu2Si2

Science (2011); Nature Phys. (2012); PRL (2012).

Quantum spin liquids in triangular lattices

Science (2011); Nature Phys. (2012); PRL (2012). Nat. Phys. (2009); Science (2010); Nat. Commun. (2012).

Page 3: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

Collaborators

D. Watanabe, M. Yamashita, Y. Matsuda

CollaboratorsD. Watanabe, M. Yamashita, Y. Matsuda

Department of Physics, Kyoto UniversityKyoto , Japan

H. M. Yamamoto, R. KatoRIKEN, Saitama, Japan

T T hi S UjiT. Terashima, S. UjiNational Institute for material Science

Ibaraki, Japan

K. BehniaLPEM (CNRS-UPMC), ESPCI

Paris FranceParis, France

I. SheikinGrenoble High Magnetic Field LaboratoryGrenoble High Magnetic Field Laboratory

Grenoble, France

N. Kawakami, Yong-Baek Kim, P. A. Lee, T. Senthil,Acknowledgement:

Kyoto University

N. Kawakami, Yong Baek Kim, P. A. Lee, T. Senthil, and N. Nagaosa for discussions

Acknowledgement:

Page 4: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

Outline

1 Introduction1. Introduction

2 A quantum spin liquid state in 2D organic Mott insulator2. A quantum spin liquid state in 2D organic Mott insulator EtMe3Sb[Pd(dmit)2]2 with triangular lattice

3. Elementary excitations and phase diagram of the quantum spin liquidquantum spin liquid

4 Quantum spin metal: a novel phase in the Mott Insulator4. Quantum spin metal: a novel phase in the Mott Insulator

5 Summary5. Summary

M. Yamashita et al., Science 328, 1246 (2010).M.Yamashita et al., Nature Phys. 5, 44 (2009).

( )D. Watanabe et al., Nature Commun. (2012).

Kyoto UniversityKyoto University

Page 5: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

Introduction

Quantum Liquid

Q t fl t ti t ti l d iQuantum fluctuation prevents conventional ordering

4He 3He

Page 6: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

Quantum spin liquid (QSL)

Introduction

Quantum spin liquid (QSL)A state of matter where strong quantum fluctuations melt the long-

ti d t b l t t trange magnetic order even at absolute zero temperature.Spin Liquids are states which do not break any simple symmetry: neither spin-rotational symmetry nor lattice symmetryneither spin-rotational symmetry nor lattice symmetry.

P. W. Anderson, Mater. Res. Bull (1973), Science (1987).

Notion of QSL is firmly established in 1DNotion of QSL is firmly established in 1D1D XXZ chain (S = 1/2)

QSLN LRO

Spinon excitation (S=1/2, e=0)

No LROGaplessAlgebraic spin correlation (critical phase)

Page 7: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

IntroductionQSLs in two and three dimensions

Geometrical frustrations are required

QSLs in two and three dimensions

A large ground-state degeneracyClassical

Quantum Quantum fluctuation lifts the degeneracy and a QSLQuantum fluctuation lifts the degeneracy and a QSL ground state may appear

Only a few candidate materials existTriangular lattice Kagome lattice Pyrochlore lattice

Only a few candidate materials exist.

3He on graphiteOrganic compounds

ZnCu3(OH)6Cl2 (Herbertsmithite)BaCu3V2O8(OH)2 (Vesigniete)

Na4Ir3O8・・

Page 8: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

IntroductionQSLs in two and three dimensions

Geometrical frustrations are required

QSLs in two and three dimensions

A large ground-state degeneracyClassical

Quantum Quantum fluctuation lifts the degeneracy and a QSLQuantum fluctuation lifts the degeneracy and a QSL ground state may appear

Only a few candidate materials existTriangular lattice

Only a few candidate materials exist.

3He on graphite Organic compoundssurface bulk

Page 9: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

IntroductionOrganic Mott insulators with trianglar lattice

κ-(BEDT-TTF)2Cu2(CN)3 ET

Organic Mott insulators with trianglar lattice

EtMeEtMe33Sb[Sb[PdPd((dmitdmit))22]]22 dmit

Strong candidates that host a QSL stateStrong candidates that host a QSL state

What kind of QSL is realized?

Many types of QSL proposed• Resonating valence bond liquid

What kind of QSL is realized?

Elementary excitations S i ith F i f• Resonating-valence-bond liquid

• Chiral spin liquid• Quantum dimer liquid

Spinon with Fermi surface• Vison

• Majorana fermionsQuantum dimer liquid• Z2 spin liquid

• Algebraic spin liquid

Majorana fermions• etc…

• Spin Bose Metal• etc…

Page 10: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

Heisenberg spins on 2D triangular lattice

Resonating Valence Bond (RVB) Liquid Long-range order

Further fluctuations are required to realize a QSL

Superposition of different configurationsResonance between highly degenerated spin configurations leads to a liquid-like

3-sublattice Néel order (120°structure)spin configurations leads to a liquid like

wavefunction. B. Bernu, C. Lhuillier, L. Pierre, PRL (1992). L. Caprioti, A. E.E. Trumper, S. Sorella, PRL (1999).D. Huse and V. Elser, PRL (1988).

( )

P. Fazekas and P. W. Anderson, Philos. Mag. (1974).

Page 11: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

H i b d l f t i l l tti

Quantum spin liquid on a 2D triangular lattice

Heisenberg model for a triangular lattice4 spin ring exchange model

))(( ))(())((

4231

234143211234

ssssssssssss

⋅⋅−⋅⋅+⋅⋅=P

??

??

?

??

θ1−θ2+θ3−θ4=πWhen J4>0

??

??

?

4-spin ring exchange yields a strong frustration

??

?

?

??

frustrationG. Misguich et al., PRB (1999).

W LiMing G Misguish P Sindzingre C Luhuiller PRB (2000) ?W. LiMing, G. Misguish, P. Sindzingre, C. Luhuiller, PRB (2000).

QSL with gapped excitations

Page 12: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

Quantum spin liquid on a 2D triangular lattice

Hubbard model

NNonon--MMagnetic agnetic IInsulating nsulating phase near Mphase near M--I transition I transition NMI 120⁰ NéelMetalt’/t = 1

(Quantum spin liquid)

Morita-Watanabe-Imada, JPSJ (2002).

Yoshioka-Koga-Kawakami, PRL (2010).

Kyung-Tremblay, PRL (2006).

Energy resolutions of these calculations are not enough to discuss low energy excitations (E~J/100)

Page 13: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

κ-(BEDT-TTF)2Cu2(CN)3

BEDT TTF l lSH

Spin

dimer

BEDT-TTF moleculebis(ethylendithio)-tetrathiafulvalence

C

Viewed from

Spin 1/2

Viewed from the top

Layer of BEDT-TTF

Layer of anion(nonmagnetic)(nonmagnetic)

J~250 K

t’/t = 1 06

Mott insulator : t 54 5 meV t’ 57 5 meV and U 448 meV (U/t 8 2)

t /t = 1.06(Hückel Method)

Mott insulator : t~54.5 meV, t ~57.5 meV and U~448 meV (U/t~8.2)

Page 14: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

κ-(BEDT-TTF)2Cu2(CN)3

Spin 1H NMR

dimer

Spin 1/2

H NMRNo internal magnetic field Y. Shimizu et al., PRL (2003).

Layer of BEDT-TTF

Layer of anion

J~250 K

t’/t = 1 06t /t = 1.06(Hückel Method)

F. L. Pratt et al., Nature (2011).μSR

Page 15: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

κ-(ET)2Cu2(CN)3 : inhomogeneity or phase separation13C NMR 8C NMR

6

8LF-μSRT = 50 mK

4

6

mm

etry

(%) Relaxation curve

below 300 mK

2

3950G100G50G30G20G

Asy

m two components

0 3 6 9 120

10G7G5G3GZF

Time (μs)

S. Nakajima et al. ArXiv 1204.1785

Y. Shimizu et al. PRB 73, 140407 (2006).NMR recovery curve shows

Time (μs)

Microscopic phase separation between gapped and gapless regions

NMR recovery curve shows stretched exponential

α<0.5 below 1Ksinglet region

(non-magnetic gapped)Di t ib ti f TDistribution of T1 magnetic phase

(gapless)The genuine feature of the QSL may be masked by inhomogeneity or phase separation. More homogeneous system is required.

Page 16: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

2D spin system S = ½ Triangular latticeβ’- EtMe3Sb[Pd(dmit)2]2

2D layer of

SIDE VIEW TOP VIEW

2D spin system S ½ Triangular lattice

2D layer ofPd(dmit)2 molecule

SpinCation layerNon-magenticX = EtMe Sb

Spin 1/2

X = EtMe3Sb,Et2Me2Sb,etc.

Dimerization → Half-filled Mott insulatortS:tB:tr = 1:1.02:0.93

Very clean single crystals are availableMany material variants are available

t’/t =0.93Many material variants are available

R. Kato’s group at RIKEN

Page 17: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

Quantum spin liquid state in β’- EtMe3Sb[Pd(dmit)2]2Two-dimensional Mott system with a quasi-triangular lattice

2D l f

Clean system with small defectsTwo dimensional Mott system with a quasi triangular lattice

2D layer ofPd(dmit)2 molecule

Non-magentic layerX = EtMe3Sb, Et2Me2Sb,,,

EMe3Sb tS:tB:t = 1:1 02:0 93

κ-(BEDT-TTF)2Cu2(CN)3tS:tB:tr 1:1.02:0.93

Specific heat

dimer

Spin 1/2

Specific heat

t’/t =0.93(t’/t =1.06 for ET)

Page 18: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

New QSL system EtMe3Sb[Pd(dmit)2]2No magnetic order down to ~J/10 000

β’-(Cation)[Pd(dmit)2]2χ(T):2D triangular

No magnetic order down to ~J/10,000

χ( ) g

J = 220 ~ 250 K

N i t l ti fi ld N i t tiNo internal magnetic field

ZF μSR

No muon spin rotation 13C NMR

Frustration

K K d d R K tK. Kanoda and R. KatoAnnu. Rev. Condens. Matter Phys. (2011).

Itou et al., Nature Phys. (2010).Y. Ishii et al.

Page 19: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

New QSL system EtMe3Sb[Pd(dmit)2]2NMR relaxation curve

β’-(Cation)[Pd(dmit)2]2

NMR relaxation curve

1.0

0.8

nt

EtMe3SbHomogeneous

T. Itou (2010)

α

0.6

0.4

etch

exp

one

α

0.2

0 0St

re

κ-(ET)2Cu2(CN)3

Inhomogeneous

Frustration

K K d d R K tHomogeneous spin liquid state at low t t

0.00.01 0.1 1 10

T (K)

K. Kanoda and R. KatoAnnu. Rev. Condens. Matter Phys. (2011).

Itou et al., Nature Phys. (2010).temperatures.Supported by μSR Y. Ishii et al. (unpublished).

Page 20: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

Et M Sb

β’-(Cation)[Pd(dmit)2]2Et M Sb (t’/ t 1 01)Et2Me2Sb

tt

t’ Et2Me2Sb:

Et2Me2Sb (t’/ t = 1.01)

Dimer2.924 Å

Pd strong

Me4P

Et2Me2Sb:EtMe3Sb=88 : 12 FP 2-

0Dimer

at 10 K 3.134 Å

Pd

e4Me4As

EtM A

2-

3.331 ÅPd

Pd weak

EtMe3AsMe4Sb

Et2Me2AsEt2Me2P

COAFLO QSL

Charge Order (CO)

EtMe3SbAFLO QSL

2 Dimer- →

1st order

emu

mol

-1

FP: Frustrated paramagnetic stateAFLO: Antiferromagnetic ordered state

2 Dimer Dimer 0 + Dimer 2-

(strong) (Weak)χ

/ e

AFLO: Antiferromagnetic ordered stateCO: Charge ordered stateQSL: Quantum spin liquid state CPL, 411 (2005) 133 / JPSJ, 74 (2005) 2754

T / K

Page 21: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

What kind of a QSL in EtMe3Sb[Pd(dmit)2]2 ?

El t it ti

Two key questions

Elementary excitations

Gapped or gapless?pp g p

Magnetic or nonmagnetic?

Spin-spin correlation function

Phase diagramPhase diagram

How the nature of the QSL varies when tuned by non thermal parameters such as frustration?non-thermal parameters, such as frustration?

Quantum critical nature of the QSLQuantum critical nature of the QSL

Kyoto University

Page 22: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

Elementary excitations : gapless or gapped?

S ifi h t300

ol-1

)

1000

Specific heatS. Yamashita et al. Nature Commun. (11)spin 1/2

mJK

-2m

o

500

mJK

-2m

ol-1

)

750

200

CP

/T( m

0

250

CP

/T( m

Spin liquid

100

C 00 10 20 30 40

EtMe3Sb

T 2 ( K2 )CPT-1 = γ + βT 2

(γ ≈ 20 mJK-2mol-1) 3

Et2Me2Sb

γGapless excitation

010 2 3 4 5 6

T 2 ( K2)

2 2

Charge order

spin 0

T 2 ( K2)Charge order

Contaminated by large Schottky contribution at low temperatures

Page 23: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

Thermal conductivityElementary excitations : gapless or gapped?

TΔ1Thermal conductivityNot affected by localized impurities

No Schottky contributionVery low temperature measurements are available

l

TQWt

Δ= κ1

Spin liquidEtMe3Sb[Pd(dmit)2]2

Very low temperature measurements are available.

Spin liquide3Sb[ d(d )2]2

spin 1/2κ κ +κ

Charge orderκ=κspin+κphonon

κ=κphonon

Et2Me2Sb[Pd(dmit)2]2 κspin

R id l /T phononResidual κ/Tat T→0 K

M. Yamashita et al., Science 328, 1246 (2010).

spin 0

Page 24: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

Thermal conductivity

Elementary excitations : gapless or gapped?TΔ1Thermal conductivityl

TQWt

Δ= κ1

l⋅⋅= sC υκ

Clear residual of κ/T κ/T (T→0) = 0.19 W/K2mE id f gapless e citationEvidence for a gapless excitation, like electrons in normal metals.

Estimation of mean free pathmolK/mJ20~/ 2TC

Spin liquid

κspin

R id l /T

nm 1~ m 2.1 a>>= μl

More than 1000 times longer than the Residual κ/Tat T→0 K

More than 1000 times longer than the interspin distance!!

Itinerant excitation

M. Yamashita et al., Science 328, 1246 (2010).

Homogeneous Extremely long correlation length

Page 25: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

Thermal conductivity

Elementary excitations : gapless or gapped?TΔ1Thermal conductivityl

TQWt

Δ= κ1

Quantum spin liquid conducts p qheat very well, as good as brass.

Brass (Cu0.7+Zn0.3)Spin liquid

( )

5 yen coiny

M. Yamashita et al., Science 328, 1246 (2010).

Brass

Page 26: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

Gapless elementary excitationsWhat kind of QSL state in EtMe3Sb[Pd(dmit)2]2 ?

Gapless elementary excitationsAre they magnetic?Remaining key question

Haldane system (S = 1)

Spin-spin correlation function1D S=1/2 Heisenberg

n

CuCl2∙2N(C5D5)NENP

gnet

izat

ion

Mag

GaplessPower law (algebraic)

GapExponential

Kyoto University

p

Page 27: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

What kind of QSL state in EtMe3Sb[Pd(dmit)2]2 ?Gapless elementary excitationsGapless elementary excitations

Are they magnetic?Remaining key question

Uniform susceptibility and magnetization at low temperaturesMagnetic torque+ESR (down to 30 mK up to 32 T)

SQUID (Only down to ~4 K due to Curie contribution)

•Isotropic contribution from impurities is cancelled•Isotropic contribution from impurities is cancelled.Torque picks up only anisotropic components.

•High sensitivity.

Kyoto University

Measurements on a tiny single crystal are possible.

Page 28: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

Magnetic torque measurements in EtMe3Sb[Pd(dmit)2]2

Page 29: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

Uniform susceptibility and magnetization of QSLSusceptibility χ Magnetization MSusceptibility χ⊥plane Magnetization M⊥plane

30 mK

T-independent and remains finite at T 0K increases linearly with H

Gapless magnetic excitations (absence of spin gap)Gapless magnetic excitations (absence of spin gap)( ξ: magnetic correlation length, Δ: spin gap )1−∝Δ ξ

Divergence of ξ i e QSL is in a critical stateDivergence of ξ , i.e. QSL is in a critical stateη−∝ rSrS zz )0()( Algebraic spin liquid

Page 30: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

Uniform susceptibility and magnetization of QSL

H th QSL h h th d f f t ti i ?Deuteration

How the QSL changes when the degree of frustration varies?

Cation layer X = EtMe3Sb,Three Me groups are deuterated

h9-dmit: pristined9-dmit :deuterated

h d it C / T 20 J/K2 lh9-dmit: Cp / T ~ 20 mJ/K2mold9-dmit : Cp / T ~ 40 mJ/K2mol

Deuteration changes the low temperature specific heat. Presumably it reduces t’/t.

d9-dmit:

S. Yamashita et al., Nature Commun. (2011).h9-dmit: d9 dmit:

Page 31: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

Uniform susceptibility and magnetization of QSLSusceptibility χ Magnetization MSusceptibility χ⊥plane Magnetization M⊥plane

30 mK

Deuteration changes the degrees of geometrical frustration.

Page 32: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

Uniform susceptibility and magnetization of QSLSusceptibility χ Magnetization MSusceptibility χ⊥plane Magnetization M⊥plane

30 mK30 mK

Deuteration changes the degrees of geometrical frustration.

Both h and d dmit systems exhibit essentially the sameBoth h9- and d9-dmit systems exhibit essentially the same paramagnetic behavior with gapless magnetic excitations.

B h i i i l dBoth systems are in a critical state down to kBT~J/10,000

Page 33: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

Phase diagram of the QSLCase-I Case-II

d9-dmith9-dmit

Quantum critical ‘phase’

D W t b t l N t C 3 1090 (2012)

Both h9-dmit and d9-dmit with different degrees of frustration

D. Watanabe et al., Nature Commun. 3, 1090 (2012).

exhibit essentially the same paramagnetic behavior with gapless magnetic excitations.

An extended quantum critical phase, rather than a QCP.

Page 34: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

What kind of spin liquid is realized in dmit?

Spin liquid with spinon Fermi surfaceResonating-Valence-Bond theory

Algebraic spin liquidAlgebraic spin liquid

Spin Bose MetalQuantum Dimer Model

Chiral spin liquidZ2 spin liquid

Page 35: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

Gapped Spin LiquidGapless Spin Liquid Gapless Fermionic spinon or spin Bose metal

What kind of spin liquid is realized in dmit?

Gapped Spin LiquidGapless Spin Liquid Gapless Fermionic spinon or spin Bose metal

Resonating-Valence-Bond theory

Spin liquid with spinon Fermi surface

Quantum

Spin Bose Metal

critical ‘phase’

Gapped Bosonic spinon

Algebraic spin liquid

Page 36: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

Spin liquid with spinon Fermi surface?

Quantum iti l ‘ h ’

A simple thermodynamic test assuming 2D Fermion with Fermi surfacePauli susceptibility Specific heat coefficient C/T

critical ‘phase’

Pauli susceptibility Specific heat coefficient C/T

γ~20mJ/K2 mol (experimental value)γ~20mJ/K mol (experimental value)Fermi temperature

(exp. value)

These values are (semi-)quantitatively consistent with the theory of the QSL that possesses a spinon Fermi surface.

Page 37: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

A new phase in a Mott insulator

Metal Quantum `spin-metal’ phase

D. F. Mross and T. Senthil, PRB (2011).

Spin excitation behave as in Pauli paramagnetic metals with Fermi surface, even though the charge degrees of freedom are frozen.

Page 38: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

Spin liquid with spinon Fermi surface?More direct methods to detect the spinon Fermi surfaceMore direct methods to detect the spinon Fermi surface

Thermal Hall effect Quantum oscillationO I Mitrunich PRB (2006)

H. Katsura, N. Nagaosa and P. A. Lee, PRL (2010).O. I. Mitrunich, PRB (2006).

30 mK up to 35 T

κxy thermal Hall conductivity

imer

)

=κxy

/κxx

0.23 K

M⊥

(μB/d

i

tanθ

H=

1 K

D. Watanabe et al., Nature Commun. (2012).

No discernible oscillation

No discernible thermal Hall effectM. Yamashita et al., Science (2010).

No discernible thermal Hall effectThe coupling between the magnetic field and the gauge flux may be weak.Z2 spin liquid with pseudo-Fermi surfaces? Barkeshli, Yao, Kivelson (2012).

Page 39: QSL Tsinghua2012 ShibauchiHeisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid Long-range order Further fluctuations are required to realize a QSL Superposition

Summary

Ground state and phase diagram of the QSL in 2D organic MottGround state and phase diagram of the QSL in 2D organic Mott insulator EtMe3Sb[Pd(dmit)2]2 with triangular lattice

Distinct residual thermal conductivity and paramagnetic susceptibility in the zero temperature limit.

The QSL is an algebraic spin liquid with a magnetically gapless ground state, i.e. a critical state with infinite magnetic correlation length.

Essentially the same results in the deuterated sample with a different degree of geometrical frustration

The emergence of an extended `quantum spin-metal phase' in the Mott insulator, in which the low-energy spin excitations

M.Yamashita et al., Nature Phys. 5, 44 (2009).

behave as in Pauli paramagnetic metals with Fermi surface.

M. Yamashita et al., Science 328, 1246 (2010)., y , ( )

Kyoto UniversityKyoto UniversityD. Watanabe et al., Nature Commun. 3, 1090 (2012).