34
Quantum-Dot Lasers Nanoelectronics term project R91543013 徐徐徐 徐徐徐徐 : 徐徐徐

Quantum-Dot Lasers

  • Upload
    elgin

  • View
    65

  • Download
    0

Embed Size (px)

DESCRIPTION

Quantum-Dot Lasers. Nanoelectronics term project R91543013 徐維良 指導教授 : 劉致為. Outline. 半導體雷射與 Quantum dot laser Quantum dot laser 的製造 Quantum dot laser 的特色 高能的 Quantum dot laser 1.3 µ m Quantum Dot Lasers 結論. 半導體雷射. LASER:Light Amplification by Stimulated Emission of Radiation 必要的元件 : - PowerPoint PPT Presentation

Citation preview

Page 1: Quantum-Dot Lasers

Quantum-Dot Lasers

Nanoelectronics term projectR91543013徐維良指導教授 : 劉致為

Page 2: Quantum-Dot Lasers

Outline

半導體雷射與 Quantum dot laser Quantum dot laser 的製造 Quantum dot laser 的特色 高能的 Quantum dot laser 1.3 µm Quantum Dot Lasers 結論

Page 3: Quantum-Dot Lasers

半導體雷射LASER:Light Amplification by Stimulated Emission of Radiation

必要的元件 :

--Gain medium

--Optical feedback

•利用 Quantum dot transition 的放射結合來放大 . •Pumping over p-n junction by current injection•利用水晶面來反射以共振

Page 4: Quantum-Dot Lasers

增益與尺寸

Page 5: Quantum-Dot Lasers

Quantum Dot 的好處

Discrete energy level : high density of states

no temperature dependence

Page 6: Quantum-Dot Lasers

Quantum Dot 的好處

reduced diffusion→ no diffusion to surfacesreduced active volume→ low absorption, low inversion densitiesrefractive index decoupled from carrier density→ no chirp

Page 7: Quantum-Dot Lasers

Quantum dot laser 的製造

MBE-Growth

Integration of Quantum dot layer into the active zone of a semiconductor laser

Dot density>10^10cm^-2

Page 8: Quantum-Dot Lasers

改良 Carrier Confinement

•SSLs as 布拉格反射體•改良 Carrier Confinement

Quantum dot laser 的 active region 對於 thermal losses 較敏感

Page 9: Quantum-Dot Lasers

改良 Carrier Confinement

不同區域的 short period superlattices 之結合mini bandgap 的部分重合導致 effective barrier height 的增加

Page 10: Quantum-Dot Lasers

溫度與 Quantum dot laser

Operation temperature > 210 °C Reduced wavelength shift:QW: 0.33 nm/KQDots: 0.17 - 0.19 nm/K

Page 11: Quantum-Dot Lasers

Quantum dot laser 之增益

•About 3 times broader gain spectrum due to dot size distribution•Much larger tuning range for wavelength tuning of DFB lasers

Page 12: Quantum-Dot Lasers

Single mode Emitting Quantum dot lasers

•使用 E-Beam 製造• Wavelength selection by gratingperiode (SMSR = 52 dB)• Ith < 20 mA for all periods(.λ = 33 nm)

Page 13: Quantum-Dot Lasers

溫度穩定性•Stable single mode emission

•No mode hopping

•Single mode operation over

194K temperature range

•三倍大的頻寬•溫度飄移少一倍

Page 14: Quantum-Dot Lasers

Quantum Dot 與 Quantum Well

• Reduced threshold current density for L > 2.5 mm (cross over)• Lower optical confinement for QDots, but inversion condition is relaxed

Page 15: Quantum-Dot Lasers

Material Gain of Q-Dot and QW-Laser

Page 16: Quantum-Dot Lasers

波長對溫度敏感度Quantum dot laser 有較低的溫度敏感度

△λ/ △ T

= 0.35 nm/K for QWLs

= 0.23 nm/K for QDLs

Page 17: Quantum-Dot Lasers

高能的 Quantum dot laser

• 2 mm × 100 µm broad area laser• Record value of 4 W cw output power• Wall plug efficiency > 50 % at 1 W

Page 18: Quantum-Dot Lasers

高能的 Quantum dot laser

• Emission by fundamental mode• High temperature stability• Low wavelength shift (for QWs 50% higher)

Page 19: Quantum-Dot Lasers

高能的 Quantum dot laser•在 20°C 與 80°C 的區域中,每增加一瓦的能量,只有多百分之二十的電流

•高的 characteristic temperature

T= 110 K up to 110 °C

Page 20: Quantum-Dot Lasers

1.3 µm Quantum Dot Lasers 替代昂貴的 InP-based material system Growth on GaAs substrates, -- 便宜、 大的 WAFER 面積 (6", 8") special dot 優點 --low threshold density --broad gain function --low temperature sensitivity

Page 21: Quantum-Dot Lasers

InAs/GaInAs Quantum Dots

•InAs embedded in GaInAs buffer layers – Room temperature emission at 1.3 µm – High quantum dot density• Growth rate: r(GaAs) = 1 µm/h r(InAs) = 140 to 260 nm/h• Growth temperature: T = 510 °C

Page 22: Quantum-Dot Lasers

1.3 µm Quantum Dots

Page 23: Quantum-Dot Lasers

1.3 µm Quantum Dots

• High dot densities for InAs on GaInAs• 35 - 40 meV line width• 60 meV level distance• Longer wavelength at higher In content

Page 24: Quantum-Dot Lasers

1.3 µm Quantum Dot Laser

•6 InAs/GaInAs Q-Dot layers with 50 nm GaAs spacers• 650 nm cavity width• GRINSCH with SSL structure• 1,6 µm Al0.4Ga0.6Ascladding layers

Page 25: Quantum-Dot Lasers

1.3 µm Quantum Dot Laser

• Laser emission by fundamental mode• 800 µm resonator length possiblewithout mirror coating

Page 26: Quantum-Dot Lasers

Threshold Current Density

• For 6 Q-Dot layers threshold doubles but 800 µm device length possible• For 3 Q-Dot layers low threshold current density (100 - 200 A/cm2)but limitation to about 2.5 mm resonator length

Page 27: Quantum-Dot Lasers

Modal Gain of Quantum dot Layers

• L = shortest resonator length at which laser operation is still possible on the ground state• About 2 - 3 cm-1 modal gain per dot layer• Best results with 6 dot layers achieved

Page 28: Quantum-Dot Lasers

Tuning Range of QDot-Lasers

• Linear correlation of gratingperiod and emission avelength– Tuning range > 35 nm– Basic device properties arealmost identical over the whole tuning range→ A further extension of the tuning range to longer and shorter wavelengths should be possible

Page 29: Quantum-Dot Lasers

高頻特性

• Large modulation bandwidthfor 800 µm long HR/HRcoated device• 3dB bandwidth thermally limited

Page 30: Quantum-Dot Lasers

結論• Quantum dot laser 的好處

– 低很多的 inversion carrier density ( 低 threshold current)– 對溫度較不敏感– 有大的頻寬– low chirp

Page 31: Quantum-Dot Lasers

結論• 已實體化的 Quantum dot laser

– 980 nm single mode emitting laser with extremely high temperature stability (Top = 15 °C - 210 °C)– 980 nm high power lasers (4 W cw output power, > 50% wall plug eff.)– 1.3 µm laser with high device performance (Ith = 4.4 mA, Top. > 150°C)

Page 32: Quantum-Dot Lasers

Referencehttp://www.compoundsemiconductor.net/articles/news/6/3/21/1

http://fibers.org/articles/fs/6/12/3/1

http://fibers.org/articles/fs/6/11/3/1

http://www.ee.leeds.ac.uk/nanomsc/presentations/module2presentation.htm

http://www.indianpatents.org.in/ach/quant.htm

http://newton.ex.ac.uk/aip/physnews.595.html

http://www.aip.org/enews/physnews/2003/

http://www.elec.gla.ac.uk/groups/nanospec/dotlaser.html

http://www.shef.ac.uk/uni/academic/N-Q/phys/research/semic/qdresgroup.html#Laser

Page 33: Quantum-Dot Lasers

Referencehttp://optics.org/articles/ole/7/8/2/1

http://feynman.stanford.edu/Html-CQED/sqdl.html

http://www.hinduonnet.com/thehindu/2001/09/13/stories/08130006.htm

http://www.phy.ncu.edu.tw/so/Chinese/Quantum%20Dots/Search%20subject1.htm

http://www.sciam.com.tw/read/readshow.asp?FDocNo=121&DocNo=191

L.A.Coldren and S.W.Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York 1995).

M.Asada, Y.Miyamoto, and Y.Suematsu, IEEE J.Quantum Electron. QE-22, 1915(1986).

Page 34: Quantum-Dot Lasers

Reference•R. P. Mirin, J. P. Ibbetson, K. Nishi, A. C. Gossard, and J. E. Bowers, Appl. Phys. Lett.67, 3795 (1995).•K. Nishi, H. Saito, S. Sugou, and J.-S. Lee, Appl. Phys. Lett. 74, 1111 (1999).•V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Yu. Egorov, A. V.Lunev, B. V. Volovik, I. L. Krestnikov, Yu. G. Musikhin, N. A. Bert, P. S. Kop’ev, andZh. I. Alferov, N. N. Ledentsov, and D. Bimberg, Appl. Phys. Lett. 74, 2815 (1999).•D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, Appl. Phys. Lett.73, 2564 (1998).•Y.M. Shernyakov, D.A. Bedarev, E.Y. Kondrateva, P.S. Kopev, A.R. Kovsh, N.A. Maleev, M.V. Maximov, S.S. Mikhrin, A.F. Tsatsulnikov, V.M. Ustinov, B.V. Volovik,A.E. Zhukov, Z.I. Alferov,N.N.Ledentsov, D. Bimberg, Electron. Lett, 35, 898, (1999)•G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, Electron. Lett. 35, 1163(1999).•L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy,IEEE Photon. Technol. Lett. 11, 931 (1999).