136
Reprinted from Citation: Bogucki, Peter (2008) “Animal Exploitation by the Brze Kujawski Group in the Brze Kujawski and Osonki Region“ in Grygiel, Ryszard, Neolit i Pocztki Epoki Brzu w Rejonie Brzecia Kujawskiego and Osonek (The Neolithic and Early Bronze Age in the Brze Kujawski and Osonki Region), volume II/3, pp. 1581-1704. ód: Konrad Jadewski Foundation for Archaeological Research/Museum of Archaeology and Ethnography.

Reprinted from - Princeton

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Reprinted from - Princeton

Reprinted from

Citation: Bogucki, Peter (2008) “Animal Exploitation by the Brze�� Kujawski Group in the Brze�� Kujawski and Os�onki Region“ in Grygiel, Ryszard, Neolit i Pocz�tki Epoki Br�zu w Rejonie Brze�cia Kujawskiego and Os�onek (The Neolithic and Early Bronze Age in the Brze�� Kujawski and Os�onki Region), volume II/3, pp. 1581-1704. �ód�: Konrad Ja�d�ewski Foundation for Archaeological Research/Museum of Archaeology and Ethnography.

Page 2: Reprinted from - Princeton
Page 3: Reprinted from - Princeton

1581

Fig. 1288. Skull of an elderly sheep from Osłonki, Pit 10. Ryc. 1288. Czaszka starszej owcy z jamy 10 w Osłonkach, st. 1.

Peter Bogucki wishes to acknowledge the

large contribution that Daniel Makowiecki made

to this report in allowing his unpublished anal-

yses of faunal remains from Konary, Miecho-

wice 4, Miechowice 4a, Pikutkowo, Smólsk, Za-

gajewice, and the small sample from Osłonki

to be included here. Any errors of presenta-

tion and interpretation are solely the responsi-

bility of Peter Bogucki. Bogucki’s participation

in the research at Brześć Kujawski was support-

ed by Harvard University Department of An-

thropology graduate student fieldwork funds.

His participation in the research at Osłonki was

made possible by grants from the National Geo-

graphic Society, the Wenner–Gren Foundation

for Anthropological Research, Inc., the Interna-

tional Research and Exchanges Board (IREX),

and the American Philosophical Society. Rich-

ard Meadow generously allowed Bogucki to use

his BONECODE faunal database system for

the analysis of the bones from Brześć Kujawski.

Pam J. Crabtree and Doug Campana generously

permitted Bogucki to use their ANIMALS pro-

gram for the initial recording of the Osłonki fau-

nal assemblage, and Pam Crabtree’s advice over

many years and especially during the prepara-

tion of this report is warmly appreciated. Lisan-

dre Bedault graciously shared with me the text

of a forthcoming paper on Neolithic animal use

in the Paris Basin (Bedault and Hachem 2008)

Lucas Giron assisted in the verification of the

bibliography.

* Dr Peter Bogucki, Princeton University, USA (with contributions by Daniel Makowiecki).

Page 4: Reprinted from - Princeton

1582

Neolithic sites of the “Danubian” tradition

in riverine interior central Europe (Bogucki

2003), beginning with the Linear Pottery culture

around 5600 cal B.C. and ending about 4000 cal

B.C. with regional groups such as Brześć Ku-

jawski in Kuyavia, Jordanów/Jordansmühl in

Silesia and Bohemia, and Villeneuve–Saint–

Germain in France, often do not yield large as-

semblages of animal bones. A very large collec-

tion of animal bones from a single site would

number several thousand identified specimens,

whereas the average sample from any one site

is usually in the hundreds. Preservation factors

and recovery methods determine the relative-

ly small size of these samples. Across much of

riverine interior Europe, decalcified loess soils

cause bone to disappear, and thus from many

sites only teeth are preserved. Sites with good

bone preservation are usually found off the

loess in areas where settlement was on clay (as

in the Polish lowlands) or gravel (as in the Par-

is Basin). Hand recovery of animal bones dur-

ing coarse excavation methods has also resulted

in the destruction of specimens that managed to

survive over six millennia.

The Danubian animal economies were based

on the major domestic taxa that came to Europe

from the Near East: cattle, sheep, goat, and pig.

Hunted wild animals played a relatively small but

significant role, as did birds, reptiles, and fish.

The domestic livestock have been shown con-

clusively to have originated from populations

in the Near East and Anatolia. Sheep and goat

have no native counterparts in Europe, so trac-

ing them back to the Near East is fairly straight-

forward. Goats were domesticated first in the

Zagros Mountains around 8000 B.C. (Zeder and

Hesse 2000), with sheep shortly thereafter. Cat-

tle were domesticated in Anatolia between 7000

and 6000 B.C. (Edwards et al. 2007). Claims

made over many decades for indigenous inde-

pendent European domestication of cattle (e.g.

Nobis 1975) have been shown by recent DNA

analyses to be unsubstantiated (Bollongino et al.

2006), although there is some evidence for in-

gression of local male aurochs DNA into the do-

mestic cattle lineages (Götherström et al. 2005).

DNA analysis has revealed a complicated sit-

uation with pigs, however (Larson et al. 2007,

Dobney and Larson 2006). Although the earli-

est European pigs do appear to stem from Near

Eastern progenitors domesticated around 7000

B.C., there is fairly clear evidence of interbreed-

ing between domestic and wild pigs over the

subsequent millennia. Around 4000–3500 B.C.,

European pig populations came to be dominat-

ed by indigenous DNA derived from wild pop-

ulations, and wild boar is probably the principal

progenitor of all modern European domestic

pigs (Larson et al. 2007).

Bogucki (1989) summarized the gener-

al state of knowledge about early Neolithic an-

imal economies in central Europe, and except

for the addition of the important recent DNA

studies, this picture has not changed significant-

ly in its broadest outline over the past two de-

cades. Although the principal domestic taxa ap-

pear at almost every site, Linear Pottery faunal

assemblages of over a hundred identified speci-

mens are generally dominated by domestic cat-

tle bones, with relatively fewer sheep and goat

bones, and a very small proportion of pig bones

if present at all. Bones of wild animals are very

scarce in Linear Pottery assemblages. Both the

low proportion of pigs and the low number of

wild animal bones are surprising in light of the

forested valley–bottom environment of the Lin-

ear Pottery sites and must be attributable to hu-

man choices. After about 5000 cal B.C., there is

greater variability among Neolithic faunal as-

semblages in riverine interior central Europe.

Some assemblages contain more sheep and goat,

while pig bones come to be represented in great-

er quantities, often comprising 25% or more of

an assemblage. In some instances, the number

of wild animal bones also increases during the

fifth millennium B.C.

Yet there is still quite a bit to be learned

from Neolithic animal bones in riverine interior

central Europe. The fundamental questions for

Page 5: Reprinted from - Princeton

1583

archaeozoologists working in Neolithic central

Europe are the following:

1. Does the faunal assemblage reflect con-

sumption refuse? Is there evidence of other

cultural practices that resulted in bone de-

position?

2. Does the fundamental ratio of domestic to

wild taxa conform to the overall pattern of

majority domestic/minority wild and can

metrical data assist in the differentiation be-

tween wild and domestic cattle and pig?

3. What were the relative proportions of the

different domestic taxa present in the faunal

assemblage of a given site?

4. Do these proportions vary from feature to

feature on a single site and what can this tell

us about taphonomic processes and human

cultural practices?

5. Do the proportions of anatomical elements

differ from feature to feature and what can

this tell us about taphonomic processes and

human cultural practices?

6. If multiple assemblages are available with-

in a region, how do the proportions of taxa

and of anatomical elements differ from one

site to another and how might this inform

us about human cultural practices?

7. What can the epiphyseal fusion data, tooth

eruption data, and metrical data tell us about

kill–off patterns and population structures?

8. Is there evidence for butchery techniques

and pathology?

9. Is there evidence for bone working, partic-

ularly in the selection of specific anatomi-

cal elements from particular taxa that might

skew the proportions in the consumption

refuse?

10. Are any unusual wild mammals present and

what can their ecology tell us about human

behavior?

11. What species of wild birds, reptiles, and fish

are present and in what quantities, and what

can their ecology tell us about land use and

seasonality?

The goal of such studies, including the one

presented here, should be the characterization

of the species representation AND the variabil-

ity of samples of animal bones from as many

sites as possible within particular regions. The

danger, as Midgley (1985) has noted, in making

broad generalizations from the sample of an in-

dividual site cannot be overstated. When a re-

gion lacks many faunal samples, this is tempt-

ing to do, but an increased number of samples

brings increased variability, so it is then impor-

tant to identify the broad similarities and the el-

ements that show the greatest variation.

The evidence from animal bones cannot

be considered in isolation, and it is crucial that

their study be complemented by knowledge

about the plant economies and the prehistoric

environments of Neolithic sites. Unfortunately,

comprehensive research programs that integrate

archaeozoological, archaeobotanical, and palae-

oenvironmental data are rare in riverine inte-

rior central Europe. In contrast to the relative-

ly thin archaeozoological data across Neolithic

central Europe, the corpus of archaeobotanical

data is much richer (Bogaard 2004) and has per-

mitted the reconstruction of the Neolithic plant

economy in some detail. Palaeoenvironmen-

tal reconstruction has been confined to specific

localities (e.g. Bakels 1978; Kalis and Meurers–

Balke 1997; Kalis, Merkt, and Wunderlich 2003;

Nalepka 2005) but holds tremendous promise

for understanding Neolithic land use.

The analysis below is framed as a traditional

zooarchaeological investigation, with the focus

on the role of animals in the Neolithic economy.

It does not directly confront the social and sym-

bolic issues regarding Neolithic animal use such

as those raised by Russell (1999) and Marciniak

(1999, 2005). While it does not deliberately ig-

nore the fact that relationship between animals

extended into spheres beyond their use as a re-

source for food and raw materials, this study re-

flects the main interests of the principal author.

The data presented below certainly can be taken

further to consider social and symbolic issues at

a later date.

In his report on his excavations at Brześć

Kujawski that began in 1933, Konrad Jażdżewski

mentioned the presence of animal bones in sig-

nificant quantities (Jażdżewski 1938). The fact

that they were recovered systematically testi-

Page 6: Reprinted from - Princeton

1584

fies to the high quality of Jażdżewski’s research

methods for the time. Unfortunately, many lots

from the 1933–1939 excavations were mixed

or lost during World War II, and the materials

from only a few features survived intact for sub-

sequent analysis.

When Ryszard Grygiel and Peter Bogucki

began their excavations at Brześć Kujawski in

1976, they recognized immediately that the fau-

nal remains from Neolithic features had consid-

erable research potential. As a result, a high pri-

ority was placed on the systematic recovery and

subsequent analysis of animal bones. In addition

to the hand–collection of bones through trowel-

ing with an emphasis on intact specimens with

minimal damage, wet–sieving of selected fea-

tures was introduced, which was novel for Pol-

ish archaeology at the time. This resulted in the

recovery of many small specimens, particular-

ly of fish. Bogucki undertook training in faunal

analysis through the newly–established Center

for Materials Research in Archaeology and Eth-

nology in Cambridge, Massachusetts. The anal-

ysis of the faunal remains from Brześć Kujawski

recovered in 1976–1979 constituted the basic

research presented in Bogucki’s doctoral dis-

sertation at Harvard University (Bogucki 1981)

as well as several other publications (Bogucki

1980, 1982, 1984).

During the 1980s, additional material

from Brześć Kujawski was studied by Krysty-

na Susłowska and Krystyna Urbanowicz of the

Institute of Environmental Biology, Universi-

ty of Łódź (Grygiel 1986, table 1). Excavations

at Falborz by the Muzeum Ziemi Kujawskiej i

Dobrzyńskiej in Włocławek yielded a sample of

animal bones that was analyzed by Bogucki and

is reported below for the first time. Most impor-

tantly, a test trench at Osłonki in 1987 indicat-

ed the presence of a significant Neolithic settle-

ment and a copious amount of well–preserved

animal bone. The presence of so much animal

bone in such a small area was a key factor in the

decision to undertake excavations at Osłonki.

In 1989 and continuing through 1994, Gry-

giel and Bogucki conducted excavations at

Osłonki with support from the National Geo-

graphic Society, the Wenner–Gren Founda-

tion for Anthropological Research, Inc., and

the Komitet Badań Naukowych. This research,

which resulted in the exposure of over 12,000

square meters, yielded a sample of over 17,000

bone fragments, which are reported for the first

time below. Beginning in 1990 and continuing

through 1996, Bogucki identified and record-

ed the mammal bones from previous excava-

tion seasons using procedures described further

below. As a complement to the faunal analysis,

palaeobotanical and palynological research was

also undertaken concurrently (Bieniek 2002,

Nalepka 2005).

After the conclusion of excavations at

Osłonki, Grygiel continued excavations through

2004 at Miechowice, Konary, Zagajewice, Smól-

sk, and Pikutkowo. The faunal remains from

these investigations were analyzed by Dan-

iel Makowiecki, who has generously permitted

his data to be reported here. In addition, fish

bones from Brześć Kujawski and Osłonki were

analyzed by Makowiecki (2003). Entry of the

Osłonki mammal data into a computer database

was completed in February 2007.

The report below represents an initial syn-

thesis of the earlier data from Brześć Kujawski

and Falborz with the later data from Osłonki

studied by Bogucki and that from Miechowice,

Konary, Zagajewice, Smólsk, and Pikutkowo

analysed by Makowiecki. The size of the Osłonki

assemblage makes it central to this study, for it

enables statements to be made about the rela-

tive abundance of species, body part representa-

tion, livestock population attrition, and metrical

data on the basis of a substantial sample. The in-

formation on faunal exploitation will be further

integrated with the palaeobotanical and palae-

oenvironmental data in a series of subsequent

publications.

A Neolithic farming economy had been pres-

ent in southeastern Kuyavia for nearly a millen-

nium preceding the settlements discussed in this

volume. Sites of the Linear Pottery culture yield-

ed samples of animal bones that were described

in detail by Grygiel (2004) drawing on the anal-

Page 7: Reprinted from - Princeton

1585

yses of Daniel Makowiecki and Peter Bogucki.

Bogucki (1982, 1989) discussed the Linear Pot-

tery animal economy in this region, and the re-

sults of studies in the last two decades confirm

this general picture. A short summary here will

characterize the antecedents of the mature Neo-

lithic animal economy described below.

The most striking feature of the Linear Pot-

tery faunal assemblages throughout central Eu-

rope is the very high representation of domestic

cattle. Sheep and goat are normally represented

to a much lesser degree, and normally pig bones

are present in very low numbers. Linear Pottery

faunal assemblages in southeastern Kuyavia are

no exception to this general pattern. A terna-

ry plot1 of cattle, sheep/goat, and pig in Figure

1289 shows this pattern graphically, using the

data presented by Grygiel (2004) which demon-

strate a remarkable consistency.

Bogucki (1984, 1986) argued that the high

numbers of cattle in Linear Pottery samples and

the presence of ceramic sieves point toward a

high probability that milking and the produc-

tion of dairy products was known by the earliest

farmers of central Europe. The economic logic

of an animal economy in a forested habitat also

argues in favor of dairy production. Studies of

sherds from western Europe (Copley et al. 2005)

indicate that dairying was practiced from early

Neolithic times onward, and the case has been

made that this was also the case in central and

eastern Europe (Craig 2002, Craig et al 2005).

Isotopic analysis of cattle bone is also a promis-

ing line of evidence (Balasse et al. 1997). A fu-

ture line of research to be pursued is the analysis

of potsherds from Neolithic sites in southeast-

ern Kuyavia for evidence of the lipids that are

signatures of dairy products.

1 A ternary, or triangle, plot compares the relative proportions of three variables whose total sums to 100%, which are graphically depicted as positions within an equilateral triangle. Each side of the triangle represents a proportion of 0%, with the point of the triangle opposite that side representing a proportion of 100%. As a propor-tion increases in any one sample, the point representing that sample moves from the side to the opposite point of the triangle. For exam-ple, in Figure 1289, the proportion of pig moves from bottom to top as it increases.

Another notable feature of Linear Pottery

faunal assemblages is the relatively low propor-

tion of wild animal bones, again a pattern visible

across Europe with a few exceptions. In addi-

tion to red deer and roe deer, occasional bea-

ver bones document the presence of that spe-

cies in the habitats settled by the early farmers.

This suggests that these environments already

had some clear meadows which may have oc-

curred in the shallow valleys such as are found

near Linear Pottery settlements at Brześć Ku-

jawski and Miechowice.

Linear Pottery faunal assemblages from else-

where in Kuyavia conform to a similar pattern.

Data reported by Sobociński (1985) with the

addition of data from Radziejów (Świeżyński’s

analysis reported in Gabałówna 1963) provided

the basis for Figure 1290 showing Linear Pottery

assemblages from western and central Kuyavia.

As with the data from southeastern Kuyavia,

there is a nearly universal preponderance of cat-

tle bones, in all but one case over 70% of the

identified bones of the principal domesticates.

An anomalous assemblage is that from Miecho-

wice 7 (a different locality named Miechowice

from the one discussed below) where there is a

significant proportion of sheep/goat.

Page 8: Reprinted from - Princeton

1586

Fig. 1289. Ternary plot of Linear Pottery faunal assemblages

from southeastern Kuyavia.

Ryc. 1289. Wykres trójwartościowy zespołów szczątków zwie-

rzęcych kultury ceramiki wstęgowej rytej z terenu południowo

–wschodnich Kujaw.

100

90

80

70

60

50

40

30

20

10

100

90

80

70

60

50

40

30

20

10

100 90 80 70 60 50 40 30 20 10

Pig

taoG/peehSelttaC

site

Brześć Kujawski 3

Brześć Kujawski 4

Guźlin 2

Smólsk 4

Falborz 1

Miechowice 4

Konary 1

Zagajewice 1

Wolica Nowa 1

Fig. 1290. Ternary plot of Linear Pottery faunal assemblages

from other parts of Kuyavia.

Ryc. 1290. Wykres trójwartościowy zespołów szczątków zwierzę-

cych kultury ceramiki wstęgowej rytej z innych części Kujaw.

100

90

80

70

60

50

40

30

20

10

100

90

80

70

60

50

40

30

20

10

100 90 80 70 60 50 40 30 20 10

Pig

taoG/peehSelttaC

Miechowice 7

Łojewo 1/22

Łojewo 35

Łagiewniki 5

Przybranowo 3

Strzelce 3

Grabie

Radziejów

Page 9: Reprinted from - Princeton

1587

The following section discusses the context,

recovery, preservation, identification, and re-

cording of the animal bones from Lengyel sites

in southeastern Kuyavia, as well as the comput-

erized database systems employed in the study

of the materials from Brześć Kujawski and

Osłonki.

The faunal samples reported in this chap-

ter come from nine sites: Brześć Kujawski, Fal-

borz, Osłonki, Miechowice 4, Miechowice 4a,

Konary, Zagajewice, Pikutkowo, and Smólsk.

A map showing the locations of these sites is

found on Fig. 1, 2, and a description of the ar-

chaeological context of these faunal samples is

found elsewhere in this volume. Although Bo-

gucki identified and analyzed most of the mam-

malian faunal sample from Osłonki, a smaller

portion was identified by Makowiecki. The lat-

ter assemblage came from two cultural layers in

360/361 and 370/371. For the sake of accuracy,

these collections are reported separately below.

The faunal remains on the Lengyel sites of

southeastern Kuyavia come from a variety of

rubbish deposits in trash pits, clay extraction

pits, and bedding trenches of houses. Due to the

disturbed nature of the plow zone and the cul-

tural layer, the faunal remains from these con-

texts were not systematically studied unless they

were unequivocally associated with a well–de-

fined feature immediately below. While the ex-

clusion of bones from the cultural layer has re-

sulted in the exclusion of a number of specimens

from the analyzed sample, it does not signifi-

cantly affect the total number of identified spec-

imens, since the material in the plow zone and

cultural layer is often highly fragmented. More-

over, it does not appear to affect the proportions

of identified taxa in the studied sample.

The effects of different types of contexts on

the composition of the faunal sample they con-

tain is an important consideration. For exam-

ple, at Hajji Firuz in Iran, Meadow (1978a: 19)

found a difference in the frequency of pig bones

between interior and exterior contexts and hy-

pothesized that this might be due to the larg-

er size of pig bones in relation to those of sheep

and goat, which would lead to their being easi-

er to spot in housecleaning and tossed outside.

In the analysis of the Osłonki bones below, par-

ticular consideration will be given to the differ-

ences in sample composition between the small

trash pits, which often contain a very high den-

sity of bone in relation to volume, and the large

clay extraction pits, which often have a lower

density of bone in relation to volume but larg-

er samples overall.

The animal bones in the rubbish depos-

its reflect both primary and secondary deposi-

tion. Some of the bones were probably discard-

ed directly into the pits, as indicated by units

of articulated bones. Others were probably dis-

carded elsewhere and then collected into rub-

bish deposits. Still others were probably just ly-

ing around the settlement and were kicked or

thrown into the pits casually. Gnawed bones

suggest that dogs carried some of them from

the locations where people originally discarded

them. Relatively few of the bones are weathered

or rodent–gnawed, suggesting that most did not

lie unburied for any length of time.

The working assumption in dealing with the

faunal samples from Neolithic sites in south-

eastern Kuyavia is that they provide a proxy re-

cord of the animal economy, This assumption

must be tempered by the fact that the samples of

faunal remains reported below are only a small

fraction of the total “potential” sample of animal

bones. Figure 1291 graphically depicts the attri-

tion between the number of bones present in liv-

ing and dead animals present during the life of

the settlement and the sample of bones reported

in a publication. The outer rings reflect factors

that cannot be controlled by the zooarchaeolo-

gist and are determined by choices made by the

prehistoric inhabitants of the settlement about

what animals to hunt and slaughter and by loss

Page 10: Reprinted from - Princeton

1588

to weathering, dogs, decay, and erosion. The in-

ner rings depict factors that are within the con-

trol of the archaeologist and zooarchaeologist.

These include the selection and size of the ex-

cavated areas, the recovery methods, the proce-

dures for the identification and quantification of

the animal bones, and the decisions about which

bones to include in the published sample.

Perhaps the major cause of bone attrition

between the potential bone population and the

deposited fraction is the destruction of post–

consumption bones by dogs. Dogs are present

in the Mesolithic and Neolithic faunal record

of central Europe and were present at the sites

discussed in this volume. They probably had

to fend for themselves on settlement rubbish.

When a dog obtains a bone to gnaw, it is quickly

destroyed, or may be hidden outside the archae-

ological deposits. Guilday (1971: 25–7) argues

that if there is evidence that dogs were present

at a site, their destruction of bone is the greatest

single source of bone loss. Thin–walled trabecu-

lar bone, such as that found in the proximal tib-

ia and humerus of large mammals, is particular-

ly susceptible to destruction by dogs.

The standard method of excavation of the

sites discussed here involved primarily the hand

collection of animal bones during shoveling

or trowelling. During excavation some break-

age of bone inevitably occurred, and the de-

gree of breakage varied with the experience of

the workmen. For example, there was a notice-

Fig. 1291. Bone attrition between living population and pub-

lished report.

Ryc. 1291. Proces niszczenia kości zawarty między populacją

ówcześnie żyjących zwierząt a niniejszym sprawozdaniem.

Animals Living Around Site

Dead Animals Brought to Site

BuriedBones

PreservedBones

Published

Data

Bones in Excavated Area Bones

Recovered

Bones Recorded

Factors that can be controlled by zooarchaeologist

Factors that cannot be controlled by zooarchaeologist

Page 11: Reprinted from - Princeton

1589

able decline in breakage at Brześć Kujawski be-

tween 1976 and 1979 with largely the same crew

of workmen who were untrained at the begin-

ning and experienced after several years of ex-

cavation. Most breakage was mendable and did

not noticeably alter the ability to identify species

or side, although occasionally it rendered bones

unmeasurable.

The practice of sieving the contents of

archaeological features was introduced at Brześć

Kujawski in the 1970s and continued at Osłonki

in selected high–yield contexts. The large num-

ber of fish bones from these sites, for example,

is a product of the wet–sieving of feature fill at

Brześć Kujawski 3 that had been motivated ini-

tially by the desire to find carbonized grain. Dry

sieving of feature fill through 1–cm hardware

cloth also enhanced the recovery of faunal spec-

imens, for example from Claypit (Glinianka) 2

at Osłonki.

The primary species identification of ani-

mal bones from Brześć Kujawski, Falborz, and

Osłonki was carried out in the field relying on a

corpus of reference illustrations. Among these,

the principal authority was the Atlas of Animal

Bones (Schmid 1972). Specimens that looked

potentially identifiable but could not be identi-

fied positively the illustrations were taken to the

Museum of Comparative Zoology at Harvard

University, as were the bird bones from Brześć

Kujawski, to be compared with reference collec-

tions. Bird bones from Osłonki remain in the

possession of Bogucki. Fish bones from Osłonki

and Brześć Kujawski were forwarded to Daniel

Makowiecki in 1995 and eventually were repa-

triated to Poland.

From the beginning of the serious study

of faunal remains from Brześć Kujawski, it

was clear that some sort of computerized sys-

tem for the recording, tabulation, and analysis

of the data would be needed. The first system

employed was BONECODE, designed by Rich-

ard Meadow (1978b) for the analysis of Near

Eastern fauna and adapted to European taxa.

BONECODE relied on a numerical coding sys-

tem that mapped to different faunal attributes

and was the state–of–the–art in late–1970s sys-

tems. Coded data were recorded in the field on

special sheets and then entered onto punchcards

in Cambridge, Massachusetts, where they were

subsequently read into the mainframe computer

for analysis. Original data on datasheets, punch-

cards, and magnetic tape is in the possession of

Peter Bogucki.

By the end of the1980s, the introduction of

desktop computers running the MS–DOS op-

erating system led Bogucki to employ the AN-

IMALS database (Campana and Crabtree 1987)

for the analysis of the corpus of data that was

emerging from Osłonki. Data were recorded on

key attributes such as species, element, side, end,

fusion, fragmentation, and measurements. In

addition, traces of pathology and butchery were

noted. Data were recorded in the field on paper

recording sheets and entered into the comput-

er in New Jersey. The entire Osłonki assemblage

was recorded for eventual entry into ANIMALS,

although only a relatively small percentage was

actually entered.

Over the last several years, advances in

computer processing speed, the development

of the Windows operating system, and the ub-

stetquity of the Microsoft Office suite resulted in

a shift in database when it became clear that the

Osłonki data needed to be analyzed much more

quickly. A decision was made in 2005 to enter all

Osłonki data into the York Faunal Analysis Da-

tabase (Harland et al. 2003), a customized appli-

cation for Microsoft Access. A key factor in this

decision was the expertise that Bogucki had de-

veloped in MS–Access, particularly in the writ-

ing of queries and reports as well as the capa-

bility of exporting data to MS–Excel for further

quantitative analysis and from there to various

graphing programs. The York system was also

employed because it focused on the same attri-

butes as ANIMALS and noted them in a simi-

lar way, thus making it very straightforward for

data to be entered.

Page 12: Reprinted from - Princeton

1590

A wide range of animal species was used by

the Neolithic inhabitants of southeastern Kuy-

avia during the fifth millennium B.C. The do-

mestic animals kept by the inhabitants of Brześć

Kujawski, Osłonki, and neighboring sites in-

clude cattle, sheep, goats, pigs, and dogs. Among

the wild mammals were red deer, roe deer, wild

cattle, wild pig, beaver, wild horse, bear, and

small fur–bearing animals. Turtles, fish, and

shellfish, along with a variety of terrestrial and

aquatic birds have also been found. The follow-

ing section characterizes these species and their

ecology before proceeding to the discussion of

the faunal samples.

The domestic animals available during the

fifth millennium B.C. in central Europe includ-

ed cattle, sheep, goats, pigs, and dogs. All five

taxa were present at Neolithic sites in southeast-

ern Kuyavia.

Domestic Cattle

Cattle (Bos taurus) had been domesticated

in Anatolia by about 7000 B.C., with the first do-

mestic cattle appearing in southeastern Europe

by about 6800 B.C. Although the forests of cen-

tral Europe did contain wild cattle (aurochs, Bos

primigenius), recent studies have demonstrated

that the mitochondrial DNA of European Neo-

lithic cattle remains reflects a Near Eastern ori-

gin almost exclusively (Bollongino et al. 2006).

Since mtDNA is passed through the maternal

line, this means that the female breeding popu-

lation of European Neolithic cattle was derived

from Near Eastern stock. This does not exclude

the possibility of introgression of local aurochs

genes from males, and indeed the analysis of Y-

chromosomes from ancient and modern wild

and domestic cattle in temperate Europe sup-

ports this (Götherström et al. 2005). Thus, while

there appears to have been no bovine maternal

line among Neolithic and later domestic cattle

that was derived from aurochs, there is a strong

possibility of local hybridization from mat-

ing between aurochs bulls and domestic cows.

Claims for de novo independent domestication

of cattle in temperate Europe (e.g. Nobis 1975,

1978) cannot be substantiated, however, and ap-

pear to be clearly contradicted by the genetic ev-

idence.

Since domestic cattle had been present in

central Europe for nearly a millennium prior to

the Lengyel occupations of Osłonki, Brześć Ku-

jawski, and neighboring sites, we can assume

that the cattle kept at these sites were a popula-

tion that had become thoroughly acclimated to

the conditions of central Europe. Although cat-

tle served in large measure as a source of meat,

a strong case can be made that they were also

used for dairy production, based on the find-

ing of sieves on Early Neolithic sites (Bogucki

1984) and recent residue analyses that found

considerable traces of dairy lipids on Neolithic

potsherds in western Europe dating to the fifth

millennium B.C. (Copley et al 2005). The first

clear evidence for animal traction in central Eu-

rope does not appear until the fourth millenni-

um B.C., but an open question is whether it had

antecedents. This topic will be discussed below

with reference to a specimen from Osłonki.

The presence of substantial numbers of do-

mestic cattle on the North European Plain dur-

ing the fifth millennium B.C. has important

implications for the introduction of domestic

cattle to southern Scandinavia. A recent sum-

mary of the evidence (Noe–Nygaard, Price,

and Hede 2005) points toward a fairly sudden

and widespread introduction of domestic cattle

to Denmark around 4000 B.C., although there

does seem to be a reliably dated domestic cat-

tle bone from Lollikhuse in northern Zealand

from around 4600–4700 B.C. (Noe–Nygaard

and Hede 2006). The Lollikhuse date is striking

because aurochs had been extirpated on Zea-

land by 6000 B.C., but at the moment it is the

only domestic cattle bone in southern Scandi-

navia before 4000 B.C.

The domestic cattle that were introduced

into southern Scandinavia late in fifth millen-

nium B.C. must have come from the North Eu-

ropean Plain. Domestic cattle kept by Neolith-

ic farmers in Kuyavia are good candidates for a

source population, for there are no other such

large concentrations of Neolithic settlements

Page 13: Reprinted from - Princeton

1591

with domestic cattle above 52°N latitude in con-

tinental Europe at this time. How these cattle

made their way north is a matter of conjecture.

I have suggested that feral livestock could have

penetrated the porous boundary between forag-

ers and farmers quite easily (Bogucki 1995), and

there are no major water barriers between Kuy-

avia and the Baltic coast.

Sheep and Goat

Sheep and goat were domesticated some-

what earlier than cattle in various parts of the

Near East, sheep by about 7500 B.C. in the north-

ern Levant (Russell 2004) and goats around

8000 B.C. in the Zagros Mountains (Zeder and

Hesse 2000). Domestic sheep (Ovis aries) de-

rive from the Asiatic mouflon (Ovis orientalis),

while domestic goat (Capra hircus) are descend-

ed from the Bezoar goat (Capra aegagrus). Nei-

ther the mouflon nor the Bezoar goat occur nat-

urally in Europe (claims for local domestication

of sheep in southwestern Europe are not possi-

ble to substantiate) so any sheep and goat found

in Neolithic temperate Europe certainly are de-

rived from Near Eastern precursors. Early sheep

lacked wool, and since woolen textile remains

appear in temperate Europe only around 3000

B.C. The question is whether sheep and especially

goats were milked at this date, and there is some

evidence from the kill–off profiles to suggest that

they had some economic use beyond meat.

The lowland forests of temperate Europe

would have been dramatically different habitats

from the hilly semi–arid lands of the Near East

and the open forests of the Balkans and Medi-

terranean Europe from whence sheep and goats

came. Although they are present in relatively low

numbers in Linear Pottery faunal assemblages

during the sixth millennium B.C., they did not

generally appear in large quantities in Neolith-

ic faunal assemblages in temperate Europe until

the fifth millennium B.C. and later.

There is an important dietary difference be-

tween sheep and goats. Sheep are grazers that

prefer grasses, while goats are browsers who

can eat shrubs, low tree leaves, almost any sort

of plant matter. The two types of small runinant

thus complement each other. The browsing hab-

its of goats contribute to the maintenance of for-

est clearance by suppressing the regeneration of

weeds, shrubs, and eventually saplings (Rollef-

son and Köhler–Rollefson 1992).

The osteological differentiation of sheep and

goat is based on a limited number of diagnos-

tic traits (Boessneck 1969), and most specimens

can only be assigned to the general category of

“sheep/goat”. Zooarchaeologists are comfortable

with this nomenclature, but the dietary differenc-

es between sheep and goat make it important to

remember that “sheep/goat” is an analytical cat-

egory that masks significant behavior and eco-

nomic distinctions in the animal economy.

Domestic Pig

Perhaps the most interesting of the domes-

tic taxa in southeastern Kuyavia during the fifth

millennium B.C. was the pig (Sus scrofa domes-

ticus). Pigs had been domesticated initially in

Anatolia, as reflected by a clear size diminu-

tion over several millennia, although the date

of their earliest domestication is uncertain (Er-

vynck 2002, Russell 2004). They arrived in Eu-

rope alongside domestic cattle around 6800 B.C.

Recent DNA studies trace the earliest Europe-

an Neolithic pigs back to a Near Eastern found-

er population (Larson et al. 2005; Larson et al

2007).

The domestic pig played a very small role in

the animal economy of the Linear Pottery cul-

ture during the late sixth millennium, clearly a

cultural decision rather than the result of eco-

nomic or environmental considerations for the

pig would have been well suited to the forests of

temperate Europe. It was only during the fifth

millennium that they came into their own to

form a large part of Neolithic faunal assemblag-

es in temperate Europe. Meanwhile, wild pigs,

who were conspecific with their domestic coun-

terparts, were present in substantial numbers in

the European forests. Given that it is likely that

domestic pigs were allowed to forage on their

own with minimal confinement, they proba-

bly encountered and mated with wild pigs fair-

ly regularly. The likelihood of a continuous pig

population that included both wild and domes-

tic individuals was found in Neolithic temper-

ate Europe was advanced by Bogucki (1989).

Recent DNA analysis points towards a substan-

tial ingression of wild pig genes around 4000–

3500 B.C. (Larson et al. 2007) and advances the

Page 14: Reprinted from - Princeton

1592

idea that most modern European pig popula-

tions owe more to the indigenous wild pigs than

to Anatolian precursors.

Pigs are economically valuable only for

meat, hide, and bristle. They are well suited for

this purpose, for they reproduce abundantly and

reach their optimal meat weight quickly. Since

they eat many of the same foods as people, ob-

tained by scavenging around the settlement and

in the nearby forests, pigs are low–maintenance

meat producers who could exist in a commensal

relationship with their human keepers.

Dogs

Dogs (Canis familiaris) were domesticat-

ed from wolves in many parts of the world, and

they were present in temperate Europe during

the Mesolithic (Clutton–Brock 1995). While it

is not appropriate to discuss prehistoric dogs in

terms of modern breeds, a few general remarks

can be made. Neolithic dogs were the size of

medium–sized modern dogs, approximately the

scale of a modern Shetland sheepdog2 or bor-

der collie, but there was a wide range of variabil-

ity. For example, British Neolithic dogs ranged

between 37 and 62 centimeters at the shoulders

(Clark 2006: 33). Since wolves and dogs are con-

specific, there is always the possibility of hybrid-

ization between wild and domestic canids.

While Mesolithic dogs were hunting part-

ners, Neolithic dogs would have been working

dogs in the farming economy (Coppinger and

Schneider 1995). Livestock guarding was proba-

bly a key duty, while herding of sheep and cattle

may have been another. Around the settlement,

their barking would have raised an alarm about

visitors and predators. Since dog remains are

found in consumption refuse, some appear to

have been eaten. It can be speculated that these

dogs may have resisted training or were behav-

iorally unsuited to livestock guarding or herd-

ing.

The next major category of mammals avail-

able in Neolithic central Europe included the

2 Finnian Bogucki and Brodie Bogucki, Shetland sheepdog males aged 17 months, measured on May 17, 2007, stand approximately 47 cm at the shoulder.

ungulates that comprised the major part of the

wild mammalian biomass. These include artio-

dactyls such as red deer, roe deer, wild pig, and

wild cattle, and the perissodactyl wild horse.

Red deer

Red deer (Cervus elaphus) constituted the

primary game species during the Neolithic

throughout much of Europe (Boyle 2006), but

with the exception of a few sites, it is rarely the

majority species in the faunal assemblage. Red

deer have a diversified diet that varies according

to habitat and season (Gebert and Verheyden–

Tixier 2001). They are classified as “intermedi-

ate feeders” (Hofmann 1989), for in addition

to grazing on grasses that also eat concentrat-

ed food items such as leaves, fruits, grains, and

seeds. When good is scarce, they will also eat

woody plant material such as tree shoots. Red

deer readily also consume crops, and Neolith-

ic farmers would have needed to protect their

fields from deer. Such encounters may have led

to their opportunistic hunting.

In lowland forests, populations densities of

red deer are relatively low, in constrast to the

larger herds found in upland and lightly forest-

ed areas. In Białowieża Forest in eastern Poland,

they averaged between 4.6 in winter and 6.5 in

summer per km2 although in areas with a large

coverage of oak–hornbeam forests their average

density was over 9 per km2 (Jędrzejewska and

Jędrzejewski 1998: 33–6). During the spring and

summer they are generally found either individ-

ually or in very small groups of 2–3 individu-

als (e.g. mother and calf), but during the fall rut

and winter they aggregate into larger groups.

The highly–branched antlers of red deer

stags are shed in March and April. If there is a

calcium deficiency in their diet, deer will mouth

and chew shed antlers, so they do not per-

sist long in the landscape. Therefore shed ant-

lers found in archaeological contexts must have

been collected during a fairly narrow window of

time in the early spring. Antlers of red deer re-

generate by late summer in time for the autumn

rut. The antler cycle is governed by plasma tes-

tosterone levels which in turn are regulated by

length of photoperiod (Suttie and Fennessy

1992). Mechanical properties of red deer ant-

ler made is an important material for prehistor-

Page 15: Reprinted from - Princeton

1593

ic tool manufacture (Grygiel and Bogucki 1990;

Riedel, Pohlmeyer, and von Rautenfeld 2004).

Roe deer

Roe deer (Capreolus capreolus), much small-

er than red deer, were ubiquitous in the forests

of Neolithic central Europe, as they still are to-

day (Andersen, Duncan, and Linnell 1998).

They are very adaptive and opportunistic ani-

mals, and part of their resilience is due to the

fact that they flourish in disturbed habitats such

as clearings, field edges, and abandoned settle-

ments. In their feeding habits, roe deer are clas-

sified as “concentrate selectors” (Hofman 1989)

in that they selectively prefer soft, energy–rich

foods such as leaves, seeds, fruits, and other

flowering plants over grasses.

The population density and social organi-

zation of roe deer depends on the abundance

and distribution of food and cover (Sempéré,

Sokolov, and Danilkin 1996). During the sum-

mer they are either solitary or move in small

family groups (often a female with young), but

in the winter they aggregate into larger groups.

In forested environments, the winter groups are

generally small and rarely exceed 10 members.

Due to their small size, roe deer rely on cover for

protection from predators, so forest edges that

provide a mix of rich plants and easy access to

cover are preferred.

Roe deer antlers are shed annually in Octo-

ber–November. Unlike those of red deer, roe deer

antlers have no physical properties that make

them suitable for tool use, so their presence in

archaeological deposits is generally the result of

hunting of animals with unshed antlers.

Wild cattle (aurochs)

Since the last aurochs died in A.D. 1627 in

central Poland, we must presume that wild cat-

tle (Bos primigenius) were present in the forests

of southeastern Kuyavia during the fifth millen-

nium B.C. Anatomically they are almost identi-

cal to domestic cattle, and the differentiation be-

tween aurochs and domesticated cattle is based

mainly on size. There is, however, no clear dis-

tinction because sexual dimorphism results in a

size overlap between female aurochs and male

domestic cattle, The principal question that will

be addressed metrically below is to what extent

they played a role in the Neolithic animal econ-

omy.

The population density of wild cattle in the

forests postglacial Europe must have been rel-

atively low. This can be inferred by the relative

ease with which they were known to have been

extirpated in closed habitats such as the Dan-

ish island of Zealand, where the aurochs was ex-

tinct by about 6000 B.C., perhaps the result of

overhunting (Aaris–Sørensen 1980).

Stable isotope analysis of aurochs bones

from Denmark indicate that the latest popu-

lation of wild cattle was browsing and graz-

ing from the floor of the closed forest, similar

to that of contemporaneous red deer (Noe–Ny-

gaard, Price, and Hede 2005; Noe–Nygaard and

Hede 2006), but very different from that of the

subsequent domestic cattle introduced to the

area around 4000 B.C. who were grazed in open

habitats.

Wild pig

Wild pigs (Sus scrofa scrofa) had been a

major food source for the postglacial foragers

of temperate Europe. They are a forest–dwell-

ing species who feed on acorns and other nuts,

bulbs, roots of forest plants, eggs, invertebrates,

and small vertebrates. Wild pigs also damage

crops, both by consuming them and by tram-

pling them (Schley and Roper 2003), which

would have brought them into conflict with

Neolithic farmers.

Wild pigs were a staple of the Mesolith-

ic diet in northern Europe, and there is no rea-

son to believe that they did not continue to be

opportunistically hunted by Neolithic farmers.

The fundamental question, which will be ad-

dressed metrically below, is the extent to which

their bones occur alongside those of domestic

pig and, moreover, the extent to which indige-

nous pig populations became part of the Neo-

lithic breeding stock. The likelihood of a con-

tinuous pig population, as proposed by Bogucki

(1989), in which there is relatively little biobe-

havioral significance to a firm distinction be-

tween domestic and wild Neolithic pigs, has

aleady been mentioned. Recent genetic studies

(Larson et al. 2007) indicate that the initial pop-

ulation of Near Eastern domestic pigs brought

to Europe in the sixth millennium was largely

Page 16: Reprinted from - Princeton

1594

replaced by pigs derived from wild populations

by 4000 B.C.

Wild horse

The Holocene forests of Europe supported

populations of wild horses, Equus caballus, wild

ancestor to modern domestic horses of the same

species (also called Equus ferus; for a discus-

sion of nomenclature, see Bennett and Hoffman

1999; for justification of Equus ferus, see Gen-

try, Clutton–Brock, and Groves 2004). Indige-

nous wild horse populations of central Europe

were extirpated centuries or even millennia ago,

and any modern “wild” horses are either feral

domestic stock or animals bred to have certain

“primitive” features. There are thus no direct ob-

servations of the ecology or behavior of prime-

val wild horses.

Since the earliest evidence for horse domes-

tication in Eurasia is ca. 3500–3000 B.C. on the

steppes of central Asia (Anthony and Brown

2000), it is presumed that any earlier wild hors-

es of the central European forests were killed for

food. Abundant horse remains from sites of the

Sredni Stog culture of the Black Sea steppes tes-

tify to the importance of wild horses as a dietary

staple in this during the fifth millennium B.C.

Although not highly represented in the con-

sumption remains, the other wild mammal spe-

cies whose bones are found in small numbers

are of great interest to the extent that they reflect

the wildlife and ecology of the surrounding for-

ests and stream channels.

Beaver

Beaver (Castor fiber) is Europe’s largest ro-

dent, weighing up to 30 kilograms. They are

semiaquatic animals whose lodges and dams

must have been quite numerous on the lakes

and along the streams of the lowland hydrolog-

ical network, for they are reported from many

prehistoric sites in central Europe (e.g. Teich-

ert 1999, Schmitzberger and Pucher 2003).

In Białowieża Forest, beaver population den-

sity is estimated at about 15.2 beavers per 100

km2 (Jędrzejewska and Jędrzejewski 1998: 57),

with the larger the stream, the more beaver set-

tlements. Beavers are “choosy generalist” her-

bivores who eat the leaves, twigs, and bark of

many types of woody plants that grow near wa-

ter as well as many types of plants (Jenkins and

Busher 1979).

The initial Linear Pottery farmers in south-

eastern Kuyavia would have immediately recog-

nized a key role of the beaver, that of ecosystem

engineer (Wright, Jones, and Flecker 2002; Ro-

sell et al. 2005). Dams built by beavers can al-

ter riparian ecosystems significantly and persis-

tently, and their tree felling can create openings

in the forest canopy. Wright, Jones, and Fleck-

er (2002) report that in the central Adirondack

mountains of New York, USA, beaver ponds are

generally extant for fewer than 10 years before

the dam is breached, but the meadows that re-

main can persist for over 50 years. These mead-

ows have nutrient–rich moist soils and high light

levels. Beaver–modified habitats increase the

species diversity of the riparian zone by allowing

the persistence of plant species that would oth-

erwise be excluded (Wright, Jones, and Flecker

2002: 99). Beaver ponds also provide enhanced

habitats for turtles and many types of fish and

waterfowl, as well as terrestrial fauna who feed

in the clearings created along streams (Rosell et

al. 2005).

The potential role of beavers in opening the

Neolithic landscape has been noted by Brown

(1997) who considered them to be a key factor

in the creation of glades that were then oppor-

tunistically exploited by the first Neolithic farm-

ers and herders. This is in contrast to the usual

model of purposive tree felling by axe–wielding

farmers. As ecosystem engineers, beavers in the

Kuyavian stream valleys would have been able to

create meadows that would have been extremely

attractive as places to graze livestock and plant

small fields. Coles and Orme (1983) also not-

ed the potential role of beavers in land clearance

otherwise attributed to human activity.

The other major economic contribution of

Castor fiber is its fur, and the species was near-

ly hunted to extinction by the beginning of the

20th Century. Beaver meat is edible, so its role as

a source of food should not be discounted, but it

was probably of secondary interest to the Neo-

lithic hunter.

Page 17: Reprinted from - Princeton

1595

European brown bear

One of the more unusual species identi-

fied at Neolithic sites in southeastern Kuyavia is

the European brown bear (Ursus arctos). Brown

bears had been restricted to refugia during the

last glacial maximum and then rapidly recolo-

nized the forests of postglacial Europe (Som-

mer and Benecke 2005). Since brown bears have

been extirpated from the forests of lowland Eu-

rope, we have no data on their population densi-

ties in such an ecosystem, but studies elsewhere

suggest that their population densities must

have been very low.

Adult brown bears are solitary animals

but they are not territorial (Pasitschniak–Arts

1993). They tend to avoid each other and have

large home ranges. Brown bears are opportunis-

tic omnivores, primarily eating not only shoots,

flowers, leaves, roots, tubers, and bulbs but also

larvae, grubs, fungi, eggs, nuts, and mice. They

will scavenge the carcasses of dead mammals

and may attack and kill injured or old deer and

wild pigs. Bears are also known to prey on live-

stock, so the Neolithic herders would have need-

ed to be alert if one was around.

Since bears are notorious for being drawn

to the rubbish of human settlements, we can

speculate whether the inhabitants of Brześć Ku-

jawski or Osłonki ever encountered a bear for-

aging on the debris around their houses. If so, we

can only imagine the consternation that would

have resulted, for the appearance of such a fero-

cious and hungry animal weighing several hun-

dred kilos would have been alarming. It seems

more probable that the capture and killing of a

bear, probably using a trap in a pit, would have

been an event talked about for years.

The principal economic contribution of Ur-

sus arctos was its furry hide. Bearskins could be

used whole to insulate the walls of houses or

as floor coverings, or they could be made into

clothing. This is illustrated no more clearly than

in the attire of Ötzi, the famous Iceman of the

Tyrolean Alps, whose clothing included a bear-

skin hat and bearskin–soled shoes (Dickson,

Oeggl, and Handley 2003).

Other Mammal Species

The forests of the North European Plain held

many other mammal species that could poten-

tially appear in a Neolithic faunal sample. Rath-

er than enumerate all of them here (the discus-

sion in Jędrzejewska and Jędrzejewski 1998 of

the fauna of Białowieża Forest provides an ex-

cellent initial guide), it is preferable simply to

mention several key species that have appeared

in Neolithic assemblages.

Among prey species, the European brown

hare (Lepus europaeus) is more typical of open

grasslands and farmlands and is rare in forests

except on the margins. Other prey species in-

clude small rodents such as mice, shrews, and

moles, but it is more likely that these find their

way into archaeological faunal assemblages

through natural death within prehistoric settle-

ments or during burrowing into archaeological

deposits.

Among predator species, a noteworthy

one is the river otter (Lutra lutra), to which

the stream and lake networks of the lowland

forests would have been especially congenial.

Jędrzejewska and Jędrzejewski (1998: 129) note

that of all the predator species in temperate for-

ests, “the otter is the most obligatorily aquatic”

and spends almost all of its time in or very near

to water. The European wild cat (Felis sylvestris)

and lynx (Lynx lynx) are known to have been

present in Holocene temperate Europe (Som-

mer and Benecke 2006) but their avoidance of

humans would cause their appearance in an ar-

chaeological faunal assemblage to be unusual.

Other predators in the lowland forests during

the fifth millennium B.C. would have been fox-

es, badgers, pine martens, stoats, weasels, and

polecats.

Holocene Fish of the North European Plain

Very little discussion has taken place on the

role of fish in the Neolithic economy of cen-

tral Europe. The principal reason for this is the

fact that high–resolution recovery techniques

such as water–screening have rarely been used

at many sites where there is good bone pres-

ervation. Our knowledge of Neolithic fish ex-

ploitation comes from sites in countries where

there are preservation conditions that result in

sites where careful attention is paid to small re-

Page 18: Reprinted from - Princeton

1596

mains (e.g. Switzerland, the Netherlands, Scan-

dinavia) and where Neolithic economies still

have a considerable component of wild resourc-

es, especially where there is an in situ transition

between the Mesolithic and the Neolithic (e.g.

southern Scandinavia, the Iron Gates Gorges).

In particular, the role of fish in the economies of

communities that are part of the Danubian tra-

dition between 5500 and 4000 B.C. is very poor-

ly known. The fish bone assemblages recovered

from Brześć Kujawski and Osłonki and identi-

fied by Makowiecki (2003) thus provide impor-

tant data for our understanding of the Danubi-

an subsistence economy.

The slow–moving low–energy streams of

the North European Plain supported a wide va-

riety of fish species which had been important

food resources since the beginning of the Holo-

cene. Makowiecki (2003) has compiled the in-

formation on the history of fishing in this part

of Europe and discusses the various species that

were available. The hydrology of southeastern

Kuyavia during the Neolithic consisted of a net-

work of small streams that had formed in the

post–glacial landscape and which often con-

nected lakes and ponds that resulted from the

melting of blocks of “dead ice” left behind by the

retreating ice sheet.

Such a habitat of sluggish streams and shal-

low, weedy lakes would support large numbers

of members of the carp family, the Cyprini-

dae, as well as predatory fishes such as pike and

perch. The Cyprinidae include fish of many dif-

ferent sizes, including roach, tench, crucian carp,

common carp, rudd, bream, and ide. All of these

species prefer slow–flowing or still waters with

overgrown banks, often with a clay or mud sub-

strate. Modern anglers refer to such species as

“coarse” fish that can tolerate the lower oxygen

levels of slow streams and shallow lakes. One

would not expect to find significant numbers of

“game” species like trout or salmon in such inte-

rior habitats, if at all, for they prefer cool, clear,

and well–oxygenated water as might be found

in the arterial streams of the North European

Plain such as the Vistula, Oder, and some of the

smaller rivers.

Unknown to us at present is the technology

employed in the catching of fish by the Neolith-

ic communities of southeastern Kuyavia during

the fifth millennium B.C. Possibilities include

hooks, arrows, fish spears, nets, and traps. Based

on abundant evidence from elsewhere in north-

ern Europe during the Mesolithic and Neolith-

ic (e.g. Louwe Kooijmans 1993) it is likely that

wicker fish traps were widely used (for exam-

ple, the fish trap found at Bergschenhoek dated

4200 B.C.) Fish weirs, or fences in shallow parts

of lakes, have also recently come to light in cen-

tral and western Europe dated to the early fourth

millennium B.C. (McQuade and O’Donnell

2007, Slater 2007). Spearing and shooting (with

arrows) of fish visible in the clear waters of the

shallow lakes from logboats also would have

been possible, although no such boats have yet

been found in southeastern Kuyavia.

European pond tortoise

One of the distinctive features of the Neo-

lithic economy during the fifth millennium B.C.

in southeastern Kuyavia is the widespread ex-

ploitation of the European pond tortoise (Emys

orbicularis). The pond tortoise was the only tur-

tle species known to have lived in northern Eu-

rope in postglacial times, so the assignment of

the carapace, plastron, and bone fragments to

the species is unequivocal. Pond tortoise re-

mains occur sporadically in faunal samples

elsewhere in Europe and from other prehistor-

ic periods, but at Lengyel sites in southeastern

Kuyavia they are so numerous as to point to-

ward an important subsistence activity. The re-

covery of so many pond tortoise remains is also

a result of the attention paid to sieving and care-

ful recovery during excavations over the last 30

years in this area.

Pond tortoises eat worms, insects, frogs, and

small fish, all of which would have been abun-

dant in the habitats near Neolithic sites in this

region. Although they spend most of their time

in the water, they emerge to bask on logs and

banks and to lay eggs. Females must dig a pear–

shaped nest in which to lay their clutches of eggs

in late May or early June. This activity is very

strenuous and the females are vulnerable dur-

ing this time. Young tortoises hatch in late sum-

mer but often overwinter in their nests (Mitrus

and Zemanek 2003, Ultsch 2006) before emerg-

ing the following year. Barring predation, wild

pond tortoises can live for several decades, with

Page 19: Reprinted from - Princeton

1597

a high adult survival rate (Mitrus and Zemanek

2004).

The pond tortoise is very important as an

environmental indicator, providing informa-

tion about climate and vegetation (Degerbøl

and Krog 1951). Today, Emys orbicularis is at

the northern limit of its range in central Europe,

which runs approximately along the 18ºC. July

isotherm in Germany and the 20ºC. July iso-

therm in France (the difference being due to

the sandier and more heat–retentive soils of the

German plain.) It is now virtually absent from

northern Poland, southern Scandinavia, and

the British Isles, where is had been quite com-

mon during the Atlantic postglacial climatic op-

timum. Warm and relatively dry conditions are

optimal for pond tortoise populations, and since

they appear to have flourished in southeastern

Kuyavia during the fifth millennium B.C., it is

possible to infer that such conditions prevailed.

Moreover, since sunlight is necessary to incubate

pond tortoise eggs, it is possible that increasing

Emys populations could be taken as an indicator

of forest clearance or retreat (at least adjacent to

bodies of water) that created sunny patches of

ground in which to make nests. Finally, pond

tortoise remains can provide a general season-

al indicator, for adults hibernate in lake–bottom

mud during the cold months and is unavailable

for capture by humans. Thus the pond tortoises

found in Neolithic rubbish deposits could only

have been taken during the late spring, summer,

and early autumn.

Europe has hundreds of species of birds,

many of which are sufficiently migratory as to

have been present at some point in southeast-

ern Kuyavia during the fifth millennium B.C.,

so the range of possible taxa that could be rep-

resented in an archaeofaunal assemblage is im-

mense. In practice, however, the bird bones that

are commonly found in archaeological depos-

its are from species that have significant meat

weight. These include both aquatic and terres-

trial species. The aquatic species are typically

members of the order Anseriformes, most com-

monly from the Anatidae family which includes

the ducks and geese, and the order Charadrii-

formes, the wading birds. Terrestrial taxa gener-

ally are members of the order Galliformes, which

includes grouse, partridge, and quail. While it is

conceivable that members of the many other or-

ders might find their way into archaeological de-

posites, their presence rather than their quantity

is noteworthy. Noteworthy among these isolat-

ed taxa would be members of the order Accip-

itriformes, which includes raptorial birds such

as eagles and hawks that may have had symbolic

rather than economic significance for Neolith-

ic society.

Gumiński’s recent review of bird bone finds

from Mesolithic and Neolithic sites in north-

ern continental Europe and southern Scandina-

via supports the contention that we can expect

to find primarily Anseriformes, with small-

er numbers of members of other bird groups,

at Neolithic sites during the fifth millennium

B.C. (Gumiński 2005). The abundance of ter-

restrial fauna at these sites, particularly domes-

tic and wild ungulates with high meat weights,

means that birds were probably a secondary

food source, hunted opportunistically. None-

theless, their presence is significant, for it re-

flects the breadth of the Neolithic diet when

considered alongside the evidence for terrestri-

al and aquatic fauna and the evidence from bo-

tanical remains.

The quantification of the relative abundance

of species represented in a faunal assemblage

has two general goals (Gautier 1984). The first is

to establish the relative abundance of the animal

taxa present, while the second is to assess the

relative dietary (or economic) contribution of

each taxon. Gautier (1984: 245) makes the key

point that all species quantifications are heu-

ristic models that facilitate observation of pat-

terns of similarities and dissimilarities among

sites rather than being a direct reflection of the

ancient economy at any single site. For this rea-

son, it is significant that ten faunal samples from

roughly contemporaneous sites within a small

Page 20: Reprinted from - Princeton

1598

region are being reported below. Patterns ob-

served at any one site, however, can also provide

the grounds for hypotheses about herd manage-

ment and hunting patterns, even if they cannot

be regarded as conclusive by themselves.

There are many different ways to quantify

the relative abundance of species represented

in a faunal assemblage (reviewed fully by many

authors, most recently by O’Connor 2000 and

2003). The simplest is simply to assess the per-

centage contribution of numbers of identified

specimens (abbreviated “NISP”). It is a direct

reflection of the faunal assemblage and makes

no allowance for differences in preservation, re-

covery, or relative abundance of various body

parts. Most important is the problem of interde-

pendence, for using NISP as a measure of spe-

cies quantification overlooks the fact that dif-

ferent bones may have originated in the same

living individual. As a result of this problem if

interdependence, it was heavily criticized in the

1960s and 1970s as a primary measure of rela-

tive species abundance.

The measure that appeared to supplant NISP

in the 1960s and 1970s as a measure of relative

species abundance was the calculation of a min-

imum number of individuals (MNI). MNI was

attractive for its conceptual elegance that appar-

ently solved the problem of interdependence.

Yet MNI calculations are not as straightforward

as might seem to the non–specialist (Marshall

and Pilgram 1993). The zooarchaeologist needs

to decide whether to treat the assemblage from

the site as a single sample or to treat individu-

al features and units as separate samples for the

calculation of MNI. Grayson (1973) terms the

former approach “minimum distinction” and

the latter “maximum distinction”. In the lat-

ter approach, the numbers of MNI will be very

much higher. The aggregation–disaggregation

problem is impossible to resolve. Furthermore,

mathematical problems with MNI estimates

render further quantification based on them,

even the percentage representation of different

taxa, invalid (Plug and Plug 1990).

An attempt to compromise between NISP

and MNI was introduced by Watson (1979) by

counting only a specific set of anatomical ele-

ments common to all taxa in the same class,

which Watson termed “diagnostic zones” This

approach is best suited to large, highly frag-

mented assemblages, such as those found on

Neolithic sites. Watson’s method was adapted by

Bogucki (1981) in his analysis of the fauna from

Brześć Kujawski and by Russell in her study of

the Neolithic fauna from Opovo in Yugoslavia,

but it has not been used more widely. O’Connor

(2000: 56) speculates that because the diagnos-

tic zone method is a derived measure like MNI,

it is suspected of having the same abstract de-

rived qualities. It indeed is one step removed

from a direct quantification of each single bone,

but it does mitigate some of the problems with

both NISP and MNI.

Gautier (1984: 245) concluded that NISP

are actually as good an estimate of relative spe-

cies abundance as any other method then in use,

while Gilbert and Singer (1982) showed through

computer simulation that if fragment counts are

used judiciously and take into account skeletal

complexity they are better approximations of

known proportions than MNI. For these rea-

sons, most zooarchaeologists in the 1980s and

1990s came to fall back on NISP as their prima-

ry method of species quantification, although

often MNI were presented as a comparison (e.g.

Crabtree 1989).

At the end of the day, there is no perfect

method for assessing the relative proportions

of species in a faunal assemblage. The principal

form of species quantification in the study be-

low is NISP, which is used to characterize the

assemblages studied by both Bogucki and Ma-

kowiecki. It was necessary, however, to harmo-

nize the NISP presentations in one key respect.

Bogucki, in an effort to speed the identifica-

tion process of the Osłonki material, did not as-

sign ribs and vertebrae (other than the atlas and

axis) to species and instead characterized them

as “large mammal” and “medium mammal”. Al-

though many ribs and vertebrae can be identi-

fied to species, the ability to do so is not consis-

tent across the range of species. Moreover, they

are generally not measured nor are they consis-

tently used in measures of relative species abun-

dance. Finally, the sheer number of ribs and

vertebrae, and the multiple fragments they pro-

duce, have the potential to skew NISP dramat-

ically in favor of larger taxa. Bogucki acknowl-

edges that some osteological information may

Page 21: Reprinted from - Princeton

1599

have been lost as a result of this procedure but

stands by his decision to do so. Makowiecki, on

the other hand, did assign ribs and vertebrae to

species. In the presentation of his analyses be-

low, the ribs and vertebrae are given below the

main table of fragment counts, and they are not

included when NISP are used to calculate rela-

tive species abundance.

Finally, in an effort to validate the NISP

analysis of the Osłonki faunal assemblage, Bo-

gucki also undertook an analysis of diagnos-

tic zones, updating the method he used in his

1981 study of the Brześć Kujawski fauna. Thus,

the Brześć Kujawski and Osłonki assemblages

can compared using a common metric, albeit a

more derived measure than NISP.

The Brześć Kujawski faunal assemblage

seemed quite large when it was studied by Bogu-

cki in 1977–1981, and compared with the faunal

assemblages known at the time from other sites

in the Polish lowlands it was indeed substan-

tial. It spans, however, a millennium or more of

occupation, and thus the number of specimens

from any one of the Linear Pottery occupations

or those of the Brześć Kujawski Group of the

Lengyel Culture is not very large. Nonetheless,

it was the first assemblage from this region to

be studied with modern techniques of recov-

ery (explicit attention to the comprehensive col-

lection of animal bones and the introduction of

sieving) and to which a variety of techniques of

quantification were applied.

Table CLXXV gives an overall profile of

the Brześć Kujawski mammal and reptile sam-

ple (birds and fish are discussed separately be-

low). “Maximally identified” fragments are

those that can be identified to the genus or spe-

cies level; “minimally identified” fragments are

those that are ambiguous at the family level. Al-

though sheep and goat are often impossible to

distinguish at the genus level, specimens which

were identifiable as “sheep/goat” are considered

to have been maximally identified. Most of the

unidentified specimens were small fragments

weighing a gram or less.

Table CLXXV. Condition of the Brześć Kujawski mammal and

reptile sample.

Tabela CLXXV. Ogólna charakterystyka próbki kości z Brześcia

Kujawskiego.

Brześć Kujawski

mammals and reptiles count weight

maximally identified 1867 39569.5

minimally identified 971 6190

unidentified 5208 10118.5

total 8046 55878

Brześć Kujawski Mammal NISP

Bogucki (1981) treated NISP as a way of

characterizing the assemblage but did not dis-

cuss it in depth as a way of assessing the relative

abundance of taxa. At the time, derived mea-

sures such as minimum numbers of individu-

als and diagnostic zones were believed to be su-

perior to the raw counts of identified specimens.

The discussion here will reflect archaeozoologi-

cal practice over the intervening 25 years which

suggests that NISP are fundamentally as infor-

mative as any other measure when it comes to

assessing the relative abundance of species in a

faunal sample.

Table CLXXVI presents the NISP of the

Lengyel bone sample from Brześć Kujawski,

broken out by periods defined by the ceramic

chronology in use at the time. For the purpos-

es of this study, these periods are pooled into a

total NISP for the sample. In addition to wild

and domestic mammals, the table also includes

the carapace and plastron fragments of Europe-

an pond tortoise. The bird bones are discussed

separately below.

Although cattle are the most abundant tax-

on, they are not in the dominant majority. In-

deed, when cattle, sheep and goat together, and

pig are compared, they are very close in the por-

tions of the faunal assemblage they comprise, be-

tween 18 and 23%. Red deer are not much low-

er in abundance. Thus in marked contrast to the

Linear Pottery faunal assemblages that are dom-

inated by cattle bones, the Lengyel fauna from

Brześć Kujawski provided the first indication of

Page 22: Reprinted from - Princeton

1600

a much more diverse animal economy during

the fifth millennium in the Polish lowlands.

Table CLXXVI. Counts of NISP of Lengyel fauna at Brześć Ku-

jawski and overall percentages, plus the relative percentages of

wild versus domestic specimens. Key: LL1 – Late Lengyel phase

1; LL2 – Late Lengyel phase 2; LL3 – Late Lengyel phase 3; w/d

– wild, domestic.

Tabela CLXXVI. Liczba ogólna i udział procentowy GLS fau-

ny związanej z kulturą lendzielską w Brześciu Kujawskim, oraz

względny udział procentowy osobników dzikich i udomowio-

nych. Legenda : LL1 –1 faza kultury późno–lendzielskiej (Late

Lengyel phase 1), LL2 –2 faza kultury późno–lendzielskiej (Late

Lengyel phase 2), LL3 –3 faza kultury późno–lendzielskiej (Late

Lengyel phase 3) ; w/d– dzikie (wild)/domowe(domestic).

Brześć Kujawski NISP LL

1

LL 2

LL 3

tota

l LL

% o

f m

amm

al

% w

/d

mam

mal

Bos Taurus 5 32 187 224 22.24%

Ovis/Capra 6 39 98 143 14.20% Ovis Aries 0 0 30 30 2.98% Capra hircus 8 18 18 44 4.37% Sus scrofa 12 56 117 185 18.37% Canis familiaris 1 2 2 5 0.50% 62.66%Capreolus capreolus

5 39 33 77 7.65%

Cervus elaphus 23 75 67 165 16.39% Equus caballus 0 0 2 2 0.20% Castor fiber 7 14 106 127 12.61% Lutra lutra 0 1 1 2 0.20% Ursus arctos 0 1 0 1 0.10% Felis sylvestris 0 0 1 1 0.10% Mustela nivalis 0 0 1 1 0.10% 37.34%Emys orbicularis

4 13 133 150

Total NISP 71 290 796 1157

The high number of beaver bones in the fi-

nal Lengyel phase is due in large measure to the

recovery of five almost–complete but disartic-

ulated beaver skeletons from Pit 820 in 1979.

Other beaver bones were found in normal rub-

bish deposits (Figure 1292). They are clear-

ly not as ubiquitous or fragmented among the

consumption debris as are the bones of domes-

tic and wild ungulates, and thus they need to be

considered separately, along with the less–abun-

dant wild taxa, as a kind of special case.

When the NISP are reduced to the principal

mammal taxa that had major economic signifi-

cance – cattle, sheep, goat, pig, red deer, and roe

deer – the proportions make a slight shift. These

proportions are depicted graphically in Figure

1293. Cattle and the combined sheep and goats

occupy relatively equal positions of 25–27%,

with pig standing at 21%. The interesting aspect

of this data reduction is that red deer and roe

deer comprise over a quarter of the bones of the

principal economic mammal species.

Fig. 1292. Beaver mandibles from Pit 773 at Brześć Kujawski

Site 3.

Ryc. 1292. Kości żuchwy bobra z jamy nr 773 w Brześciu Ku-

jawskim, st. 3.

Brześć Kujawski Mammal Diagnostic Zones

The Brześć Kujawski mammal bone assem-

blage was also quantified using the diagnostic

zones (DZ) approach, using a modification of

the method proposed by Watson (1979). Bogu-

cki (1981) reported these diagnostic zones ac-

cording to phase in the Lengyel occupation of

the sites. These are presented in Table CLXXVII

below.

The most striking aspect of the quantifi-

cation by diagnostic zones is that the propor-

tion of cattle in the Lengyel assemblage is rela-

tively low, just as in the NISP tabulation, while

the proportion of sheep and goat is dramatical-

ly higher. This is at the expense of red deer, roe

deer, and beaver, all of which have their repre-

sentation reduced significantly by the use of the

DZ approach, while pig holds relatively constant

with its percentage representation among NISP.

The high number of sheep/goat DZ is found in

all Lengyel phases, contradicting the picture

presented by the NISP in which cattle are mar-

ginally more numerous in the final phase.

Page 23: Reprinted from - Princeton

1601

Table CLXXVII. Counts of diagnostic zones of Lengyel fau-

na at Brześć Kujawski and overall percentages. Key: LL1 – Late

Lengyel phase 1; LL2 – Late Lengyel phase 2; LL3 – Late Lengyel

phase 3

Tabela CLXXVII. Liczba stref diagnostycznych fauny związanej

z kulturą lendzielską w Brześciu Kujawskim, oraz ogólny udział

procentowy. Legenda : LL1 – 1 faza kultury późno–lendzielskiej;

LL2 –2 faza kultury późno–lendzielskiej ; LL3 –3 faza kultury

późno–lendzielskiej.

Brześć KujawskiDiagnostic Zones LL 1 LL 2 LL 3 total

%

Bos Taurus 1 11 60 72 22.71%

Ovis/Capra 8 19 65 92 29.02%

Sus scrofa 5 17 43 65 20.50%

Cervus elaphus 2 15 25 42 13.25%

Capreolus capreolus 2 12 4 18 5.68%

Canis familiaris 0 0 2 2 0.63%

Equus caballus 0 0 2 2 0.63%

Castor fiber 7 8 5 20 6.31%

Ursus arctos 0 1 0 1 0.32%

Lutra lutra 0 1 1 2 0.63%

Felis sylvestris 0 0 1 1 0.32%

Total DZ 25 84 208 317 100.00%

When reduced to the five major economic

taxa – cattle, sheep/goat, pig, red deer, and roe

deer – the picture comes into somewhat sharp-

er focus but still clearly different from the NISP

presentation. These percentages are presented

graphically in Figure 7. In the DZ quantification

of major taxa, sheep/goat are significantly more

abundant than cattle, unlike their relative equal-

ity in the NISP scheme.

Fig. 1293. Brześć Kujawski NISP of major economic taxa. Ryc. 1293. Globalna liczb szczątków głównych gatunków zwie-

rząt gospodarczych w Brześciu Kujawskim.

Brześć Kujawski NISP: Major Taxa

Bos taurus

27%

Ovis/Capra

17%

Ovis aries

3%

Capra hircus

5%

Sus scrofa

21%

Cervus elaphus

19%

Capreolus capreolus

8%

Bos taurus

Ovis/Capra

Ovis aries

Capra hircus

Sus scrofa

Cervus elaphus

Capreolus capreolus

What does this mean? Which is more reli-

able, NISP or DZ? In the early 1980s, Bogucki

was more interested in establishing the striking

difference between the Linear Pottery concen-

tration on cattle and the more diverse Lengyel

animal economy, which both techniques showed

very clearly. At issue here is the relative abun-

dance of the principal taxa within the Lengyel

faunal assemblages, and on this point the tech-

niques simply do not have a fine enough resolu-

tion to establish the relative abundance conclu-

sively. It can be said with certainty, however, that

despite the variation in the proportions of cattle

to sheep and goats, pig occupies a relatively con-

stant position, whichever technique is applied.

It is also clear that the number of red deer and

roe deer bones in the Brześć Kujawski assem-

blage was non–trivial, for under both methods

they together comprise over 20% of the sample

of major taxa.

Bogucki also applied the minimum num-

bers of individuals (MNI) quantification tech-

nique at Brześć Kujawski. Due to the fact that

this method has fallen from general use in ar-

chaeozoology, it will not be discussed further

here except to note that its results track those of

the DZ except that the problem of overrepresen-

tation of less–abundant taxa and underrepre-

sentation of more abundant species was reflect-

ed in a tightening of the percentage standings of

the major domestic taxa.

Page 24: Reprinted from - Princeton

1602

Bird NISP and MNI at Brześć Kujawski

The assemblage of bird bones from Brześć

Kujawski was analyzed by Bogucki (1980, 1981)

and remains the largest collection of avifauna

from a site in the Polish lowlands (see compar-

ative sample sizes given by Gumiński 2005) un-

til the assemblage from Osłonki is analyzed and

reported (see below). The largest comparable as-

semblage is the collection from Hüde am Düm-

mer in Germany reported by Boessneck (1978).

Use of water screening was responsible for the

large number of bird bones at Brześć Kujawski.

A selection of bird bones from Brześć Kujawski

is shown in Figure 1295.

Bogucki identified 170 bird bones from

nine Lengyel features using the collections of

the Museum of Comparative Zoology at Har-

vard University. Use of the expression “cf.” in-

dicates that the closest match was made when

compared with specimens from a particular spe-

cies, although it is not possible to rule out close-

ly related taxa. Earlier publications on the bird

bones from Brześć Kujawski (Bogucki 1980,

1981) treated the Linear Pottery and Lengyel

bird bones as a single sample. Only the Lengyel

bird bones are reported here, accounting for mi-

nor discrepancies between this and the earlier

publications.

Table CLXXVIII presents the species attri-

bution of identified bird bones. In light of the

lakeside setting of the Brześć Kujawski settle-

Brześć Kujawski DZ: Major Taxa

Bos Taurus

25%

Ovis/Capra

32%

Sus scrofa

22%

Cervus elaphus

15%

Capreolus capreolus

6%

Bos Taurus

Ovis/Capra

Sus scrofa

Cervus elaphus

Capreolus capreolus

Fig. 1294. Brześć Kujawski diagnostic zones (DZ) of major eco-

nomic taxa.

Ryc. 1294. Strefy diagnostyczne głównych gatunków zwierząt

gospodarczych w Brześciu Kujawskim.

ments, it is not surprising that most of them are

from waterfowl, although some raptors, a grouse,

and a scavenger were also identified. Among the

aquatic species, mallards are represented by the

most specimens, followed by geese and ducks.

Isolated bones of wading birds including cur-

lew, ruff (inaccurately called “sandpiper” in Bo-

gucki 1980, 1981), and lapwing were also identi-

fied. Raptors include eagle (the single specimen

most closely corresponded to the great spotted

eagle) and marsh hawk (also known as a hen

harrier), while the capercaillie and carrion crow

complete the list of identified birds.

Fig. 1295. Sample of bird bones from Lengyel contexts at Brześć

Kujawski.

Ryc. 1295. Próbka kości ptaków z obiektów lendzielskich

w Brześciu Kujawskim.

Page 25: Reprinted from - Princeton

1603

Most of the identified bones came from the

breast and wing area, which is not surprising

in light of the meat found on bones in this re-

gion. The frequency of identified elements from

this area is further amplified by the fact that the

meat can be removed as a unit with the bones,

whereas the dismemberment of other parts of

the bird skeleton probably resulted in a higher

degree of bone fragmentation and loss.

In this instance, the use of minimum num-

bers of individuals made sense as a comparison

with NISP in the assessment of relative species

abundance. The only major difference exists be-

tween mallard and geese, with the former rep-

resented by more specimens and fewer individ-

uals and the latter represented by slightly fewer

specimens and more individuals. The difference

does not affect the overall character of the as-

semblage in terms of the dominance of water-

fowl.

Based on modern seasonal migration pat-

terns observed in the Polish lowlands (Bednorz

1976), Bogucki made the case that the majori-

ty of the Anseriformes in the Brześć Kujawski

assemblage were most common in the area be-

tween December and May (Bogucki 1981:

273–4), from which it could be inferred that the

winter and spring were the time for hunting wa-

terfowl. Moreover, he pointed to the fact that the

raptorial birds require open space as part of their

environment, and thus their presence could be

taken as evidence of the opening of the vegeta-

tion for cultivation during the fifth millennium

B.C. The capercaillie also prefers a mixed land-

scape with forests interspersed with fields and

wetlands.

mallard tufted duck Gooseeagle (great

spotted?)

marsh hawk

caper-caillie

lapwing curlew ruffcarrion crow

Anas platyrynchos

Aythya cf. fuligula

Anser cf. anser/cf. fabalis

Aquila cf. clanga

Circus cyaneus

Tetrao urogal-

lus

Vanellus vanellus

Nume-nius

arquata

Philo-machus pugnax

Corvus corone

scapula 2 1 1coracoid 3 3 1 1 1clavicle 1 4sternum 1 1humerus 2 3 2 1radius 2 2ulna 2 2carpo–metacar-pus

1 4 1 1 2

lumbosacralefemur 1tibiotarsus 4tarso–metatar-sus

1 1

1 phalanx dig. II 1

4 phalanx 1

total NISP 17 12 15 1 2 3 1 1 1 1

% NISP 31.5% 22.2% 27.8% 1.9% 3.7% 5.6% 1.9% 1.9% 1.9% 1.9%

MNI 5 4 6 1 1 2 1 1 1 1

% MNI 21.7% 17.4% 26.1% 4.3% 4.3% 8.7% 4.3% 4.3% 4.3% 4.3%

Total identified 54

Unidentified 116

Grand total 170

Table CLXXVIII. Lengyel bird bones from Brześć Kujawski as NISP and MNI.

Tabela CLXXVIII. Kości ptaka z Brześcia Kujawskiego jako GLS i MinLo (minimalna liczba osobników).

Page 26: Reprinted from - Princeton

1604

Fish NISP at Brześć Kujawski

Makowiecki (2003: table 31) identified the

fish bones recovered at Brześć Kujawski during

excavations in the late 1970s, presented as NISP

in Table CLXXIX. The fish bones came from six

features at site 3 at Brześć Kujawski, and espe-

cially from one pit in particular, Pit 784 (Figure

1296). Pit 784 was a relatively small and shallow

pit, about a meter in diameter, which had an ex-

traordinary concentration of several thousand

fish bones, in addition to mammals and birds.

Of the 4297 fish bones recovered at Brześć Ku-

jawski, 2484 (57.8%) could be identified to the

level of order, in the case of Cyprinidae, or spe-

cies (Figure 1297).

Fig. 1296. Pit 784, source of many of the fish bones at Brześć Ku-

jawski 3. Markings on scale are 1 cm.

Ryc. 1296. Jama nr 784, miejsce pozyskania wielu rybich ości

w Brześciu Kujawskim, stanowisko 3. Oznaczenia na podziałce

wielkości 1 cm.

Brześć Kujawski Fish NISP Pits

Common Name Taxon 773 775 776 782 784 808 total %

Northern Pike Esox lucius 5 7 10 0 232 0 254 10.2

Carp Cyprinidae 35 137 144 6 1286 1 1609 64.8

Roach Rutilus rutilus 0 3 1 0 136 0 140 5.6

Ide Leuciscus idus 0 0 0 0 7 0 7 0.3

Rudd Scardinius erythrophthalmus 0 0 3 0 6 0 9 0.4

Asp Aspius aspius 0 2 1 0 23 0 26 1.0

Tench Tinca tinca 21 77 19 0 188 0 305 12.3

Carp Bream Abramis brama 0 0 0 0 8 2 10 0.4

Blue Bream Abramis ballerus 2 0 0 0 0 0 2 0.1

Crucian Carp Carassius carassius 0 0 1 0 8 0 9 0.4

European Perch Perca fluviatilis 5 7 14 0 85 2 113 4.5

Total Identified 68 233 193 6 1979 5 2484 100.0

Unidentified 49* 210** 256** 0 1265**** 0 1813

Total 147 443 449 6 3244 5 4297

Table CLXXIX. Brześć Kujawski fish NISP (after Makowiecki 2003: table 31).

Tabela CLXXIX. GLS ości ryb z Brześcia Kujawskiego (wg D. Makowieckiego 2003: tabela 31).

Page 27: Reprinted from - Princeton

1605

The relative proportions of the different

species are shown graphically in Figure 1298.

By far the most numerous are members of the

carp family, from which numerous pharynge-

al arches were found among the fish bones. In

addition to the generic carp classed as Cyprin-

idae, other cyprinids included roach, ide, rudd,

asp, and tench, and bream. In total, over 85% of

the fish NISP came from some form of cyprin-

id. Despite this preponderance of cyprinids, the

two non–cyprinid taxa, pike and perch, must

Brześć Kujawski Fish NISP

Esox lucius

10.23%

Cyprinidae

64.77%

Tinca tinca

12.28%

Aspius aspius

1.05%

Abramis brama

0.40%

Abramis ballerus

0.08%

Scardinius erythrophthalmus

0.36%

Leuciscus idus

0.28%

Rutilus rutilus

5.64%

Perca fluviatilis

4.55%

Carassius carassius

0.36%

Esox lucius

Cyprinidae

Rutilus rutilus

Leuciscus idus

Scardinius erythrophthalmus

Aspius aspius

Tinca tinca

Abramis brama

Abramis ballerus

Carassius carassius

Perca fluviatilis

Fig. 1298. Relative abundance of Brześć Kujawski fish taxa by

NISP.

Ryc. 1298. Względna liczebność gatunków ryb w Brześciu Ku-

jawskim, określona za pomocą GLS.

also have been significant due to their size and

meat yield.

Brześć Kujawski Pond Tortoise NISP

A total of 150 carapace and plastron frag-

ments of the European pond tortoise (Emys or-

bicularis) were recovered from Lengyel features

Fig. 1297. Sample of cyprinid pharyngeal arches from Brześć

Kujawski.

Ryc. 1297. Próbka łuków gardłowych ryb karpiowatych (cypri-

nidae) z Brześcia Kujawskiego.

at Brześć Kujawski. These were found as isolated

fragments of carapace and plastron bones (e.g.

costals, neurals, peripherals, etc.), as disarticu-

lated concentrations within features, or as ar-

Page 28: Reprinted from - Princeton

1606

ticulated shells. An example of the disarticulat-

ed concentration is seen below in the material

from Pit 775 (Figure 1299), while an example of

an articulated carapace, with a significant por-

tion missing presumably as the result of butch-

ery, from Pit 773 is seen in Figure 1300.

Fig. 1299. Fragments of tortoise shell from Pit 775 at Brześć Ku-

jawski 3.

Ryc. 1299. Fragmenty pancerza żółwia z jamy 775 w Brześciu

Kujawskim, stanowisko 3.

Fig. 1300. Tortoise carapace from Pit 773 at Brześć Kujawski 3.

Ryc. 1300. Tarcza górna pancerza żółwia (karapaks) z jamy 773

w Brześciu Kujawskim, stanowisko 3.

An important aspect of the pond tortoise

remains at Brześć Kujawski is their dramatic

increase over time. Of the 150 NISP, 133 come

from the final occupation phase, whereas ear-

lier they occurred in relatively small numbers.

Many of these bones came from a relatively

small number of features on Brześć Kujawski 3.

As at Brześć Kujawski, the faunal sample

at Osłonki included mammals, birds, fish, and

pond tortoise. Each of these categories is dis-

cussed separately below. Osłonki is the largest

of the faunal assemblages reported in this study,

and represents one of the largest collections of

identified animal bones from a site of the Dan-

ubian tradition in northern central Europe dur-

ing the fifth millennium B.C.

Osłonki Mammal NISP

Table CLXXX characterizes the Osłonki

mammal bone assemblage. Specimens are con-

sidered to be “maximally identified” when

they can be assigned to a genus or species, or

in the case of sheep/goat, to the genus of Ovis

or Capra. “Minimally identified” bones were

those assigned to “large mammal” or “medium

mammal 1” in the York Faunal Analysis System.

“Large mammal” is cattle–red deer–horse sized,

while “medium mammal 1” is sheep–goat–roe

deer–pig sized. Most of the bones in the mini-

mally–identified group were vertebrae and ribs,

thus relatively heavy but usually not diagnostic

elements. The unidentified mammal bones were

generally shaft fragments of long bones and oth-

er such splinters that were recovered by metic-

ulous excavation. Perhaps it might have been

possible to assign these to minimally–identified

categories, but the information so gained would

have been trivial.

Table CLXXX. General characterization of the Osłonki mam-

mal sample.

Tabela CLXXX. Ogólna charakterystyka próbki ssaków z Osło-

nek.

Osłonki

mammal bone count weightmaximally identified 5420 197231minimally identified 1461 61154unidentified mammal 10770 41260total 17651 299645

The 5420 maximally–identified mammal

bones are listed in Table 7 below by anatomical

element. For the record, tortoise and bird bones

are noted at the bottom of this table as well. The

range of species present is very similar to that

Page 29: Reprinted from - Princeton

1607

observed at Brześć Kujawski. Greater effort was

made to differentiate wild pig bones by observa-

tion, although the metrical analysis below will

indicate that the number of wild pigs reported

in Table CLXXXI may under–represent the ac-

tual component of this taxon in the assemblage.

Oslonki NISP Domestic Mammal Wild Mammal

ELEMENT

cattl

e

shee

p/go

at

goat

shee

p

pig

dog

bear

beav

er

hors

e

red

deer

roe

deer

wild

pig

tort

oise

bird

tota

ls

perc

ent

antler 59 7 66 1.22%

cranial fragment 37 29 1 1 37 1 2 108 1.99%

skull 47 47 98 49 49 1 4 1 296 5.46%

maxilla 40 33 104 3 6 1 187 3.45%

loose maxillary teeth 53 72 14 1 2 2 144 2.66%

mandible 135 197 1 141 7 2 3 10 2 498 9.19%

loose mandibular teeth 107 94 35 1 2 3 242 4.46%

DP3 4 4 1 9 0.17%

canine 56 1 57 1.05%

incisor 15 9 46 4 74 1.37%

atlas 26 18 17 1 1 63 1.16%

axis 14 22 3 1 1 41 0.76%

cervical vertebra 5 1 1 1 1 9 0.17%

thoracic vertebra 6 6 0.11%

lumbar vertebra 5 1 6 0.11%

caudal vertebra 1 1 0.02%

vertebra 7 1 1 9 0.17%

sacrum 1 1 2 0.04%

scapula 81 96 110 1 2 6 5 1 302 5.57%

humerus 108 145 1 56 5 2 7 3 327 6.03%

radius 84 178 1 1 74 7 6 1 352 6.49%

ulna 57 57 1 80 3 2 7 207 3.82%

carpal 85 7 1 7 2 0 102 1.88%

metacarpal 90 123 2 1 1 6 223 4.11%

metacarpal 2 5 5 0.09%

metacarpal 3 28 28 0.52%

metacarpal 4 18 18 0.33%

metacarpal 5 9 9 0.17%

pelvis 91 74 43 2 2 212 3.91%

femur 100 108 1 31 1 5 3 2 251 4.63%

patella 9 4 1 14 0.26%

tibia 83 133 72 2 6 12 3 311 5.74%

fibula 3 25 28 0.52%

calcaneus 61 42 52 1 1 1 4 162 2.99%

astragalus 46 37 1 20 1 2 2 2 111 2.05%

tarsal 25 14 2 2 43 0.79%

metatarsal 106 65 4 5 2 2 8 14 206 3.80%

m/t2 13 1 1 15 0.28%

m/t3 28 1 1 30 0.55%

m/t4 20 1 2 23 0.42%

m/t5 4 1 1 6 0.11%

metapodial 22 29 22 1 1 1 5 11 92 1.70%

phalanx I 132 69 51 1 3 2 258 4.76%

phalanx II 102 27 19 1 5 5 159 2.93%

phalanx III 71 5 2 1 16 1 6 102 1.88%

other elements 6 6 0.11%

total mammals 1865 1738 111 61 1314 34 9 2 11 135 115 25 5420 100.00%

carapace + plastron 235 235

bird bones 276 276

total NISP 1865 1738 111 61 1314 34 9 2 11 135 115 25 235 276 5931

Table CLXXXI. Osłonki mammal NISP, by anatomical element, and bird and turtle bones.

Tabela CLXXXI. GLS ssaków z Osłonek, ustalona zgodnie z fragmentami anatomicznymi, oraz kości ptaków i żółwi.

Page 30: Reprinted from - Princeton

1608

Relative NISP of Major Economic Species

At Osłonki, the principal mammalian taxa

which had a major economic role are the four

main domesticated species – cattle, sheep, goat,

and pig – and the two most abundant wild her-

bivore species, red deer and roe deer. Together,

these species make up 98.5% of the total mam-

mal NISP. Other mammal species, while still of

interest, are effectively “noise” in the overall eco-

nomic system at Osłonki.

In the following analysis, the NISP of these

six species (including sheep/goat and the differ-

entiated sheep and goat) are compared for the

site as a whole, with the results presented graph-

ically in Figure 1301. Cattle and sheep/goat

each account for about a third of the total NISP,

and among the differentiated specimens the ra-

tio of 2:1 goat:sheep continues to be observed.

Pig bones comprise a quarter of the total NISP,

while red deer and roe deer together contribute

about 5%.

The overall picture is of an economy with

a balanced portfolio comprised of three major

components: cattle, sheep, goat, and pigs. Wild

herbivores are incidental, perhaps killed oppor-

tunistically. Indeed, as noted above, many of the

red deer NISP are antlers, while many of the roe

deer bones have been selected for tool manufac-

ture and thus are not strictly consumption de-

bris. The economic implications of this will be

discussed on a regional scale below.

Mammal NISP Variation by Feature and

Sample Size

The animal bones from Osłonki came from

a total of 322 separate contexts, which could

then be collapsed into the major archaeologi-

cal units. These include 11 large clay–extraction

pits (glinianki), five house trenches, 69 pits, the

fortification ditch (fossa), and several miscel-

laneous contexts. The distribution of mammal

NISP by feature and by species is given in Table

CLXXXII.

It is clear that the large clay pits produced

the largest absolute samples of animal bones,

which comprised 61.44% of the NISP. These are

enormous features, so the sample sizes may not

reflect a particularly high density of bone per

unit of feature fill, with the exception of GL2,

GL3, GL5, and GL9. In these features, particu-

lar sections contained concentrations of bone,

while other parts were relatively barren. For ex-

ample, the part of GL2 that lay in excavation

units (odcinki) 113 and 114 produced the largest

quantity of bone.

Pits yielded 36.24% of the mammal NISP

at Osłonki. Some pits, however, contained very

high concentrations of bone in proportion to

Fig. 1301. Osłonki NISP (total sample): major economic taxa. Ryc. 1301. GLS z Osłonek (cała próbka): główne zwierzęta go-

spodarcze.

Osłonki Total NISP: Major Mammal Taxa

cattle

34%

sheep/goat

33%

goat

2%

sheep

1%

pig

25%

red deer

3%

roe deer

2%

cattle

sheep/goat

goat

sheep

pig

red deer

roe deer

Page 31: Reprinted from - Princeton

1609

their size. Particularly noteworthy are pits 53,

116, 137, 204, and 208. The fortification ditch

and house trenches contained very small quan-

tities of bone, which is not surprising since their

taphonomy is very different from that of the

open features that were used as rubbish dumps.

Fig. 1302. Roe deer radius from Osłonki, Clay Pit 2. Ryc. 1302. Kość promieniowa sarny, Osłonki, glinianka 2.

Table CLXXXII. Osłonki NISP by context.

Tabela CLXXXII. GLS z Osłonek ustalona zgodnie z kontekstem kulturowym.

OSŁONKI MAMMALS MAX ID NISP

Domestic Wild

CONTEXT TYPESAM-PLE

cattlesheep/goat

goat sheep pig dog wild pig bear beaver horse red deer roe deer

Fortification ditch

Fossa 12 10 5 2 2

Clay Pits (Glinianki)

GL 2 250 201 9 6 160 2 1 3 22 27

GL 3 322 188 12 8 155 2 2 12 4

GL 5 221 122 9 9 112 1 23 6

GL 6 111 181 8 4 74 1 6 8 13 2

GL 7 34 29 1 1 29 1 3 1

GL 8 7 6 1 3

GL 9 206 197 23 7 176 6 4 1 18 6

GL 10 11 14 2 0 31 1 1 20

GL 11 38 6 1 1 19 4 5 1

GL 12 49 11 5

GL 13 12 11 30

Houses

house 1 1

house 2 9 2 4

house 3 4 2

house 22–3

7 5 1

house 26

1

Pits

pit 8 3 3 2 4

pit 10 12 11 3 23

pit 11 3 1 2 1

pit 12 3 3 1

pit 16 4 10 1

Page 32: Reprinted from - Princeton

1610

OSŁONKI MAMMALS MAX ID NISP

Domestic Wild

CONTEXT TYPESAM-PLE

cattlesheep/goat

goat sheep pig dog wild pig bear beaver horse red deer roe deer

pit 29 1 2

pit 33 4 3 1

pit 34 2 8

pit 38 1

pit 40 4 2 1

pit 41 2 1 1

pit 42 3 1 1

pit 47 17 30 3 1 8

pit 48 1 1 1 1

pit 53 10 40 3 3 11 1 3

pit 54 7 2

pit 59 1

pit 73 2 1 1 1

pit 75 1 11 7 1 1

pit 76 2 1

pit 77

pit 78 1

pit 95 6 1 59 17

pit 101 2 3 3 1 1

pit 102 2 5 2 1

pit 103 1 2 5 1

pit 105 2 1 15 2

pit 106 8 7 1 2 1

pit 108 3 1

pit 109 1 8 1

pit 111

pit 112 3

pit 116 25 79 3 1 65 4 1 5

Pits

pit 120 1 1 1

pit 127 21 54 6 1 34 5

pit 128 1

pit 130 17 51 6 3 7 10 6

pit 131 2

pit 137 53 39 61 1 2

pit 138 1 1 1

pit 148 1

pit 149 1 2 2 2 1

pit 150 5 1 5 2

pit 151 4 3 1 1

pit 152 15 9 4

pit 153 17 61 13 1

pit 154 24 5 1 8 3 1 1

pit 155 7 5 1 2 1

pit 156 1

pit 157 1 1 1

pit 177a

1 2 4

pit 179 7 8 8

pit 193 30 14 1 3 10 11

pit 194 1 3 5 1

pit 204 77 129 3 7 35 3 1

pit 208 81 54 6 23 1 1

pit 209 1 1 1 1

pit 211 3

pit 229 9 6 1 10 1 2 2

Page 33: Reprinted from - Princeton

1611

OSŁONKI MAMMALS MAX ID NISP

Domestic Wild

CONTEXT TYPESAM-PLE

cattlesheep/goat

goat sheep pig dog wild pig bear beaver horse red deer roe deer

pit 248 1 10 1 8 2

pit 250

pit 257 1

pit 260 2 2 3

pit 265 6

pit 272 49 38 3 6 2

pit 276 1

pit 277 2 2

pit 278 1 1

pit 280 1 1

Misc. Contexts

OS1–0100 6 6 1 4 1

OS1–0101 2

OS1–0322 94/384 10 12 13

OS1–0050 odc 78 1

OS1–0046 pit ? 1 2

TOTALS 1865 1738 111 61 1314 34 25 9 2 11 135 115

cattleshep/goat

goat sheep pig dog wild pig bear beaver horse red deer roe deer

Total domestic mammal

5123

Total wild mammal 297

Total mammal 5420 34.41% 32.07% 2.05% 1.13% 24.24% 0.63% 0.46% 0.17% 0.04% 0.20% 2.49% 2.12%

%domestic 94.52%

%wild 5.48%

NISP of the principal mammalian taxa (cat-

tle, pig, sheep, goat, red deer, and roe deer) were

compared between the large clay pits (glinianki)

and the smaller trash–filled pits. These results

are presented graphically in Figures 1303 and

1304. An interesting result emerges in that the

percentage of cattle is higher in the clay extrac-

tion pits at the expense of sheep/goat, while the

pattern is reversed in the regular pits. It is signif-

icant that the percentages of the other taxa, in-

cluding differentiated sheep and goat, are con-

sistent between the two sub–samples, indicating

that there probably is some significance to this

difference between cattle and sheep/goat. The

probable explanation lies in the processes of the

formation of the different types of deposit. The

larger cattle bones may have been differentially

better–preserved in the more active deposition-

al environment of the clay extraction pits, while

the quickly–closed pit features trapped sheep

and goat bones better for eventual recovery.

From a focus on the various features with

samples larger than 100 NISP, a combination of

five clay pits (GL2, GL3, GL5, GL6, and GL9)

and six pits (116, 127, 130 137, 204, and 208),

a consensus view of the proportions of the ma-

jor mammal taxa emerges (Fig. 1305). These 11

features contained 72.36% of the Osłonki NISP.

The consistency of this subsample with the total

sample is established by the 2:1 ratio of goat to

sheep and the proportions of deer. Cattle com-

prise 36% of the NISP, sheep/goat 33%, and

pig 23%. Such a calculation may control the ef-

fects of taphonomic bias between the high–con-

centration clay pits and pits one hand, and the

sparse bone finds in the other features, and thus

may be the best characterization of the relative

NISP proportions of the major taxa.

Page 34: Reprinted from - Princeton

1612

Fig. 1303. Representation of principal economic species in sam-

ples from clay extraction pits.

Ryc. 1303. Udział głównych gatunków zwierząt gospodarczych

w próbkach kości, pochodzących z glinianek.

Osłonki Clay Pits: Principal Mammal Taxa

cattle

39%

sheep/goat

29%

goat

2%

sheep

1%

pig

24%

red deer

3%

roe deer

2%

cattle

sheep/goat

goat

sheep

pig

red deer

roe deer

Fig. 1304. Representation of principal economic taxa in sam-

ples from smaller pits.

Ryc. 1304. Udział głównych gatunków zwierząt gospodarczych

w próbkach kości, pochodzących z mniejszych jam.

Osłonki Pits: Principal Mammal Taxa

cattle

29%

sheep/goat

39%

goat

2%

sheep

1%

pig

25%

red deer

2%

roe deer

2%

cattle

sheep/goat

goat

sheep

pig

red deer

roe deer

Fig. 1305. Representation of principal economic mammal spe-

cies in features with sample sizes over 100 NISP.

Ryc. 1305. Udział głównych gatunków ssaków gospodarczych

w obiektach o wielkości próbek większej niż 100 GLS.

Osłonki Features with NISP >100: Major Taxa

cattle

36%

sheep/goat

33%

goat

2%

sheep

1%

pig

23%

red deer

3%

roe deer

2%

cattle

sheep/goat

goat

sheep

pig

red deer

roe deer

Page 35: Reprinted from - Princeton

1613

Counts of Mammal Diagnostic Zones

As an exercise to validate the assessment of

relative species abundance based on NISP, the

Osłonki mammal bones were also quantified

using a diagnostic zones method. The diagnos-

tic zones were essentially the same as used by

Bogucki (1981) in his analysis of the Brześć Ku-

jawski assemblage but different in two key re-

spects. First, due to an inability to differentiate

anterior and posterior phalanges across all spe-

cies, the six zones based on phalanges the Brześć

Kujawski analaysis were compressed to three in

the Osłonki study. Second, due to the fact that

artiodactyls have two phalanges on each right

and left limb whereas the other sided elements

in the analysis only are represented once on each

side, the counts of diagnostic zones 23, 24, and

25 (see table CLXXXIII below) were divided

in two. To be counted as a diagnostic zone, the

specimen had to be able to be assigned to a side

and in the case of long bones it was necessary

for enough of the articular end to be preserved

to assess its fusion status. Thus the distal shaft of

a long bone would not be counted in this analy-

sis even if it could be assigned to species.

Table CLXXXIII. Diagnostic zone counts for Osłonki mammal bones. Counts shaded in yellow are one–half actual counts to cor-

rect for twice the number of phalanges in relation to long bones in the ungulate skeleton.

Tabela CLXXXIII. Liczba stref diagnostycznych kości ssaków z Osłonek.

Elem

ent

Dia

gnos

tic Z

one

Bos

taur

us

Ovi

s/Ca

pra

Ovi

s ar

ies

Capr

a hi

rcus

Sus

scro

fa (d

omes

tic)

Sus

scro

fa (w

ild?)

Cerv

us e

laph

us

Capr

eolu

s ca

preo

lus

Cast

or fi

ber

Cani

s fa

mili

aris

Equu

s sp

.

Urs

us a

rcto

s

Tota

l

mandible 1–R 42 82 1 64 1 2 3 3 198

mandible 1–L 61 104 62 2 1 7 2 4 243

maxilla 2–R 19 19 43 2 1 84

maxilla 2–L 19 13 58 1 3 1 95

d.scapula 3–R 17 28 31 3 4 83

d.scapula 3–L 15 27 29 3 1 2 77

p.humerus 4–R 10 14 3 1 1 29

p.humerus 4–L 5 12 5 2 1 25

d.humerus 5–R 22 31 14 2 1 2 2 74

d.humerus 5–L 24 41 1 17 1 1 2 87

p.ulna 6–R 3 9 10 1 2 2 1 28

p.ulna 6–L 8 9 12 2 1 32

p.radius 7–R 25 44 1 1 21 1 1 3 97

p.radius 7–L 22 44 16 3 85

d.radius 8–R 10 27 1 17 3 58

d.radius 8–L 15 24 13 1 2 55

carpal int. 9–R 11 1 12

carpal int. 9–L 7 1 1 9

prox.mc3 10–R 29 36 1 14 1 3 84

prox.mc3 10–L 17 23 13 3 56

dist.mc3 11–R 13 33 1 1 10 58

dist.mc3 11–L 27 26 1 10 64

acet 12–R 6 4 5 1 1 17

acet 12–L 8 4 5 1 18

p.femur 13–R 15 16 3 34

p.femur 13–L 17 17 6 1 1 1 1 44

d.femur 14–R 9 26 1 7 1 44

d.femur 14–L 9 22 4 1 1 37

patella 15–R 4 3 1 8

patella 15–L 3 1 4

p.tibia 16–R 13 19 7 2 2 43

p.tibia 16–L 13 18 6 1 2 40

Page 36: Reprinted from - Princeton

1614

Elem

ent

Dia

gnos

tic Z

one

Bos

taur

us

Ovi

s/Ca

pra

Ovi

s ar

ies

Capr

a hi

rcus

Sus

scro

fa (d

omes

tic)

Sus

scro

fa (w

ild?)

Cerv

us e

laph

us

Capr

eolu

s ca

preo

lus

Cast

or fi

ber

Cani

s fa

mili

aris

Equu

s sp

.

Urs

us a

rcto

s

Tota

l

d.tibia 17–R 24 36 19 2 6 87

d.tibia 17–L 25 42 25 1 2 2 97

astr 18–R 27 19 7 1 1 55

astr 18–L 18 18 11 1 1 1 2 52

calc 19–R 34 20 25 2 1 82

calc 19–L 27 22 26 2 1 1 79

tcen 20–R 12 5 1 1 19

tcen 20–L 7 7 1 15

prox.mt3 21–R 19 17 2 2 13 4 1 1 59

prox.mt3 21–L 17 28 1 13 2 4 1 66

dist.mt3 22–R 21 7 2 2 7 1 40

dist.mt3 22–L 20 6 4 1 31

rl/lm ph.1 23–R 32 18 11 1 1 1 64

ll/rm ph.1 23–L 34 16 14 1 1 66

rl/lm ph.2 24–R 23 8 5 1 1 1 39

ll/rm ph.2 24–L 26 6 5 2 2 41

rl/lm ph.3 25–R 13 2 1 3 1 1 21

ll/rm ph.3 25–L 20 1 1 1 5 3 31

TOTALS 917 1051 9 14 702 18 46 72 2 24 8 3 2866

% 32.0% 36.7% 0.3% 0.5% 24.5% 0.6% 1.6% 2.5% 0.1% 0.8% 0.3% 0.1% 100.0%

Table CLXXXIII shows the diagnostic

zones used in the analysis, the counts by spe-

cies, and the resultant percentages of the total

count of diagnostic zones. The orders of magni-

tude of the percentages are very similar to those

obtained from NISP, and the causes of the vari-

ation can be immediately identified. First, the

percentage of pig bones is virtually identical be-

tween the NISP and diagnostic zones. Second,

the relationship between cattle and sheep/goat

is affected by the fact that far more sided mandi-

ble fragments could be attributed to sheep/goat

than cattle, probably due to the greater smash-

ing of cattle mandibles for marrow than those of

sheep and goats, as well as the fact that the raw

NISP counts are not adjusted for the represen-

tation of ungulate phalanges at twice the num-

ber of long bones. But the most important ob-

servation is that the order of magnitude of the

representation of the various species, even the

incidental wild taxa and dogs, is very similar be-

tween NISP and diagnostic zones, thus increas-

ing our confidence that the relative percentages

of taxa in the archaeological faunal assemblage

do have some degree of correlation with their

relative economic importance.

This observation is strengthened by the rel-

ative percentages of the major economic taxa –

cattle, sheep, goat, pig, red deer, and roe deer

– that are depicted in Figure 1306. Again, the

percentages do not differ significantly from those

derived from the various NISP analyses present-

ed above, and they fall somewhere between the

pit NISP and the large sample NISP. Thus, a in

a large highly fragmented assemblage, there is

strong correlation between the raw counts of in-

dividual specimens and a simple derived mea-

sure like counts of diagnostic zones.

Page 37: Reprinted from - Princeton

1615

Osłonki Bird Bones

During his analysis of the Osłonki faunal

assemblage, Bogucki segregated 240 bird bones.

An additional 36 bird bones were segregated by

Makowiecki during his analysis of the Osłonki

fish bone assemblage due to their inclusion on

the water–screened bone fraction. At 276 spec-

imens, this would be the largest Neolithic bird

bone assemblage from the Polish Lowlands.

Competing demands on time and resources

have caused the Osłonki bird bone assemblage

to remain unanalyzed at the current time, a sit-

uation that should be rectified in the near fu-

ture. A general inspection of the assemblage by

Bogucki suggests that it has a character similar

to that of the Brześć Kujawski bird bone assem-

blage described above, with the majority of the

specimens coming from Anseriformes such as

mallards, ducks, and geese.

Osłonki Fish NISP

The fish bones from Osłonki were identified

by Makowiecki (2003: table 36) and are present-

ed below as Table CLXXXIV. They came from

eleven features, three clay pits and eight smaller

pits, with the majority coming from one of the

large clay pits, number 10, and one of the small-

Osłonki Major Taxa: Diagnostic Zones

Bos taurus

32.4%

Ovis/Capra

37.2%

Ovis aries

0.3%

Capra hircus

0.5%

Sus scrofa (domestic)

24.8%

Sus scrofa (wild?)

0.6%

Cervus elaphus

1.6%

Capreolus capreolus

2.5%

Bos taurus

Ovis/Capra

Ovis aries

Capra hircus

Sus scrofa (domestic)

Sus scrofa (wild?)

Cervus elaphus

Capreolus capreolus

Fig. 1306. Relative percentages of diagnostic zones of principal

economic taxa at Osłonki.

Ryc. 1306. Względny udział procentowy stref diagnostycznych

głównych gatunków zwierząt gospodarczych w Osłonkach.

er pits, number 179. Of the 1905 fish bones, 515

(27%) were identifiable at least to the level of or-

der. This percentage is significantly lower than

at Brześć Kujawski despite generally the same

methods of recovery being applied. Instead, it

appears to indicate a taphonomic difference be-

tween the context in which the majority of the

Brześć Kujawski fish bones were found (a sin-

gle very small pit, densely concentrated) and

the less–dense contexts in which the Osłonki

fish bone samples were recovered. Of the bones

in Clay Pit 10, only 16.7% could be identified,

while of the bones in Pit 179, 24.4% could be

identified. There appears to be a direct corre-

lation between density of fish remains per vol-

ume of feature fill and the percentage that can

be identified.

The relative proportions of fish NISP from

Osłonki are shown graphically in Figure 1307.

As at Brześć Kujawski, the assemblage is domi-

nated by cyprinids, both generic carp classed as

Cyprinidae as well as members of specific spe-

cies. Of the non–cyprinid taxa, pike are the most

abundant, in somewhat greater quantity than at

Brześć Kujawski although not dramatically so,

while perch are surprisingly insignificant.

Page 38: Reprinted from - Princeton

1616

Osłonki Clay Pits Pits Total

Common Name Taxon 2 9 10 53 75 95 103 116 127 131 179 n %

Northern Pike Esox lucius 0 0 55 0 1 0 0 1 0 0 36 93 18.1

Carp Cyprinidae 3 3 72 102 12 4 2 19 0 2 165 384 74.6

Roach Rutilus rutilus 0 0 1 0 1 0 0 0 0 0 1 3 0.6

Rudd Scardinius erythrophthalmus 0 0 1 0 1 0 0 0 0 0 6 8 1.5

Asp Aspius aspius 8 0 0 0 0 0 0 0 0 0 0 8 1.5

Tench Tinca tinca 0 0 1 1 0 0 0 0 0 0 14 16 3.1

Carp Bream Abramis brama 1 0 0 0 0 0 0 0 0 0 0 1 0.2

Crucian Carp Carassius carassius 0 0 0 0 0 0 0 0 0 0 1 1 0.2

European Perch Perca fluviatilis 0 0 0 1 0 0 0 0 0 0 0 1 0.2

Identified 12 3 130 104 15 4 2 20 0 2 223 515 100

Unidentified 8 0 650 8 24 0 4 4 1 1 690* 1390

Total 20 3 780 112 39 4 6 24 1 3 913 1905

Table CLXXXIV. Osłonki fish NISP (after Makowiecki 2003: table 36).

Tabela CLXXXIV. GLS ości ryb z Osłonek (za Makowieckim 2003: tabela 36).

Osłonki Pond Tortoise NISP

A total of 235 bone fragments of pond tor-

toise were recovered from 14 features at Osłonki,

six large clay pits and eight smaller pits (Table

CLXXXV). The majority came from one of the

small pits, Pit 137, along with two smaller con-

centrations in Clay Pits 3 and 9. The remainder

were isolated fragments. At least one articulat-

Osłonki Fish NISP

Esox lucius

18.06%

Cyprinidae

74.56%

Aspius aspius

1.55%

Tinca tinca

3.11%

Abramis brama

0.19%

Rutilus rutilus

0.58%

Carassius carassius

0.19%Perca fluviatilis

0.19%

Scardinius erythrophthalmus

1.55%

Esox lucius

Cyprinidae

Rutilus rutilus

Scardinius erythrophthalmus

Aspius aspius

Tinca tinca

Abramis brama

Carassius carassius

Perca fluviatilis

Fig. 1307. Relative abundance of Osłonki fish taxa by NISP. Ryc. 1307. Względna liczebność gatunków ryb w Osłonkach,

określona za pomocą GLS.

ed segment of carapace was observed in situ in

the northern part of Clay Pit 3 (Figure 1308.)

Of these fragments, 220 were carapace and plas-

tron elements identified by Bogucki in his work,

while another 15 were segregated by Makow-

iecki from the water–sieved fish bone samples.

Bogucki weighed the fragments that he studied,

which totaled 475 grams.

Page 39: Reprinted from - Princeton

1617

Osłonki tortoise NISP Clay Pits Pits Total

element 2 3 5 9 10 11 53 75 103 127 130 137 179 208

carapace 5 35 1 21 0 4 1 0 1 0 87 0 6 161

plastron 4 0 0 6 6 0 2 4 0 1 34 1 1 59

cara/plas/other 0 0 0 0 6 5 2 0 2 0 0 0 0 15

total 9 35 1 27 12 4 5 3 4 1 1 121 1 7 235

weight (g) 19 41 4 40 17 4 6 6 1 3 320 3 11 475g

Table CLXXXV. Pond tortoise remains from Osłonki by context.

Tabela CLXXXV. Szczątki żółwia błotnego z Osłonek, zgodne z kontekstem kulturowym.

Although the Osłonki tortoise NISP were

not as abundant in relation to the rest of the fau-

nal sample as at Brześć Kujawski, they clearly

were present in a significant quantity across the

site. Their presence in such quantity in the fau-

Fig. 1308. Osłonki, Site 1. Articulated segments of a carapace in

situ in Clay Pit 3, next to a pottery fragment.

Ryc. 1308. Osłonki, st. 1. Wyodrębnione części tarczy górnej

pancerza żółwia, znalezione in situ, glinianka 3, obok fragmen-

tu ceramiki.

nal assemblage also reflects their occurrence in

the area surrounding the site. This may have rel-

evance for our understanding of the Neolithic

landscape, a subject which will be discussed fur-

ther below.

Page 40: Reprinted from - Princeton

1618

A sample of animal bones from Osłonki

that had not been part of the material analyzed

by Bogucki in 1990–1996 was examined by Ma-

kowiecki in 2002. It came from two cultural lay-

ers associated with 360/361 and 370/371. Of the

472 bones, 79% could be identified. In addition

to the mammal bones, 4 bird bones were noted.

The mammal bones from this sample are

tabulated in Table CLXXXVI. They consist ex-

clusively of the major economic taxa without

the minor wild species that are found in most of

Element Cattle Pig Sheep/ Goat Sheep Goat Red Deer Roe Deer Total

Horn Core 0 0 0 0 2 0 0 2

Skull + Horn Core 1 0 0 0 0 0 0 1

Antler 0 0 0 0 0 1 0 1

Skull 28 7 1 0 0 0 0 36

Mandible 13 7 3 0 0 0 1 24

Lower Canine 0 1 0 0 0 0 0 1

Upper Teeth 6 0 1 0 0 0 0 7

Lower Teeth 1 1 1 0 0 0 0 3

Hyoid 1 0 0 0 0 0 0 1

Scapula 13 2 5 0 0 1 1 22

Humerus 7 2 1 0 1 0 0 11

Radius 4 2 4 0 0 0 0 10

Ulna 7 1 2 0 0 0 0 10

Radius+ Ulna 0 0 0 0 1 0 0 1

Carpals 3 0 0 0 0 0 0 3

Metacarpal 7 1 1 2 3 1 0 15

Metacarpal III 0 1 0 0 0 0 0 1

Pelvis 3 2 1 2 1 0 0 9

Femur 6 4 5 0 0 1 0 16

Tibia 20 1 10 3 2 1 0 37

Fibula 0 3 0 0 0 0 0 3

Calcaneus 2 1 1 0 0 0 0 4

Astragalus 2 0 0 0 0 0 0 2

Centrotarsal 1 0 0 0 0 0 0 1

Metatarsal 5 1 6 2 1 0 0 15

Metatarsal III 0 1 0 0 0 0 0 1

Metatarsal IV 0 2 0 0 0 0 0 2

Metapodial 1 0 0 0 0 0 0 1

Phalanx I 2 1 3 0 0 0 0 6

Phalanx I Anterior 1 0 0 0 0 0 0 1

Phalanx I Posterior 2 0 0 0 0 0 0 2

Phalanx II Anterior 2 0 0 0 0 0 0 2

Phalanx II Posterior 2 0 0 0 0 0 0 2

Phalanx III 3 0 0 0 0 0 0 3

Total 143 41 45 9 11 5 2 256

the other samples. Figure 1309 depicts the pro-

portional representation of these species, after

the removal from consideration of ribs and ver-

tebrae for comparability with the main Osłonki

sample. The principal difference between this

sample and the main Osłonki assemblage is the

much larger number of cattle. Since the small

sample comes from cultural layers, the tapho-

nomic difference identified above between clay

pits and smaller pits that resulted in a larger pro-

portion of cattle in the clay pits may be ampli-

fied even further for bones from a cultural layer.

As in the main Osłonki faunal assemblage, goat

outnumber sheep, indicating that this was a uni-

form characteristic at Osłonki.

Table CLXXXVI. NISP in sample of animal bone from Osłonki studied by Makowiecki in 2002.

Tabela CLXXXVI. GLS w próbce kości zwierząt z Osłonek, opracowana przez D. Makowieckiego w 2002 r.

Page 41: Reprinted from - Princeton

1619

Element Cattle Pig Sheep/ Goat Sheep Goat Red Deer Roe Deer Total

% w/o ribs, vertebrae 55.86% 16.02% 17.58% 3.52% 4.30% 1.95% 0.78% 100.00%

Cervical Vertebrae 10 1 0 0 0 0 0 11

Thoracic Vertebrae 16 1 1 0 0 0 0 18

Lumbar Vertebrae 7 2 0 0 0 0 0 9

Ribs 43 17 15 0 0 0 0 75

Total ribs + vertebrae 76 21 16 0 0 0 0 113

Grand Total 219 62 61 9 11 5 2 369

% grand total 59.35% 16.80% 16.53% 2.44% 2.98% 1.36% 0.54% 100.00%

In addition to the fish bones from Osłonki

reported above, an additional sample was re-

cently reported by Makowiecki as part of the

same 2002 research. These fish bones came from

three features: a niche in the bottom of Clay Pit

Fig. 1309. Proportions of NISP of major economic taxa in as-

semblage from Osłonki studied by Makowiecki in 2002.

Ryc. 1309. Proporcje GLS głównych gatunków zwierząt gospo-

darczych w zespole z Osłonek, opracowane przez D. Makowiec-

kiego w 2002 r.

Osłonki NISP (Makowiecki 2002 sample): Major Taxa

Cattle

55.9%

Sheep/ Goat

17.6%

Sheep

3.5%

Goat

4.3%

Pig

16.0%

Red Deer

2.0%

Roe Deer

0.8%

Cattle

Sheep/ Goat

Sheep

Goat

Pig

Red Deer

Roe Deer

10, and two smaller pits, 149 and 272. The fish

bones recovered through water sieving are pre-

sented in Table CLXXXVII below and are over-

whelmingly dominated by cyprinids with only a

small number of pike.

Common Name Taxon Clay Pit 10C Pit 149 Pit 272 Total % total

Northern Pike Esox lucius 4 0 7 11 3.25%

Carp Cyprinidae 26 14 283 323 95.56%

Ide Leuciscus idus 1 1 0 2 0.59%

Tench Tinca tinca 0 0 1 1 0.30%

Crucian Carp Carassius carassius 0 0 1 1 0.30%

Total Identified 31 15 292 338 100.00%

Table CLXXXVII. Additional fish bone sample from Osłonki identified by Makowiecki in 2002.

Tabela CLXXXVII. Dodatkowa próbka ości ryb z Osłonek określona przez D. Makowieckiego w 2002 r.

Page 42: Reprinted from - Princeton

1620

The multiperiod site of Falborz , located

approximately 3 kilometers NW of Brześć Ku-

jawski, was excavated by Mgr. Janina Dąbrowska

of the Muzeum Ziemi Kujawskiej i Dobrzyńskiej

in 1976–1979. Dr. Ryszard Grygiel subsequent-

ly conducted small rescue excavations in 1983.

In addition to features from later periods, Neo-

lithic occupations of the Linear Pottery culture

(ca. 5400–4900 cal BC) and the Brześć Kujawski

Group of the Lengyel culture (ca. 4500–4200 cal

BC) were documented. Peter Bogucki studied

the faunal remains from these two occupations

in 1988 at the request of Ryszard Grygiel.

Excavation conditions at Falborz were very

difficult. The archaeological remains were em-

bedded in a rock–hard clay matrix, and the ex-

traction of the animal bones from this matrix re-

sulted in damage and breakage of a number of

specimens. Feature fill was not sieved. Thus the

Falborz faunal sample consisted primarily of

large hand–collected specimens. Small mammal,

bird, and fish bones are absent, as are the small-

er elements of larger animals, such as the phalan-

ges of sheep/goat and roe deer. In the interest of

expediency of analysis, most vertebrae, ribs, and

long bone shaft fragments that lacked diagnostic

characteristics to permit identification to the ge-

nus level were left unidentified. Certain diagnos-

tic specimens that were still equivocal but which

seemed likely to belong to a taxon were charac-

terized as “Bos–sized” or “Ovis/Capra–sized”, or

“probably Bos” and “probably Ovis/Capra”.

Twenty–one contexts attributed to the

Brześć Kujawski Group of the Lengyel culture

yielded 1029 animal bones, of which 289 could

be identified to the genus level or nearly so. Ta-

ble CLXXXVIII gives the distribution of these

specimens by species and element. A wide range

of species is present, including domestic cat-

tle, sheep and goat, pig, dog (Canis familiaris),

red deer (Cervus elaphus), roe deer (Capreolus

capreolus), beaver (Castor fiber), hare (Lepus eu-

ropaeus), wild horse (Equus sp.), and pond tor-

toise (Emys orbicularis). The pig bones are pre-

sumed to be primarily those of domesticated

individuals, although the possibility of an ad-

mixture of bones from individuals living in the

wild cannot be excluded.

This range of species is consistent with the

pattern observed at nearby contemporaneous

Lengyel settlements, including Brześć Kujawski

and Osłonki. As with the Brześć Kujawski and

Osłonki samples, the NISP of the major eco-

nomic species – cattle, sheep, goat, pig, red deer,

and roe deer – are isolated and graphed in Fig-

ure 1310. The proportions of the principal do-

mestic taxa conform generally to the pattern

noted at Brześć Kujawski and Osłonki, perhaps

more closely to Brześć Kujawski.

Red deer and roe deer were more abundant

at Falborz during the Lengyel occupation than

during the Linear Pottery occupation, which

may have been the result of hunting to defend

fields of grain against these crop–robbing spe-

cies (Uerpmann 1977). It should be noted that

11 of the roe deer bones were found in a single

pit excavated in 1983 and probably belong to a

single individual. They include right and left fe-

murs, a left tibia, right and left scapulae, and a

left articulated humerus–radius–ulna, all high

meat–bearing elements. These appear to be the

remains of a single kill and a single consump-

tion episode. The varying representation of ana-

tomical elements at Falborz is discussed further

below.

Cattl

e

Prob

ably

cat

tle

Cattl

e–si

zed

Shee

p/G

oat

Shee

p

Goa

t

Shee

p/G

oat–

size

d

Prob

ably

She

ep/G

oat

Red

dee

r

Roe

dee

r

Beav

er

Har

e

Pond

tort

oise

Hor

se

Pig

Dog

Tota

ls

Perc

ent

Horn/antler 2 1 3 11 17 6%

cranium 1 1 2 4 8 3%

maxilla 1 2 7 10 3%

Table CLXXXVIII. Lengyel NISP from Falborz.

Tabela CLXXXVIII. GLS związana z kulturą lendzielską z Falborza.

Page 43: Reprinted from - Princeton

1621

Cattl

e

Prob

ably

cat

tle

Cattl

e–si

zed

Shee

p/G

oat

Shee

p

Goa

t

Shee

p/G

oat–

size

d

Prob

ably

She

ep/G

oat

Red

dee

r

Roe

dee

r

Beav

er

Har

e

Pond

tort

oise

Hor

se

Pig

Dog

Tota

ls

Perc

ent

loose max teeth 5 11 16 6%

mandible 5 2 8 3 1 1 4 24 8%

loose mand teeth 9 8 17 6%

loose teeth 5 4 2 4 15 5%

atlas 1 5 6 2%

axis 2 4 6 2%

vertebra 1 1 2 4 1%

scapula 4 5 2 1 2 3 17 6%

humerus 4 1 2 4 1 2 1 15 5%

radius 4 1 1 5 11 4%

ulna 1 1 6 8 3%

carpal 2 1 3 1%

metacarpal 4 3 4 11 4%

pelvis 2 1 1 1 1 1 3 10 3%

patella 1 1 2 1%

femur 2 1 3 1 7 2%

tibia 2 1 1 3 4 1 12 4%

fibula 1 1 0%

calcaneus 2 1 3 6 2%

astragalus 5 1 6 2%

tarsal 2 2 1%

metatarsal 2 2 1 1 1 2 9 3%

metapodial 1 5 1 1 8 3%

phalanx I 6 1 1 2 2 1 13 4%

phalanx II 1 2 1 2 6 2%

phalanx III 2 4 6 2%

carapace/plastron 9 9 3%

other elements 2 2 4 1%

TOTALS 67 6 9 69 3 3 11 2 19 20 5 1 9 1 63 1 289

Percentage 23% 2% 3% 24% 1% 1% 4% 1% 7% 7% 2% 0% 3% 0% 22% 0%

Fig. 1310. Proportions of NISP of major economic taxa at Fal-

borz.

Ryc. 1310. Proporcje GLS głównych gatunków zwierząt gospo-

darczych z Falborza.

Falborz NISP: Major Taxa

Bos

27.5%

Ovis/Capra

28.3%

Ovis

1.2%

Capra

1.2%

Sus

25.8%

Cervus

7.8%

Capreolus

8.2%

Bos

Ovis/Capra

Ovis

Capra

Sus

Cervus

Capreolus

Page 44: Reprinted from - Princeton

1622

The sample of animal bones from Miecho-

wice 4 was analyzed by Makowiecki in 2002. The

distribution of mammal bones by anatomical el-

ement and species is shown in Table CLXXXIX.

As noted earlier, for the purposes of this analy-

sis, vertebrae (other than the atlas and axis) and

ribs, have been tabulated separately in order to

facilitate comparison with the Osłonki sample.

It conforms generally to the pattern seen at the

neighboring sites of Konary and Miechowice 4a.

Most major meat–bearing bones are abundant,

although the relatively low number of scapulae,

radii, and ulnae, along with sheep/goat and pig

humeri, is notable. This may be an artifact of the

relatively small size of the sample.

Proportions of the NISP of the principal

economic taxa have been determined on the ba-

sis of the totals without vertebrae and ribs and

are presented graphically in Figure 1311. In this

chart, the category of “wild or domestic cattle”

has been added alongside the domestic cattle

since it comprised a significant percentage of

the NISP. The pattern in Figure 1311 is similar

to that seen at the neighboring sites of Konary

and Miechowice 4A, although it differs in the

relatively low number of bones assignable to

goat compared with the number of sheep bones,

and in its smaller proportion of roe deer. Again,

these variations are probably caused by sample

size, and they do not alter the overall similari-

ty of the proportions of principal economic taxa

at Miechowice 4 to that seen at the neighbor-

ing sites.

Miechowice 4 (2002)

Element Cattle Pig Sheep/ Goat Sheep Goat Horse Red Deer Roe DeerWild/ Domestic

CattleTotals

Horn Core 2 0 0 0 0 0 0 0 0 2

Skull + Horn Core 2 0 0 0 2 0 0 0 0 4

Antler 0 0 0 0 0 0 3 0 0 6

Skull 12 7 3 0 0 1 1 0 1 25

Mandible 10 10 2 0 0 1 0 1 1 25

Teeth 11 0 0 0 0 0 0 0 0 50

Upper Teeth 1 0 0 0 0 0 0 0 0 1

Lower Teeth 1 0 0 0 0 0 0 0 0 1

Lower M3 1 0 1 0 0 0 0 0 0 2

Atlas 1 0 0 0 0 0 0 0 0 1

Axis 0 0 1 0 0 0 0 0 0 1

Hyoid 0 0 1 0 0 0 0 0 0 2

Scapula 2 1 1 0 0 1 0 0 2 7

Humerus 16 4 3 0 0 0 0 0 1 24

Radius 6 0 6 1 0 0 0 0 0 31

Ulna 3 0 1 0 0 0 0 0 0 4

Radius + Ulna 0 0 0 3 0 0 0 0 0 3

Carpals 2 0 0 0 0 0 0 0 0 7

Metacarpal 7 0 3 2 1 0 1 0 1 15

Pelvis 8 3 4 0 0 0 0 0 1 16

Femur 5 4 6 1 0 0 1 0 0 31

Patella 0 0 1 0 0 0 0 0 0 1

Tibia 8 5 17 0 0 0 0 0 1 31

Fibula 0 2 0 0 0 0 0 0 0 2

Calcaneus 0 0 1 1 0 0 1 0 1 2

Astragalus 0 0 0 1 0 0 0 0 0 1

Table CLXXXIX. Mammal bone NISP at Miechowice 4 based on analysis by Makowiecki, 2002.

Tabela CLXXXIX. GLS kości ssaków z Miechowic, stanowisko 4, w oparciu o analizę D. Makowieckiego, 2002 r.

Page 45: Reprinted from - Princeton

1623

Miechowice 4 (2002)

Element Cattle Pig Sheep/ Goat Sheep Goat Horse Red Deer Roe DeerWild/ Domestic

CattleTotals

Centrotarsal 1 0 0 0 0 0 0 0 0 1

Metatarsal 4 0 4 3 0 1 0 0 2 2

Metapodial 1 0 1 0 0 0 0 0 0 2

Phalanx I 3 0 3 0 0 0 0 0 0 6

Phalanx II 0 0 1 0 0 0 0 0 0 8

Phalanx II Anterior 1 0 0 0 0 0 0 0 0 1

Phalanx II Posterior 1 0 0 0 0 0 0 0 0 1

Phalanx III 2 0 0 0 0 0 0 0 0 2

Totals 111 36 60 12 3 4 7 1 11 245

% w/o ribs, vertebrae 45.31% 14.69% 24.49% 4.90% 1.22% 1.63% 2.86% 0.41% 4.49% 100.00%

Cervical vertebrae 11 0 2 0 0 0 0 0 0 13

Thoracic vertebrae 23 1 2 0 0 0 0 0 0 26

Lumbar vertebrae 3 5 3 0 0 0 0 0 0 39

Ribs 34 5 17 0 0 0 0 0 1 57

total ribs + vertebrae 71 11 24 0 0 0 0 0 1 107

grand total 182 47 84 12 3 4 7 1 12 352

% grand total 51.70% 13.35% 23.86% 3.41% 0.85% 1.14% 1.99% 0.28% 3.41% 100.00%

Water–sieving of fill from three features at

Miechowice 4 produced a small sample of fish

bones which were identified by Makowiecki.

The species represented are a subset of those

found at Brześć Kujawski and Osłonki (Table

Fig. 1311. Proportions of NISP of major economic taxa at

Miechowice 4.

Ryc. 1311. Proporcje GLS głównych gatunków zwierząt gospo-

darczych z Miechowic, stanowisko 4.

Miechowice 4 NISP: Major Taxa

Cattle

46.1%

Sheep/ Goat

24.9%

Sheep

5.0%

Goat

1.2%

Pig

14.9%

Red Deer

2.9%

Roe Deer

0.4%

Wild/ Domestic Cattle

4.6%

Cattle

Sheep/ Goat

Sheep

Goat

Pig

Red Deer

Roe Deer

Wild/ Domestic Cattle

CXC). In keeping with the typical pattern, the

assemblage is dominated by cyprinids, while

the predatory pike and perch are represented

in small numbers.

Page 46: Reprinted from - Princeton

1624

Miechowice 4 fish NISP

Common Name Taxon Clay Pit 4 Pit 30 Pit 35 n %

Northern Pike Esox lucius 1 1 7 9 14.06%

Carp Cyprinidae 6 8 36 50 78.13%

Carp Bream Abramis brama 0 0 3 3 4.69%

European Perch Perca fluviatilis 0 0 2 2 3.13%

Identified 7 9 48 64 100.00%

Unidentified 4 5 35 44

Total 11 14 83 108

Table CXC. Fish NISP from Miechowice. Site 4.

Tabela CXC. GLS ryb z Miechowic, st. 4.

Neolithic features at Miechowice 4a yield-

ed a relatively large sample of fauna that was an-

alyzed by Makowiecki in 2002 (Table CXCI).

Bones came from three large clay pits (includ-

ing one subdivided into its basal niches) and ten

smaller pits. 65% of the bones could be identi-

fied. In addition to the mammal bones, 8 bird,

4 pond tortoise, and 2 fish bones were noted,

along with 39 fragments of freshwater mollusc

shells.

The distribution of mammal bones by ana-

tomical element and species is shown in Table

CXCII. As noted earlier, for the purposes of this

analysis, vertebrae (other than the atlas and axis)

and ribs, have been tabulated separately in order

to facilitate comparison with the Osłonki sam-

ple. The sample from Miechowice 4a conforms

generally to the pattern seen at the neighboring

sites of Konary and Miechowice 4. Most major

meat–bearing bones are abundant, with no glar-

ing deficiencies evident, in contrast to the low

numbers of certain elements at Miechowice 4.

The proportions of the NISP of major eco-

nomic taxa are illustrated graphically in Figure

1312. In general, they do not show a marked di-

vergence from the samples from Konary and

Miechowice 4. Sheep outnumber goats, while

the percentage of deer is relatively low overall.

The percentage of pig is robust, although less

than that seen at Osłonki.

Feat

ure

Laye

r

Cattl

e

Pig

Shee

p/G

oat

Shee

p

Goa

t

Hor

se

Wild

Pig

Red

Dee

r

Roe

Dee

r

Wild

/ Dom

estic

Cat

tle

Bird

Pond

Tor

tois

e

Fish

Mus

sels

Iden

tifie

d

Uni

dent

ified

Tota

l

Clay Pit 1 58 6 14 2 2 1 0 1 1 0 0 0 0 0 85 95 180

Clay Pit 3 34 10 17 3 0 0 1 0 0 0 2 0 0 2 69 19 88

Clay Pit 3 Niche 1 8 1 1 1 0 0 0 0 0 0 0 0 0 0 11 3 14

Clay Pit 3 Niche A 43 2 14 0 1 0 0 2 2 0 2 1 1 35 103 29 132

Clay Pit 3 Niche B 39 14 22 0 1 0 0 3 2 0 1 0 0 0 82 27 109

Clay Pit 3 Niche D 39 10 14 1 2 0 0 1 0 0 0 1 0 1 69 50 119

Clay Pit 3 Niche E 9 3 6 0 1 1 0 0 0 0 0 0 0 0 20 3 23

Clay Pit 4 37 9 4 1 1 0 0 0 0 0 0 0 0 0 52 53 105

Pit 1 8 4 9 1 1 0 0 1 0 1 1 0 0 1 27 7 34

Pit 4 3 1 13 0 2 0 0 0 0 0 0 0 0 0 19 2 21

Pit 6 17 2 4 0 0 1 0 1 0 0 0 2 0 0 27 15 42

Pit 12 8 1 10 3 2 1 0 0 1 0 1 0 0 0 27 7 34

Pit 13 5 1 14 2 1 0 0 0 0 0 0 0 0 0 23 9 32

Pit 15 32 7 17 4 3 1 0 0 0 0 0 0 0 0 64 2 66

Pit 16 15 1 4 0 2 0 0 2 0 0 1 0 0 0 25 43 68

Table CXCI. Faunal assemblage from Miechowice 4a by feature and taxon; analysis by Makowiecki 2002.

Tabela CXCI. Zespół szczątków zwierzęcych z Miechowic, stanowisko 4a, określony gatunkowo, w kontekście obiektu; analiza

D. Makowieckiego 2002.

Page 47: Reprinted from - Princeton

1625

Feat

ure

Laye

r

Cattl

e

Pig

Shee

p/G

oat

Shee

p

Goa

t

Hor

se

Wild

Pig

Red

Dee

r

Roe

Dee

r

Wild

/ Dom

estic

Cat

tle

Bird

Pond

Tor

tois

e

Fish

Mus

sels

Iden

tifie

d

Uni

dent

ified

Tota

l

Pit 17 8 2 1 0 0 1 0 0 0 0 0 0 0 0 12 6 18

Pit 22 13 4 16 2 1 0 0 0 0 0 0 0 0 0 36 2 38

Pit 30 76 74 53 10 3 1 0 1 0 1 0 0 1 0 220 151 371

Total 452 152 233 30 23 7 1 12 6 2 8 4 2 39 971 523 1494

Table CXCII. Mammal bone NISP at Miechowice 4a based on analysis by Makowiecki, 2002.

Tabela CXCII. GLS kości ssaków z Miechowic, stanowisko 4a, w oparciu o analizę D. Makowieckiego, 2002.

Miechowice 4a (2002)

Element Cattle PigSheep/ Goat

Sheep Goat Horse Wild Pig Red Deer Roe DeerWild/ Dom. Cattle

Total

Horn Core 3 0 0 2 10 0 0 0 0 0 15

Skull + Horn Core 3 0 0 1 3 0 0 0 0 0 7

Antler 0 0 0 0 0 0 0 6 0 0 6

Skull 21 13 8 2 2 0 0 0 0 0 46

Mandible 25 11 26 0 0 0 0 0 2 1 65

Teeth 3 1 0 0 0 1 0 0 0 0 5

Upper Teeth 4 0 4 0 0 0 0 0 0 0 8

Lower Teeth 8 1 2 0 0 0 1 0 0 0 12

Upper M2 1 0 0 0 0 0 0 0 0 0 1

Upper M3 1 0 0 0 0 0 0 0 0 0 1

Lower M3 2 0 0 0 0 0 0 0 0 0 2

Atlas 5 2 2 1 0 0 0 0 0 0 10

Axis 1 0 1 4 0 0 0 0 0 0 6

Sacrum 1 2 1 0 0 0 0 0 0 0 4

Scapula 30 7 4 1 0 0 0 1 0 0 43

Hunerus 21 6 11 1 0 0 0 0 0 1 40

Radius 18 5 12 7 1 2 0 1 1 0 47

Ulna 8 4 4 0 0 0 0 1 1 0 18

Radius + Ulna 2 0 0 0 1 0 0 1 0 0 4

Carpals 2 0 0 0 0 0 0 0 0 0 2

Metacarpal 23 3 6 0 1 0 0 0 0 0 33

Metacarpal III 0 2 0 0 0 0 0 0 0 0 2

Metacarpal IV 0 2 0 0 0 0 0 0 0 0

Pelvis 10 7 4 0 0 1 0 0 0 0 22

Femur 24 15 16 2 0 2 0 1 0 0 60

Patella 3 0 0 0 0 0 0 0 0 0 3

Tibia 24 9 33 3 3 1 0 0 1 0 74

Fibula 0 3 0 0 0 0 0 0 0 0 3

Calcaneus 6 4 1 0 1 0 0 0 0 0 12

Astragalus 5 3 4 0 0 0 0 0 0 0 12

Centrotarsal 1 0 0 0 0 0 0 0 0 0 1

Metatarsal 22 2 11 6 1 0 0 0 1 0 43

Metatarsal III 0 1 0 0 0 0 0 0 0 0 1

Metatarsal IV 0 1 0 0 0 0 0 0 0 0 1

Metapodial 5 1 1 0 0 0 0 0 0 0 7

Phalanx I 6 2 1 0 0 0 0 0 0 0 9

Phalanx I Anterior 7 0 0 0 0 0 0 0 0 0 7

Phalanx I Posterior 7 0 0 0 0 0 0 0 0 0 7

Phalanx II 9 1 0 0 0 0 0 0 0 0 10

Phalanx II Anterior 6 0 0 0 0 0 0 0 0 0 6

Phalanx II Posterior 2 0 0 0 0 0 0 0 0 0 2

Phalanx III 5 1 0 0 0 0 0 1 0 0 7

Page 48: Reprinted from - Princeton

1626

Miechowice 4a (2002)

Element Cattle PigSheep/ Goat

Sheep Goat Horse Wild Pig Red Deer Roe DeerWild/ Dom. Cattle

Total

Sesamoids 0 0 1 0 0 0 0 0 0 0 1

Totals 324 109 153 30 23 7 1 12 6 2 667

% w/o ribs, vertebrae 48.58% 16.34% 22.94% 4.50% 3.45% 1.05% 0.15% 1.80% 0.90% 0.30% 100.00%

Cervical Veretebrae 18 1 4 0 0 0 0 0 0 0 23

Thoracic Vertebrae 21 7 15 0 0 0 0 0 0 0 43

Lumbar Vertebrae 10 6 1 0 0 0 0 0 0 0 17

Ribs 79 29 60 0 0 0 0 0 0 0 168

Total ribs+ vertebrae 128 43 80 0 0 0 0 0 0 0 251

Grand Total 452 152 233 30 23 7 1 12 6 2 918

% grand total 49.24% 16.56% 25.38% 3.27% 2.51% 0.76% 0.11% 1.31% 0.65% 0.22% 100.00%

Miechowice 4a fish NISP

Common Name Taxon Clay Pit 3A Clay Pit 3B Clay Pit 3C Clay Pit 3D(N) Pit 4 Pit 6b(S) n %

Northern Pike Esox lucius 2 0 0 1 0 1 4 4.12%

Carp Cyprinidae 26 17 1 6 33 3 86 88.66%

Roach Rutilus rutilus 3 2 0 0 0 0 5 5.15%

Rudd Scardinius erythrophthalmus 1 0 0 0 0 0 1 1.03%

European Perch Perca fluviatilis 1 0 0 0 0 0 1 1.03%

Identified 33 19 1 7 33 4 97 100.00%

Unidentified 7 6 0 3 15 0 31

Total 40 25 1 10 48 4 128

Fig. 1312. Proportions of NISP of major economic taxa at

Miechowice 4a.

Ryc. 1312. Proporcje GLS głównych gatunków zwierząt gospo-

darczych z Miechowic, stanowisko 4a.

Miechowice 4a NISP: Major Taxa

Cattle

49.2%

Sheep/goat

23.3%

Sheep

4.6%

Goat

3.5%

Pig

16.7%

Red deer

1.8%

Roe deer

0.9%

Cattle

Sheep/goat

Sheep

Goat

Pig

Red deer

Roe deer

Table CXCIII. Fish NISP from Miechowice 4a.

Tabela CXCIII. GLS ryb z Miechowic, stanowisko 4a.

Water–sieving of fill from three features

(with one clay pit divided into its basal nich-

es) at Miechowice 4 produced a small sample

of fish bones which were identified by Makow-

iecki. The species represented are a subset of

those found at Brześć Kujawski and Osłonki

(Table CXCIII). In keeping with the typical

pattern, the assemblage is dominated by cy-

prinids, at over 90% of the sample when the

roach are included with the genereic Cyprin-

idae, while the predatory pike and perch are

represented in small numbers.

Page 49: Reprinted from - Princeton

1627

The animal bones from Konary, site 1, were

identified by Daniel Makowiecki in 2002 (Ta-

ble CXCIV). They come from 11 features, sev-

en large clay pits and four smaller pits, with the

largest samples coming from two of the clay pits.

Konary 1

Feat

ure

Cattl

e

Pig

Shee

p/G

oat

Shee

p

Goa

t

Hor

se

Dog

Beav

er

Wild

Pig

Red

Dee

r

Roe

Dee

r

Wild

Cat

tle

Wild

or D

om. C

attle

Bird

s

Pond

Tor

tois

e

Fish

Mol

lusc

s

Iden

tifie

d

Uni

dent

ified

Tota

l

Clay Pit 5 172 22 18 2 1 1 0 0 1 4 3 0 0 5 0 0 0 229 111 340

Clay Pit 6 14 1 3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 19 15 34

Clay Pit 7A 181 15 12 2 1 0 0 0 1 6 0 0 0 0 0 0 0 218 108 326

Clay Pit 8 19 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 22 40 62

Clay Pit 10 33 8 11 1 3 0 0 0 2 1 1 0 0 0 1 0 0 61 16 77

Clay Pit 11 8 3 6 1 0 0 0 0 0 0 1 0 0 0 0 0 0 19 3 22

Clay Pit 13 68 14 22 1 2 3 0 0 2 2 0 0 0 0 1 0 0 115 48 163

Pit 2 14 33 34 8 5 0 2 0 0 0 0 0 0 0 0 0 0 96 10 106

Pit 5 3 34 56 0 12 0 0 0 0 5 0 0 0 2 0 2 0 114 0 114

Pit 9 37 14 42 7 3 0 0 1 0 2 0 0 0 1 0 0 0 107 11 118

Pit 19 29 2 30 0 10 0 0 0 1 1 15 1 0 1 0 0 1 91 80 171

Total 578 147 234 22 37 4 3 1 7 21 21 1 1 9 2 2 1 1091 442 1533

Table CXCIV. Faunal assemblage from Konary 1 by feature and taxon; analysis by Makowiecki 2002.

Tabela CXCIV. Zespół szczątków zwierzęcych ze stanowiska 1 w Konarach, określony gatunkowo w kontekście obiektu; analiza

D. Makowieckiego 2002.

71% of the bones could be identified. The mam-

mal bone assemblage is comprised predomi-

nantly of the major domestic taxa, along with

wild artiodactyls. Among the rarer wild spe-

cies, horse and beaver are represented by a small

number of bones. In addition to the mammal

bones, nine bird, two pond tortoise, and two fish

bones were noted.

The distribution of the Konary mammal

bones by anatomical element and species is

shown in Table CXCV. As noted earlier, for the

purposes of this analysis, vertebrae (other than

the atlas and axis) and ribs, have been tabulated

separately in order to facilitate comparison with

the Osłonki sample. Major meat–bearing bones

are abundant.

Proportions of the NISP of the principal

economic taxa have been determined on the ba-

sis of the totals without vertebrae and ribs and

are presented graphically in Figure 1313. Cat-

tle play a strikingly greater role in the Konary

assemblage in contrast to their role at Osłonki,

while sheep/goat and pig are present in small-

er numbers. The proportions of red deer and

roe deer at 2.8% each of the assemblage and the

consistent majority of goat over sheep are very

similar to the pattern seen at Osłonki.

Konary 1

Element

Cattl

e

Pig

Shee

p/ G

oat

Shee

p

Goa

t

Dog

Hor

se

Beav

er

Wild

Pig

Red

Dee

r

Roe

Dee

r

Wild

Cat

tle

Wild

or D

om. C

attle

Tota

ls

Horn Core 2 0 0 0 7 0 0 0 0 0 0 0 0 9

Skull + Horn Core 0 0 0 0 1 0 0 0 0 0 0 0 0 1

Antler 0 0 0 0 0 0 0 0 0 5 1 0 0 6

Table CXCV. Mammal bones from Konary 1, identified by Daniel Makowiecki, 2002.

Tabela CXCV. Kości ssaków z Konar, stanowisko 1, określone przez D. Makowieckiego, 2002.

Page 50: Reprinted from - Princeton

1628

Konary 1

Element

Cattl

e

Pig

Shee

p/ G

oat

Shee

p

Goa

t

Dog

Hor

se

Beav

er

Wild

Pig

Red

Dee

r

Roe

Dee

r

Wild

Cat

tle

Wild

or D

om. C

attle

Tota

ls

Skull + Antler 0 0 0 0 0 0 0 0 0 0 1 0 0 1

Skull 19 13 7 0 0 0 0 0 0 0 0 0 0 39

Mandible 65 10 15 0 1 1 0 0 0 0 1 0 0 93

Teeth 3 0 0 0 0 0 0 0 0 0 0 0 0 3

Upper Teeth 5 0 2 0 0 0 0 0 0 0 1 0 0 8

Lower Teeth 11 0 5 0 0 0 0 0 0 0 0 0 0 16

Upper M3 0 0 3 0 0 0 0 0 0 0 0 0 0 3

Lower M3 1 0 2 0 0 0 0 0 0 0 0 0 0 3

Atlas 1 0 3 0 0 0 0 0 0 0 0 0 0 4

Axis 0 0 3 0 0 0 0 0 0 0 0 0 0 3

Hyoid 0 0 1 0 0 0 0 0 0 0 0 0 0 1

Scapula 42 8 8 0 0 0 0 0 0 0 2 0 0 60

Humerus 30 10 16 3 6 0 0 1 1 1 2 1 1 72

Radius 19 5 18 0 4 1 0 0 0 1 1 0 0 49

Ulna 13 4 6 0 0 0 0 0 0 0 0 0 0 23

Radius and Ulna 2 1 0 0 4 0 0 0 0 1 0 0 0 8

Carpals 4 0 0 0 0 0 0 0 0 0 0 0 0 4

Metacarpal 28 0 7 1 4 1 1 0 0 2 1 0 0 45

Metacarpal IV 0 2 0 0 0 0 0 0 0 0 0 0 0 2

Pelvis 26 6 2 4 1 0 0 0 3 1 2 0 0 45

Femur 18 6 13 3 1 0 0 0 0 3 4 0 0 48

Patella 1 0 0 0 0 0 0 0 0 0 0 0 0 1

Tibia 29 13 29 6 3 0 2 0 1 3 4 0 0 90

Fibula 0 1 0 0 0 0 0 0 0 0 0 0 0 1

Malleolus 1 0 0 0 0 0 0 0 0 0 0 0 0 1

Tarsals 0 1 0 0 0 0 0 0 0 0 0 0 0 1

Calcaneus 1 2 5 0 0 0 0 0 0 1 0 0 0 9

Astragalus 2 1 1 0 0 0 0 0 0 0 0 0 0 4

Centrotarsal 2 0 0 0 0 0 0 0 0 0 0 0 0 2

Metatarsal 23 1 4 5 3 0 1 0 0 1 1 0 0 39

Matatarsal IV 0 1 0 0 0 0 0 0 0 0 0 0 0 1

Matatarsal V 0 1 0 0 0 0 0 0 1 0 0 0 0 2

Metapodial 6 2 0 0 0 0 0 0 1 0 0 0 0 9

Phalanx I 11 1 9 0 0 0 0 0 0 1 0 0 0 22

Phalanx I Anterior 1 0 0 0 0 0 0 0 0 0 0 0 0 1

Phalanx I Posterior 5 0 0 0 0 0 0 0 0 0 0 0 0 5

Phalanx II 4 0 0 0 0 0 0 0 0 1 0 0 0 5

Phalanx II Anterior 1 0 0 0 0 0 0 0 0 0 0 0 0 1

Phalanx II Posterior 2 0 0 0 0 0 0 0 0 0 0 0 0 2

Phalanx III 9 0 0 0 2 0 0 0 0 0 0 0 0 11

Sesamoid 1 0 0 0 0 0 0 0 0 0 0 0 0 1

Totals 388 89 159 22 37 3 4 1 7 21 21 1 1 754

% w/o ribs, vertebrae 51.46 11.80 21.09 2.92 4.91 0.40 0.53 0.13 0.93 2.79 2.79 0.13 0.13 100.00%

Cervical vertebrae 14 3 0 0 0 0 0 0 0 0 0 0 0 17

Thoracic vertebrae 17 6 13 0 0 0 0 0 0 0 0 0 0 36

Lumbar vertebrae 37 4 3 0 0 0 0 0 0 0 0 0 0 44

Ribs 122 45 59 0 0 0 0 0 0 0 0 0 0 226

Total of ribs+vertebrae 190 58 75 0 0 0 0 0 0 0 0 0 0 323

Grand Total 578 147 234 22 37 3 4 1 7 21 21 1 1 1077

% grand total 53.67 13.65 21.73 2.04 3.44 0.28 0.37 0.09 0.65 1.95 1.95 0.09 0.09 100.00%

Page 51: Reprinted from - Princeton

1629

The animal bones from Pikutkowo site 6,

were identified by Daniel Makowiecki in 2005,

and their distribution by anatomical element

and species is shown in Table CXCVI. . As not-

ed earlier, for the purposes of this analysis, ver-

tebrae (other than the atlas and axis) and ribs,

have been tabulated separately in order to facili-

tate comparison with the Osłonki sample. Major

meat–bearing bones are abundant. The mammal

bone assemblage is comprised predominantly of

the major domestic taxa, along with wild artio-

dactyls. Horse and beaver are represented by a

small number of bones.

Fig. 1313. Proportions of NISP of major economic taxa at

Konary.

Ryc. 1313. Proporcje GLS głównych gatunków zwierząt gospo-

darczych z Konar.

Konary NISP: Major Taxa

Cattle

52.3%

Sheep/Goat

21.3%

Sheep

2.9%

Goat

5.0%

Pig

12.9%

Red Deer

2.8%

Roe Deer

2.8%

Cattle

Sheep/Goat

Sheep

Goat

Pig

Red Deer

Roe Deer

Proportions of the NISP of the principal

economic taxa have been determined on the ba-

sis of the totals without vertebrae and ribs and

are presented graphically in Figure 1314. As at

Konary and Miechowice, cattle play a strikingly

greater role in the faunal sample assemblage in

contrast to their role at Osłonki. Pikutkowo has

the lowest percentage of pig NISP of the sites in

this study, although their presence is certainly

significant. The proportions of red deer at 2.7%

of NISP is consistent with the overall regional

pattern, but the proportion of roe deer is un-

usually low. As at the other sites, goat bones are

more numerous than sheep when it is possible

to differentiate them.

Pikutkowo 6a

Element

Cattl

e

Pig

Shee

p/ G

oat

Shee

p

Goa

t

Hor

se

Dog

Beav

er

Wild

Pig

Red

Dee

r

Roe

Dee

r

Wild

or D

om. P

ig

Wild

or D

om. C

attle

Totals

Horncore 6 0 1 3 17 0 0 0 0 0 0 0 1 28

Skull + Horncore 2 0 0 0 2 0 0 0 0 0 0 0 0 4

Skull 34 12 13 0 0 0 0 0 1 0 0 0 0 60

Antler 0 0 0 0 0 0 0 0 0 9 0 0 0 9

Mandible 25 7 15 0 0 0 2 0 4 0 0 0 0 53

Teeth 4 0 6 0 0 0 0 2 0 0 0 0 0 12

Table CXCVI. Mammal bones from Pikutkowo 6a, identified by Daniel Makowiecki, 2005.

Tabela CXCVI. Kości ssaków z Pikutkowa, stanowisko 6a, określone przez D. Makowieckiego, 2005.

Page 52: Reprinted from - Princeton

1630

Pikutkowo 6a

Element

Cattl

e

Pig

Shee

p/ G

oat

Shee

p

Goa

t

Hor

se

Dog

Beav

er

Wild

Pig

Red

Dee

r

Roe

Dee

r

Wild

or D

om. P

ig

Wild

or D

om. C

attle

Totals

Lower canine 0 2 0 0 0 0 0 0 0 0 0 0 0 2

Upper tooth 11 1 8 0 0 0 0 0 0 0 0 0 0 20

Lower tooth 5 3 7 0 0 0 0 0 0 0 0 0 0 15

Atlas 6 0 2 0 0 1 0 0 1 0 0 0 0 10

Axis 8 0 2 0 0 0 0 0 0 0 0 0 0 10

Sacrum 2 0 1 0 0 0 0 0 0 0 0 0 0 3

Scapula 16 1 4 0 0 1 0 0 1 0 0 1 0 24

Humerus 23 1 11 3 0 1 0 0 2 0 0 0 0 41

Radius 17 1 12 1 0 0 0 0 1 0 0 0 0 32

Ulna 5 3 3 0 0 0 0 0 0 1 0 0 1 13

Radius and Ulna 2 0 0 1 0 0 0 0 1 0 0 0 0 4

Carpals 2 0 0 0 0 0 0 0 0 0 0 0 0 2

Metacarpal 18 0 9 1 1 1 0 0 0 1 0 0 0 31

Pelvis 13 3 5 0 1 0 0 0 1 0 1 0 0 24

Femur 20 3 8 0 1 1 0 0 0 0 0 0 1 34

Patella 1 0 0 0 0 0 0 0 0 0 0 0 0 1

Tibia 21 10 6 4 2 1 1 2 0 1 1 0 0 49

Calcaneus 8 0 2 0 0 0 0 0 0 1 0 0 0 11

Astragalus 9 0 3 0 0 1 0 0 0 0 0 0 0 13

Centrotarsal 4 0 0 0 0 0 0 0 0 0 0 0 0 4

Fibula 0 2 0 0 0 0 0 0 0 0 0 0 0 2

Metatarsal 21 1 11 6 5 1 0 0 0 1 1 0 0 47

Metapodial 4 0 1 0 0 0 0 0 3 0 0 0 0 8

Phalanx I 6 0 8 0 1 0 1 0 0 1 0 0 0 17

Phalanx I Anterior 3 0 0 0 0 0 0 0 0 0 0 0 0 3

Phalanx I Posterior 2 0 0 0 0 1 0 0 0 0 0 0 0 3

Phalanx II 6 0 1 0 0 0 0 0 0 0 0 0 0 7

Phalanx II Anterior 2 0 0 0 0 0 0 0 0 0 0 0 0 2

Phalanx II Posterior 3 0 0 0 0 0 0 0 0 0 0 0 0 3

Phalanx III 4 0 2 0 0 0 0 0 0 1 0 0 0 7

Sesamoids 2 0 0 0 0 0 0 0 0 0 0 0 0 2

Total 315 50 141 19 30 9 4 4 15 16 3 1 3 610

% w/o ribs, vertebrae 51.64 8.20 23.11 3.11 4.92 1.48 0.66 0.66 2.46 2.62 0.49 0.16 0.49 100.00%

Cervical vertebrae 21 2 0 0 0 0 0 0 0 0 1 0 0 24

Thoracic vertebrae 11 0 4 0 0 0 0 0 0 0 0 0 0 15

Lumbar vertebrae 7 4 3 0 0 0 0 0 0 0 0 0 0 14

Ribs 57 7 9 0 0 0 1 0 0 0 0 0 0 74

Total of ribs+vertebrae 96 13 16 0 0 0 1 0 0 0 1 0 0 127

Grand Total 411 63 157 19 30 9 5 4 15 16 4 1 3 737

% Grand Total 55.77 8.55 21.30 2.58 4.07 1.22 0.68 0.54 2.04 2.17 0.54 0.14 0.41 100.00%

Page 53: Reprinted from - Princeton

1631

The animal bones from Smólsk, site 4, were

identified by Daniel Makowiecki in 2003. (Ta-

ble CXCVII). A relatively small sample comes

from three features, all large clay pits. 56% of the

bones could be identified. The mammal bone

assemblage is comprised predominantly of the

major domestic taxa, along with wild artiodac-

tyls. Among the rarer wild species, only horse

is represented by four bones. In addition to the

mammal bones, one bird bone was noted.

Fig. 1314. Proportions of NISP of major economic taxa at Pi-

kutkowo.

Ryc. 1314. Proporcje GLS głównych gatunków zwierząt gospo-

darczych z Pikutkowa.

Pikutkowo NISP: Major Taxa

Cattle

53.5%

Sheep/Goat

23.9%

Sheep

3.2%

Goat

5.1%

Pig

8.5%

Wild Pig

2.5%

Red Deer

2.7%

Roe Deer

0.5%

Cattle

Sheep/Goat

Sheep

Goat

Pig

Wild Pig

Red Deer

Roe Deer

The proportions of the major econom-

ic taxa, illustrated graphically in Figure 1315,

approximate most closely those of Pikutkowo,

which among the sites in this study is perhaps

the closest neighbor. Key points of comparison,

besides the basic proportions of cattle, sheep/

goat, and pig, include the relatively low repre-

sentation of roe deer. A slightly anomalous fea-

ture of the Smólsk assemblage is that sheep out-

number goat among the ovicaprid bones that

can be differentiated.

Smólsk

Element Cattle PigSheep/ Goat

Sheep Goat HorseWild Pig

Red Deer

Roe Deer

Wild Cattle

Wild or Dom. Pig

Totals

Horn Core 0 0 0 1 0 0 0 0 0 0 0 1

Antler 0 0 0 0 0 0 0 1 0 0 0 1

Skull 4 2 0 0 0 0 0 0 0 0 0 6

Mandible 4 0 3 0 0 0 0 1 0 0 0 8

Teeth 0 0 2 0 0 1 0 0 0 0 0 3

Upper Teeth 1 0 3 0 0 0 0 0 0 0 0 4

Lower Teeth 1 0 0 0 0 0 0 0 0 0 0 1

Scapula 4 2 0 0 0 0 0 0 0 0 0 6

Humerus 3 3 4 0 0 0 0 0 0 0 1 11

Radius 1 0 2 0 1 0 0 0 0 0 0 4

Ulna 1 0 0 0 0 0 0 0 0 0 0 1

Matacarpal 2 1 0 0 0 0 0 1 1 0 0 5

Table CXCVII. Mammal bones from Smólsk 4, identified by Daniel Makowiecki, 2003.

Tabela CXCVII. Kości ssaków ze Smólska, stanowisko 4, określone przez D. Makowieckiego, 2003.

Page 54: Reprinted from - Princeton

1632

Smólsk

Element Cattle PigSheep/ Goat

Sheep Goat HorseWild Pig

Red Deer

Roe Deer

Wild Cattle

Wild or Dom. Pig

Totals

Pelvis 4 1 1 0 0 0 0 0 0 0 0 6

Femur 3 1 2 0 0 0 0 0 0 0 0 6

Tibia 13 1 5 3 1 1 0 0 0 0 0 24

Calcaneus 0 0 0 0 0 1 1 1 0 1 0 4

Astragalus 3 0 0 0 0 0 0 0 0 0 0 3

Centrotarsal 1 0 0 0 0 0 0 0 0 0 0 1

Metatarsal 5 0 0 1 0 0 0 1 0 0 0 7

PhalanxI 0 0 1 0 0 0 0 0 0 0 0 1

Phalanx I Anterior 1 0 0 0 0 0 0 0 0 0 0 1

Phalanx I Posterior 5 0 0 0 0 0 0 0 0 0 0 5

Phalanx II Anterior 1 0 0 0 0 0 0 0 0 0 0 1

Phalanx III 1 0 0 0 0 0 0 0 0 0 0 1

Total 58 11 23 5 2 3 1 5 1 1 1 111

% w/o riibs, vertebrae 52.25% 9.91% 20.72% 4.50% 1.80% 2.70% 0.90% 4.50% 0.90% 0.90% 0.90% 100.00%

Cervical Vertebrae 2 0 0 0 0 0 0 0 0 0 0 2

Thoracic Vertebrae 2 0 0 0 0 0 0 0 0 0 0 2

Lumbar Vertebrae 1 0 0 0 0 0 0 0 0 0 0 1

Ribs 6 0 2 0 0 1 0 0 0 0 0 9

Total of ribs + vertebrae 11 0 2 0 0 1 0 0 0 0 0 14

Grand Total 69 11 25 5 2 4 1 5 1 1 1 125

% Grand Total 55.20% 8.80% 20.00% 4.00% 1.60% 3.20% 0.80% 4.00% 0.80% 0.80% 0.80% 100.00%

A small faunal assemblage from Zagajew-

ice was analyzed by Daniel Makowiecki in 2002.

The animal bones came from four large clay pits

and two smaller pits, mostly from one of each

type of feature, and 82% could be identified to

genus or species. In addition to the mammal

bones, two bird, two fish, and two pond tortoise

Fig. 1315. Proportions of NISP of major economic taxa at

Smólsk.

Ryc. 1315. Proporcje GLS głównych gatunków zwierząt go-

spodarczych ze Smólska.

Smólsk NISP: Major Taxa

Cattle

55.2%

Sheep/ Goat

21.9%

Sheep

4.8%

Goat

1.9%

Pig

10.5%

Red Deer

4.8%

Roe Deer

1.0%

Cattle

Sheep/ Goat

Sheep

Goat

Pig

Red Deer

Roe Deer

bones were noted. The distribution of the Zaga-

jewice bones by species and element is given in

Table CXCVIII.

As the smallest assemblage under consider-

ation in this study, the Zagajewice animal bones

do not contribute substantially to the discussion

other than to support a general regional pattern,

conforming especially to the Konary–Miecho-

wice distribution of NISP for the principal eco-

nomic taxa (Figure 1316). The distribution of

Page 55: Reprinted from - Princeton

1633

anatomical elements is probably an artifact of

the small sample size, although it is noteworthy

that there are very few scapulae, radii, and pel-

ves which are normally abundant meat–bearing

bones.

Zagajewice 1

Element Cattle PigSheep/ Goat

Sheep Goat Dog HorseWild Pig

Red Deer

Roe Deer

Wild Cattle

Totals

Skull + Horncore 1 0 0 0 0 0 0 0 0 0 0 1

Antler 0 0 0 0 0 0 0 0 1 0 0 1

Skull+Antler 0 0 0 0 0 0 0 0 0 1 0 1

Skull 6 1 1 0 0 0 0 0 0 0 0 8

Mandible 12 3 1 0 0 2 0 0 0 0 0 18

Upper Tooth 1 0 0 0 0 0 0 0 0 0 0 1

Lower Tooth 1 0 1 0 0 0 0 0 0 0 0 2

Hyoid 3 0 0 0 0 0 0 0 0 0 0 3

Atlas 0 0 0 0 0 0 0 0 0 0 1 1

Axis 0 0 1 0 0 0 0 0 0 0 0 1

Scapula 1 0 0 0 0 0 0 0 0 0 0 1

Humerus 3 2 2 1 0 0 1 0 0 1 0 10

Radius 0 1 0 0 1 0 0 0 0 0 0 2

Ulna 2 0 0 0 0 0 0 0 0 0 0 2

Metacarpal 3 0 2 0 0 0 0 0 0 0 0 5

Pelvis 1 0 1 0 0 0 0 0 0 0 0 2

Femur 2 3 1 0 0 0 0 0 2 0 0 8

Tibia 2 5 6 1 0 0 0 1 1 0 0 16

Fibula 0 2 0 0 0 0 0 0 0 0 0 2

Astragalus 1 0 0 0 0 0 0 0 0 0 0 1

Centrotarsal 1 0 0 0 0 0 0 0 0 0 0 1

Metatarsal 3 0 0 0 0 0 0 0 0 0 0 3

Phalanx I 1 0 0 0 0 0 0 0 0 0 0 1

Total 44 17 16 2 1 2 1 1 4 2 1 91

% w/o ribs, vertebrae 48.35% 18.68% 17.58% 2.20% 1.10% 2.20% 1.10% 1.10% 4.40% 2.20% 1.10% 100.00%

Cervical Vertebrae 1 0 0 0 0 0 0 0 0 0 0 1

Thoracic Vertebrae 5 0 1 0 0 0 0 0 0 0 0 6

Lumbar Vertebrae 2 0 0 0 0 0 0 0 0 0 0 2

Ribs 16 2 4 0 0 0 0 0 0 0 0 22

Total of ribs + vertebrae 24 2 5 0 0 0 0 0 0 0 0 31

Grand Total 68 19 21 2 1 2 1 1 4 2 1 122

% grand total 55.74% 15.57% 17.21% 1.64% 0.82% 1.64% 0.82% 0.82% 3.28% 1.64% 0.82% 100.00%

Table CXCVIII. Mammal bones from Zagajewice 1, identified by Daniel Makowiecki, 2003.

Tabela CXCVIII. Kości ssaków z Zagajewic, stanowisko 1, określone przez D. Makowieckiego, 2003.

Page 56: Reprinted from - Princeton

1634

The following section summarizes the gen-

eral proportion of domestic livestock to wild

mammals, the proportions of the principal do-

mestic taxa, and the representation of wild mam-

mals, reptiles, fish, and birds in the Lengyel fau-

nal samples from southeastern Kuyavia.

Domestic versus Wild Mammals

The quantification of the Lengyel animal

bones from southeastern Kuyavia shows the

overwhelming abundance of domestic animals

in the faunal samples, although the range of

wild species present does represent an increase

over those identified at earlier Linear Pottery

sites. In the largest sample, at Osłonki, 94.5% of

the mammal bones identified as being from do-

mestic animals, although the metrical analysis

of the pig bones could reduce that percentage by

a few points. At Brześć Kujawski, there was the

largest proportion of wild mammals (37.34%).

While there does seem to have been a greater

number of red deer and roe deer in the Brześć

Kujawski assemblage, it should also be noted

that the number of wild specimens is inflated

Fig. 1316. Proportions of NISP of major economic taxa at Za-

gajewice.

Ryc. 1316. Proporcje GLS głównych gatunków zwierząt gospo-

darczych z Zagajewic.

Zagajewice NISP: Major Taxa

Cattle

51.2%

Sheep/ Goat

18.6%

Sheep

2.3%

Goat

1.2%

Pig

19.8%

Red Deer

4.7%

Roe Deer

2.3%

Cattle

Sheep/ Goat

Sheep

Goat

Pig

Red Deer

Roe Deer

by the large number of beaver bones from Pit

820 which in themselves constitute 12.61% of

the Lengyel faunal assemblage. In all other sam-

ples, the overall number of wild animals was

also very low.

When the samples are reduced to the prin-

cipal economic mammals – cattle, sheep, goats,

pigs, red deer, and roe deer – it is also clear that

the bones of livestock are overwhelmingly nu-

merous. Red deer and roe deer constitute more

than 5% of the NISP only at Brześć Kujawski

and at Falborz, and even in the Brześć Kujawski

DZ analysis, their proportion is diminished.

Principal Domestic Taxa

The major domestic taxa – cattle, sheep,

goat, and pig – were the major components of

all ten samples studied for this analysis. In order

to compare them, a ternary plot was construct-

ed from the NISP of the principal domestic taxa

of the ten samples, as presented in Figure 1317.

The ternary plot of the ten Lengyel faunal

samples from southeastern Kuyavia shows a re-

markable consistency among the assemblag-

es but also an interesting anomaly. In general,

cattle comprise between 30 and 60% of any giv-

en sample, sheep and goat between 20 and 40%,

and pig between 10 and 30%. Large areas of the

Page 57: Reprinted from - Princeton

1635

graph, particularly the corners which would re-

flect a preponderance of any one species, are

vacant. This can be compared with the terna-

ry plot of Linear Pottery faunal assemblages

from this area in Figure 1289 above, where the

overwhelming number of cattle bones leads the

points to cluster in the lower left corner.

This graph depicts the varied nature of the

regional animal economy during the fifth mil-

lennium B.C., which will be discussed further

below. It also shows what might be some form

of analytical bias between the two principal ar-

chaeozoologists involved in the study of these

samples, Peter Bogucki and Daniel Makow-

iecki. The samples that were analyzed by Bogu-

cki – Brześć Kujawski, Falborz, and the majority

of the Osłonki assemblage – all cluster with be-

tween 20 and 30% pig and between 30 and 40%

cattle, while the remaining assemblages that

were identified and quantified by Makowiecki

all show higher percentages of cattle and low-

er percentages of pig, with sheep/goat constant

between 20 and 40%. Diagnosis of the reason

for this difference has not been possible within

Fig. 1317. Ternary plot of the ten Lengyel faunal samples from

southeastern Kuyavia.

Ryc. 1317. Wykres trójwartościowy dziesięciu próbek szczątków

zwierzęcych kultury lendzielskiej z południowo–wschodniej

części Kujaw.

100

90

80

70

60

50

40

30

20

10

100

90

80

70

60

50

40

30

20

10

100 90 80 70 60 50 40 30 20 10

Pig

taoG/peehSelttaC

Brześć Kujawski

Falborz

Smólsk

Pikutkowo

Miechowice 4

Miechowice 4a

Konary

Zagajewice

Osłonki 1 DM

Osłonki 1 PB

the time allowed for the completion of this re-

port, and in the larger picture it does not change

the overall regional picture of diversified live-

stock holdings. It is, however, important to keep

in mind and to remember not to draw dramatic

conclusions based on minor variations in num-

bers and proportions of NISP.

The discovery of dog bones at six of the sites

indicates that dog was present but not common-

ly consumed. The presence of dog, however, is

important for its role in bone attrition, as men-

tioned above. We can assume that only a frac-

tion of the potential bone population at these

sites survived to join the archaeological record.

The wild taxa

The bones of wild taxa at the Lengyel sites of

southeastern Kuyavia can be divided into sever-

al major categories: wild ungulates, other forest

and riverine mammal species, turtles, fish, and

birds. Individually, none of these taxa makes up

more than a small percentage of any given sam-

ple, but collectively they represent a signficant

range of resources.

Page 58: Reprinted from - Princeton

1636

Wild Ungulates

Among the wild ungulates, red deer and roe

deer are the most common taxa. Metrical anal-

ysis below will show that aurochs is not repre-

sented in any significant amount among the cat-

tle bones, while wild pig formed a small, but

significant, portion of the pig sample. Some-

what more abundant are red deer and roe deer.

Red deer and roe deer were most numerous in

the sample from Brześć Kujawski, where togeth-

er they constituted 28% of the major taxa and

16% of the whole assemblage. We now can see

that the Brześć Kujawski assemblage is some-

what anomalous in the regional picture and that

deer constitute a minor component of the oth-

er assemblages.

Of some note is the presence of wild horse

at almost every site, albeit represented by only

a small number of specimens at each one (Fig-

ures 1318 and 1319). Clearly there were suffi-

cient wild horses in the forests of southeastern

Kuyavia to produce such isolated specimens,

but they were not hunted in any great quanti-

ty to provide a concentration of their bones at

any one site.

Fig. 1318. Third phalanx of wild horse from Osłonki, Clay

Pit 9.

Ryc. 1318. Trzeci człon palcowy dzikiego konia z Osłonek, gli-

nianka 9.

Fig. 1319. Astragalus and calcaneus of wild horse from Osłonki,

Pit 105.

Ryc. 1319. Kość skokowa i kość piętowa dzikiego konia z Osło-

nek, jama 105.

Page 59: Reprinted from - Princeton

1637

Other Forest and Aquatic mammals

As noted above, the bones of beaver at

Brześć Kujawski come in large measure from

the concentration of five almost–complete bea-

vers in Pit 820. Aside from these, the represen-

tation of beavers is relatively low, although they

occur at five of the sites. This is presumably due

to the fact that with the exception of the episode

represented by Pit 820 at Brześć Kujawski, most

skinning of beaver for their pelts took place

away from the settlements.

European brown bear was identified at Brzść

Kujawski and Osłonki, in very small numbers.

Most of the bear bones at Osłonki came from a

single individual, especially its right hind paw.

The other specimens are so scarce as to confirm

that the killing of a bear must have been a mem-

orable event in the lives of Neolithic people.

River otter was found only at Brzesc Ku-

jawski, and these isolated specimens, from two

different phases, serve only to confirm its pres-

ence in the local ecosystem. Similarly, hare, wild

cat, and weasel are only present as isolated spec-

imens at a single site.

Turtles

Fragments of the carapace and plastron of

the European pond tortoise are found at almost

all of the sites, but their greatest abundance was

at Brześć Kujawski and Osłonki, where in addi-

tion to isolated fragments, whole or partial car-

apaces and plastrons were either found in situ or

could be reconstructed. Bogucki (1981: fig. 31;

also see Grygiel 1986) showed the dramatic in-

crease by weight of pond tortoise fragments in

the final Lengyel phase at Brześć Kujawski. The

Osłonki faunal sample has not been subdivid-

ed by phase in this study, so it is not possible to

show whether a similar increase occurred over

time. Nonetheless, the Lengyel sites of south-

eastern Kuyavia collectively have perhaps the

largest local representation of this species of any

group of Neolithic sites in central Europe.

Fish

The analysis of the fish assemblages from

Brześć Kujawski and Osłonki by Makowiecki

shows the predominance of Cyprinidae, identi-

fied both at the family and the species level. At

Brześć Kujawski, 85.3% of the fish were cyprin-

ids, while at Osłonki, 81.7% belonged to this fam-

ily. Of the non–cyprinid species, northern pike

were the most abundant at both sites. Although

perch constituted 4.5% of the Brześć Kujawski

NISP, they were not numerous at Osłonki.

Birds

The bird bone assemblage from Brześć Ku-

jawski studied by Bogucki remains the only an-

alyzed collection from southeastern Kuyavia

over 25 years after it was studied, although the

collection of 276 specimens from Osłonki will

someday complement it. The majority of the

168 Lengyel bird NISP at Brześć Kujawski come

from waterfowl, while the contribution of non–

aquatic birds is relatively small. The presence of

bird remains at most of the other sites is not-

ed but their quantities do not contribute signifi-

cantly to our understanding of bird exploitation

at these sites, although eventually they may ex-

tend the range of species exploited.

The mortality structure of the prehistoric

animal population represented by a sample of

animal bones is of interest for the way in which

it reflects the management of the animal popula-

tion by its human keepers. While this line of in-

vestigation has limitations, it provides a way in

which sites can be compared. The two principal

methods of ageing bones involve the assessment

of epiphyseal fusion, for which the timing and

sequence vary by species but which are gener-

ally established, and mandibular tooth eruption

and wear, which occurs in a known sequence

but which varies depending on diet and habi-

tat. Epiphyseal fusion was recorded at Brześć

Kujawski and Osłonki for each limb bone (in-

cluding the scapula and pelvis) as unfused, fus-

ing (epiphyseal line), and fused. Tooth eruption

and wear were recorded using the stages defined

by Grant (1975, 1982).

Page 60: Reprinted from - Princeton

1638

One of the principal methods used in the

study of the structure of an animal population

represented by a faunal sample is through the

analysis of patterns of epiphyseal fusion. The first

application of this method to a Neolithic faunal

sample in the Polish lowlands was in Bogucki’s

analysis of the epiphyseal fusion of the Brześć

Kujawski sample (Bogucki 1981). In this work,

Bogucki followed the approach of Wilson (1978)

who grouped the bones in their order of fusion

and then calculated the percentage fused for each

group that fused at approximately the same time.

The percentages are then graphed against time,

deriving a linear plot that provides a proxy mea-

sure for the proportion of individuals who sur-

vive past certain milestones. The measure is use-

ful only until all the bones of any taxon are fused,

whereupon it is necessary to rely on other age in-

dicators for older individuals.

The Brześć Kujawski sample of Lengyel fau-

na produced linear plots that indicated that most

cattle were allowed to reach their 36th month,

but a number were then killed off such that few-

er than half survived their 48th month. Many of

the Lengyel sheep and goat were slaughtered

fairly young, some before their 12th month and

about half by 36 months. The Lengyel pig pat-

tern is typical of an animal whose only use is

for meat and hide. In Bogucki’s 1981 analysis,

30% of the pigs did not reach their 12th month,

and only 16% (probably a breeding population

or old feral and wild individuals) survived their

42nd month.

For this report, the Brześć Kujawski data

were tabulated, and the fusion ages were re-

ordered slightly, based on the model of Crab-

tree (1989) and an example given by O’Connor

(2000). This takes into account the small differ-

ences in fusion order among the principal do-

mestic ungulates. The reordered version is given

in Table CXCIX below: The plot of these revised

data, shown as Figure 1320, indicates that the

kill–off of cattle begins slightly earlier, around

30 months and that the initial kill–off of sheep

and goats is somewhat more dramatic than indi-

cated by the earlier analysis. The new linear plot

for pig is identical to the 1981 version.

Cattle Sheep/Goat Pig

fused fusing unfusd fused fusing unfusd fused fusing unfusd

scapula 3 0 scapula 4 0 scapula 4 0

pelvis 2 0 pelvis 2 1 pelvis 1 2

d. humerus 3 0 d. humerus 5 0 d. humerus 0 1 2

p. radius 0 0 0 p. radius 7 0 p. radius 2 1

phalanx I 7 0 phalanx I 6 0 phalanx II 4 0

phalanx II 6 0 phalanx II 1 2 0 phalanx I 1 2

d. metacarpal 1 1 d. metacarpal 2 0 d. metacarpal 0 1 2

d. tibia 3 0 d. tibia 3 2 d. tibia 3 1 1

d. metatarsal 6 0 d. metatarsal 1 2 d. metatarsal 2 1 1

calcaneus 1 3 ulna (olecranon) 2 3 calcaneus 1 4

p. femur 3 0 calcaneus 4 2 d. fibula 0 0 0

d. radius 0 1 p. femur 3 3 ulna (olecranon) 1 3

p. humerus 0 1 d. radius 2 1 2 d. ulna 0 0 0

ulna (olecranon) 2 0 p. humerus 1 0 p. femur 0 0 0

d. femur 1 0 d. femur 2 3 d. radius 0 1

p. tibia 3 2 p. tibia 2 4 p. humerus 0 1

d. femur 0 0

p. tibia 0 0

Table CXCIX. Epiphyseal fusion data for Lengyel cattle, sheep/goat, and pig from Brześć Kujawski.

Tabela CXCIX. Dane dotyczące zrośnięcia nasady kości z trzonem dla bydła, owcy/kozy i świni kultury lendzielskiej z Brześcia Ku-

jawskiego.

Page 61: Reprinted from - Princeton

1639

Fig. 1320. Brześć Kujawski mortality profiles based on grouped

fusion data.

Ryc. 1320. Profile śmiertelności zwierząt z Brześcia Kujawskie-

go, w oparciu o zebrane dane zrośnięcia nasady kości z trzo-

nem.

The fusion data from Osłonki were analyzed

in the same fashion and are presented in Table

CC. Because Osłonki has a larger sample of ar-

ticular ends for which fusion could be record-

ed, it was possible to place a higher level of con-

fidence in the measures that are derived from

these data. The percentages of fused epiphyses

for each of the principal domestic taxa are pre-

sented as histograms in Figures 1321–1323.

Grouped fusion data was used to construct

the linear plots of percentage of fused specimens

0

20

40

60

80

100

120

0 12 24 36 48 60

Brzesc Kujawski Grouped Fusion Data

Cattle

Pig

Sheep/Goat

Pe

rce

nta

ge F

use

d E

pip

hyse

s

Age in Months

against the time for each of the principal domes-

tic taxa, as shown in Figure 1324. The results

are roughly similar to those obtained from the

Brześć Kujawski sample. There is a slightly high-

er degree of culling of juvenile cattle at Osłonki,

and despite a slightly more gradual kill–off of

sheep and goat, the line ends in exactly the same

place as at Brześć Kujawski. Pig shows the same

steep decline, and the number of animals who

survive beyond 36 months is virtrually identical

to Brześć Kujawski at 17%.

Table CC. Epiphyseal fusion data for Lengyel cattle, sheep/goat, and pig from Osłonki.

Tabela CC. Dane dotyczące zrośnięcia nasady kości z trzonem dla bydła, owcy/kozy i świni kultury lendzielskiej z Osłonek.

Cattle Sheep/Goat Pig

fused fusing unfusd fused fusing unfusd fused fusing unfusd

scapula 36 1 0 scapula 53 1 1 scapula 53 1 7

pelvis 14 0 0 pelvis 8 0 0 pelvis 9 0 2

d. humerus 47 0 3 d. humerus 73 2 1 d. humerus 27 4 2

p. radius 45 1 3 p. radius 92 0 0 p. radius 29 1 7

phalanx I 108 2 8 phalanx I 49 1 13 phalanx II 11 2 5

phalanx II 90 1 3 phalanx II 22 1 3 phalanx I 20 2 25

d. metacarpal 37 0 3 d. metacarpal 43 2 21 d. metacarpal 9 2 36

d. tibia 37 5 7 d. tibia 48 9 24 d. tibia 26 4 22

d. metatarsal 37 1 8 d. metatarsal 11 0 6 d. metatarsal 5 3 30

Page 62: Reprinted from - Princeton

1640

Cattle Sheep/Goat Pig

fused fusing unfusd fused fusing unfusd fused fusing unfusd

calcaneus 24 1 11 ulna (olecranon) 6 1 11 calcaneus 6 2 30

p. femur 18 9 14 calcaneus 20 0 11 d. fibula 2 0 10

d. radius 15 3 7 p. femur 17 2 22 ulna (olecranon) 4 0 18

p. humerus 8 4 7 d. radius 23 0 32 d. ulna 0 0 12

ulna (olecranon) 8 2 3 p. humerus 8 8 10 p. femur 2 2 6

d. femur 16 4 7 d. femur 17 7 24 d. radius 2 0 29

p. tibia 17 1 12 p. tibia 10 6 22 p. humerus 3 2 4

d. femur 2 3 8

p. tibia 0 0 13

Fig. 1321. Percentages of cattle bones with fused epiphyses ar-

ranged in general sequence of fusion.

Ryc. 1321. Udział procentowy kości bydła o zrośniętej nasadzie,

w porządku kolejności zrastania nasady kości z trzonem.

40

50

60

70

80

90

100scap

ula

pelv

is

d.h

um

eru

s

p.r

adiu

s

pha

l I

phal II

d.m

/c

d.tib

ia

d.m

/t

ca

lcan

eum

p.fe

mur

d.r

adiu

s

p.h

um

eru

s

uln

a

d.f

em

ur

p.tib

ia

Cattle: % fused by element

% f

use

d

Fig. 1322. Percentages of sheep/goat bones with fused epiphyses

arranged in general sequence of fusion.

Ryc. 1322. Udział procentowy kości owcy/kozy o zrośniętej na-

sadzie, w porządku kolejności zrastania nasady kości z trzo-

nem.

20

30

40

50

60

70

80

90

100

sca

pu

la

pelv

is

d.h

um

eru

s

p.r

adiu

s

ph

al I

ph

al II

d.m

/c

d.tib

ia

d.m

/t

uln

a

calc

an

eum

p.f

em

ur

d.r

ad

ius

p.h

um

eru

s

d.fem

ur

p.tib

ia

Sheep and Goat: % fused by element

% f

use

d

Page 63: Reprinted from - Princeton

1641

Fig. 1323. Percentages of pig bones with fused epiphyses ar-

ranged in general sequence of fusion.

Ryc. 1323. Udział procentowy kości świni o zrośniętej nasadzie,

w porządku kolejności zrastania nasady kości z trzonem.

0

20

40

60

80

100

scap

ula

pelv

is

d.h

um

eru

s

p.r

adiu

s

ph

al II

phal I

d. m

/c

d.t

ibia

d.m

/t

calc

an

eum

d.fib

ula

p.u

lna

d.u

lna

p.fe

mur

d.r

adiu

s

p.h

um

eru

s

d.f

em

ur

p.tib

ia

Pig: % fused by element

% f

use

d

0

20

40

60

80

100

0 12 24 36 48 60

Oslonki grouped fusion data

Cattle

Pig

Sheep/Goat

Pe

rce

tag

e o

f F

use

d E

pip

hyse

s

Age in Months

Fig. 1324. Osłonki mortality profiles based on grouped fusion

data.

Ryc. 1324. Profile śmiertelności zwierząt z Osłonek, w oparciu

o zebrane dane zrośnięcia nasady kości z trzonem.

Although it is tempting to correlate lin-

ear plots of percentages of fused epiphyses with

various specialized economic strategies such as

meat or dairy production, it would be naïve to

assume that Neolithic people had such a spe-

cialized animal economy that they would have

Page 64: Reprinted from - Princeton

1642

used animals such as cattle, sheep, and goat that

provide multiple products for only one of them.

The interpretation of the age profile of the pig

sample is clear and straightforward: pigs reach

their maximum meat weight quickly, and there

is no point in keeping them any longer, even if

they have not reached osteological adulthood.

Finding that fewer than 20% survive beyond 36

months is consistent with a population of do-

mestic pigs who are fattened on settlement re-

fuse and what they can find in the nearby for-

ests and slaughtered when there was a demand

for their meat.

The cattle and sheep/goat profiles are a bit

more difficult to interpret, but it seems clear that

neither was being raised only for meat. Since

over 60% of the cattle survive beyond the attain-

ment of their maximum meat weight at about

42 months, and since over 40% of the sheep and

goats survive their 42nd month as well, it seems

that while some juveniles and subadults of these

species were culled when young, there was clear-

ly a purpose other than meat that contributed to

the economic value of these species. In the case

of cattle, milk is the most likely value, as may

also be the case for sheep and goats.

The earliest evidence for wool is later, to-

ward the end of the third millennium B.C.,

and it is related to the timing and selection for

changes in the sheep hair that made it wooly, so

it would be a remote possibility that eventual-

ly the origins of wool use might eventually be

documented earlier. Another reason may lie in

the household investment in these species that

might have given them a value greater than sim-

ply their meat. These possibilities will be dis-

cussed in the final section of this report.

In the analysis of the Osłonki faunal sample,

the eruption and wear of the mandibular teeth

of cattle, sheep/goat, and pig were recorded us-

ing the method of Grant (1982) by assigning

them to eruption and wear stages. These were

then entered into the York faunal database sys-

tem. The assessment of tooth wear stages is very

difficult, however. Grant (1982: 95–6) convert-

ed tooth wear stages into numerical equivalents

which could then be summed to produce an ap-

proximation of the age structure of the animal

population represented by the assemblage of

mandibles. The problem is that this only works

effectively when whole mandibular tooth rows

are available. Neolithic mandibles are generally

fragmentary, however, with the entire tooth row

rarely being available.

It thus posed a challenge to find a way to

make sense of the comparatively rich sample of

tooth wear data from Osłonki. A solution was

to adapt the methods of Rolett and Chiu (1994)

and O’Connor (2003) and to crosstabulate the

wear stages of M1 and M2 when the two teeth

occur together in the same mandible. The result

is Tables CCI–CCIV which show these crosstab-

ulations for cattle, sheep/goat, and pig and Fig-

ures 1326–1329 which depict the tabular data

graphically.

Fig. 1325. Osłonki, Site 1. Strongly–fused sheep/goat radius and

ulna from Clay Pit 2.

Ryc. 1325. Osłonki, st. 1. Mocno zrośnięta kość promieniowa i

łokciowa owcy/kozy z glinianki 2.

Page 65: Reprinted from - Princeton

1643

cattleM2 eruption and wear

C V E U a b c d e f g h i j k l m n o pM

1 er

uptio

n an

d w

ear

V

E

U

a

b

c 1

d

e

f 1

g 1 1

h

i

j 1

k 2 1 2

l 1

m

n

o

p

Table CCI. Cattle M1/M2 eruption and wear crosstabulated

Tabela CCI. Zestawienie wyrzynania się i ścierania zębów M1/M2 u bydła.

Fig. 1326. Graphical depiction of cattle M1/M2 eruption and

wear crosstabulation.

Ryc. 1326. Graficzne ujęcie zestawienia wyrzynania się i ściera-

nia zębów M1/M2 u bydła.

V

U

b

d

f

h

j

l

n

p

C V E U a b c d e f g h i j k l m n o p

0

1

2

M1 wear stages

M2 wear stages

Page 66: Reprinted from - Princeton

1644

The tooth eruption data for cattle are rel-

atively thin, perhaps owing to the greater fre-

quency with which the cattle mandible is bro-

ken apart resulting in loose teeth and alveolar

fragments. It is clear, however, that with sever-

al exceptions (yellow on Figure 1326), the cat-

tle teeth are mostly in a fairly advanced state

of wear, stage “j” and greater for M1 and stage

“g” and greater for M2. When put together with

the evidence from epiphysial fusion (Table CC

and Fig. 1324), it appears that the tooth erup-

tion data are picking up the slaughter of cattle

beyond the 48–month point, but exactly how

old these animals were is difficult to say. Two

separate clusters of mature adults can be iden-

tified impressionistically, noted in red and dark

blue on Fig. 1326, with an anomalous specimen

shown in light blue.

A similar exercise was undertaken to cross-

tabulate cattle M2 and M3 eruption and wear,

again with relatively meager data due to the lack

of surviving mandibles with both M2 and M3

intact. The results are presented in Table CCII

and Figure 1327. It suggests that the principal

slaughtering of mature cattle took place some-

time just beyond the 48th month, and few if any

animals were permitted to survive to very ad-

vanced stages of M3 wear.

cattleM3 eruption and wear

C V E U a b c d e f g h i j k l m n o p

M2

erup

tion

and

wea

r

V

E

U

a

b

c

d

e

f 1

g 1

h 1

i

j 1 1

k 1

l

m

Table CCII. Cattle M1/M2 eruption and wear crosstabulated.

Tabela CCII. Zestawienie wyrzynania się i ścierania zębów M1/M2 u bydła.

Fig. 1327. Graphical depiction of cattle M2/M3 eruption and

wear crosstabulation.

Ryc. 1327. Graficzne ujęcie zestawienia wyrzynania się

i ścierania zębów M2/M3 u bydła.

V

U

b

d

f

h

j

l

n

p

C V E U a b c d e f g h i j k l m n o p

0

1

M2 wear stages

M3 wear stages

Page 67: Reprinted from - Princeton

1645

pigM 2 eruption and wear

C V E U a b c d e f g h i j k l m n o pM

1 er

uptio

n an

d w

ear

V

E 1

U

a 2

b

c 3

d 1 2

e 1 1 3 3 1

f 3

g 1 1 3

h 1 1 3 1

i

j 1

k 1 1 1 1

l 2

m 1 2

n 1 1

o

p

Table CCIII. Pig M1/M2 eruption and wear crosstabulated.

Tabela CCIII. Zestawienie wyrzynania się i ścierania zębów M1/M2 u świni.

The pig data (Table CCIII and Fig. 1328) are

fairly continuous, suggesting that there was rela-

tively little seasonal slaughter. Since the epiphy-

seal fusion data show that only a small number

of pigs survived beyond about their 38th month,

the tooth eruption and wear data generally track

this same steep mortality profile. The colors in

Figure 1328 represent an attempt to perceive

some groupings visually, but these are generally

Fig. 1328. Graphical depiction of pig M1/M2 eruption and wear

crosstabulation.

Ryc. 1328. Graficzne ujęcie zestawienia wyrzynania się i ściera-

nia zębów M1/M2 u świni.

V

U

b

d

f

h

j

l

n

p

C V E U a b c d e f g h i j k l m n o p

0

1

2

3

M1 wear stages

M2 wear stages

impressionistic. Yellow bars are piglets young-

er than 1 year of age, while the dark red bars are

probably between 12 and 24 months. We might

conclude that the mandibles with M1 in stage

“m” and greater and M2 in stage “g” and greater

(dark blue and green in Fig. 1328) belong to the

elderly pigs who were killed beyond their 38th

month, although how far beyond is difficult to

say.

Page 68: Reprinted from - Princeton

1646

sheep–go-at

M2 eruption and wear

C V E U a b c d e f g h i j k l m n o pM

1 er

uptio

n an

d w

ear

V

E

U

a

b 1

c 1

d 1 1

e 1 1

f 3 2

g 1 1 2 2 10 1

h 1 3 1 1 1

i

j 2

k 3

l 3 2

m 5 3 1

n

o

p

Table CCIV. Sheep/goat M1/M2 eruption and wear crosstabulated.

Tabela CCIV. Zestawienie wyrzynania się i ścierania zębów M1/M2 u owcy/kozy.

Fig. 1329. Graphical depiction of sheep/goat M1/M2 eruption

and wear crosstabulation.

Ryc. 1329. Graficzne ujęcie zestawienia wyrzynania się

i ścierania zębów M1/M2 u owcy/kozy.

V

U

b

d

f

h

j

l

n

p

C V E U a b c d e f g h i j k l m n o p

0

1

2

3

4

5

6

7

8

9

10

M1 wear stages

M2 wear stages

The eruption and wear data for sheep/goat

are the most rich, complex, and interesting, al-

though it must be noted that sheep and goat

were probably subject to different management

practices, so combining them introduces some

degree of uncertainty. As can be seen in Figure

1329, and sheep/goat crosstabulations of M1

and M2 eruption and wear form distinct clus-

ters that can be easily differentiated visually.

Those with M2 not fully erupted, shown in Fig-

ure 1329 in yellow, represent lambs under 6–10

months. The next group, shown in red on Figure

Page 69: Reprinted from - Princeton

1647

1329, are probably between 18 and 48 months

and represent the slaughter inferred from the

epiphyseal fusion data shown in Figure 1324

above.

The remaining two groups of mature and el-

derly sheep/goat, shown on Figure 1329 in dark

blue and green, lie beyond the range of the epi-

physeal fusion data. It is possible to estimate their

ages by reference to the data provided by Mo-

ran and O’Connor (1994) on tooth eruption and

wear of a modern sheep population, with the ca-

veat that modern rates of tooth wear may be very

different from prehistoric rates. Nonetheless, the

group shown with dark blue bars, with M1 stages

between “k” and “m” and M2 stages of “g” or “h”

are 5–6 years of age, while those shown in green

bars with an M1 stage of “m” and M2 stages of “j”

or “k” are older than 6 years.

Makowiecki pooled data from mandibu-

lar tooth eruption from Konary, Miechowice 4,

Miechowice 4a, Pikutkowo, Smólsk, Zagajew-

ice, and the sample from Osłonki that he ana-

lyzed and grouped them into age groups, which

are shown in Tables CCV–CCVII and depicted

graphically in Figures 1330–1332. The graphs

were developed by Bogucki on the basis of the

tabular data and omit the equivocal subadult/

adult classification based on premolar and in-

cisor eruption and wear that are included at the

bottom of each table.

Age group Eruption/wear stage Age class n

I.

juvenile

Deciduous teeth erupted do 3 months 3

II. M1 erupting 4–6 months 3

III. M1 erupted 7–14 months 3

IV.

subadult

M2 erupting 15–18 months 7

V. M2 erupted 19–24 months 7

VI. M3 erupting 25–28 months 2

VII. dp2/dp4 being exchanged for P2/P4 19–34 months 1

VIII.

adult

M3 light wear (+/+) about 3.5 years 2

IX. M3 light wear (+/++) about 3.5 years 3

X. M3 light wear (+/+++) about 3.5 years 3

XI. M3 erupted > 3.5 years 3

XII. M3 light–medium wear (++) 3.5–5 years 12

XIII. M3 mediium wear (+++) 5–7 years 1

XIV. M3 medium–heavy wear (++++) 7–10 years 0

XV.Subadult/adult

P4 erupted, in wear over 34 months 0

XVI. I1 erupted, in wear over 25 months 0

Total cases 50

Table CCV. Age at death of cattle in the Brześć Kujawski–Osłonki region (on the basis of research of D. Makowiecki 2002, 2003,

2005).

Tabela CCV. Wiek w momencie śmierci osiągany przez bydło w rejonie Brześcia Kujawskiego i Osłonek (na podstawie badań

D. Makowieckiego 2002, 2003, 2005).

Page 70: Reprinted from - Princeton

1648

Fig. 1330. Cattle tooth eruption and wear stages as de-

termined by Makowiecki for multiple sites in the Brześć

Kujawski – Osłonki region. Stages as in Table CCV.

Ryc. 1330. Etapy wyrzynania się i ścierania zębów u

bydła, wyróżnione przez D. Makowieckiego na licz-

nych stanowiskach w rejonie Brześcia Kujawskiego i

Osłonek. Etapy jak w tabeli CCV.0

2

4

6

8

10

12

14

I. II. III. IV. V. VI. VII. VIII. IX. X. XI. XII. XIII. XIV.

Cattle Tooth Eruption/Wear Stages

Fre

qu

en

cy

Eruption/Wear Stages

The pooled cattle data provide a valuable

complement and extension to the data from the

epiphyseal fusion and mandibular tooth erup-

tion and wear data from Osłonki. They reflect

a steady attrition of the cattle population be-

tween birth and about 42 months, with some

greater intensity of slaughter between 15 and

24 months. There is then a peak in the slaugh-

ter between 42 and 60 months, with few animals

surviving into their sixth year and beyond. This

correlates especially well with the crosstabula-

tion of M2 and M3 wear shown above in Fig-

ure 1330. Thus, we can infer that shortly after

completion of the fusion sequence at about 48

months, the cattle population was intensively

culled of mature animals.

The pooled eruption and wear stages for

sheep and goat are strikingly parallel to the ones

observed at Osłonki, with a significant group

of younger animals in the sample, an intensive

culling in the 36–48 month range, and then a

handful of older individuals. These data com-

plement and refine the analysis based on the

M1/M2 crosstabulations in the Osłonki data, al-

though they are subject to the same caution ex-

pressed above concerning the likelihood of dif-

ferent management strategies for sheep and

goats. Nonetheless, it seems clear that sheep and

goat had a well–defined life expectancy in Neo-

lithic Kuyavia!

The pooled eruption and wear data for pigs

from the various Kuyavian sites also tracks the

pig eruption and wear data from Osłonki as

well and shows the expected continuous attri-

tion of the pig population, although not espe-

cially heavy in the first year. Of particular note is

the peak in culling between 12 and 24 months,

which matches closely with the data from the

M1/M2 crosstabulations shown in Figure 1328

above. The pooled data do not contain, how-

ever, the few very old pigs who may have sur-

vived into their fourth year that were found in

the Osłonki assemblage.

Table CCVI. Age at death of sheep and goat in the Brześć

Kujawski–Osłonki region (on the basis of research of D. Ma-

kowiecki 2002, 2003, 2005).

Tabela CCVI. Wiek w momencie śmierci osiągany przez owcę

i kozę w rejonie Brześcia Kujawskiego i Osłonek (na podstawie

badań D. Makowieckiego 2002, 2003, 2005).

Age group Eruption/wear stage Age class n

I.

juvenile

M1 erupting about 3 months 1

II. M1 erupted 4–8 months 4

III. M2 erupting about 9 months 5

IV.subadult

M2 erupted 10–17 months 11

V. M3 erupting 18–24 months 3

VI.

adult

M3 erupted over 2 years 1

VII. M3 light wear (+/+) 2–3 years 2

VIII. M3 light wear (+/++) 2–3 years 5

IX. M3 light wear (+/+++) 2–3 years 1

X.M3 light–medium wear (++)

3–4 years 16

XI. M3 medium wear (+++) 4–5 years 4

XII. M3 medium–heavy wear 5–7 years 1

XIII. Adult/subadult P4 erupted, in wear over 18 months 1

Total cases 55

Page 71: Reprinted from - Princeton

1649

0

5

10

15

20

I. II. III. IV. V. VI. VII. VIII. IX. X. XI. XII.

Sheep/Goat Eruption/Wear Stages

Fre

qu

en

cy

Eruption/Wear Stages

Fig. 1331. Sheep and goat tooth eruption and wear stages as de-

termined by Makowiecki for multiple sites in the Brześć Ku-

jawski – Osłonki region. Stages as in Table CCVI.

Age grade Eruption/wear stage Age class n

I.

Juvenile

Deciduous teeth erupted over 7 weeks 1

II. M1 erupting 4–6 months 0

III. M1 erupted 6–10 months 3

IV. M2 erupting 10–12 months 1

V.Subadult

M2 erupted 12–16 months 6

VI. M3 erupting 16–24 months 4

VII.

Adult

M3 erupted >2–3.5 years 1

VIII. M3 light wear (+/+) 2–3.5 years 3

IX. M3 light wear (+/++) 2–3.5 years 1

X. M3 light wear (+) 2–3.5 years 2

XI. M3 light–medium wear (++) 3.5–5 years 0

XII. I1 erupted. in wear over 16 months 2

XIII.Subadult/adult

P4 erupted. in wear over 16 months 7

XIV. I2 erupted. in wear over 22 months 2

Total cases 33

Table CCVII. Age at death of pigs in the Brześć Kujawski–Osłonki region (on the basis of research of D. Makowiecki 2002, 2003,

2005).

Tabela CCVII. Wiek w momencie śmierci osiągany przez świnię w rejonie Brześcia Kujawskiego i Osłonek (na podstawie badań

D. Makowieckiego 2002, 2003, 2005).

Ryc. 1331. Etapy wyrzynania się i ścierania zębów u owcy/kozy,

wyróżnione przez D. Makowieckiego na licznych stanowiskach

w rejonie Brześcia Kujawskiego i Osłonek. Etapy jak w tabe-

li CCVI.

The data from epiphyseal fusion and man-

dibular tooth eruption and wear provide a gen-

eral characterization of the livestock manage-

ment practices of the inhabitants of southeastern

Kuyavia during the fifth millennium B.C. As was

pointed out earlier, there is no logical reason

to assume that they pursued a specialized an-

imal economy, and the mortality data confirm

that animals probably yielded many different

products.

Page 72: Reprinted from - Princeton

1650

Fig. 1332. Pig tooth eruption and wear stages as determined by

Makowiecki for multiple sites in the Brześć Kujawski – Osłonki

region. Stages as in Table CCVII.

Ryc. 1332. Etapy wyrzynania się i ścierania zębów u świni , wy-

różnione przez D. Makowieckiego na licznych stanowiskach

w rejonie Brześcia Kujawskiego i Osłonek. Etapy jak w tabeli

CCVII.

0

1

2

3

4

5

6

7

I. II. III. IV. V. VI. VII. VIII. IX. X. XI.

Pig Tooth Eruption/Wear Stages

Fre

qu

en

cy

Eruption/Wear Stages

The pig mortality data from Brześć Ku-

jawski and Osłonki, along with the pooled data

from the other Kuyavian sites, are quite straight-

forward, but interesting nonetheless. Although

the pig mortality curve is relatively steep, and

few animals survived their third year, both the

epiphyseal fusion and tooth wear data indicate

that a significant number of pigs survived into

their second year and beyond. The mortality

curve for these Neolithic pigs is thus much more

gradual than it would be for modern commer-

cial pig production, suggesting that there was

little marginal cost to allowing a pig to survive

through its second year, which in turn suggests

that there was no shortage of suitable food with-

in the settlement and in the surrounding fields

and forests. It also suggests that pigs served as

an important dietary reservoir and were not in-

tensively slaughtered during their first year or

18 months to maximize the ratio between meat

yield and nutritional input.

The sheep and goat mortality data, despite

the fact that there may have been different man-

agement strategies pursued for each species,

also suggests a primary use for meat. Of particu-

lar note is the intensive culling of the herds that

took place between 24 and 48 months, with a

probable concentration on animals in their third

year. This suggests that secondary products from

sheep and goat were not major economic fac-

tors, if at all. Of course, it is not possible to ex-

clude them completely, for their subsequent use

in prehistoric central Europe did not spring ful-

ly developed without antecedent.

Although the fusion percentages for cattle

leave open the possibility for a substantial por-

tion of the herd living an extended life, and thus

consistent with the expectation that this may re-

flect their exploitation for secondary products,

the mandibular tooth eruption and wear data

from Osłonki and from other Kuyavian sites

suggests that there was a pattern of intensive-

ly culling the herd, which would include both

the females and any surviving males and cas-

trates, when animals reached their fifth year or

not much thereafter. While the use of second-

Page 73: Reprinted from - Princeton

1651

ary products from cattle is likely during the fifth

millennium B.C., particularly in light of the ac-

cumulating evidence for lipid residues on pot-

tery from many parts of Europe, it does not ap-

pear that the Kuyavian herd was managed to

optimize milk production. Instead, it seems that

milk may have been a byproduct of a cattle rais-

ing strategy that was focused ultimately on meat

production.

The fauna from the Lengyel sites in south-

eastern Kuyavia was measured consistently us-

ing the standards published by von den Driesch

(1976) and constitute one of the largest sets of

measurements for Neolithic ungulates before

4000 B.C. in temperate Europe. A full metrical

analysis of the fauna from these ten sites would

far exceed the space available here, and thus the

presentation below focuses on key issues of do-

mestication status of cattle and pig, using pri-

marily the measurements available from the

Osłonki sample. Time constraints also pre-

vent the adequate presentation of the full cor-

pus of measurements for every species from ev-

ery site. Eventually, these will be published fully

in a document–of–record, and in the meantime

they can be obtained from the author.

The problem of the osteological distinc-

tion between domestic cattle and aurochs

has been a topic of discussion for decades.

Since domestic cattle are smaller than their

wild counterparts (see Figure 1333), stan-

dard osteological techniques rely on the

analysis of a sample of measurements. The

problem lies in where to separate wild from

domestic in the faunal assemblage and to

determine their relative representation.

Furthermore, the problem is compounded

by the continuum of sizes from female do-

mestic cattle on the small end of the scale

to male aurochs on the large end, while in

the middle there is substantial overlap in size be-

tween male domestic cattle and female aurochs.

Since different faunal analysts draw the line in

different places, the result can be wildly varying

estimates of the relative numbers of aurochs and

domestic cattle.

Another problem is that since most faunal

samples from Neolithic sites are relatively small

and fragmented, most assessments of wheth-

er a specimen is wild or domestic are based on

the comparison of single measurements to the

known size range of postglacial aurochs. Single

measurements can sometimes be misleading, as

Boessneck (1977: 156) noted, and it is better to

use multiple dimensions in assessing whether a

specimen is from a wild or domestic animal. For

example, at Burgäschisee–Süd, overall lengths of

metacarpals as well as their distal breadths were

combines in distinguishing wild from domes-

tic specimens. At Neolithic sites in southeast-

ern Kuyavia, however, large numbers of whole

measurable specimens are simply not available,

and the comparison of individual specimens to

general size ranges was characterized by Bogu-

cki (1981: 193) as “in reality a very inexact, sub-

jective, and error–prone undertaking.”

A potential solution to this problem was de-

veloped by Uerpmann in the late 1970s (Uerp-

mann 1979), which was then employed by Bo-

gucki (1981) in his analysis of the cattle from

Brześć Kujawski. Uerpmann devised a meth-

od that combined measurements from differ-

ent skeletal parts by converting them to stan-

Fig. 1333. Relative sizes of wild cattle and pig (left) and their early

domestic counterparts (right). After Bartosiewicz et al. 2006, in turn

after Uerpmann 1979.

Ryc. 1333. Wielkości względne dzikiego bydła i świni (po lewej stro-

nie), oraz ich udomowionych odpowiedników (po prawej stronie).

Wg Bartosiewicza et al. 2006.

Page 74: Reprinted from - Princeton

1652

dard scores which were then used to measure

how much the measurements deviated from

those of a complete skeleton of known attribu-

tion, the “standard individual”. Certain assump-

tions about animal morphology are implicit in

this method, especially that animals of the same

species will vary in the same proportions for

each of their bones. This may not be always the

case, the lengths of long bones in particular may

be susceptible to influences of sex, age, and en-

vironment. Thus, as Russell (1993: 112) notes,

“standard animal scores should be used to con-

struct a general picture of variability in a taxon,

not as a precise method for separating individ-

ual specimens.”

The first step in applying this method is to

choose a “standard individual” to which the mea-

surements can be compared. Since modern spec-

imens of aurochs are not available, Bogucki chose

to use a subfossil female aurochs skeleton from

a bog in Denmark dated to the Boreal period,

known as the “Ullerslev Cow” (Degerbøl and

Fredskild 1970:10). The Ullerslev Cow is a small

aurochs, thus probably equal in size to male do-

mestic cattle, and thus her measurements may ap-

proximate the metrical border between wild and

domestic. The fact that it predates the Lengyel fau-

na of the fifth millennium B.C. by several millen-

nia should pose no problem, for Grigson (1969:

281) notes that the aurochs did not decrease in

size in northern Europe between the Mesolithic

and the Bronze Age.

Uerpmann used an algebraic method to

normalize the measurements. In order to eval-

uate their deviation from those of the standard

individual, he established a scale of 0–100 in

which 50 equal to the dimension of the stan-

dard individual. The results were plotted graph-

ically, with specimens with scores under 50

being smaller than the corresponding measure-

ments of the standard individual, and those with

scores over 50 being larger. From this, it can

be further extrapolated that specimens larger

than the standard individual can be presumed

to be wild, while those smaller can be hypoth-

esized to be domestic. In reality, there certain-

ly could be wild specimens with scores under 50

and domestic specimens with scores of over 50,

but establishing where this boundary lies in the

sample provides a rough indication of the rela-

tionship between wild and domestic animals in

the sample.

Bogucki’s analysis of the Brześć Kujawski

sample using the Uerpmann technique pro-

Fig. 1334. Measurements of Linear Pottery cattle bones from

Brześć Kujawski normalized using the Uerpmann technique (af-

ter Bogucki 1981).

Ryc. 1334. Pomiary kości bydła z okresu kultury ceramiki wstę-

gowej rytej z Brześcia Kujawskiego, znormalizowane przy uży-

ciu techniki Uerpmanna (wg Boguckiego 1981).

0

2

4

6

8

10

0 10 20 30 40 50 60 70 80 90 100

Brzesc Kujawski Linear Pottery

Cattle Normalized Measurements

(after Bogucki 1981)

Fre

qu

en

cy

Range

Page 75: Reprinted from - Princeton

1653

duced an interesting result, shown graphically

as Figures 1334 and 1335. Figure 1334 depicts

the Linear Pottery sample, while 1335 shows the

Lengyel sample, which is of greater interest in

this report. The Linear Pottery sample shows a

greater size range, but most of the specimens

lie below 50 with the exception of two, which

may be wild individuals but which could also be

large domestic males. The slight bimodality in

the main body of Linear Pottery scores can be

interpreted as indicating domestic males and fe-

males. The Lengyel sample is more concentrated

but uniformly smaller than the Ullerslev Cow

and thus can be presumed to be effectively all

domesticated individuals.

At the same time Bogucki was applying

Uerpmann’s algebraic method to the Brześć Ku-

jawski fauna, Meadow (1981, 1999) developed

the much simpler logarithmic method which

he then used in his analysis of the faunal from

Mehrgarh in Pakistan (Meadow 1983). The mea-

surements of the archaeological specimens and

the standard individual are converted to natural

logarithms. The log of the standard individual

measurement is then subtracted from the log of

the archaeological specimen, producing a loga-

rithmic scale on which zero represents the stan-

dard individual and thus the boundary between

wild and domestic. This is expressed by the fol-

lowing equation:

d = logx – log

standard

in which x is the measurement of the ar-

chaeological specimen and d is the difference

of logs. Positive numbers represent specimens

larger than the standard individual, while neg-

ative numbers represent those that are smaller.

These are then graphed as histograms. The loga-

rithmic method was also used by Russell (1993)

in her analysis of the Neolithic fauna from Op-

ovo in Yugoslavia.

In the current analysis, the logarithmic

method was applied to both cattle and pig mea-

surements from Osłonki. Pigs are discussed in

detail in the following section. Again, the Ull-

erslev Cow was used as the standard cattle indi-

vidual. In the 1990s, Steppan re–measured the

Ullerslev Cow in accordance with the conven-

tions of von den Driesch (Steppan 2001), and

his measurements are used here instead of De-

gerbøl’s as the standard measurements. The anal-

ysis had already been carried out using the De-

gerbøl measurements before Bogucki became

Fig. 1335. Measurements of Lengyel cattle bones from Brześć

Kujawski normalized using the Uerpmann technique (after Bo-

gucki 1981).

Ryc. 1335. Pomiary kości bydła z okresu kultury lendzielskiej

z Brześcia Kujawskiego, znormalizowane przy użyciu techniki

Uerpmanna (wg Boguckiego 1981).

0

2

4

6

8

10

0 10 20 30 40 50 60 70 80 90 100

Brzesc Kujawski Lengyel

Cattle Normalized Measurements

(after Bogucki 1981)

Fre

qu

en

cy

Range

Page 76: Reprinted from - Princeton

1654

aware of the Steppan re–measurement, but the

differences in results were trivial.

Measurements were exported from the York

Faunal Database into Microsoft Excel, convert-

ed to logarithms from which the log of the stan-

dard measurements were subtracted, and then

exported to Kaleidagraph™ in which the histo-

grams were produced. The much larger size of

the Osłonki sample made it possible to concen-

trate on a limited number of key measured ele-

ments, which are given in Table CCVIII:

A total of 256 measurements were used in

this analysis which produced the histogram

shown as Figure 1336. Virtually all of the mea-

surements fall to the left of the 0 point, which

means that they are smaller than the Ullerslev

Cow. A small number, fewer than 20, fall im-

mediately to the right, meaning that they are ei-

ther aurochs, in which case they are female, or

large domestic male cattle. On the other hand, it

is possible that some very small female aurochs

specimens are included among those to the left

Element Measurement Value for Ullerslev Cow Number of measurements from Osłonki

Scapula SLC 68.73 16

Humerus BT 90.68 32

Radius Bp 99.27 20

Metacarpal Bd 72.00 33

Pelvis LA 88.30 20

Femur DC 56.08 13

Femur Bd 119.00 5

Tibia Bd 77.91 29

Astragalus GLl 82.60 36

Calcaneus GL 165.76 18

Metatarsal Bd 67.25 34

Table CCVIII. Measurements used from Ullerslev Cow (Steppan 2001).

Tabela CCVIII. Pomiary w oparciu o krowę Ullerslev (Steppan 2001).

Fig. 1336. Histogram of normalized cattle measurements from

Osłonki; specimens to the right of zero are presumed to repre-

sent wild individuals.

Ryc. 1336. Histogram znormalizowanych pomiarów bydła z

Osłonek; okazy na prawo od zera mają reprezentować osobni-

ki dzikie.

0

20

40

60

80

100

120

140

-0.3 -0.2 -0.1 0 0.1 0.2

Oslonki: Cattle Normalized Measurements

Fre

qu

en

cy

Range

Page 77: Reprinted from - Princeton

1655

of the 0 point. The clear indication of this anal-

ysis, however, is that virtually all of the Lengyel

cattle at Osłonki are domestic, confirming the

finding from Brześć Kujawski reached over 25

years ago.

Individual cattle measurements, often used

to supplement the standard–individual tech-

nique, are equivocal on the distinction of wild

and domestic populations. They generally show

a more continuous distribution of measure-

ments rather than a few large outliers. They are

more useful in the study of the distinction be-

tween male and female cattle and are discussed

further below. In general, however, cattle bones

from Osłonki with measurements in the size

ranges for Polish prehistoric wild cattle reported

by Lasota–Moskalewska and Kobryń (1990) are

very rare. One notable outlier, almost certainly

from an aurochs, is the distal humerus from the

foundation trench of House 23 (Figure 1337),

with a trochlear breadth of 95 mm

The same technique was applied to the dif-

ferentiation of domestic and wild pigs. In this

case, the standard individual used was a mature

female wild pig shot in 1979 at the foot of the

Carpathians, Hungarian Agricultural Museum

specimen 79.2, reported by Russell (1993: table

6.2). Russell believes that this skeleton is on the

larger side of the wild–domestic border in the

Carpathian Basin, and thus using it as the stan-

dard individual may underrepresent the rela-

tive proportion of wild animals if 0 is taken as

the boundary. Nonetheless, it provides a start-

ing point for this discussion, which can be re-

peated if a more appropriate skeleton of a Polish

wild pig can be found.A total of 133 measure-

ments were employed in this analysis, as shown

in Table CCIX:

Fig. 1337. Distal humerus of wild cattle from Osłonki, House

23, south foundation trench.

Ryc. 1337. Dalsza część kości ramieniowej dzikiego bydła

z Osłonek, dom 23, południowy rów fundamentowy.

Element Measurement Value for Hungarian wild pig (Russell 1993 Number of measurements from Osłonki

Scapula SLC 29.4 62

Calcaneus GL 92.3 7

Radius Bp 32.8 21

Tibia Bd 33.7 29

Astragalus GLl 48.2 14

Table CCIX. Measurements used from Hungarian Wild Pig measured by Russell (1993).

Tabela CCIX. Pomiary w oparciu o węgierską dziką świnię, wykonane przez Russela (1993).

Page 78: Reprinted from - Princeton

1656

The analysis produced the histogram shown

in Figure 1338. These results are somewhat more

interesting than the cattle, in that they show

more activity to the right of the 0 point, presum-

ably mainly specimens of wild pig, as well as a

small number of specimens just to the left of the

0 point that are larger than the majority of the

other pig bones. These could represent either

large domestic boars or small wild sows. The

conclusion to be drawn from this graph is that

there is a much larger wild component among

the Sus scrofa remains from Osłonki than with

cattle. Indeed, the subjective field observation

that led to a small number of specimens being

counted as “wild pig?” among the NISP may

actually underrepresent the wild component

in the pig population. The implications of this,

when viewed in light of recent genetic evidence,

is discussed further below.

The measurements of individual pig ele-

ments provide somewhat more evidence of wild

pig. For example, the radius proximal breadth

shows one outlying large individual, definite-

ly wild (Figure 1339), alongside an amazingly

symmetrical distribution of the domestic indi-

viduals. The single large specimen falls within

the size range for prehistoric wild pigs in Poland

defined by Lasota–Moskalewska, Kobryń, and

Świeżyński (1987).

The smallest length of the collum scapu-

lae, shown in Figure 1340, provides perhaps the

clearest illustration of the role of wild pigs. Four

large specimens over 29 mm are set apart clearly

from the majority of the measurements that are

in the 15–24 mm range. The three largest spec-

imens fall within the size range for prehistoric

Polish wild pigs defined by Lasota–Moskalews-

ka, Kobryń, and Świeżyński (1987), while the

fourth falls just below it, but still beyond the

range for domestic pigs. At the same time, it

would correspond well to the range for Mesolith-

ic wild boar in southern Scandinavia described

by Magnell (2004). Collum scapulae lengths are

often used to demarcate the distinction between

wild and domestic pigs (Rowley–Conwy 1995),

although they do exhibit post–fusion growth

(Payne and Bull 1988) which introduces age as

a potential complicating factor. The factor of

post–fusion growth complicates the differentia-

tion of domesticated individuals within a popu-

lation that is overwhelmingly wild, but it should

be much less of a problem when differentiating

Fig. 1338. Histogram of normalized pig measurements; speci-

mens to the right of zero are presumed to represent wild indi-

viduals.

Ryc. 1338. Histogram znormalizowanych pomiarów świni; oka-

zy na prawo od zera mają reprezentować osobniki dzikie.

0

10

20

30

40

50

60

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

Pig Normalized Measurements

Fre

qu

en

cy

Range

Page 79: Reprinted from - Princeton

1657

Fig. 1339. Histogram of greatest proximal breadth (Bp) of pig

radii.

Ryc. 1339. Histogram największej szerokości końca bliższego

kości promieniowych świni.

0

1

2

3

4

5

6

21 23 25 27 29 31 33 35 37 39

Pig Radius Proximal Breadth

Fre

que

ncy

Range (mm)

Fig. 1340. Histogram of smallest length of collum scapulae of

pig.

Ryc. 1340. Histogram najmniejszej długości szyjki łopatki świni.

0

5

10

15

13 15 17 19 21 23 25 27 29 31 33 35 37 39

Pig Scapula Smallest Length of Collum Scapulae

Fre

qu

en

cy

Range (mm)

Page 80: Reprinted from - Princeton

1658

wild individuals in a sample that is overwhelm-

ingly domesticated.

A potentially more reliable element for dif-

ferentiating wild from domestic pigs is the astra-

galus, which reaches its full size at a young age

and is relatively dense and thus well preserved

(Payne and Bull 1988). The graph of the greatest

lateral length of the Osłonki pig astragali pro-

duces a histogram fairly similar to that of the

collum scapulae, as shown in Figure 1341. As-

signment of the four largest specimens to wild

pig is supported by the measurement data pre-

sented by Magnell (2004) for Mesolithic wild

pigs in Denmark and Sweden.

Fig. 1341. Histogram of greatest lateral length of pig astragali. Ryc. 1341. Histogram największej długości bocznej kości sko-

kowych świni.

0

1

2

3

4

35 37 39 41 43 45 47 49 51 53 55 57 59 61

Pig Astragalus Greatest Lateral Length

Fre

que

ncy

Range (mm)

Additional unmeasurable specimens are

also attributable to wild pig, and most of these

were listed as “wild pig?” in the original record-

ing of the data. Several of these are pictured be-

low (Figures 1342–1345). Some are astonishing-

ly large individual specimens, such as mandibles

from Clay Pits 10 and 11, a radius from Pit 101

and a calcaneus from Clay Pit 2, clearly from

wild boars. The presence of multiple wild pig

mandibles from different features points toward

a consistent level of exploitation of the wild pig

populations in the surrounding forests.

Page 81: Reprinted from - Princeton

1659

Fig. 1342. Wild pig mandible from Osłonki, Clay Pit 11. Ryc. 1342. Żuchwa dzikiej świni z Osłonek, glinianka 11.

Fig. 1343. Anterior portion of wild pig fused mandible from

Osłonki, Clay Pit 10.

Ryc. 1343. Przednia część żuchwy dzikiej świni złożonej z frag-

mentów, Osłonki, glinianka 10.

Fig. 1344. Wild pig radius from Osłonki, Pit 101. Ryc. 1344. Kość promieniowa dzikiej świni z Osłonek,

jama 101.

Page 82: Reprinted from - Princeton

1660

Thus the metrical data and observations of

unmeasurable elements from the pig sample at

Osłonki consistently shows a representation of

wild pig, including some very large specimens

which cannot be considered to be borderline

cases. It is probably the case that among the

NISP wild pig are somewhat underrepresent-

ed in the data presented in Tables CLXXXI and

CLXXXII. The consequences of this for our un-

derstanding of the Lengyel animal economy

during the fifth millennium B.C. are discussed

further below.

If we can assume that the cattle sample at

Osłonki is composed largely of the bones of do-

mestic cattle, then the analysis of individual

measured elements can provide some indication

of the relative sizes and numbers of males and

females. Anatomical elements with large num-

bers of comparable measurements were chosen

for study.

Fig. 1345. Calcaneus of a wild pig from Clay Pit 2. Ryc. 1345. Kość piętowa dzikiej świni z glinianki 2.

Attempts to differentiate male and female

cattle generally begin with the metapodials,

specifically measurements of the distal articula-

tion. Histograms of the distal breadth of cattle

metacarpals and metatarsals from Osłonki are

shown in Figures 1346 and 1347, with annota-

tions suggesting which ones can be attributed to

males and females (along with a couple of possi-

ble large wild specimens). These data do suggest

a degree of size differentiation within the cattle

population which may correspond to sexual di-

morphism among the mature animal popula-

tion. In general, these histograms seem to show

somewhat more females than males, suggesting

a degree of attrition among the male cattle pri-

or to maturity.

The astragalus yields two measurements

which when graphed in a scatter plot can pro-

vide an indication of the relative sizes of an an-

imal population. As a hard and dense element,

the astragalus is usually well–preserved and

most specimens are measurable. Figure 1348

shows the greatest lateral length (GLl) and dis-

tal breadth (Bd) of the cattle astragali from

Osłonki. A gap in the distribution as indicated

by the dotted line is interpreted as differentiat-

ing males and females.

Page 83: Reprinted from - Princeton

1661

Fig. 1346. Histogram of distal breadth of Osłonki cattle meta-

carpals.

Ryc. 1346. Histogram szerokości dalszej części kości śródrę-

cza u bydła.

Fig. 1347. Histogram of distal breadth of Osłonki cattle meta-

tarsals.

Ryc. 1347. Histogram szerokości dalszej części kości śródsto-

pia u bydła.

0

1

2

3

4

5

6

46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82

Cattle Metacarpal Distal Breadth

Fre

que

ncy

Range (mm)

young

female

male

wild?

0

1

2

3

4

5

6

7

51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

Cattle Metatarsal Distal Breadth

Fre

que

ncy

Range (mm)

female

male

wild?

Page 84: Reprinted from - Princeton

1662

The distal tibia articulates with the astrag-

alus, and a histogram of distal breadth (Bd) re-

sults in Figure 1349, which can be interpreted

as showing the separation between male and fe-

male cattle very distinctly. As with the astraga-

li, there appear to be slightly more female speci-

mens than male, perhaps an artifact of the early

culling of males for meat. The specimen that is

separated at the high end can be interpreted as a

Fig. 1348. Distal breadth of cattle astragali graphed against lat-

eral length.

Ryc. 1348. Szerokość bliższej części kości skokowych bydła ze-

stawiona z ich długością boczną.

40

42

44

46

48

50

52

54

65 70 75 80

Cattle Astragali: Lateral Length x Distal Breadth

Bd

GLl

female

male

young?

wild individual, while the one at the bottom end

may be immature.

It appears, then, that there was a clear sexual

size dimorphism between male and female cat-

tle kept by the Neolithic inhabitants of Osłonki.

The question of castration is not addressed here,

and it clearly might complicate this neat picture.

The small males in Figure 1349 may represent

steers, but this would be difficult to prove.

Fig. 1349. Histogram of distal breadth of cattle tibiae. Ryc. 1349. Histogram szerokości dalszej części kości piszczelo-

wych u bydła.

0

1

2

3

4

5

6

57 59 61 63 65 67 69 71 73 75 77 79 81

Cattle Tibia Distal Breadth

Fre

qu

en

cy

Range (mm)

femalemale

young? wild?

Page 85: Reprinted from - Princeton

1663

Evidence for butchery, pathologies, and

burning was noted during the analyses of ani-

mal bones by Bogucki and Makowiecki. These

characteristics are not the central focus of this

report and could be discussed in greater detail

separately, especially after further examination

of the Osłonki assemblage. They are mentioned

here to note their presence and to highlight some

particular features, especially the suggestions of

biomechanical stress that may reflect evidence

for animal traction.

Fragmentation

The faunal assemblages on Neolithic settle-

ment sites in central Europe are the final result

of a long sequence of carcass dismemberment,

sorting and distribution of carcass parts, cook-

ing, bone fragmentation for marrow extraction,

selection of bones for tool production, discard,

carnivore attrition, and in situ mechanical frag-

mentation. As a result, many of the long bones

are preserved at less than 50% of their original

size, while the smaller, harder bones of the au-

topodium are preserved whole or nearly whole.

Such assemblages are not the product of what

might be called “craft butchery” (O’Connor

2003: 81) in which cultural and economic norms

dictate a specific and consistent method of di-

viding the carcass and the portioning of joints of

meat. Instead, the Neolithic carcass was reduced

to the maximum extent possible, which resulted

in the initial fragmentation of bones, and then

the bones were fractured further to obtain their

marrow.

In the recording of the bones from Osłonki,

bone fragments were assessed as being 1–20%,

21–40%, 41–60%, 61–80%, and 81–100% of the

original whole bone from which they came. The

proportions of these fragment sizes are depict-

ed in Figure 1350, separated by major contexts

and then the overall proportion for the site. It

can be seen clearly that most of the bones were

in the 21–40% size range, and very few in the

41–80% size ranges. Whole bones were primari-

ly the hard and dense bones of the autopodium.

Fig. 1350. Proportions of different size classes in the Osłonki

faunal assemblage.

Ryc. 1350. Proporcje różnej wielkości klas pośród zespołów

szczątków zwierzęcych z Osłonek.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

TOTAL

CLAY PITS

PITS

HOUSES

Conte

xt T

yp

e

Estimate of percentage of whole bone preserved

1-20%

21-40%

41-60%

61-80%

81-100%

Page 86: Reprinted from - Princeton

1664

The degree to which different elements is

further demonstrated in Figure 1351 below,

showing what proportion of each type of bone

fell into the different size classes. The graph is

sorted by the ratio of bones smaller than 40%

of the original whole bone to bones 41% of the

original bone and larger. The largest long bones

Fig. 1351. Proportions of size classes of bones in the Osłonki

faunal assemblage by element, sorted as the proportion of frag-

ments < 40% of the original bone to fragments > 41%.

Ryc. 1351. Proporcje wielkości klas, według jednostek anato-

micznych, uporządkowane w stosunku do zachowanych frag-

mentów kości od < 40 % zachowanych jednostek anatomicz-

nych (fragmentów kości) do > 41%.

– the femur, humerus, and tibia – were the most

severely fragmented, followed by the mandi-

ble. Smaller long bones of the forelimb, includ-

ing the scapula, radius, and ulna, were often pre-

served in longer fragments, often the shaft plus

an articular end.

Cut Marks

Aside from the overall fragmentation of the

bones, the most visible physical manifestations

of butchering activity are cut marks, made pre-

sumably with the sharpest implements available

to Neolithic people: flint blades. These are ac-

tually few in number in relation to the overall

number of bones, for they would have been left

only were the blade cut through the surround-

ing tissue not only to contact the bone but to

do so with sufficient pressure to leave a groove.

Unlike metal knives which produce numerous

cut marks on bones from the Iron Age onward,

Neolithic flint blades probably were used to cut

parallel to the bone to remove meat, and were

only used perpendicular to the bone at certain

points to disarticulate the carcass. A few exam-

ples of cut marks from the Neolithic assemblag-

es discussed here are illustrated in Figure 1352.

Table CCX summarizes the cut mark data

from Osłonki. Of particular note is the fact that

among cattle, many of the cut marks are found

Page 87: Reprinted from - Princeton

1665

on the astragalus, particularly its dorsal side and

distal end, right at the major joint in the hind

leg where the relatively meatless autopodium is

separated from the meaty bones above. There

also appears to be a greater concentration of cut

marks on the forelimb bones – humerus, radius,

ulna – than on those of the hind limb in all live-

stock species.

Table CCX. Cut marks on bones from Osłonki

Tabela CCX. Nacięcia na kościach z Osłonek.

cattle sheep/goat pig dog

mandible 1

atlas 1

humerus 3 2 1 2

radius 3 1

ulna 1 1 2

metacarpal 1 1

pelvis 1

tibia 1 1 1

astragalus 5 1

calcaneus 1

The dog bones with cut marks, two humeri

and a tibia, all came from Pit 193 and presum-

ably belong to the same individual whose disar-

ticulated and fragmented bones were found in

this feature. It is clear from this find that dogs

were butchered and eaten by the Neolithic in-

habitants of Osłonki.

Fig. 1352. Examples of cut marks. Left: Pig calcaneus from

Miechowice 4a with transverse cutmarks. Right: cattle horncore

from Zagajewice with cut marks at base.

Ryc. 1352. Przykłady nacięć. Z lewej: kość piętowa świni z Mie-

chowic, stanowisko 4a ze śladami poprzecznych nacięć. Z pra-

wej: możdżeń bydła z Zagajewic z nacięciami u podstawy.

The Hole in the Goat Skull

An especially remarkable specimen is a goat

cranium from Clay Pit 3 in which a circular hole

43 mm in diameter was punched, either as the

cause of death or immediately post mortem, in

the right parietal (Figure 1353). This skull be-

longed to an old individual, heavily fused, and

the combination of its fusion and the surround-

ing soft tissue prevented the fragmentation of the

cranium upon impact. The purpose in punching

the hole would either have been the killing of

the animal or the extraction of the brain after

the animal was killed another way.

The question can be asked, what sort of tool

produced this circular hole? One possibility is a

sharp, round pole, but wood does not seem like

the sort of material that would have been able to

produce such a clean, round hole unless it was

very hard and dense. A tool that would have had

the right combination of circular cross–section,

sharp end, and density to punch through thick

cranial bone would have been an antler–beam

mattock, also known as a T–axe, of which many

are found at sites of the Brześć Kujawski Group

(Grygiel and Bogucki 1990). The function of the

T–axes has long been a topic of discussion (e.g.

Childe 1942). Experimental research in Den-

mark shows that T–axes would have been suit-

able for working wood (Jensen 1996), but it is

possible that this find of a skull with a circu-

lar hole points to an alternate use for the T-

axe as an instrument of animal slaughter or

butchery.

Page 88: Reprinted from - Princeton

1666

While pathological specimens were noted

in the faunal samples discussed here, they were

not especially numerous and gave no indication

of any systematic osteological infirmities. Most

involved exostoses, which in the sheep and goats

would reflect the fact that some were kept to a

relatively advanced age and which when found

in the autopodia of cattle, may suggest biome-

chanical stresses (discussed further below). In

addition, several badly–healed fractures were

noted. When the number of individual animals

represented by these faunal samples is consid-

ered, the actual frequency of pathological speci-

mens is surprisingly low.

Animal Traction?

The use of animals for pulling wagons and

ploughs emerged as a significant new develop-

ment in the relationship between people and

livestock during the fourth millennium B.C.

(Bogucki 1993), Perhaps the most vivid dem-

onstration of this is the discovery of a ceramic

vessel of the Funnel Beaker culture at Bronoci-

ce in southern Poland dated ca. 3500 B.C. (Mili-

sauskas 1999). Since these finds predate the ap-

pearance of domestic horses in central Europe,

the only possible animals that could have been

used for traction are domestic cattle, specifical-

ly oxen. Archaeologists have sought evidence

for biomechanical modification of cattle bones

that reflect the stresses of pulling loads and have

Fig. 1353. Goat cranium from Clay Pit 3 with hole 43 mm in di-

ameter caused by blow from object with circular cross–section.

Ryc. 1353. Czaszka kozy z glinianki 3, z otworem o przekro-

ju 43 mm, powstałym na skutek uderzenia narzędziem o okrą-

głym przekroju.

identified a number of indicators which, when

they occur consistently in a faunal assemblage,

can be taken as indicating the use of cattle for

traction (Bartosiewicz, van Neer, and Lentack-

er 1997; Cupere et al 2000). These indicators are

primarily abnormal biomechanical alterations

of the phalanges and metapodials. The analysis

of faunal assemblages in search of such indica-

tors has provided strong evidence for Neolithic

animal traction. For example, Johannsen (2006)

has clearly identified evidence for animal trac-

tion and draft cattle in Funnel Beaker faunal as-

semblages in southern Scandinavia during the

fourth millennium B.C.

Due to the association of animal traction

with the fourth millennium B.C., Bogucki was

not especially conscious of seeking such indica-

tors during his analysis of the Osłonki assem-

blage that dated to the previous millennium.

Makowiecki was more alive to the possibility of

animal traction in his study of the assemblag-

es from other sites in southeastern Kuyavia. The

assemblage from Brześć Kujawski was studied

prior to the popularization of the “secondary

products revolution” model by Andrew Sherratt

(1981) and thus no attempt was made to look for

evidence of animal traction. Nonetheless, sever-

al interesting specimens from fifth millennium

sites in southeastern Kuyavia provide a sugges-

tion that the use of cattle for traction began be-

fore the fourth millennium B.C. Such a sugges-

tion is not novel, for Döhle (1997) argued that

Linear Pottery cattle were used for traction dur-

ing the sixth millennium B.C.

Page 89: Reprinted from - Princeton

1667

Two metacarpals from Osłonki show the

development of a band of bone growth just be-

low the proximal articular surface (Figures 1354

and 1355) on all aspects of the bone. This addi-

tional bone appears to be a reaction to biome-

chanical stress with the goal of underpinning

the articular surface. While it would be prema-

ture to offer this as conclusive proof of the use

of the animals from which these bones came for

traction, they nonetheless present a pathology

that does not appear to be the result of a degen-

erative condition but rather a mechanical stress

such as would be expected under traction.

Finally, a first phalanx from Osłonki also

shows abnormal bone growth around the base

of its proximal articular surface (Figure 1356)

which would also be consistent with the sort of

bone growth that Bartosiewicz, van Neer, and

Lentacker (1997) identify as a possible signature

of animal traction.

Fig. 1354. Cattle metacarpal from Osłonki, Clay Pit 9, with bone

remodeling beneath proximal articular surface.

Ryc. 1354. Kość śródręcza bydła z Osłonek, glinianka 9, z od-

kształceniem kości poniżej bliższej powierzchni stawowej.

Page 90: Reprinted from - Princeton

1668

Fig. 1355. Cattle metacarpal from Osłonki, Clay Pit 6, part K,

with bone remodeling beneath proximal articular surface.

Ryc. 1355. Kość śródręcza z Osłonek, glinianka 6, część K, z od-

kształceniem kości poniżej bliższej powierzchni stawowej.

Fig. 1356. Cattle phalanges from Osłonki, Pit 137, with abnor-

mal bone growth around proximal articular surface.

Ryc. 1356. Człony palcowe bydła z Osłonek, jama 137, z nad-

miernym rozrostem kości wokół bliższej powierzchni stawowej.

Makowiecki recorded two metacarpals from

Konary that exhibit pathological development of

the distal shaft on their plantar aspect just above

the condyles (Figure 1357). He specifically attri-

butes this to the use of the animal for traction,

in one case from an early age before the condyle

was fused. Again, these pathologies do not ap-

pear to be the result of a degenerative condition

and instead seem to reflect biomechanical adap-

tations. Makowiecki also noted a first phalanx

from Pikutkowo with the initial stages of patho-

logical bone growth (Figure 1358) similar to the

one noted above.

Any future re–study of the Brześć Kujawski

and Osłonki faunal assemblages should include a

thorough inspection for other indicators of bio-

mechanical stresses on metapodials and phalan-

ges. For now, we will have to be content to note

these isolated indicators of possible use of draft

cattle during the fifth millennium B.C. and hope

that they will lead to the recording of similar pa-

thologies in the future.

Page 91: Reprinted from - Princeton

1669

Fig. 1357. Cattle metacarpals from Konary with pathological

changes on plantar aspect of distal articulations (a – Clay Pit 7;

b – Clay Pit 10) attributed to use for traction.

Ryc. 1357. Kości śródręcza bydła z Konar o patologicznych

zmianach na dalszej części stawowej podeszwy (a– glinianka 7;

b– glinianka 10) przypisywanych wykorzystaniu zwierząt w celu

sprzężaju.

Fig. 1358. Phalanx 1 from Pikutkowo with initial stages of addi-

tional bone growth below proximal articulation.

Ryc. 1358. Człon palcowy nr 1 z Pikutkowa ze wczesnymi sta-

diami dodatkowego rozrostu kości poniżej bliższej części sta-

wowej.

Burnt bones were relatively rare and were

confined to specific features. At Osłonki, only

11 of the features contained burnt bone (Table

CCXI). A substantial concentration of bone was

found on the bottom levels of Pit 208, which

also contained a substantial amount of burnt

wall daub from the adjacent house. The 92 frag-

ments of burnt bone in Pit 208 may reflect a sin-

gle event in which bone that was present within

the burnt house was charred during the confla-

gration and then swept in a single activity into

the rubbish pit. In the larger clay pits, burnt

bone appears in a relatively low density in pro-

portion to the size of these features and their

faunal samples, reflecting the relatively low fre-

quency of burnt bone within the overall faunal

assemblage.

Page 92: Reprinted from - Princeton

1670

FeatureTotal burnt

bonecattle sheep/ goat goat pig dog red deer

large mam-arge mam-mal

medium mammal

pond tortoise

Clay Pit 2 12 4 2 4 1 1

Clay Pit 3 5 1 1 1 1 1

Clay Pit 5 6 1 1 1 2 1

Clay Pit 6 4 3 1

Clay Pit 7 1 1

Clay Pit 9 10 9 1

Pit 106 2 1 1

Pit 204 1 1

Pit 208 92 42 16 1 7 12 13 1

Pit 229 1 1

Pit 248 11 7 3 1

Table CCXI. Frequency of burnt bone at Osłonki by feature and taxon.

Tabela CCXI. Częstotliwość występowania spalonych kości w Osłonkach, określonych gatunkowo, w kontekście obiektu.

The following section attempts to synthe-

size the information provided by the ten fau-

nal assemblages discussed in this study with

the goal of characterizing the animal economy

of the Brześć Kujawski Group. First, the varia-

tion among the faunal samples is discussed, in-

cluding the appearance of minor but interesting

species not already discussed, such as bear and

beaver. Then, the role of various taxa in the re-

gional animal economy is discussed, including

ubiquitous non–mammal taxa such as tortoise,

fish, and birds. Finally, comparative data from

elsewhere in central Europe that date to the fifth

millennium B.C. are presented for comparison.

The themes of “diversity in uniformity”

(Modderman 1988) and “tradition, uniformi-

ty, and variability” (Coudart 1989) are often ap-

plied to Neolithic communities of the Danubian

tradition, and the faunal assemblages from the

sites of the Brześć Kujawski Group can be con-

sidered within this perspective. A specific lev-

el of quantitative variability masks what in real-

ity is a general qualitative uniformity among the

ten faunal assemblages discussed here.

0% 25% 50% 75% 100%

Pikutkowo (n=574)

Smólsk (n=105)

Konary (n=737)

Miechowice 4 (n=230)

Miechowice 4a (n=657)

Osłonki DM (n=256)

Osłonki PB (n=5339)

Falborz (n-244)

Brześć Kujawski (n=868)

Zagajewice (n=86)

cattle sheep/goat pig red deer roe deer

Fig. 1359. Bar chart showing NISP of major economic taxa at

Neolithic sites in southeastern Kuyavia, sorted by proportion of

sheep/goat to pig.

Ryc. 1359. Tabela ukazująca GLS głównych zwierząt gospodar-

czych na stanowiskach neolitycznych południowo–wschodniej

części Kujaw, wg proporcji kości kozy/owcy i świni.

Page 93: Reprinted from - Princeton

1671

Consistency and Variability Among

Assemblages

At the most general level, the ten faunal

samples discussed in this report are remarkably

similar. By this is meant that they include the

same major economic species – domestic cat-

tle, sheep/goat, pig, red deer, and roe deer – and

the relationship between domestic and wild taxa

is also very consistent. Only at Brześć Kujawski

and Falborz does the percentage of cervids ex-

ceed 10%, whereas at the other sites it is usu-

ally between 4 and 8%. Despite the metrical

evidence for wild cattle and wild pig as a com-

ponent of the NISP attributed to Bos and Sus, it

is possible to assert that the animal economy of

the Brześć Kujawski Group was based primari-

ly on domestic animals, although wild taxa cer-

tainly played a non–trivial role.

Another way of visualizing the relative con-

sistency of the ten Lengyel faunal assemblages

in southeastern Kuyavia reported in this study

is to present the proportions of the major eco-

nomic taxa as a bar chart in Figure 1359. The

somewhat anomalous character of Brześć Ku-

jawski is apparent, but it can also be seen that it

is similar to the pattern seen at Falborz. More-

over, the consistency between the adjacent sites

of Miechowice 4, Miechowice 4a, and Konary is

also apparent.

The data for Figure 1359 are sorted by the

ratio of sheep/goat to pig, ranging from relative-

ly equal percentages at Zagajewice to a marked

imbalance in favor of sheep/goat at Smólsk and

Pikutkowo. Whether or not this has any signif-

icance is difficult to establish, but it does point

to some additional consistencies. For example,

despite the differences in the proportion of cat-

tle between the assemblages from Osłonki iden-

tified by Bogucki and Makowiecki, the ratio of

sheep/goat to pig is consistent between the two

assemblages. Similarly, it is an additional point

of similarity between Brześć Kujawski and Fal-

borz and among the sites in the Miechowice–

Konary complex.

Another approach to the regional compar-

ison of faunal assemblages is to treat the entire

regional assemblage as a single composite sam-

ple by summing the NISP of the principal taxa to

derive overall regional proportions. Then, these

percentages can be applied to the total NISP in a

sample to determine how many bones of a spe-

cies might be expected if the assemblage con-

formed exactly to the overall regional percent-

ages. For example, in Table CCXII below, the

assemblages yielded a total of 3539 bones as-

signed to domestic cattle, or 38.91% of the re-

gional sample. If the 574 NISP of principal taxa

at Pikutkowo conformed to this regional propor-

tion, we would expect there to be about 223 cat-

tle bones in the sample. But there are really 315

cattle bones observed in the assemblage, signifi-

cantly greater than the expected number. At the

same time, the expected number of sheep/goat

specimens at Pikutkowo would be approximate-

ly190, and there are indeed 190 sheep/goat spec-

imens recorded. On the other hand, the 50 pig

bones at Pikutkowo are significantly fewer than

the 121 or so that would be expected.

cattle sheep/goat pig red deer roe deer

O E O E O E O E O E total

Pikutkowo 315 223.3 190 189.6 50 120.8 16 24.5 3 15.6 574

Smólsk 58 40.9 30 34.7 11 22.1 5 4.5 1 2.9 105

Konary 388 286.7 218 243.5 89 155.2 21 31.5 21 20.1 737

Miechowice 4 111 89.5 75 76.0 36 48.4 7 9.8 1 6.3 230

Miechowice 4a 324 255.6 206 217.0 109 138.3 12 28.1 6 17.9 657

Osłonki DM 143 99.6 65 84.6 41 53.9 5 10.9 2 7.0 256

Osłonki PB 1865 2077.3 1910 1763.8 1314 1124.0 135 228.3 115 145.6 5339

Falborz 67 94.9 75 80.6 63 51.4 19 10.4 20 6.7 244

Brześć Kujawski 224 337.7 217 286.8 185 182.7 165 37.1 77 23.7 868

Zagajewice 44 33.5 19 28.4 17 18.1 4 3.7 2 2.3 86

Totals 3539 3539.0 3005 3005.0 1915 1915.0 389 389.0 248 248.0 9096

% totals 38.91% 33.04% 21.05% 4.28% 2.73% 100.00%

Table CCXII. Observed and expected NISP based on the regional representation of the major economic taxonomic units.

Table CCXII. Zaobserwowana i oczekiwana GLS oparta na reprezentacji w danym regionie głównych gospodarczo jednostek tak-

sonomicznych.

Page 94: Reprinted from - Princeton

1672

The first interesting observation is that the

observed sheep/goat NISP are remarkably close

to the expected number at almost every site. The

exception is Brześć Kujawski where they are sig-

nificantly lower than expected. This similarity

supports the contention that the role of sheep

and goat, again with the caveat that their man-

agement strategies were probably very different,

was very constant from one site to another.

Observed cattle NISP, on the other hand,

are uniformly higher than expected in the sam-

ple analyzed by Makowiecki than in the sam-

ples analyzed by Bogucki, while the observed

pig NISP are generally the opposite. Sometimes

these are significantly higher, as at Konary and

Miechowice 4a. Yet the constancy of sheep/goat

leads Bogucki to discount an analytical bias in

the cattle and sheep/goat and to maintain that

these differences are the result of prehistoric hu-

man decisions about animal use. There really

does appear to be a difference, both qualitative

and quantitative between the animal economy

at Osłonki, Falborz, and Brześć Kujawski and

the rest of the sites.3

3 Removal of the Brześć Kujawski sample from this analysis pro-duced only trivial changes in the differences between expected and observed NISP, and thus the proposition that the anomalous Brześć Kujawski sample is skewing the regional pattern can be discounted.

Thus the general regional homogeneity at

the very broad scale, as shown in the ternary plot

of the principal domestic taxa on Fig. 1317 and

the bar chart above of the principal economic

species masks a somewhat greater heterogeneity

at a somewhat more granular level of analysis.

Time constraints prevent the statistical analy-

sis of this heterogeneity, but it does seem appar-

ent in Table CCXII based simply on observa-

tion. This heterogeneity, however, is at the scale

of local decisions about herd culling and oppor-

tunistic hunting of deer, probably at the level of

the individual households that comprised each

of the settlements.

Beavers at Brześć Kujawski and Pikutkowo

The streams and lakes of southeastern Kuy-

avia must have supported thriving beaver popu-

lations. Lake Smętowo in particular was proba-

bly the site of a number of beaver colonies, and

this is reflected in two notable finds from Brześć

Kujawski 3 and Pikutkowo 6. At both sites, con-

centrations of beaver bones from the depos-

it of carcasses in rubbish features reflect the ac-

tivity of hunting and skinning of these animals

for their pelts. Additional isolated beaver bones

Fig. 1360. Concentration of beaver bones in Pit 820 at Brześć

Kujawski 3. Note articulated carcass segments and blunt bone

tool made from red deer metapodial.

Ryc. 1360. Koncentracja kości bobra w jamie 820, w Brześciu

Kujawskim, stanowisko 3. Na szczególną uwagę zasługują wy-

odrębnione części tuszy, oraz tępe narzędzie kościane wykona-

ne z kości śródręcza/śródstopia jelenia.

Page 95: Reprinted from - Princeton

1673

were found in other features on many of the sites

in this study.

At Brześć Kujawski, the remains of five in-

dividuals, totaling 98 cranial and postcranial el-

ements, were found in a concentration of bones

in Pit 820 excavated in 1979 (Figure 1360). After

being recorded in 1979, this material was brief-

ly restudied by Bogucki in 1996. After further

re–examination of this collection, it will be pub-

lished separately with measurements.

The postcranial material included 43 diag-

nostic elements, of which most could be assigned

to one of the five individuals (Table CCXIII). The

fact that both proximal and distal fusion could

be recorded for so many of the bones indicates

at many of these are complete specimens. Bea-

vers 1 and 4 were relatively mature individuals,

while Beavers 2 and 3 were younger animals.

Beaver 5 was a very small subadult individual.

Beaver 3 was produced the most elements, in-

cluding both sides of the front and hind limbs,

while the other beavers were in somewhat more

fragmentary condition.

Table CCXIII. Diagnostic postcranial elements of five beavers

at Brześć Kujawski 3.

Tabela CCXIII. Pozaczaszkowe, diagnostyczne fragmenty kości

pięciu bobrów z Brześcia Kujawskiego, stanowisko 3.

Element Side IndividualProximal Fusion

Distal Fusion

scapula left Beaver 1 fusedulna left Beaver 1 fused fusedulna right Beaver 1 fusedfemur right Beaver 1 fused fusedtibia left Beaver 1 fusedtibia right Beaver 1 fusedcalcaneus right Beaver 1 fused fusedpelvis left Beaver 1 radius right Beaver 2 fused unfusedulna left Beaver 2 fused unfusedtibia left Beaver 2 unfusedtibia right Beaver 2 unfused m/t3 right Beaver 2 fused fusedm/t4 left Beaver 2 fused fused scapula left Beaver 3 fusedscapula right Beaver 3 fusedhumerus left Beaver 3 unfused fusedhumerus right Beaver 3 unfused fusedulna left Beaver 3 unfused unfusedulna right Beaver 3 unfusedpelvis right Beaver 3 femur left Beaver 3 unfused unfusedfemur right Beaver 3 unfused unfusedtibia left Beaver 3 unfused unfused

Element Side IndividualProximal Fusion

Distal Fusion

tibia right Beaver 3 unfused unfusedm/t3 left Beaver 3 fused fused scapula left Beaver 4 fusedhumerus left Beaver 4 fused fusedulna right Beaver 4 pelvis right Beaver 4 femur right Beaver 4 fused fusingm/t2 left Beaver 4 fused fused scapula right Beaver 5 fusedhumerus left Beaver 5 unfused fusedulna right Beaver 5 unfused pelvis left Beaver 5 m/t4 right Beaver 5 fused fused phal3 indet. phal1 indet. fused phal1 indet. fused phal1 indet. fused phal1 indet. fused phal1 indet. fused

The bones in Pit 820 were not heavily frag-

mented as would be expected from butchery for

meat, many were articulated with adjacent el-

ements, and entire anatomical structures such

as a vertebral column could be observed in-

tact in situ. With the bones were two small flint

blades and a blunt bone point made from a red

deer metapodial (visible in Figure 1360). Such

a blunt point may have been useful in the sep-

aration of the pelt from underlying tissue with-

out the risk of puncturing it. The overall impres-

sion is that this deposit is the result of a single

session of the skinning of beaver carcasses, with

the partially–disarticulated skeletons deposited

in the rubbish pit. Presumably they were quickly

buried, for they do not show the effects of scav-

enging by dogs.

Another indication of the fact that the bone

concentration in Pit 820 may have been the prod-

uct of the skinning of beaver carcasses is the lack

of almost all phalanges, particularly third pha-

langes, despite a concerted effort during the ex-

cavation of this feature to recover all fragments.

A beaver skeleton should yield 16 third phalan-

ges, and thus five individuals would have pro-

duced 80 such elements, along with 80 second

phalanges, and 80 first phalanges. Yet in Pit 820,

a total of five first phalanges, no second phalan-

ges, and a single third phalanx were recovered.

Two possibilities exist to explain this: either pri-

Page 96: Reprinted from - Princeton

1674

mary butchering took place elsewhere and car-

casses without feet were brought back to the site,

or pelts with the phalanges still attached were

stripped from the carcasses and carried away.

The presence of numerous cranial elements in

the feature would contradict the first possibility,

so the more likely explanation for the absence

of the phalanges is that they were kept with the

pelts.

In 2004, excavations at Pikutkowo site 6

yielded fragments of the skeletons of three bea-

vers within Clay Pit 1. They were not as densely

concentrated as the beaver bones at Brześć Ku-

jawski excavated 25 years earlier, nor did they

have the evidence for articulated anatomical

structures. Nonetheless they represent a cluster

of beaver bones in a single feature, in contrast to

the usual occurrence of beaver bones as isolat-

ed specimens. These bones were studied by Ma-

kowiecki in 2005. Since Pikutkowo lies on the

opposite side of the Lake Smętowo basin from

Brześć Kujawski 3, it is likely that these were

drawn from the same local beaver population.

Some of the Pikutkowo beaver bones were more

fragmented than those in Pit 820, suggesting a

somewhat different method of deposition, and

damage during excavation is also reported. Yet

there are enough complete or nearly–complete

elements to suggest that they were also the con-

sequence of pelt removal followed by discard of

major carcass elements.

Table CCXIV summarizes the Pikutkowo

beaver skeletons, showing how the number of

three beavers was determined. The major ele-

ments are also illustrated in Figure 1361. Of in-

terest is the consistent appearance of cut marks

on the distal tibia, suggesting that this was an

important point for dismembering the beaver

carcass (Figure 1362). As at Brześć Kujawski,

phalanges are virtually absent, reinforcing the

conclusion of pelt removal. This does not pre-

clude the use of the beavers for their meat, sim-

ply that the meat appears to have been of sec-

ondary interest.

Although it comes as no great surprise that

the Neolithic inhabitants of southeastern Kuy-

avia hunted beavers for their pelts, discoveries

of concentrations of beaver bones that reflect

the discard of carcasses that were not butchered

so thoroughly as those of domestic and wild un-

gulates provides a glimpse of a prehistoric ac-

tivity not commonly detected archaeological-

ly. It also indicates that a thriving beaver colony,

or multiple colonies, existed on Lake Smętowo

over a millennium after the first appearance of

farmers on its shores. The surface of the shallow

lake must have been dotted with beaver lodg-

es, while the vegetation on its banks would have

shown the effects of the beavers’ landscape en-

gineering.

Table CCXIV. Pikutkowo 6a, Clay Pit 1; skeletal elements of

3 beavers (identified by D. Makowiecki, 2005).

Tabela CCXIV. Pikutkowo st. 6a, glinianka 1; elementy szkiele-

towe trzech bobrów (określone przez D. Makowieckiego 2005).

Elements n Description

Skull 26 26 fragments from 2 individuals

Cervical vertebrae 1

Thoracic vertebrae 2

Lumbar vertebrae 8

Ribs 14 Small fragments

Scapula 2 left, proximal end and shaft

Humerus 1 left, whole (damaged during excavation)

Humerus 1 left, whole, Bd=28,7

Humerus 1 left shaft

Humerus 1 right, shaft and distal end Bd=28,5

Humerus 1 right, whole bone

Radius 1

Ulna 10 10 small fragments from 3 individuals

Carpals 1

Pelvis 1616 fragments of at least 2 individuals (right and left)

Femur 10 From 2 individuals, 2 right and 2 left

Tibia 1Cut marks on distal shaft, left, whole bone, GL=128,2

Tibia 1 Cut marks on distal shaft, left, shaft

Tibia 1One cut mark on distal shaft, left, whole bone

Tibia 1 3 fragments, right, whole bone

Fibula 1

Calcaneus 1 right, distal end and shaft

Calcaneus 2 left, distal end and shaft

Astragalus 1 right

Astragalus 2 left

Metapodials 17

Phalanx 1 4

Total 128

Page 97: Reprinted from - Princeton

1675

Fig. 1361. Pikutkowo, Site 6a, clay pit 1. Elements of 3 beaver

skeletons: a) cranial elements, b) humeri, 3 left and 2 right, c) ul-

nae – 2 left, 3 right, d) elements of pelves – 2 left, 3 right, e) fem-

ora – 2 left, 2 right, e) tibiae – 3 left, 1 right.

Ryc. 1361. Pikutkowo, stanowisko 6a, glinianka 1. Fragmenty

szkieletów trzech bobrów : a) fragmenty kości czaszki; b) kości

ramienne, 3 lewe i 2 prawe; c) kości łokciowe– 2 lewe, 3 prawe;

d) fragmenty kości miednicy – 2 lewe, 3 prawe; e) kości udowe

– 2 lewe, 2 prawe; f) kości piszczelowe – 3 lewe, 1 prawa.

Fig. 1362. Cutmarks on distal tibiae of beavers from Pikutkowo. Ryc. 1362. Nacięcia na dalszej części kości piszczelowej bobrów

z Pikutkowa.

Page 98: Reprinted from - Princeton

1676

Bears at Osłonki

Perhaps the most unusual mammal species

identified at Osłonki was the European brown

bear, Ursus arctos. It was represented by sev-

en relatively complete metatarsals, a metapodi-

al fragment (probably also a metatarsal), and a

calcaneus (Figures 1363–1365). Special care was

taken with the identification of the calcaneus

due to the morphological similarities between

bear and human calcanea but the Osłonki spec-

imen can be conclusively attributed to bear.

The metatarsals and the metapodial frag-

ment came from the same context, Clay Pit 6.

Four of them were found in situ adhering to

each other with an unknown substance that also

formed a concretion on the dorsal aspect, while

the others showed traces of having been stuck

together with the same substance. Figures 1363

and 1364 show the dorsal and plantar views of

this metatarsal complex.

We can assume that the principal reason for

bear parts to be in the Neolithic settlement was

either as residue of the removal of the bearskin

from the carcass or as bones that remained in the

extremities of the bearskin. Perhaps the metatar-

sals were removed from a bearskin and discard-

ed, or perhaps a deteriorating bearskin that still

contained the metatarsals was thrown into the

clay pit. The absence of phalanges, which would

have been easily recognizable and large enough

not to escape collection, suggests that these bear

paws were not intact when they were deposited

in the clay pit.

Fig. 1363. Dorsal view of bear metatarsals from Osłonki, Clay

Pit 6.

Ryc. 1363. Widok z góry kości śródstopia niedźwiedzia z Osło-

nek, glinianka 6.

Page 99: Reprinted from - Princeton

1677

Fig. 1364. Plantar view of bear metatarsals from Osłonki, Clay

Pit 6.

Ryc. 1364. Widok podeszwowy kości śródstopia niedźwiedzia

z Osłonek, glinianka 6.

Fig. 1365. Bear calcaneus from Osłonki, Clay Pit 5. Ryc. 1365. Kość piętowa niedźwiedzia z Osłonek, glinianka 5.

Page 100: Reprinted from - Princeton

1678

The Unusual Character of Falborz

For many years, we have considered the

Lengyel occupation at Falborz to have been a

“satellite” of Brześć Kujawski, possibly serving

as a field camp or other specialized activity lo-

cation (e.g. Bogucki 1979, 1982; Grygiel 1986),

perhaps associated with the grazing of livestock

on the meadows of the nearby Bachorza and

Zgłowiączka valleys. As was noted above, the

anatomical elements represented in the Falborz

assemblages appeared to have an unusual repre-

sentation. Bogucki’s initial impression was that

the number of major meat–bearing elements

seemed too low and thus some distinctive cul-

tural behavior must have been taking place,

such as the provisioning of the nearby larger set-

tlement at Brześć Kujawski.

A fairly simple analysis of whether or not

primary butchery of the animal carcass is tak-

ing place on the site or away from it was used by

Rosenberg et al. (1998) in their study of Hallan

Çemi in Turkey. Limb bones were divided into

meat–bearing (scapula, humerus, radius, ulna,

pelvis, femus, patella, tibia, and fibula) and non–

meat–bearing (metapodials, podials, and pha-

langes). The expected proportion of meat–bear-

ing to non–meat–bearing elements for bovids

and cervids if whole carcasses are butchered on

site is 37% meat–bearing and 63% non–meat–

bearing. For pigs, the more numerous metapo-

dials cause the expected percentages to change

to 30% and 70% respectively.

FALBORZ Cattle Sheep/Goat Red Deer Roe DeerBovid/Cervid

Expected Value

PigPig Expected

Value

meat–bearing

scapula 4 5 1 2 3

humerus 4 4 0 2 1

radius 0 4 0 1 5

ulna 0 0 0 1 6

pelvis 2 1 0 1 3

patella 0 0 1 1 0

femur 0 2 0 3 1

tibia 2 1 0 3 4

fibula 0 0 0 0 1

12 17 2 14 24

% 32.43% 60.71% 25.00% 73.68% 37.00% 64.86% 30.00%

non–meat bearing

carpal 2 0 0 0 0

metacarpal 4 3 0 0 4

calcaneum 2 0 0 3 0

astragalus 5 0 0 0 1

tarsal 2 0 0 0 0

metatarsal 2 2 1 0 2

metapodial 0 5 1 0 0

phalanx I 6 1 2 2 0

phalanx II 0 0 2 0 2

phalanx III 2 0 0 0 4

25 11 6 5 13

% 67.57% 39.29% 75.00% 26.32% 63.00% 35.14% 70.00%

totals 37 28 8 19 37

Table CCXV. Meat–bearing and non–meat–bearing bones at Falborz.

Tabela CCXV. Kości „mięsne” i „bezmięsne” z Falborza.

Page 101: Reprinted from - Princeton

1679

The tabulation of meat–bearing to non–

meat–bearing bones in the Falborz assemblage

is tabulated in Table CCXV and produced some

surprising results. Cattle bones match very

closely the proportions of each category that

would be expected for on–site primary butch-

ery, and red deer bones are also present in simi-

lar proportions. The percentages for sheep/goat,

roe deer, and pig, however, are almost the op-

posite of the expected values for on–site pri-

mary butchery, with very high proportions of

meat–bearing bones and very low proportions

of non–meat–bearing bones. These suggest that

in many instances, these animals were killed

and butchered elsewhere, with the meat–bear-

ing bones being preferentially being brought to

the Falborz settlement and the non–meat–bear-

ing bones left behind.4

Thus, rather than being a provisioning

camp as Bogucki had originally envisioned, Fal-

borz itself appears to have been supplied with

meat from small stock that had been killed else-

where and from roe deer kills in the surround-

ing hinterland. Meanwhile, a small number of

cattle and deer were butchered and consumed

on the site. Eventually, such an analytical ap-

proach could be extended to other sites in this

sample, although an inspection of the distribu-

tion of elements in the larger assemblages sug-

gests that they can be expected to conform more

to the model of on–site primary butchery.

The principal elements that make up the re-

gional animal economy of southeastern Kuyavia

during the fifth millennium B.C. are domestic

ungulates, wild ungulates, pond tortoises, fish,

and birds. Other taxa, while often not trivial (as

in the case of beaver), are of minor significance

in the overall picture.

4 In the case of roe deer, it is indeed possible that the proportion is skewed by the use of metapodials, especially metatarsals, for tool manufacture, but even allowing for the diversion of the metapodials, the low number of non–meat–bearing bones still suggests off–site butchery.

Domestic Ungulates

The Neolithic animal economies of south-

eastern Kuyavia were dominated by domestic

animals, usually amounting to over 90% of the

faunal assemblages. Such an observation may

seem obvious and trivial, but it is important to

record it, for it contradicts earlier statements

based on the Brześć Kujawski faunal assemblage

alone that suggest to a higher proportion of wild

animal bones on Kuyavian sites. Bogucki (1989,

1996, for example) is responsible for a large mea-

sure of this misconception, having strongly em-

phasized the higher proportion of wild ungu-

lates in the Brześć Kujawski faunal assemblage

in contrast to the pattern observed elsewhere in

the early Neolithic of central Europe. It can now

be stated, however, that the more common pat-

tern is for sites of the Brześć Kujawski Group to

yield faunal assemblages that are very closely

aligned with the general pattern observed (with

some exceptions) during the early Neolithic of

central Europe, almost completely composed of

the major domestic artiodactyls: cattle, sheep,

goats, and pigs.

Let us go deeper than this general obser-

vation, however, and try to understand what it

means. Perhaps the most obvious statement is

that domestic livestock were able to satisfy the

meat demands of the inhabitants of southeast-

ern Kuyavia during the fifth millennium B.C.

without much recourse to hunting. To judge

from mortality curves at Osłonki and Brześć

Kujawski, and supported by tooth eruption data

from the other sites, all livestock species were

used in a generalized meat–production strate-

gy, with secondary products a secondary con-

sideration. Pig were most definitely used this

way, but so were the ruminants – cattle, sheep,

and goat. Again, this is part of a general Euro-

pean early Neolithic pattern, as documented by

Döhle (1993, 1997) and Benecke (1994) among

others.

The use of four different livestock species,

however, would imply that the animal economy

was organized and internally differentiated. In

other words, each of these species has different

requirements for food and care and thus has a

different relationship with their human keepers

and to other aspects of the agricultural economy.

Although the interplay between Neolithic com-

Page 102: Reprinted from - Princeton

1680

munities and their livestock will be discussed

much further in several subsequent publica-

tions, a few general remarks can be made here.

Cattle and sheep occupy similar niches

in that both are grazers who would have been

able to feed on fallow fields and on other grassy

patches such as in the floodplains of small

streams. Bogucki (1982) proposed that Neolith-

ic cattle were also grazed at relatively low stock-

ing rates in the surrounding forests, based on

abundant literature about modern forest graz-

ing of cattle (e.g. Adams 1975). Sheep can also

graze in forests. Recently, Vera (2000) has pro-

posed that wild herbivore populations in pre–

Neolithic Europe maintained a park–like forest

rather than the dense wildwood that is usually

reconstructed. Vera’s hypothesis has been crit-

icized by Mitchell (2005) but it has contribut-

ed to a reopening of the discussion of the nat-

ural character of the forest in which Neolithic

farmers dwelt (e.g. Kreuz 2008). In any event,

since cattle– and sheep–raising communities

had been present in southeastern Kuyavia for

several centuries prior to the establishment of

the settlements discussed here, it is likely that

there was ample open grazing space as well as

forests in which the undergrowth was also con-

ducive for low–density grazing. This mosaic

would have been further refined during the sev-

eral centuries of occupation by the Brześć Ku-

jawski Group.

The role of goats in modifying the environ-

ment around these sites cannot be overstated. As

browsers, goats do not compete with sheep and

cattle for food but rather consume a different

set of plants, including the vegetation of shrubs

and saplings that would be part of the regener-

ation of plant cover from cultivated fields and

other cleared land. Thus, the presence of goats

in significant numbers can be cited as one of the

causes of the long–term changes in vegetation

observed in the pollen record from the Osłonki

area reported by Nalepka (2005). Whereas the

impact of sheep and cattle may have been soft-

ened by forest grazing in habitats whose vegeta-

tion may already have been pre–adapted to such

activity by wild herbivores (per the Vera hy-

pothesis), goats would have consumed a differ-

ent range of plants that would have been hith-

erto only modestly affected by livestock. Goats

would have played a role in the suppression of

the regeneration of vegetation on abandoned

fields, thus amplifying the changes seen in the

regional pollen diagrams.

Of special interest is the proportion of goats

to sheep. In the assemblages discussed in this re-

port, goats outnumber sheep among the speci-

mens that can be differentiated at many of the

sites, particularly in the larger samples that

could be presumed to provide a more accurate

measure of relative species abundance in the liv-

ing herd. For example, there are more goats than

sheep at Brześć Kujawski, Osłonki, Konary, and

Pikutkowo, in sheep:goat ratios between 1:1.6 to

1:2. At Falborz the ratio is 1:1, while at Miecho-

wice 4a it is 1.3:1 sheep:goat. Miechowice 4 has

4.17:1 sheep:goat, 2.5:1 at Smólsk, and 1.9: 1 at

Zagajewice.

Redding (1985, 1991) has discussed the sig-

nificance of the sheep:goat ratio and the cattle:

sheep/goat ratio with respect to the Near East

and to Egypt, and while not wanting to over-

stretch his analysis too much to the very dif-

ferent environment of central Europe, there are

some general observations that can be based on

his reasoning. In Redding’s view, a mixed caprine

population in which energy and protein offtake

is the major goal should have a sheep:goat ra-

tio of between 5:1 and 1:0 depending on the en-

vironmental conditions. On the other hand, if

the goal is herd security, defined as the minimi-

zation of fluctuations in herd size, the ratio of

sheep:goats should be somewhere between 1.7:1

and 1:3, with goats either equal to the number of

sheep or outnumbering them. This is due to the

ability of goats to reproduce more abundantly

than sheep over time and the differential ability

of sheep and goat herds to rebound from losses

The samples from Brześć Kujawski, Osłonki,

Konary, Pikutkowo, Falborz, and Miechowice 4a

would fall into the herd–security model accord-

ing to Redding, with the other three lying far-

ther in the direction of energy or protein offtake.

Given the relatively small size of the Miechowice

4, Smólsk, and Zagajewice samples, the region-

al consensus seems to point in the direction of

the management of the herds of sheep and goat

with the goal of maximizing long–term security,

or sustained yield (per usage of Redding 1984:

239). Again, this interpretation is based on a de-

Page 103: Reprinted from - Princeton

1681

gree of modeling against ideal expectations, but

it points toward an interesting hypothesis that

bears further testing with data from Neolithic

Kuyavia.

Much can be said about pigs, far more than

the space available here. At a minimum, it is nec-

essary to consider the possible ways in which

they could be managed. Bogucki (1989) pro-

posed a system in which pigs were essentially al-

lowed to roam freely in the environs of the set-

tlement with minimal human oversight, which

would have brought them into contact with in-

digenous wild pigs with the resultant interbreed-

ing. New evidence of a significant introgression

of wild pig genes into the domestic pig popula-

tion around 4000 B.C. (Larson et al 2007) pro-

vides some measure of credibility to this mod-

el. Grigson (1982: 305) pointed out that efficient

pig management lies in the ability of people to

maintain a portion of the pig population, espe-

cially the pregnant sows) in captivity for farrow-

ing. This results in the necessity to provide shel-

ter for the domestic pigs during the winter and

feeding them on stored grains and on rubbish.

Redding and Rosenberg (1998) have pro-

posed a model of Neolithic pig breeding in

which all managed pigs are the result of matings

between wild boars and domestic sows, which

they call the “female breeding model”. Thus the

managed pigs consist of domestic females and

their young. Human breeders do not have to

care for large, hungry, and possibly aggressive

males, and it is only necessary to provide shelter

and food for farrowing females and their young

through the winter. Redding and Rosenberg de-

veloped their model of female breeding with

regard to very early Neolithic sites in the Near

East, and they indicate (1998: 68) that with the

advent of grain agriculture it would be expected

to be abandoned due to the difficulty of keeping

the pigs away from the cereals. Nonetheless the

presence of evidence for large wild pigs among

the pig samples from sites like Osłonki, the co–

occurrence of pigs and grains at these sites, and

the evidence of Larson et al (2007) for signifi-

cant inflow of wild pig genes around this time

suggest that such a female–breeding model may

have been employed in southeastern Kuyavia

in the fifth millennium B.C. The next challenge

would be to test it archaeologically against large

samples such as the one from Osłonki, which

Bogucki hopes to do at a future date.

Marciniak (2005) has advanced the hy-

pothesis that cattle and pig were consumed in

a highly–structured ceremonial fashion at ear-

ly Neolithic sites in Kuyavia, while sheep and

goat were consumed in a more typical manner.

He bases this argument on his meta–analysis of

a number of Kuyavian Neolithic faunal assem-

blages, in particular the differential represen-

tation of anatomical elements. Bogucki did not

have an opportunity to assess Marciniak’s meth-

ods fully before the deadline for this report, but

it is his intention in the future to test them with

the Osłonki assemblage to see whether or not it

is possible to sustain this argument.

Wild Ungulates

The corollary to the fact that the animal

economy of southeastern Kuyavia during the

fifth millennium B.C. was based overwhelming-

ly on domestic ungulates is that the hunting of

wild herbivores is very low indeed. Only at Brześć

Kujawski and to a lesser degree Falborz do red

deer and roe deer appear as significant compo-

nents in the faunal assemblage. Elsewhere, they

are present in small quantities. When the num-

ber of shed antlers is taken into account, the

representation of hunted red deer shrinks even

further. Wild cattle and pig are indeed present

at all sites and cannot be overlooked complete-

ly, but there appears to be no systematic effort to

harvest these species. Even the removal of bones

of wild animals, such as roe deer metapodials,

from the faunal samples for tool manufacture

does not account for the generally low percent-

ages recorded at these sites.

The relatively low level of hunting does not

contradict the fact that in the forests and fields

surrounding the Neolithic settlements of south-

eastern Kuyavia there was a substantial resource

base of wild ungulates. For one reason or anoth-

er, the inhabitants of these sites chose not to ex-

ploit it more than they did. The abundance of

red deer and roe deer at Brześć Kujawski illus-

trates the potential level of its exploitation, but

this was not the level chosen by the inhabitants

of the sites elsewhere in the region, most nota-

bly at Osłonki.

Page 104: Reprinted from - Princeton

1682

So why did the inhabitants of these sites

bother to hunt at all? One possibility, raised by

Bogucki (1981, 1982) in his analysis of the Brześć

Kujawski fauna, is that the hunting of wild her-

bivores was done to protect crops from damage.

Uerpmann (1977) was the first to raise the pos-

sibility of Neolithic hunting for crop protection,

and in other parts of the world such “garden

hunting” was of crucial importance for prehis-

toric people (e.g. Linares 1976). In light of the

view that Neolithic farming was an intensive,

concentrated activity (Bogaard 2004), crop pro-

tection from wild herbivores would have been

very important. It seems to be a very strong pos-

sibility that many of the wild ungulates whose

bones are found in Neolithic settlements were

killed during crop raiding rather than through

expeditions deeper into the forest.

Another possibility, raised by Boyle (2006)

with regard to the Neolithic in western Europe,

is that hunting was a prestige activity in which

success conferred status. This motivation is even

more difficult to test archaeologically, although

some indication of the status of red deer may

be the presence of mattocks made from antler

beams in male graves, admittedly a tenuous link.

Hunting may also have been a diversion during

the winter when agriculture occupied less time.

The relative lack of interest in wild ungulates

at most Kuyavian sites during the fifth millenni-

um B.C. contrasts with the systematic exploita-

tion of tortoise, fish, and waterfowl, discussed

further below. Remains of multiple beavers

at Brześć Kujawski and Pikutkowo show that

when a wild animal was highly desired, the ef-

fort could be expended to hunt it. In the case of

wild ungulates, it appears that they did not sup-

ply any particular resource that could not be ob-

tained from the domestic livestock (even antlers

could be gathered when shed rather than taken

from hunted red deer) so apparently it was not

worth the effort to pursue them in any broadly

systematic way.

The Significance of Emys orbicularisThe significant number of pond tortoise

bones at Brześć Kujawski and Osłonki, as well

as their presence at many of the other sites re-

ported in this study, not only reflects the use of

this species as a nutritional resource but also the

environment around the settlements. First, the

presence of thermo–sensitive reptiles such as

Emys orbicularis can provide information on the

ambient temperature in southeastern Kuyavia

during the fifth millennium B.C., and second,

the nesting habits of the pond tortoise can shed

light on the prehistoric landscape in which an-

thropogenic changes may have improved con-

ditions for their propagation. It must be kept in

mind that the pond tortoise bones at these sites

Fig. 1366. Heavily–weathered shed roe deer antler from Osłonki,

Clay Pit 6.

Ryc. 1366. Zrzucone poroże kozła sarny, mocno zwietrzałe, po-

chodzące z Osłonek, glinianka 6.

Page 105: Reprinted from - Princeton

1683

are not unusual or rare, but rather are an expect-

ed part of the faunal sample from any feature

with a sizeable number of bones. As such, they

reflect a species that was common in the sur-

rounding habitat rather than one that was en-

countered once every few years. We can assume

that the lakes and bogs of southeastern Kuyavia

supported large populations of Emys orbicular-

is, although not so many that it was a dietary

staple.

Although the recent range of the pond tor-

toise is largely in southern Europe, it continues to

exist in some specific habitats in northern conti-

nental Europe, although it is considered endan-

gered. Its Holocene range expansion into north-

ern Europe was made possible by the higher

temperatures during the Atlantic climatic peri-

od. A key determinant of the northern distribu-

tion of Emys orbicularis is the east–west climat-

ic gradient from cooler summer temperatures

in western Europe to warmer summer tempera-

tures in eastern Europe (Lenk et al. 1999:1919).

The latter favor the pond tortoise, and thus its

abundance in southeastern Kuyavia during the

fifth millennium B.C. testifies to warm sum-

mer temperatures, consistent with the prevail-

ing model of mid–Holocene climate.

Observations of the nesting behavior

of the pond tortoise can shed light on the pre-

historic landscape surrounding the sites. Na-

jbar and Szuszkiewicz (2007) report that fe-

male pond tortoises in western Poland laid eggs

in sunny forest clearings at the end of May and

early June. These nesting grounds were an aver-

age of 77 meters from the channel of the near-

est main stream, although some small tributar-

ies may have permitted them to cover some of

this distance in water rather than completely

over land. The female tortoises returned to the

same nesting areas repeatedly. Overshadowing

of the nesting areas by vegetation regeneration

caused the tortoises to abandon them, however.

Bogucki (1981) first suggested that the sharp

increase in pond tortoise remains during the fi-

nal occupation phase at Brześć Kujawski may

reflect anthropogenic landscape changes, spe-

cifically the opening and maintenance of cleared

fields. Support for forest clearance and anthro-

pogenic vegetation changes during the Lengyel

occupation of this region is supported by the

palaeobotanical analyses of Dorota Nalepka

(2005). Now that the high presence of Emys or-

bicularis has been demonstrated at Osłonki as

well as at Brześć Kujawski, and in light of their

documented preference for open, sunny clear-

ings, it is now possible to postulate again that

the increase in quantity of pond tortoise bones

on these sites is a corroborating proxy indicator

of anthropogenic landscape modification.

Birds and Fish: Additional Economic Diver-

sification

The role of fish and birds in the economy of

the Neolithic settlements of southeastern Kuy-

avia is difficult to assess. Clearly effort was ex-

pended to catch fish and hunt birds, and the

traces of this activity are clearly visible, partic-

ularly at larger sites like Brześć Kujawski and

Osłonki. Yet it is not possible to say that these

were mainstays of the economy. More probably,

their abundance in the local habitat meant that

it would have been foolish not to take advan-

tage of them. Thus the significance of their ex-

ploitation lies somewhere between opportunis-

tic and critical.

The extent of fishing seen at the Neolithic

sites of southeastern Kuyavia is not paralleled

elsewhere in Neolithic central Europe during

the fifth millennium B.C., although this is prob-

ably more an effect of the lack of preservation

and recovery than of economic behavior. Only

the anomalous site of Hüde am Dümmer, clear-

ly not from the same cultural tradition, shows

a comparable level of fish exploitation (Hüster

1983), as do the very early Funnel Beaker sites

such as Bistoft LA11 (Johansson 1979, 1981).

In the case of birds, their seasonal abun-

dance, particularly on harvested fields and lake-

shores, would have been impossible to miss. The

abundance of waterfowl would have presented

an opportunity too good to miss. In contrast to

the concentration on ducks and geese at Brześć

Kujawski, a sample of 74 bones from Paraneo-

lithic contexts dated to the Atlantia/Subboreal

transition at Dudka in the Mazurian Lakeland

about 200 km NW of Brześć Kujawski revealed

a more diverse pattern. (Gumiński 2005). Al-

though most bones were from ducks and geese,

a broader spectrum of aquatic, terrestrial, and

woodland species was exploited.

Page 106: Reprinted from - Princeton

1684

The significance of the finds of large num-

bers of bird bones at Brześć Kujawski and

Osłonki is highlighted by the fact that bird bones

are so scarce at Neolithic sites in interior Eu-

rope. At the circular enclosure at Ölkam in Aus-

tria, where a very large sample of animal bone

was recovered, only 16 bird bones were found,

of which 10 could be identified (Schmitzberg-

er 1999). They were largely from birds of the de-

ciduous upland forests and fields, including ca-

percaillie, lesser spotted eagle, corn crake, and

carrion crow. From the large fourth millennium

B.C. settlement at Bronocice in upland southern

Poland, 20 bird bones were recovered, of which

17 were identified to three species: black grouse,

capercaillie, and common crane (Bocheński

1982).

Thus, the regional sample of several hun-

dred Neolithic bird bones from southeastern

Kuyavia reflects the heightened exploitation of

birds where they were abundant, especially of

waterfowl. A similar predation pattern is seen in

Brittany (Tresset 2005), the Netherlands (Zeiler

2006) the Funnel Beaker sites of northern Ger-

many (Ewersen 2003), and the Masurian Lake

region in NE Poland (Gumiński 2005), where

locally abundant waterfowl and terrestrial birds

were hunted extensively. The interesting devel-

opment in southeastern Kuyavia is that here at

the edge of the Danubian world we see farmers

taking advantage of the abundant wild resourc-

es that had been the mainstays of the Mesolithic

foraging economy for several millennia.

Summary: the Mature Animal Economy in

Neolithic Kuyavia

In contrast to the cattle–heavy animal econ-

omy of the Linear Pottery culture of the sixth

millennium B.C., the animal economy of the

Neolithic societies of Kuyavia during the fifth

millennium B.C. was diversified among sever-

al major livestock species and several species of

wild ungulates, supplemented by fish, turtles,

and waterfowl. The relative consistency among

assemblages, or at least the lack of dramatic im-

balances between wild and domestic species

or among the major domestic taxa would sug-

gest that it is possible to characterize the animal

economy of the Brześć Kujawski Group as “ma-

ture”. Moreover, there appears to be no clear spe-

cialization on any one species, suggesting that

the use of the major animal taxa was integrat-

ed into a stable economic strategy. This strategy

also would have included the domestic and wild

Fig. 1367. Diversity of birds exploited by Paraneolithic inhabi-

tants of Dudka at the Atlantic/Subboreal transition.

Ryc. 1367. Rozmaitość ptaków eksploatowanych przez parane-

olitycznych mieszkańców Dudki na przełomie od okresu atlan-

tyckiego do subborealniego.

Page 107: Reprinted from - Princeton

1685

plant species used by the inhabitants of these

sites (Bieniek 2002) and the other economic re-

lationships among the households in the com-

munity and the world beyond.

In the mature Neolithic animal economy of

the fifth millennium B.C., each major category

of livestock played a particular role. Pigs satis-

fied the “base demand” for meat and other pri-

mary products like hides, fats, tallow, and oth-

er animal by–products. They are cheap animals

to keep, meaning that it is not necessary to feed

them very long before they reach their maxi-

mum meat weight. In general, they are able to

find their own food, in and around the settle-

ment and in the fields and forests. They can be

tended by children and the elderly, so they en-

able otherwise non–productive members of so-

ciety to contribute to the household economy.

Pigs also reproduce abundantly, so it is not nec-

essary to keep a large dedicated breeding popu-

lation.

Sheep and goats, which had been part of

the Neolithic economy in central Europe since

the sixth millennium B.C., played a somewhat

more complex role. They are more expensive to

keep than pigs, for they need to be kept some-

what longer and have only one or two kids or

lambs at a time. It is thus necessary to maintain

a larger breeding stock. It is generally necessary

to keep a fairly large flock, so it one or two are

lost to a predator it is not a crippling loss. In ad-

dition to providing meat and possibly second-

ary products like milk, sheep and goats probably

played an important role in barter, bridewealth,

and the other sorts of petty economic transac-

tions that occurred among households in the

Neolithic hamlet.

Cattle would have been the jumbo jets of the

Neolithic economy. They are large and heavy, so

they need space, both outdoors and indoors.

Cattle grow slowly and reproduce relatively

slowly, usually singly, so they need to be kept

longer than sheep and goats. They also carry a

higher degree of risk. If a cow or ox dies before

its time, or if one is stolen or turns feral, a large

investment is lost. The returns from cattle, how-

ever, are substantial. First, they yield a tremen-

dous amount of meat, which can be eaten right

away, preserved for future use by smoking or

drying, and exchanged in transactions between

households. They also provide large hides.

Then, there are secondary cattle products

such as milk and possibly animal traction. The

evidence from the Neolithic faunal assemblages

in southeastern Kuyavia for their use in the fifth

millennium B.C. is equivocal at best, although

there are hints. Logically, however, it seems clear

that the widespread use of secondary products,

for which clear evidence begins to appear in the

fourth millennium B.C., did not spring forth

fully formed. There must have been anteced-

ents and experiments, once the major elements

of the meat–producing Neolithic economy be-

came established and stable.

The search for comparative faunal data from

the fifth millennium B.C. across central Europe

resulted in the astonishing realization that there

continue to be very few regional collections of

Danubian faunal assemblages comparable to

those found in the Polish lowlands. While sam-

ples from southern Scandinavia and extreme

northern Germany, as well as from lakeside set-

tlements in the western Alps, have been pub-

lished with regularity, very little work has been

done on faunal samples from Neolithic settle-

ments in the Danubian world. A major part of

this is the result of poor bone preservation on

loess. Yet it seems that even allowing for this

factor, the number of archaeozoological anal-

yses of Danubian settlements is nowhere near

what might have been predicted from the inter-

est 30 years ago in animal bones and the infor-

mation they contain on human behavior.

Parallels with the Villeneuve–Saint–Germain

Group and Cerny Culture of the Paris Basin

The major exception to the generalization

above is the cluster of Neolithic sites in the Par-

is Basin, specifically the Late Linear Pottery

(Rubané Recent) of the late sixth millennium

B.C. and its successors, the Villeneuve–Saint–

Germain and Cerny Groups of the fifth millen-

nium B.C.. The Paris Basin sites are either on re-

deposited loess or gravel terraces, and thus the

Page 108: Reprinted from - Princeton

1686

bone preservation is far better than in the decal-

cified loess uplands of central Europe. Thus the

Neolithic sites of the Paris Basin during the sixth

and fifth millennia B.C. provide excellent con-

temporaneous archaeozoological comparanda

for the assemblages from the Polish lowlands.

A Neolithic regional group that is very close

culturally, ecologically, and chronologically to

the Brześć Kujawski Group in Kuyavia is the

Villeneuve–Saint–Germain (VSG) Group of the

Paris Basin. The VSG Group is a late Danubi-

an cultural group of the fifth millennium B.C.

that shows many continuities from earlier Lin-

ear Pottery farming communities but also has

distinct features. Many VSG settlements have

yielded large samples of animal bones which

have the potential to provide important com-

paranda for the faunal samples of the Polish

lowlands, although unfortunately much of this

information is not yet widely published in jour-

nals and monographs.

As with many Brześć Kujawski Group ani-

mal bone samples, VSG faunal assemblages are

usually dominated by domestic cattle (usually

about 60–80% of NISP) but with greater num-

bers of sheep/goat (between 5 and 20%) and pigs

(between 10 and 30%) than in the earlier Linear

Pottery faunal assemblages in this area (see Ar-

bogast 1995: Figure 6). There are notable excep-

tions to this generalization, such as Longueil–

Sainte–Marie LBR II and LBR III, where the

faunal samples have significant numbers of pigs

(67% and 38% respectively), fewer cattle, and

very few sheep/goat (Arbogast 1995). Although

somewhat different in character from the faunal

samples of the Brześć Kujawski Group, the VSG

fauna display a similar heterogeneity that con-

trasts that the extreme predominance of domes-

tic cattle at Linear Pottery sites.

Bedault and Hachem propose that it is pos-

sible to observe changes in the VSG economy

over time (Bedault 2006, Bedault and Hachem

2008). In the early VSG, the economy is focused

primarily on cattle and secondarily on sheep and

goat, while in “classic” VSG, pig replaces sheep

and goat as the livestock species of importance

second only to cattle. Arbogast (1995: 327) sug-

gests that the rise in pig use in VSG presages

the animal economies of the Middle Neolith-

ic. My own interpretation is that the VSG fau-

nal assemblages provide another example of the

emergence of mature animal economies during

the fifth millennium B.C. in contrast to the ear-

lier cattle–dominated animal economies of the

sixth millennium.

The development of a mature animal econ-

omy in the Paris Basin continued in the Cerny

Culture of the second half of the fifth millenni-

um B.C. (Tresset 1997), which appears to suc-

ceed VSG in this area but with novel cultural

features such as earthen long barrows, enclo-

sures, and new patterns of land use. Cerny fau-

nal assemblages are dominated by cattle, with

pigs now consistently in second position. Mor-

tality profiles of Cerny cattle suggest that sec-

ondary products such as milk and traction now

figured more significantly in the animal man-

agement strategy (Tresset 1997: 303–309).

Eventually, a more detailed comparison be-

tween the Neolithic faunal assemblages of the

Paris Basin and those of southeastern Kuyavia

will be very fruitful. In both region, Linear Pot-

tery communities also settled off the loess and

were succeeded by local groups that not only

continued the earlier traditions of settlement

and architecture but also engaged with non–

Danubian communities beyond the Neolith-

ic frontier. These in turn were succeeded by in

situ cultural formations as the Neolithic fron-

tier moved on. In light of the similarities noted

by Midgley (2005) between the post–Danubian

Funnel Beaker Culture of the Polish Lowlands

and the Cerny Culture of the Paris Basin during

the late fifth millennium and fourth millennium

B.C., parallel developments in regional animal

economies during the previous centuries would

not be unexpected.

The Animal Economy at Vésztő–Bikeri in

Hungary

Another region in central Europe that pro-

vides rich evidence for regional animal econ-

omies during the fifth millennium B.C. is the

Carpathian Basin. Over the last 50 years, many

Hungarian Late Neolithic/Copper Age fau-

nal assemblages have been identified, in many

cases by the late Sándor Bökönyi (e.g. Bökönyi

1971). The Hungarian data are too numerous

and varied both regionally and chronological-

ly to summarize here, but they offer the poten-

Page 109: Reprinted from - Princeton

1687

tial for broad comparisons with other regional

animal economies in central Europe during the

fifth millennium B.C.

Without trying to draw more than is war-

ranted from such a comparison, it is worth con-

sidering here a recently–reported faunal as-

semblage from the Tiszapolgár settlement of

Vésztő–Bikeri located in the valley of the Körös

river (Parkinson, Yerkes, and Gyucha 2002;

Nicodemus 2003)5. Nicodemus analyzed a fau-

nal assemblage of 2838 identified specimens,

of which 83% belonged to domestic mammals,

with most of the remainder coming from wild

ungulates, fish, birds, and tortoises. The resource

diversity is thus very similar to that seen at the

sites of the Brześć Kujawski Group, despite their

distant separation.

Charting the NISP of the major econom-

ic mammal species at Vésztő–Bikeri produc-

es Figure 1368 which bears a striking similari-

ty to the overall proportions of taxa found, for

example, at Osłonki. While it may be possible to

dismiss this similarity as coincidental, nonethe-

less it may provide another example of a mature

diversified animal economy of the fifth millen-

nium B.C. Pig comprise a quarter of the NISP,

while sheep and goat make up another 32%. The

hunting of wild ungulates is low but noticeable.

5 The author is grateful to Amy Nicodemus of the University of Michi-gan for permission to cite her 2003 Master’s thesis submitted to the Department of Anthropology at Florida State University.

Moreover, mortality data for the Vésztő–Bikeri

livestock indicates that meat production was

still the major goal, consistent with the evidence

from the Kuyavian samples.

The purpose in mentioning the fauna from

Vésztő–Bikeri here is not to suggest that there

are any cultural connections between the Hun-

garian Plain and the Polish Lowlands but rath-

er to indicate that during the fifth millennium

B.C. mature diversified animal economies were

emerging in many parts of central Europe. These

regions had already been settled by agricultural-

ists for a millennium or more, but earlier ani-

mal economies had a more pioneer or experi-

mental character. It took over a millennium for

the early farmers of central Europe to find pro-

portions of livestock that worked for particular

regions and for the other aspects of the subsis-

tence and settlement system to be harmonized

with the needs of the different species. These an-

imal economies in turn formed the foundation

for the next transformation in the relationship

between people and their animals, the Second-

ary Products Revolution of the fourth millenni-

um B.C.

Red Deer Hunting in Austria

So as not to suggest that all animal econo-

mies during the fifth millennium B.C. were so

heavily weighted toward domestic livestock, a

contrasting picture is presented by a faunal sam-

Fig. 1368. NISP of major economic taxa from Vésztő–Bikeri (af-

ter Nicodemus 2003).

Ryc. 1368. GLS głównych gatunków zwierząt gospodarczych

z Veszto–Bikeri (wg Nicodemusa 2003).

Vésztő-Bikeri Major Economic Taxa

NISP (after Nicodemus 2003)

Cattle

38%

Sheep/goat

29%

Sheep

2%

Goat

1%

Pig

25%

Wild Pig

1%

Red deer

2%

Roe Deer

2%

Cattle

Sheep/goat

Sheep

Goat

Pig

Wild Pig

Red deer

Roe Deer

Page 110: Reprinted from - Princeton

1688

ple from a Lengyel settlement pit at Melk–Win-

den in Austria (Pucher 2004). A total of 2207

NISP came from five domestic and fourteen

wild mammal taxa, along with three types of

birds and the pond tortoise. The principal eco-

nomic taxa (NISP= 2064) were dominated by

red deer, roe deer, and wild pig, while a quarter

of the NISP came from domestic cattle (Figure

Fig. 1369. NISP of principal economic taxa from Melk–Wind-

en, Austria (based on data in Pucher 2004).

Ryc. 1369. GLS głównych gatunków zwierząt gospodarczych

z Melk–Winden w Austrii (w oparciu o dane zamieszczone u

Puchera 2004).

Melk-Winden: NISP Major Taxa

cattle

24%

sheep/goat

1%

sheep

0%

goat

0%

pig

9%

wild pig

16%

red deer

43%

roe deer

7%

cattle

sheep/goat

sheep

goat

pig

wild pig

red deer

roe deer

1369). Very few sheep and goat, and no defini-

tive sheep bones, were found.

An even more extreme case of red deer ex-

ploitation is shown by the faunal remains from

the circular ditched enclosure (Kreisgrabenan-

lage) at Ölkam, also in Austria (Schmitzberger

2001). At Ölkam, almost 90% of the 3462 mam-

mal NISP came from wild ungulates, especially

Fig. 1370. NISP of principal economic taxa from Ölkam, Aus-

tria (based on data in Schmitzberger 2001).

Ryc. 1370. GLS głównych gatunków zwierząt gospodarczych

z Olkam w Austrii (w oparciu o dane zamieszczone u Schmit-

zbergera 2001).

Ölkam NISP: Major Taxa

wild pig

9.62%

red deer

65.24%

roe deer

10.52%

wild cattle

2.78%

beaver

2.72%

goat

0.06%

pig

4.91%

cattle

4.00%

sheep/goat

0.15%

sheep

0.00%

cattle

sheep/goat

sheep

goat

pig

wild pig

red deer

roe deer

wild cattle

beaver

Page 111: Reprinted from - Princeton

1689

red deer but also including significant compo-

nents of wild pig and roe deer along with some

wild cattle (Figure 1370 below). Again, very few

sheep and goat, with no definitive sheep bones,

were found, along with a relatively small num-

ber of cattle and domestic pig bones.

Clearly certain biotopes in central Europe

were well suited to high populations of cervids.

It might be suggested that a similar local con-

centration of red deer and roe deer might ac-

count for the relatively high proportions of these

species observed at Brześć Kujawski in compari-

son with the other Lengyel sites of southeastern

Kuyavia. The presence of anomalous local fau-

nal assemblages should be expected, and only

the study of many contemporaneous samples

can give an accurate picture of the regional ani-

mal economy.

The Brześć Kujawski Group and the Early

Cattle of the Baltic Basin

It is increasingly apparent that the first ele-

ment of the Neolithic economy to reach the for-

agers of the Baltic basin at the end of the fifth

millennium B.C. was domestic cattle (Noe–Ny-

gaard and Hede 2006) The initial agricultural

expansion of the Linear Pottery culture during

the sixth millennium B.C. had brought domes-

tic cattle to the North European Plain, along the

lower Oder and Vistula rivers. Yet there is no ev-

idence yet of domestic cattle in the south Baltic

area contemporaneous with the Linear Pottery

culture, despite its proximity. It was only during

the second half of the fifth millennium B.C. that

the leakage of cattle through the farming fron-

tier and through the borderland between the

world of the Danubian farming communities

and the world of the Baltic foragers took place.

The closest Neolithic agricultural popula-

tion with substantial populations of domestic

cattle during the fifth millennium B.C. on the

North European Plan was the Brześć Kujawski

Group of the Lengyel Culture. There is simply

no other candidate for a thriving animal econ-

omy with significant farming populations keep-

ing substantial livestock populations along the

farming frontier at this time. It thus seems like-

ly that the starting point for at least some of the

cattle that found their way north to the Baltic

basin toward the end of the fifth millennium

B.C. was the Kuyavian plateau.

What mechanisms are possible for the

transfer of cattle from farmers to foragers? For-

ager–farmer exchange is clearly a possibility,

and Klassen (2000) and Zvelebil (2006) note the

movement of many types of items between the

Baltic zone and interior Europe. Theft of cat-

tle by foragers is also a possibility. The simplest

mechanism for the northward movement of cat-

tle during the fifth millennium B.C. is the escape

of livestock from human control.

Bogucki (1995) speculates about the poten-

tial for feral cattle to penetrate the farming fron-

tier in northern Europe. He points out that in

colonial North America feral livestock were a

major concern, and animals routinely escaped

their human owners and went into the wilder-

ness. Large herds of feral cattle could be found

in the Carolinas, for example. In northern Eu-

rope, this process may have been facilitated by

the creation of artificial glade habitats through

burning by foragers. Feral cattle would have

found these to be congenial spots in the forest

to feed and eventually to multiply.

Ultimately, the source of the earliest cattle in

the Baltic zone will have to be addressed through

DNA analysis. The accumulating number of early

cattle bones dated very close to 4000 B.C. should

provide some useful archaeogenetic material.

When this research is undertaken, it will be nec-

essary to sample the cattle bones from sites of the

Brześć Kujawski Group to see whether the specu-

lation here can be substantiated.

The fifth millennium B.C. saw the estab-

lishment of what can be termed “mature animal

economies” throughout central Europe, and the

faunal remains from sites of the Brześć Kujawski

Group of the Lengyel Culture reflect this devel-

opment. These economies were different from

the pioneer animal economies of the sixth mil-

lennium B.C. that characterize the early farming

communities. In central Europe, such pioneer

Page 112: Reprinted from - Princeton

1690

economies are weighted heavily toward domes-

tic cattle, just as in southeastern Europe the pio-

neer Neolithic animal economies were dominat-

ed by ovicaprids. In a mature animal economy,

one finds a greater diversity of livestock species,

each playing a specific role not just in their con-

tribution to diet but also in their utilization in

the household economy.

These were still primarily meat–produc-

tion economies, however, although it is likely

that dairy products were exploited in a second-

ary role. Exostoses on cattle lower limbs provide

hints of possible early attempts at animal trac-

tion, as a precursor to the definitive evidence for

its use during the fourth millennium B.C. Al-

though the restructuring of animal economies

around greater use of secondary products did

not take place until the fourth millennium B.C.,

such mature animal economies during the pre-

ceding millennium set the stage for the Second-

ary Products Revolution and its implications

for wealth creation and differences in status and

power.

At the same time, wild resources played a

low but consistent role in the animal economy

of the Brześć Kujawski Group. Wild artiodac-

tyls, such as wild cattle, wild pig, red deer, and

roe deer were hunted, perhaps more opportu-

nistically rather than systematically. The scarcer

wild species, such as wild horse and bear, them-

selves generally solitary by nature, were cer-

tainly only hunted when the opportunity arose,

probably when they were unfortunate enough

to have wandered too close to the settlements,

their fields, or their connecting trails. Fur–bear-

ing mammals, such as otter and especially bea-

ver, on the other hand, were specific targets of

human predation, as shown by the beaver butch-

ery and skinning activity that occurred at Brześć

Kujawski and Pikutkowo.

Exploitation of tortoises, fish, and water-

fowl complemented the mammal economy. The

intensity of this use of aquatic resources only

becomes apparent when the sites of the Brześć

Kujawski Group are compared with contempo-

raneous sites elsewhere in central Europe, where

the recovery of isolated traces of tortoise, fish,

and birds is considered to be unusual, where-

as in southeastern Kuyavia such finds are ubiq-

uitous. Each of these taxa may have had its posi-

tion in the annual cycle. Waterfowl in particular

may have been winter and spring quarry, while

turtles probably were caught during the warm-

er months.

This study highlights the importance of

studying faunal exploitation on a regional scale

rather than relying on a single site to determine

the overall pattern. While it is rarely possible to

find so many Neolithic sites with substantial col-

lections of animal bones within a single region

in central Europe, the desirability of regional

analysis is apparent. Only when sufficient faunal

samples in many different regions are fully stud-

ied will it be possible to understand the variabil-

ity in Neolithic animal exploitation.

Page 113: Reprinted from - Princeton

1691

Od momentu wznowienia prac wykopali-

skowych w Brześciu Kujawskim w 1976 roku,

pozyskanie, oraz analiza kości zwierzęcych stały

się głównym celem programu badawczego oma-

wianego w tym tomie. Zawiera on sprawozdanie

z analizy dziesięciu próbek kości zwierzęcych,

pochodzących z dziewięciu stanowisk, między

innymi z Brześcia Kujawskiego, Osłonek, Falbo-

rza, Miechowic 4 i 4a, Pikutkowa, Konar, Smól-

ska i Zagajewic. Próbki, pochodzące z trzech

pierwszych stanowisk przebadał P. I. Boguc-

ki, natomiast analizy pozostałych sześciu stano-

wisk dokonał Daniel Makowiecki, który rów-

nież przebadał materiał z jednej niewielkiej,

uzupełniającej próbki z Osłonek. P. I. Bogucki,

który jest autorem sprawozdania zamieszczone-

go w tym tomie, chciałby wyrazić wdzięczność

dr Makowieckiemu za udostępnienie danych,

pochodzących z w /w próbek kości. Za ewen-

tualne błędy rzeczowe, lub interpretacyjne od-

powiada P. I. Bogucki. Niniejsze sprawozdanie

przedstawia kości zwierząt poddane tradycyj-

nej archeozoologicznej analizie, ze zwróceniem

szczególnej uwagi na działalność gospodar-

czą grupy brzesko–kujawskiej. Podane tu infor-

macje mogą być w przyszłości wykorzystywa-

ne w różnych schematach analitycznych przez

badaczy o zróżnicowanych podejściach nauko-

wych.

Omówienie zamieszczone w tym tomie do-

tyczy gospodarki zwierzęcej grupy brzesko–

kujawskiej w południowo–wschodniej części

Kujaw w piątym tysiącleciu BC. Należy je trak-

tować, jako uzupełnienie analizy, zamieszczo-

nej w tomie I, a dotyczącej gospodarki zwierzę-

cej w okresie kultury ceramiki wstęgowej rytej.

W okresie szóstego tysiąclecia BC. gospodar-

ka zwierzęca kultury ceramiki wstęgowej rytej

dotyczyła głównie bydła domowego, przy nie-

wielkim wykorzystaniu owcy i kozy, oraz prak-

tycznie całkowitym braku świni domowej. Za-

sada ta obowiązuje na wszystkich stanowiskach

kultury ceramiki wstęgowej rytej w południowo

-wschodniej części Kujaw i odzwierciedla bar-

dziej ogólną tendencję na terenie całej Europy.

Taka szczególna uwaga poświęcona hodowli by-

dła tj. opieka nad nim do okresu dorosłości, oraz

zabezpieczenie przed chorobą, kradzieżą, lub

zaginięciem jest cechą charakterystyczną kultu-

ry ceramiki wstęgowej rytej. Jest to cecha nie-

co zaskakująca, wziąwszy pod uwagę pionierski

charakter tej kultury na terenie południowo–

wschodnich Kujaw.

Stanowiska kultury ceramiki wstęgowej ry-

tej charakteryzują się stosunkowo niewielką li-

czebnością kości dzikich ssaków, gadów, ryb

i ptaków. Na przestrzeni ostatnich 30 lat przeba-

dano wystarczającą ilość stanowisk w południo-

wo–wschodniej części Kujaw, ze zwróceniem

szczególnej uwagi na szczątki zwierzęce, aby

stwierdzić, że jest to wyraźnie rezultat celowej

działalności człowieka, związanej z określoną

kulturą, a nie wynik procesów tafonomicznych,

bądź technik wykopaliskowych. Stosunkowo

niewielka liczba kości dzikich zwierząt kopyt-

nych takich jak: jeleń, sarna, dzikie bydło i dzika

świnia jest jeszcze bardziej zaskakująca, wziąw-

szy pod uwagę fakt, że w /w gatunki najpraw-

dopodobniej licznie występowały w lasach pol-

skich nizin w szóstym tysiącleciu BC.

Podczas tej części piątego tysiąclecia BC,

kiedy rozkwitała grupa brzesko–kujawska, spo-

sób wykorzystania zwierząt na terenie południo-

wo–wschodnich Kujaw w sposób zasadniczy róż-

nił się od tego, jakiego używano w okresie kultury

ceramiki wstęgowej rytej. Niniejsza praca, w kil-

ku aspektach, zajmuje się dokumentacją sposobu

wykorzystania zwierząt. Po pierwsze, ilość szcząt-

ków zwierzęcych została ustalona za pomocą róż-

nych pomiarów tj. liczby wszystkich zidentyfiko-

wanych okazów (na wszystkich stanowiskach)

oraz liczby stref diagnostycznych (sposób zasto-

sowany w Brześciu Kujawskim i Osłonkach). Zo-

stały ustalone ilości względne sześciu najliczniej

występujących, a wiec zapewne posiadających

największe znaczenie gospodarcze, gatunków tj.:

bydła domowego, owcy, kozy, świni, jelenia i sar-

ny. Wielkości te zostały następnie przebadane

i porównane w odniesieniu do wszystkich dzie-

sięciu próbek kości zwierząt. Po drugie, przeba-

dano procesy zrośnięcia nasady kości z trzonem,

oraz wyrzynania się zębów trzonowych żuchwy

Page 114: Reprinted from - Princeton

1692

w celu ustalenia profilu uboju najważniejszych

zwierząt hodowlanych takich jak: bydło, owce/

kozy i świnie. Po trzecie wykorzystano dane me-

tryczne w celu ustalenia, jaką rolę odgrywały dzi-

kie odpowiedniki zwierząt domowych (bydła

i świni) w zespołach szczątków zwierzęcych. Do-

konano również analizy pomiarów kości w celu

odróżnienia w próbkach osobników męskich

i żeńskich. Wreszcie zaprezentowano dowody na

występowanie rozdrobnienia kości, uboju, oraz

zmian patologicznych.

Kości zwierząt świetnie zachowują się w gli-

niastym podłożu południowo–wschodnich Ku-

jaw. Ze względu na naruszony charakter strefy

ornej i warstwy kulturowej, szczątki zwierzęce

poddane analizie pochodzą głównie z obiektów

archeologicznych, takich jak: jamy odpadkowe,

duże glinianki, oraz rowy fundamentowe dłu-

gich domów. Pomimo iż wyłączenie kości z war-

stwy kulturowej spowodowało usunięcie pew-

nej ilości okazów z danej próbki, nie zmienia

to w sposób istotny wyników badań, szczegól-

nie jeśli chodzi o proporcje zidentyfikowanych

gatunków w próbce. Stosunkowo niewiele ko-

ści było zwietrzałych, czy też naruszonych przez

gryzonie, co wskazuje na to, że wkrótce po wy-

rzuceniu zostały zakopane.

Od początku badań w Brześciu Kujawskim

autor posługiwał się komputerową bazą danych

w celu zapisu i zestawienia danych, dotyczących

kości zwierząt. Dla próbki z Brześcia Kujawskie-

go zastosowano program BONECODE (R. H.

Meadow 1987b), a w Osłonkach użyto najpierw

programu ANIMALS (D. V. Campana and P.

J. Crabtree 1987), a następnie the York Faunal

Analysis System (J. Harland et al.2003), dostęp-

nego w Microsoft Access. Próbka z Brześcia Ku-

jawskiego będzie musiała w przyszłości zostać

przeniesiona do nowoczesnej bazy danych. Ko-

pie archiwalne danych bazy z Osłonek na nośni-

ku CD–ROM będą przechowywane w bibliote-

kach instytucji uczestniczących w projekcie.

Główną metodą ustalenia względnej liczeb-

ności gatunków było policzenie globalnej licz-

by szczątków, zwanej w skrócie GLS1. Pomimo

1 W anglojęzycznej literaturze stosuje się skrót NISP (przypis tłumaczy).

pewnych wad, jest to skuteczny sposób na doko-

nywanie tego typu ustaleń. Dla próbek z Brze-

ścia Kujawskiego i Osłonek ustalenie ilości zosta-

ło dokonane poprzez policzenie poszczególnych

okazów, oraz policzenie stref diagnostycznych.

Podobne wyniki wskazują na to, że liczba po-

szczególnych okazów jest ważnym narzędziem

w ustaleniach ilościowych zespołów neolitycz-

nych szczątków zwierząt. Najniższe dane licz-

bowe nie zostały wzięte pod uwagę ze względu

na różne warunki na poszczególnych stanowi-

skach, oraz problemy nieodłącznie związane

z tego typu pomiarem. Autor w swojej analizie

próbki z Osłonek nie brał pod uwagę kości że-

ber oraz kręgów, za wyjątkiem kręgu szczyto-

wego i kręgu obrotowego, podczas gdy dr Ma-

kowiecki uwzględniał je w swoich analizach

próbek. Aby uzyskać dobrą analizę porównaw-

czą poszczególnych stanowisk, przy obliczaniu

udziału procentowego w niniejszym sprawoz-

daniu odjęto kości żeber i kręgów (za wyjątkiem

kręgu szczytowego i obrotowego) od ogólnej

liczby kości. Są one wyszczególnione w tabelach

CLXXXVI – CXCVIII.

Próbki szczątków zwierzęcych z połu-

dniowo–wschodnich Kujaw zawierają ogrom-

ną liczbę zwierząt domowych. Największa ich

próbka pochodzi z Osłonek, gdzie 94.5% kości

ssaków zostało zidentyfikowanych jako zwierzę-

ta domowe, pomimo że liczba ta mogłaby zo-

stać nieznacznie pomniejszona na skutek ana-

lizy metrycznej kości świń. Próbka z Brześcia

Kujawskiego zawiera najwyższy udział procen-

towy kości zwierząt dzikich (37.34%). Liczba

ta jest nieco podwyższona o kości bobrów uzy-

skane z jednego obiektu. We wszystkich innych

próbkach całkowita liczba kości dzikich zwierząt

była bardzo niska, chociaż zauważa się większe

zróżnicowanie gatunków w stosunku do stano-

wisk kultury ceramiki wstęgowej rytej.

Gdy analiza próbek ogranicza się do głów-

nych ssaków użytkowych takich jak: bydło,

owce, kozy, świnie, jelenie i sarny, przeważają tu

kości zwierząt hodowlanych. Jedynie w Brześciu

Kujawskim i Falborzu kości jelenia i sarny sta-

nowią ponad 5% ogólnej liczby zidentyfikowa-

nych okazów, przy czym w Brześciu Kujawskim

ich udział procentowy zostaje pomniejszony

przy zastosowaniu analizy strefy diagnostycz-

nej. Ważnym problemem, którym zajmiemy się

Page 115: Reprinted from - Princeton

1693

poniżej jest również proporcja względna świni

udomowionej i dzikiej.

Główne gatunki zwierząt, takie jak bydło,

owce, kozy i świnie stanowią większą cześć dzie-

sięciu analizowanych tutaj próbek kości (ryc.

1317). Stosunkowo mało między sobą zróżni-

cowane stanowiska zawierają materiał wykazu-

jący ogólną zgodność charakteru zespołów, jeśli

chodzi o trzy główne rodzaje zwierząt hodowla-

nych. Ogólnie rzecz biorąc, we wszystkich prób-

kach bydło stanowi od 30% do 60% udziału pro-

centowego, owca i koza pomiędzy 20% i 40%,

a świnia od 10% do 30% (zazwyczaj pomiędzy

20% a 30%). Pomimo, iż każdy gatunek z osob-

na wydaje się mieć duży udział procentowy, przy

ujęciu ogólnym wyraźnie widać, że żaden z ga-

tunków nie dominuje nad innym, w przeciwień-

stwie do kultury ceramiki wstęgowej rytej, gdzie

wyraźnie przeważało bydło. W Brześciu Kujaw-

skim i Osłonkach ustaleń ilościowych poszcze-

gólnych próbek dokonano na podstawie liczby

poszczególnych okazów, jak też liczby stref dia-

gnostycznych. Podobne wyniki wskazują na to,

że liczba poszczególnych okazów jest ważnym

narzędziem w ustaleniach ilościowych zespo-

łów fauny neolitycznej.

Ciekawa różnica pomiędzy próbkami anali-

zowanymi przez autora (w Brześciu Kujawskim,

większości stanowisk w Osłonkach i Falborzu)

i D. Makowieckiego pojawia się na ryc. 1317,

gdzie w pierwszym przypadku występuje niższy

udział procentowy bydła, a większy świni, nato-

miast w drugim większy bydła a mniejszy świ-

ni. Nie można ustalić czemu należy przypisać te

rozbieżności: czy różnicy w zastosowanej tech-

nice analitycznej, wielkości danej próbki, czy też

temu, że zespoły analizowane przez autora po-

chodzą z dużych, centralnie położonych osad,

podczas gdy inne zespoły z mniejszych stano-

wisk.

Dzięki dużym ilościowo próbkom, można

było ustalić, że kozy stanowią zazwyczaj więk-

szą grupę niż owce wśród podrodziny kóz (Ca-

prinae). W innym przypadku zwierzęta te moż-

na byłoby przyporządkować któremukolwiek

z gatunków podrodziny Caprinae. Uwaga ta ma

istotne znaczenie dla kształtowania wpływu go-

spodarki grupy brzesko–kujawskiej na środowi-

sko przyrodnicze.

Bydło jest nadal głównym składnikiem pra-

wie wszystkich próbek szczątków zwierzęcych,

związanych z grupą brzesko–kujawską, chociaż

zauważa się przejście do większej liczby małych

zwierząt hodowlanych. Duże znaczenie ma tu-

taj pojawienie się świni, która stanowi około ¼

większości wszystkich próbek.

Obecność psów została udokumentowana

w zespołach szczątków zwierzęcych z sześciu sta-

nowisk, możemy więc założyć, że znajdowały się

one na wszystkich stanowiskach. Psy odgrywa-

ły dużą rolę w niszczeniu kości w miejscach jam

odpadkowych, tak więc musimy założyć, że tylko

część możliwej liczby kości została zachowana do

pozyskania w celach archeologicznych.

Duża ilość materiału z Osłonek, pochodzą-

ca z 322 osobnych układów kulturowych, po-

zwoliła na porównanie wpływu, jaki miał typ

obiektu, lub wielkość próbki na globalną liczbę

szczątków. Około 60% całkowitej liczby szcząt-

ków pochodzi z jam–glinianek, podczas gdy

około 36% z mniejszych jam odpadkowych.

Niektóre jamy charakteryzują się dużą koncen-

tracją materiału kostnego zwierząt (np. jamy

o numerach 53, 116, 137, 204 i 208). Porównu-

jąc udział procentowy poszczególnych gatun-

ków zwierząt użytkowych w różnych obiektach,

okazuje się, że w gliniankach liczba kości bydła

jest wyższa (39%), a liczba kości owcy/kozy niż-

sza (32%). W mniejszych jamach odpadkowych

natomiast liczby te są odwrotne (29% kości by-

dła i 42% kości owcy/kozy).Liczba kości świni

pozostaje niezmienna, ok. 24–25%. Na podsta-

wie próbek z obiektów o GLS większej niż 100,

z pięciu glinianek i sześciu mniejszych jam, któ-

re razem stanowią ponad 72% GLS, w Osłon-

kach można było ustalić następujące proporcje:

36% kości bydła, 33% kości owcy/kozy i 23%

kości świni. W analizie tego typu danych liczbo-

wych będą występowały różnice ze względu na

rozmiar próbki i układ kulturowy, tak więc nie-

wielkim różnicom nie należy przypisywać zbyt

wielkiego znaczenia.

Wśród kości dzikich zwierząt znajduje-

my dzikie zwierzęta kopytne, gatunki leśnych

Page 116: Reprinted from - Princeton

1694

i rzecznych ssaków, żółwie, ryby i ptaki. Każdy

z tych gatunków z osobna stanowi jedynie nie-

wielki procent udziału w danej próbce. Jednak

wszystkie razem stanowią szeroki zakres bogac-

twa fauny. Wśród dzikich zwierząt kopytnych

najczęściej spotykane są jeleń i sarna, podczas

gdy kości tura nie występują w znaczących ilo-

ściach pośród kości bydła. Dzika świnia ma nie-

wielki, ale znaczący udział w próbce kości świni.

Dziki koń zaznacza swoją obecność niewielką

liczbą kości na każdym prawie stanowisku.

Warto wspomnieć dwa gatunki, nienale-

żące do zwierząt kopytnych, a mianowicie bo-

bra (Castor fiber) i niedźwiedzia (Ursus arctos).

Kości bobra występują na pięciu stanowiskach.

W Brześciu Kujawskim znaleziono pięć prawie

kompletnych egzemplarzy w jamie 820, co wska-

zuje na skórowanie bobrów, po ich upolowaniu

nad jeziorem Smętowo, gdzie zapewne znajdo-

wały się żeremia. W dużym obiekcie w Pikutko-

wie odkryto trzy kolejne bobry o fragmentarycz-

nie zachowanych szkieletach. Niewielka liczba

kości europejskiego niedźwiedzia brunatnego

została odkryta w Brześciu Kujawskim i Osłon-

kach. Większość kości niedźwiedzia pochodziła

od jednego osobnika, szczególnie z jego prawej,

tylnej łapy. Odkryto również pojedyncze okazy

wydry rzecznej, zająca, żbika i łasicy.

Fragmenty tarczy górnej (karapaks) i dol-

nej (plastron) pancerza europejskiego żółwia

błotnego (Emys orbicularis)znajdują się niemal

na wszystkich stanowiskach. Najbardziej liczne

są jednak w Brześciu Kujawskim i Osłonkach,

gdzie poza pojedynczymi fragmentami, moż-

na było również spotkać in situ kompletnie, lub

częściowo zachowane tarcze górne i dolne pan-

cerza, bądź je zrekonstruować. Na stanowiskach

grupy brzesko–kujawskiej znajduje się najwięk-

sza liczba szczątków neolitycznego żółwia błot-

nego w całej Europie środkowej. Znaczenie

obecności dużej ilości fragmentów żółwia dla

odtworzenia klimatu schyłku piątego tysiąclecia

BC zostanie omówione później.

Analiza zespołów ryb z Brześcia Kujawskie-

go i Osłonek dokonana przez D. Makowieckigo

pokazuje przewagę ryb karpiowatych (Cyprini-

dae), określonych zarówno na poziomie rodziny

jak i gatunku. W ich skład wchodzą: Carassius

carassius, Abramis brama, Tinca tinca, Aspius

aspius, Leuciscus idus i Rutilus rutilus. W Brze-

ściu Kujawskim 85,3 % ryb należało do tego ga-

tunku, a w Osłonkach 81,7%. Z innych gatun-

ków najbardziej liczny na obu stanowiskach był

szczupak (Esox lucius) ; niewielką ilość całkowi-

tej liczby szczątków w Brześciu Kujawskim sta-

nowi okoń (Perca fluviatilis), nieliczny na stano-

wisku w Osłonkach.

Do tej pory została przebadana jedynie

próbka kości ptaków z Brześcia Kujawskie-

go (ponad 25 lat temu, przez P. I. Boguckiego).

Próbka z Osłonek zawiera więcej materiału i po

przebadaniu na pewno będzie cennym źródłem

informacji. Większość kości w Brześciu Kujaw-

skim należy do ptactwa wodnego, takiego jak

kaczka krzyżówka (Anas platyrynchos), kaczka

(Aythya cf. Fuligula), gęś (Anser cf.anser/cf.faba-

lis), oraz niewielka ilość ptactwa lądowego. Po-

bieżna analiza próbki z Osłonek wskazuje na

podobną dominację ptactwa wodnego. Odkryto

również niewielkie próbki kości ptaków na po-

zostałych stanowiskach.

Procesy zrośnięcia nasady kości z trzonem

oraz wyrzynania się i ścierania zębów trzono-

wych żuchwy, które posłużyły do ustalenia struk-

tury śmiertelności głównych gatunków zwierząt

hodowlanych, mają na celu zrozumienie sposobu

eksploatacji zwierząt przez człowieka.

Zrośnięcie nasady kości z trzonem zostało

przebadane w Brześciu Kujawskim i Osłonkach

w odniesieniu do wszystkich kości kończyn

(łącznie z kością łopatki i miednicy) w oparciu

o następujące etapy: etap przed zrośnięciem na-

sady kości, moment zrośnięcia (linia zrośnięcia

nasady z trzonem) oraz etap po zrośnięciu na-

sady kości. W swojej analizie próbki z Brześcia

Kujawskiego z 1981 roku, autor zastosował me-

todę Wilsona (1978), który pogrupował kości ze

względu na kolejność zrastania nasady z trzo-

nem, obliczył udział procentowy każdej gru-

Page 117: Reprinted from - Princeton

1695

py kości, której zrośnięcie dokonało się w tym

samym czasie, a następnie przedstawił dane

w sposób graficzny, ustalając wiek każdej z grup.

W niniejszym sprawozdaniu dane zostały nie-

co przegrupowane w oparciu o model Crabtree

(1989), oraz przykład O’Connora (2000), co po-

zwoliło ustalić sekwencję pokazaną na ryc. 33.

Pokazuje ona, że większość bydła osiągała 30–ty

miesiąc życia, po czym część z nich została zabi-

jana. Tylko około 60% bydła żyło dłużej niż 48

miesięcy. Około połowa kóz i owiec była zabija-

na przed upływem 36–go miesiąca życia. Oko-

ło 30% świń nie dożywało 12–go miesiąca życia

i tylko 16% osiągało wiek dłuższy niż 42 mie-

siące (najprawdopodobniej zwierzęta zarodowe,

bądź stare sztuki dzikie i półdzikie).

Dane z Osłonek, dotyczące zrośnięcia nasa-

dy kości z trzonem, zostały poddane takiej samej

analizie, a jej wyniki są widoczne na ryc. 1324.

Wykazują one podobne tendencje, jak w Brze-

ściu Kujawskim. W Osłonkach zaobserwowano

większą liczbę uboju młodego bydła i pomimo

większej gradacji w uboju owcy i kozy, krzywa

śmiertelności kończy się tu w tym samym miej-

scu, co w Brześciu Kujawskim. Profile śmiertel-

ności świni są identyczne na obu stanowiskach.

Jako że świnię hodowano wyłącznie dla

mięsa, gwałtowny spadek krzywej śmiertelno-

ści nie jest tu dużym zaskoczeniem. Profile by-

dła oraz owcy/kozy są trudniejsze w interpre-

tacji, jednakże dane zrośnięcia nasady kości

z trzonem sugerują, że gatunki te nie były hodo-

wane wyłącznie dla mięsa. W przypadku bydła,

najbardziej wartościowym produktem pochod-

nym było mleko; mogło tak również być w przy-

padku kozy i owcy. Omawiane stanowiska wy-

przedzają pierwsze użycie wełny o około 2000

lat, tak więc hodowla owcy w celu jej uzyska-

nia jest nieprawdopodobna. Możemy założyć,

że owcę trzymano dłużej w innym celu niż uzy-

skanie mięsa i mleka, np. aby powiększyć stado,

bądź w celu, wymiany między domostwami.

Procesy wyrzynania się i ścierania zębów

u podstawowych zwierząt hodowlanych w Brze-

ściu Kujawskim i Osłonkach zostały opracowa-

ne w oparciu o etapy wyróżnione przez Granta

(1975, 1982). Interpretacja uzyskanych wyników

została utrudniona przez brak nienaruszonych

kości żuchwy z zachowanym szeregiem zębów

trzonowych. Sposób analizy danych z Osłonek

polega na zestawieniu etapów ścierania zębów

określonych jako M1 i M2 (u bydła M2 i M3),

w przypadku gdy zęby te pochodzą z tej samej

żuchwy.

Analiza wyrzynania się zębów u bydła na

stanowisku w Osłonkach sugeruje, że główny

ubój dorosłych egzemplarzy odbywał się wkrót-

ce po osiągnięciu przez nie 48 miesiący życia,

tak więc niewiele zwierząt dożywało do za-

awansowanych etapów ścierania zębów trzo-

nowych M3 (ryc. 1326 i 1327). Dane dotyczące

świń potwierdzają analizę zrośnięcia nasady ko-

ści z trzonem, a ich ciągła dystrybucja wskazu-

je na brak uboju sezonowego (ryc. 1328). Dane,

dotyczące owcy i kozy są stosunkowo trudne

do interpretacji i układają się one w pewne cha-

rakterystyczne grupy (ryc. 1329). Do 42 miesią-

ca życia, dane te są zbieżne z wynikami anali-

zy zrośnięcia nasady kości z trzonem, przy czym

najciekawsze są wyniki badań ścierania zębów

dla egzemplarzy starszych. Dane te sugerują ist-

nienie grupy zwierząt 5–6 letnich, oraz niewiel-

kiej grupy zwierząt, liczącej ponad 6 lat. Dowo-

dzi to, że owce i kozy były trzymane długo po

osiągnięciu wieku, w którym uzyskiwały mak-

symalną wagę żywca, co sugeruje, że ich wartość

nie polegała wyłącznie na wartości mięsa.

D. Makowiecki przyjął inną metodę badania

wyrzynania się i ścierania zębów trzonowych żu-

chwy, a mianowicie zebrał dane dla wszystkich

badanych przez siebie próbek i podzielił je we-

dług wieku. Dane te uzupełniają te, które zostały

uzyskane ze stanowiska w Osłonkach, ponieważ

pokazują stałą redukcję zwierząt od momen-

tu urodzenia do 42 miesiąca życia, oraz szczyt

uboju, który mieści się między 42 i 60 miesią-

cem życia, z niewielką ilością zwierząt dożywa-

jących szóstego roku życia, lub dłużej. Możemy

zatem wnioskować, że w momencie zrośnięcia

nasady kości z trzonem w wieku 48 miesięcy,

stado bydła redukowano o dorosłe egzemplarze.

Tak więc, pomimo iż mięso nie było jedynym

celem hodowli bydła, było jednak znacznie waż-

niejsze niż jakikolwiek inny produkt.

Zebrane dane, dotyczące etapów wyrzyna-

nia się i ścierania zębów u kozy i owcy są po-

Page 118: Reprinted from - Princeton

1696

równywalne z wynikami badań w Osłonkach,

wskazując na intensywny ubój pomiędzy 36 i 48

miesiącem życia zwierząt, z niewielką ilością

starszych egzemplarzy. Podobnie jak poprzed-

nio, pomimo iż mięso nie było jedynym wyko-

rzystywanym przez człowieka produktem, wy-

daje się, że było ważniejsze niż inne. Zebrane

dane, dotyczące etapów wyrzynania się i ściera-

nia zębów u świni wskazują, jak należy się spo-

dziewać, duży liczebnie ubój wśród młodych

egzemplarzy, którego szczyt przypada pomię-

dzy 12 a 24 miesiącem życia zwierząt.

Jest zatem rzeczą niezwykłej wagi, aby po-

łączyć ze sobą wyniki badań, dotyczące zrośnię-

cia nasady kości z trzonem oraz wyrzynania się

i ścierania zębów żuchwy w celu uzyskania peł-

niejszego obrazu profilów śmiertelności i popu-

lacji zwierząt hodowlanych. Znajduje to swoje

zastosowanie szczególnie w odniesieniu do by-

dła, owcy i kozy. Podczas gdy dane, dotyczące

zrośnięcia nasady kości z trzonem pozwalają

sądzić, że duża część tych zwierząt przeżywała

dłużej. Badania nad ścieraniem zębów żuchwy

jasno wskazują na moment śmierci, który mu-

siał nastąpić wkrótce po momencie zrośnię-

cia nasady. Niewiele egzemplarzy bydła przeży-

ło swój piąty rok życia, a mała ilość kóz i owiec

przeżyła więcej niż cztery. Wprawdzie nie moż-

na wykluczyć drugorzędnych celów hodowli

zwierząt, jednak stada w południowowschod-

niej części Kujaw były głównie skierowane na

produkcję mięsa.

Kości zwierząt ze stanowisk kultury len-

dzielskiej w południowowschodniej części Ku-

jaw zostały zmierzone przy wykorzystaniu stan-

dardowych metod opublikowanych przez A. von

den Driescha (1976) i stanowią jeden z więk-

szych zbiorów pomiarów neolitycznych zwie-

rząt kopytnych, pochodzących z okresu ponad

4000 lat BC. w Europie klimatu umiarkowane-

go. Pełne wykorzystanie całego materiału z tej

próbki będzie wymagało całych lat badań, jed-

nak nawet teraz na podstawie wstępnych ob-

serwacji możemy ustalić pewne kluczowe kwe-

stie, dotyczące udomowiania zwierząt, głównie

w oparciu o próbkę kości bydła i świni ze stano-

wiska w Osłonkach.

Różnice osteologiczne pomiędzy dzikim

i domowym bydłem od dawna są wyzwaniem

dla archeozoologów. Od końca lat 70–tych sta-

rano się wypracować możliwie najlepsze me-

tody odróżnienia bydła domowego od dzikie-

go w danej próbce. W tym celu posługiwano się

„osobnikiem wzorcowym”, zwykle dzikim, wia-

domego pochodzenia. Następnie pomiary ar-

cheologicznych okazów normalizowano w spo-

sób algebraiczny i logarytmiczny oraz ustalano

stopień znormalizowanego odchylenia pomiaru

danego elementu od odpowiadającego mu po-

miaru elementu osobnika wzorcowego.

W swojej analizie szczątków zwierzęcych

ze stanowiska w Brześciu Kujawskim P. I. Bo-

gucki zastosował algebraiczną metodę rozwi-

niętą przez H. P. Uerpmanna (1979) i użył po-

miarów opracowanych przez M. Degerbola

(1970), a dotyczących niewielkiego okazu polo-

dowcowego tura z Danii, oraz krowy typu Uller-

slev, jako osobników wzorcowych. Rezultaty tej

analizy wykazują, że praktycznie wszystkie ko-

ści bydła ze stanowiska w Brześciu Kujawskim

mają mniejsze rozmiary, niż kości krowy typu

Ullerslev, tak więc można zakładać, że są to ko-

ści zwierząt domowych.

W celu przeprowadzenia takiej samej ana-

lizy kości bydła ze stanowiska w Osłonkach,

P.I. Bogucki zastosował metodę logarytmicz-

ną rozwiniętą przez R. H. Meadowa (1999). Tak

jak poprzednio krowa typu Ullerslev posłuży-

ła jako osobnik wzorcowy, tym razem jednak

użyto pomiarów sporządzonych przez K. Step-

pana(2001), zgodnie z konwencją A. von den

Driescha. Rezultat analizy był bardzo podobny

do wyniku pomiarów na stanowisku w Brześciu

Kujawskim ponad 25 lat temu. Pokazywał on,

że praktycznie wszystkie kości bydła w Osłon-

kach należały do zwierząt domowych, być może

za wyjątkiem kilku dużych okazów, mniej niż

dwudziestu, które mogły należeć do niewielkich

rozmiarów dzikiego bydła.

Podobne podejście zastosowano w przy-

padku próbki kości świni ze stanowiska

w Osłonkach, używając logarytmicznej meto-

dy R. H. Meadowa oraz osobnika wzorcowego

w postaci świni z terenu Węgier, opisanej przez

N. Russella (1993). Wyniki (ryc. 1338) wskazują

na większy udział osobników dzikich, niż miało

to miejsce w przypadku bydła. Pozwala to wnio-

Page 119: Reprinted from - Princeton

1697

skować, że próbka kości świni na stanowisku

w Osłonkach zawiera bardziej znaczącą ilość

kości dzikich zwierząt, niż można by przypusz-

czać po analizie wyłącznie oglądowej. Badania

poszczególnych pomiarów, takich jak szerokość

końca bliższego kości promieniowej, najmniej-

sza długość szyjki łopatki i największa długość

boczna kości skokowej wskazują, że kości do tej

pory oddzielone od pozostałych prawie z całą

pewnością należą do okazów zwierząt dzikich.

Zespoły szczątków zwierzęcych znajdowane

obecnie na neolitycznych stanowiskach w po-

łudniowowschodniej części Kujaw są efektem

końcowym długotrwałego procesu rozbierania

tuszy, sortowania, dystrybucji, gotowania, roz-

drobnienia kości w celu wydobycia szpiku, se-

lekcji kości w celu produkcji narzędzi, usuwania

kości, niszczenia ich przez zwierzęta mięsożer-

ne oraz mechanicznego rozdrobnienie in situ.

Tak więc badanie na ich podstawie technik ubo-

ju nie jest zadaniem łatwym. Największe kości

długie: kość udowa, kość ramienna i kość pisz-

czelowa, były najbardziej rozdrobnionymi ele-

mentami kości szkieletu pozaczaszkowego.

Na kościach znajduje się stosunkowo nie-

wiele nacięć, chociaż tam gdzie występują, są

one bardzo wyraźne. Wśród kości bydła na-

cięcia najczęściej znajdują się na kości skoko-

wej. Na szczególną uwagę zasługują nacięcia na

kościach psa, wszystkie pochodzące z jednego

obiektu i od jednego osobnika, co wskazuje na

wystąpienie przynajmniej jednego przypadku

zabicia psa w celu jego konsumpcji przez miesz-

kańców Osłonek.

Szczególnie dramatyczny przypadek ubo-

ju widzimy na przykładzie mocno skostnia-

łej czaszki kozy, pochodzącej ze stanowiska

w Osłonkach, na której widnieje dziura o śred-

nicy 43 mm powstała na skutek uderzenia

w prawą część ciemieniową krótko przed, lub

po śmierci zwierzęcia. Autor sugeruje, że zwie-

rzę mogło być uderzone T–kształtnym toporem

rogowym. Takie topory licznie występują na sta-

nowiskach grupy brzesko–kujawskiej.

Pośród innych ciekawych zmian patologicz-

nych znajdujemy kilka kości śródstopia/ śródrę-

cza (metapodial) i członu palcowego, o cechach

przerostu kości u podstawy bliższej powierzch-

ni stawowej. Chociaż trudno wyciągnąć da-

leko idące wnioski, odkształcenie kości może

wskazywać na urazy natury biomechanicznej,

spowodowane eksploatacją zwierząt w celach

pociągowych. Dobrze znane nam przypadki wy-

korzystania zwierząt pociągowych w środkowej

Europie pochodzą z okresu czwartego tysiącle-

cia BC, tak więc odkształcone kości mogą wska-

zywać na wcześniejszą tego rodzaju działalność,

pochodzącą jeszcze z poprzedniego tysiąclecia.

Na poziomie najbardziej ogólnym, dziesięć

omawianych tu próbek szczątków zwierzęcych

wykazuje wiele podobieństw. W skład ich wcho-

dzą te same gatunki zwierząt użytkowych: by-

dła domowego, owcy, kozy, świni, jelenia i sarny.

Proporcje gatunków dzikich i domowych zwie-

rząt wykazują tendencje stałe. Jedynie w Brze-

ściu Kujawskim i Falborzu liczba zwierząt je-

leniowatych przekracza 10%. Pomimo, że dane

metryczne sugerują większą eksploatację dzikiej

świni, niż wynikałoby to z identyfikacji danych

egzemplarzy, można wyciągnąć wniosek, że go-

spodarka zwierzęca grupy brzesko–kujawskiej

odbywała się w oparciu o zwierzęta udomowio-

ne.

Na poziomie bardziej szczegółowym wy-

stępują różnice pomiędzy próbkami szczątków

zwierzęcych, dotyczące udziału procentowego

głównych gatunków zwierząt użytkowych. Jed-

nak, jak wspomniano wcześniej, takie różnice

mogą również występować w obrębie jednego

zespołu, kiedy porównuje się próbki z różne-

go typu obiektów. Różnice, które tu obserwu-

jemy, mają prawdopodobnie znaczenie lokalne

i dotyczyły uboju w stadzie, a w Brześciu Kujaw-

skim i Falborzu przypadkowej działalności my-

śliwskiej w różnych domostwach i różnie reali-

zowanej.

Problemem, który nie został do tej pory

szczegółowo omówiony, jest gospodarcze wyko-

rzystanie bobrów, które, jak wykazują badania

z Brześcia Kujawskiego i Pikutkowa, miały więk-

sze znaczenie dla człowieka, niż tylko cel utrzy-

mania się przy życiu. W jamie 820 na stanowi-

Page 120: Reprinted from - Princeton

1698

sku w Brześciu Kujawskim odkryto rozdzielone

tusze pięciu bobrów, których główne części na-

dal zalegały w porządku anatomicznym. Zna-

lezisko to jest interpretowane, jako przykład

skórowania zwierząt. Na stanowisku w Pikutko-

wie, w jednej z dużych jam odpadkowych od-

kryto fragmentarycznie zachowane szkielety

trzech bobrów. Pomimo, iż nie zachowały się

one w układzie anatomicznym, co miało miej-

sce w Brześciu Kujawskim, to jednak koncen-

tracja kości bobrów prawdopodobnie również

wskazuje na ich skórowanie. Na szczególną

uwagę zasługują nacięcia na dalszych kościach

piszczelowych. Duże i płytkie jezioro Smętowo

było prawdopodobnie miejscem, sprzyjającym

rozwojowi kolonii bobrów.

Nietypowym gatunkiem odkrytym na tych

stanowiskach, był europejski niedźwiedź bru-

natny. Kilka kości śródręcza/śródstopia wy-

stąpiło w takim samym układzie kulturowym

w Osłonkach; prawdopodobnie jest to pozosta-

łość po skórowaniu niedźwiedzia.

Przez długi czas uważano, że zespoły szcząt-

ków zwierzęcych z Falborza mają wyjątkowy

charakter, szczególnie jeśli chodzi o występowa-

nie części ciała różnych gatunków zwierząt. Aby

ustalić, czy było to miejsce pierwotnego uboju

zwierząt, zastosowano prostą technikę badaw-

czą, której M. R. Rosenberg et al. (1998) użyli

na stanowisku Hallan Cemi w Turcji. Kości by-

dła i sarny zgadzają się z oczekiwanymi wynika-

mi, jeśli chodzi o udział kości bogatych i ubo-

gich w mięso w przypadku uboju pierwotnego.

Jednak kości owcy/kozy, sarny i świni wykazu-

ją odwrotne tendencje, co sugeruje, że zwierzę-

ta te były zabite w innym miejscu i tylko kości

„mięsne” (bogate w mięso) zostały dostarczone

do Falborza, w celu konsumpcji.

Głównymi gatunkami, które składają się

na mikroregionalną gospodarkę zwierzęcą po-

łudniowo–wschodnich Kujaw w piątym tysiąc-

leciu BC, są domowe zwierzęta kopytne, dzikie

zwierzęta kopytne, żółwie błotne, ryby i pta-

ki. Inne gatunki, chociaż nie bez znaczenia (jak

w przypadku bobra), odgrywają mniejszą rolę

w ogólnym obrazie tamtejszej gospodarki.

Neolityczna gospodarka zwierzęca połu-

dniowo–wschodnich Kujaw była zdominowa-

na przez zwierzęta domowe, stanowiące ponad

90% zespołów szczątków zwierzęcych. Obser-

wacja ta przeczy poprzednim wnioskom na te-

mat zespołów szczątków zwierzęcych w Brześciu

Kujawskim, zgodnie z którymi na stanowiskach

kujawskich miała znajdować się większa propor-

cjonalnie liczba zwierząt dzikich (P. I. Boguc-

ki 1989, 1996). Obecnie można jednak uznać,

że na stanowiskach grupy brzesko-kujawskiej

znajdują się zespoły szczątków zwierzęcych, na-

leżących prawie zupełnie do głównych zwierząt

domowych tj.: bydła, owcy, kozy i świni. Ilość

zwierząt hodowlanych była w stanie zaspoko-

ić zapotrzebowanie na mięso mieszkańców po-

łudniowo–wschodnich Kujaw w piątym tysiąc-

leciu BC bez większej konieczności myślistwa.

Biorąc pod uwagę krzywe śmiertelności ze sta-

nowisk w Osłonkach i Brześciu Kujawskim oraz

dane wyrzynania się zębów z innych stanowisk

można stwierdzić, że wszystkie gatunki zwierząt

hodowlanych wykorzystywane były w celu pro-

dukcji mięsa, a inne cele miały znaczenie dru-

gorzędne.

Użycie czterech różnych gatunków zwierząt

hodowlanych wskazuje na fakt, że gospodar-

ka zwierzęca była zorganizowana i wewnętrz-

nie zróżnicowana. Innymi słowy, każdy z tych

gatunków miał inne wymagania, jeśli chodzi

o wyżywienie i opiekę oraz łączyła je inna rela-

cja z hodowcą. Odgrywały też inną rolę w go-

spodarce rolniczej. Bydło i owca zajmowały

podobne nisze, jako że oba gatunki były wypa-

sane i mogły korzystać z nieużytków oraz in-

nych terenów trawiastych takich jak terasy za-

lewowe małych strumieni. W oparciu o bogatą

literaturę, dotyczącą współczesnego leśnego wy-

pasu bydła (np. S. Adams 1975), P. I. Bogucki

(1982) zasugerował możliwość wypasu niewiel-

kiej ilości bydła neolitycznego w okolicznych la-

sach. Również w lasach można wypasać owce.

Według ostatnich sugestii F. W. M. Very (2000)

dzika populacja zwierząt roślinożernych w Eu-

ropie pre–neolitycznej żyła raczej w lesie par-

kowym, niż w gęstej puszczy, jak to było zwykle

rekonstruowane. Hipoteza F. W. M. Very została

skrytykowana przez Mitchella (2005), ale zapo-

czątkowała ona dyskusję na temat naturalnego

Page 121: Reprinted from - Princeton

1699

charakteru lasu, w którym zamieszkiwali neoli-

tyczni rolnicy (np. A. Kreuz 2008). Jako że spo-

łeczności, zajmujące się hodowlą bydła i owiec,

były obecne na terenie południowo–wschodnich

Kujaw kilkaset lat przed pojawieniem się oma-

wianych tu osad, istnieje możliwość, że tereny

otwarte do wypasu współwystępowały z lasa-

mi o niskim poszyciu, które mogły sprzyjać nie-

wielkiemu wypasowi zwierząt. Układ ten mógł

zostać wzmocniony przez następne kilka stuleci

użytkowania terenów przez grupę brzesko–ku-

jawską.

Kozy, jako liściożerne, nie konkurują o po-

żywienie z owcami i bydłem, ale raczej spożywa-

ją inny zestaw roślin, włączając do niego krzewy

i podrosty, które mogły stanowić część odra-

dzającej się pokrywy roślinnej pól uprawnych

i innych terenów odkrytych, a co za tym idzie,

obecność znacznej liczby kóz może być przyta-

czana jako jedna z przyczyn długoterminowych

zmian roślinności, zaobserwowanych w danych

pyłkowych z rejonu Osłonek przez D. Nalep-

kę (2005). O ile wpływ owiec i bydła mógł być

osłabiony przez leśny wypas w siedliskach, któ-

rych roślinność była uprzednio zaadaptowana

do takiej działalności przez dzikie zwierzęta ro-

ślinożerne (zgodnie z hipotezą F. W. M. Very),

kozy mogły spożywać inny rodzaj roślin, które

w związku z tym były tylko umiarkowanie do-

tknięte przez inwentarz żywy.

W omawianych zespołach w tym opra-

cowaniu kozy przewyższają liczebnie owce na

wielu stanowiskach. Przykładowo, więcej kóz

niż owiec jest w Brześciu Kujawskim, Osłon-

kach, Konarach i Pikutkowie, z relacją owca:

koza między 1:1,6 a 1:2. W Falborzu ta relacja

to 1:1, podczas gdy w Miechowicach 4a wyno-

si ona 1,3:1 owcy: kozy. Miechowice mają 4,17:1

owcy: kozy, Smólsk 2,5:1, a Zagajewice 1,9:1.

R. W. Redding (1985, 1991) rozważył znaczenie

relacji owca: koza i bydło: w relacji do owcy/kozy

w odniesieniu do Bliskiego Wschodu i Egiptu.

Zdaniem R. W. Reddinga, mieszana populacja

caprinae, w której głównym celem jest pozyska-

nie energii i białka, powinna mieć relację owca:

koza między 5:1 a 1:0, w zależności od warun-

ków środowiskowych. Z drugiej strony, jeśli ce-

lem jest bezpieczeństwo stada, definiowane jako

minimalizacja fluktuacji rozmiarów stada, rela-

cja owca: koza powinna mieścić się w przedziale

1,7:1 a 1:3, z kozami dorównującymi ilościowo

owcom, lub nawet je przewyższającymi. Próbki

z Brześcia Kujawskiego, Osłonek, Konar, Pikut-

kowa, Falborza i Miechowic 4a pasują do mode-

lu zabezpieczonego stada (wg R. W. Reddinga),

podczas gdy trzy inne zbliżają się do funkcji po-

zyskania energii, lub białka. Dysponując stosun-

kowo niewielką próbką z Miechowic 4, Smólska

i Zagajewic, zgodność materiału z tego regio-

nu wskazuje raczej na opiekę nad stadami owiec

i kóz, której celem jest maksymalne, długoter-

minowe bezpieczeństwo lub zrównoważona

wydajność (używając określenia R. W. Reddin-

ga 1984, s. 239).

Jest jeszcze wiele kwestii, których nale-

ży się dowiedzieć o neolitycznej hodowli świń.

P. I. Bogucki (1989) zaproponował system ho-

dowli, w którym świniom zasadniczo pozwala-

no poruszać się w okolicach osady przy ograni-

czonym do minimum doglądaniu przez ludzi,

co mogło doprowadzić do zetknięcia z rodzimy-

mi dzikimi świniami i wywoływało krzyżowanie

się. Nowe świadectwa znacznego wzrostu udzia-

łu genów dzikich świń w populacji udomowio-

nych gatunków około 4000 BC. (G. Larson et al

2007) pozwala zakładać, że jest to model wiary-

godny. C. Grigson (1982: 305) wskazał na to, że

wydajna hodowla świni polega na umiejętności

pozostawienia przez człowieka części populacji

świń (szczególnie prośnych macior) w niewo-

li na rozród, zapewniając udomowionej świ-

ni schronienie zimą i dokarmiając ją zebranym

ziarnem i odpadkami.

R. W. Redding i M. R. Rosenberg (1998) za-

proponowali model neolitycznej hodowli świń,

w którym wszystkie hodowane świnie są efektem

parzenia się dzikich odyńców i udomowionych

macior. Model ten nazwali „modelem hodow-

lanym opartym na samicach”. Zatem otacza-

ne opieką świnie składają się z samic i ich mło-

dych. Hodowcy nie muszą troszczyć się o wielkie,

głodne i zapewne agresywne samce, a jedynie za-

pewniają na zimę schronienie prośnym samicom

i ich młodym. R. W. Redding i M. R. Rosenberg

(1998, s. 68) budują swój oparty na samicach mo-

del hodowlany, biorąc pod uwagę bardzo wcze-

sne stanowiska neolityczne na Bliskim Wscho-

dzie i wskazują, że wraz z pojawieniem się

uprawy zbóż, należałoby oczekiwać porzucenia

tego modelu ze względu na trudności utrzyma-

Page 122: Reprinted from - Princeton

1700

nia świń z dala od upraw. Jednakże poświadczo-

na obecność wielkich dzikich świń wśród próbek

kości świń na takich stanowiskach jak Osłonki,

współwystępowanie świń i ziarna na tych stano-

wiskach oraz dowody Larsona et al (2007) doty-

czące znacznego wzrostu udziału genów dzikich

świń w tym okresie czasu sugeruje, że taki oparty

na samicach model hodowli mógł być stosowany

w południowo–wschodniej części Kujaw w pią-

tym tysiącleciu BC.

Tylko w Brześciu Kujawskim i w mniejszym

stopniu w Falborzu jeleń i sarna faktycznie wy-

stąpiły jako znaczące składniki zespołów szcząt-

ków zwierzęcych. Na innych stanowiskach są

one obecne w niewielkich ilościach. Jeśli weź-

miemy pod uwagę ilość zrzucanego poroża, re-

prezentacja upolowanego jelenia kurczy się jesz-

cze bardziej. Dzikie bydło i świnie są faktycznie

obecne na wszystkich stanowiskach i nie moż-

na ich nie brać pod uwagę, ale wygląda na to,

że nie miał miejsca żaden systematyczny wysi-

łek, mający na celu pozyskanie tych gatunków.

Stosunkowo słabo rozwinięte łowiectwo nie stoi

w sprzeczności z faktem, że lasy i pola otaczają-

ce osady neolityczne na Kujawach południowo–

wschodnich były istotnym naturalnym źródłem

pozyskiwania dzikich zwierząt kopytnych. Z tej

lub też innej przyczyny, mieszkańcy tych stano-

wisk nie korzystali z nich w większym zakresie,

niż to zostało opisane.

Zatem dlaczego mieszkańcy tych stanowisk

w ogóle podejmowali działalność łowiecką? Jed-

ną z możliwości, rozważanych przez P. I. Boguc-

kiego (1981,1982) w jego analizie fauny z Brze-

ścia Kujawskiego, jest polowanie na dzikie

zwierzęta roślinożerne w celu ochrony zbiorów

przed zniszczeniem. H. P. Uerpmann (1977)

był pierwszym, który podniósł kwestię neoli-

tycznego łowiectwa mającego na celu ochronę

zbiorów, oraz to, że w innych częściach świa-

ta takie „ogrodowe łowiectwo” miało zasadni-

cze znaczenie dla ludów prahistorycznych (np.

Linares 1976). W świetle poglądu uznającego

rolnictwo neolityczne za intensywną i skoncen-

trowaną działalność (A. Bogaard 2004) ochro-

na zbiorów przed dzikimi roślinożercami była-

by bardzo ważna. Inną możliwością, rozważaną

przez K. V. Boyle (2006) w odniesieniu do neo-

litu Europy zachodniej jest fakt, że łowiectwo

było działalnością prestiżową i sukces w niej od-

niesiony dodawał ważności. Ta motywacja jest

jednak jeszcze trudniejsza do sprawdzenia na

gruncie archeologii, chociaż pewną przesłanką

dotyczącą ważności jelenia może być obecność

w grobach męskich, toporów wykonanych z tyki

poroża, choć jest to, co prawda, wątłe ogniwo.

Łowiectwo mogło także stanowić urozmaice-

nie podczas zimy, kiedy prace polowe zabiera-

ły mniej czasu.

Kości żółwia błotnego w Brześciu Kujaw-

skim i Osłonkach, jak również fakt ich obecno-

ści na wielu innych stanowiskach, wymienio-

nych w tym sprawozdaniu wskazują nie tylko na

wykorzystanie tego gatunku, jako źródła war-

tości odżywczych, ale również dają obraz śro-

dowiska naturalnego wokół osad. Po pierwsze,

obecność zmienno–cieplnych gadów, takich jak

Emys orbicularis może dostarczyć informacji

na temat temperatury na terenie południowo–

wschodnich Kujaw w piątym tysiącleciu BC. Po

drugie, zwyczaje, związane z gniazdowaniem

żółwia błotnego, mogą rzucać światło na kra-

jobraz pradziejowy, w którym zmiany antropo-

geniczne mogły poprawić warunki, sprzyjające

ich rozmnażaniu. Możemy założyć, że mokradła

południowo–wschodnich Kujaw sprzyjały roz-

wojowi dużych populacji Emys orbicularis, choć

nie na tyle dużych, aby stanowiły one podstawę

wyżywienia okolicznych mieszkańców.

Pomimo, iż obecnie żółw błotny zamiesz-

kuje głównie tereny południowej Europy, nadal

występuje w pewnych szczególnych siedliskach

w północnej części kontynentu europejskiego.

Jego ekspansja do północnej Europy w okresie

holocenu, została umożliwiona przez wyższą

temperaturę spowodowaną atlantyckim okre-

sem klimatycznym. Czynnikiem warunkują-

cym północne rozprzestrzenienie Emys orbi-

cularis jest położenie klimatycznego gradientu,

oddzielającego obszary z chłodnymi porami let-

nimi w Europie zachodniej, od obszarów z cie-

płymi porami letnimi w Europie wschodniej

(Lenk et al. 1999: 1919). Właśnie te cieplejsze

Page 123: Reprinted from - Princeton

1701

warunki sprzyjają rozwojowi żółwia błotnego,

stąd też ich obfita liczba na terenie południowo

–wschodnich Kujaw w piątym tysiącleciu BC.

Świadczy to o wysokiej temperaturze letniej na

tym terenie, co jest zgodne z przyjętym mode-

lem klimatu w środkowym holocenie.

Obserwacja zwyczajów, związanych z gniaz-

dowaniem żółwia błotnego może rzucać światło

na to jak wyglądał krajobraz pradziejowy na te-

renie omawianych stanowisk. B. Najbar i E. Szu-

sziewicz (2007) piszą, że samice żółwia błotnego

w zachodniej Polsce składały jaja na nasłonecz-

nionych polanach leśnych w końcowym okresie

maja i na początku czerwca. Miejsca występowa-

nia gniazd były oddalone od koryta najbliższego,

dużego strumienia o 77 metrów, choć niewielkie

dopływy mogły pozwolić samicom na pokona-

nie tej odległości częściowo drogą wodną. Sami-

ce żółwia wybierały te same miejsca do budowy

gniazd. Jeśli miejsca te stawały się zacienione na

skutek bujnego rozwoju roślinności, wtedy żół-

wie porzucały je. P. I. Bogucki (1981) zasuge-

rował, że duży wzrost liczby szczątków żółwia

błotnego w ostatniej fazie działalności grupy

brzesko–kujawskiej może wskazywać na antro-

pogeniczne zmiany krajobrazu, a w szczególno-

ści powstawanie i utrzymywanie się przestrzeni

niezalesionych. Dowody na powstawanie prze-

cinek leśnych, oraz antropogeniczne zmiany

wegetacji podczas panowania kultury lendziel-

skiej na tych terenach, są poparte przez analizy

paleobotaniczne Doroty Nalepki (2005).

Trudno ustalić jaką rolę odgrywały ryby

i ptaki w gospodarce osad neolitycznych połu-

dniowo–wschodnich Kujaw. Oczywiście istnieją

ślady działalności człowieka takie jak rybołów-

stwo, czy też polowanie na ptactwo, szczególnie

na stanowiskach większych: w Brześciu Kujaw-

skim, lub Osłonkach. Nie można jednak stwier-

dzić, czy stanowiły one podstawę gospodar-

ki człowieka tamtego okresu. Wydaje się raczej,

że zwierzęta te występowały w tak dużej liczbie,

że byłoby dziwne, gdyby człowiek z nich nie ko-

rzystał. Tak więc ich eksploatacja wynikała za-

równo z konieczności, jak też z faktu ich dużej

dostępności w środowisku naturalnym. Duża

liczba ptactwa, występującego sezonowo, szcze-

gólnie na polach w okresie żniw, lub na brzegach

jezior, nie mogła pozostać niezauważona.

W przeciwieństwie do gospodarki kultu-

ry ceramiki wstęgowej rytej z szóstego tysiącle-

cia BC, która opierała się głównie o eksploatację

bydła, gospodarka zwierzęca społeczności neo-

litycznych z terenu Kujaw, w piątym tysiącle-

ciu p.n.e., była bardziej zróżnicowana i polega-

ła na wykorzystaniu kilku głównych gatunków

zwierząt hodowlanych, jak również dzikich ssa-

ków, ryb, żółwi i ptactwa wodnego. Stosunko-

wo spójny charakter zespołów, a w każdym razie

brak dużych dysproporcji pomiędzy gatunkami

zwierząt domowych i dzikich oraz między głów-

nymi gatunkami zwierząt domowych, wskazuje

na to, że gospodarka grupy brzesko-kujawskiej

nosiła cechy dojrzałej. Brak specjalizacji w ho-

dowli jednego z gatunków sugeruje, że wyko-

rzystanie głównych zwierząt użytkowych było

częścią stabilnej strategii gospodarczej tamtego

okresu. Znajdowała ona również swoje odzwier-

ciedlenie w sposobie wykorzystania roślin dzi-

kich i domowych przez mieszkańców omawia-

nych stanowisk (A. Bieniek 2002) oraz innych

relacjach natury gospodarczej pomiędzy po-

szczególnymi domostwami w ramach wspólno-

ty, jak również poza nią.

W gospodarce zwierzęcej pełnego neolitu

w piątym tysiącleciu BC. każda większa kategoria

inwentarza żywego odgrywała pewną specjalną

rolę. Świnie zaspokajały zapotrzebowanie na „to-

wary pierwszej potrzeby”’, takie jak mięso i inne

podstawowe produkty, a wśród nich skóry, tłusz-

cze, łój i inne zwierzęce półprodukty. Są to zwie-

rzęta tanie w hodowli, co oznacza, że nie potrzeba

karmić ich zbyt długo do momentu osiągnięcia

maksymalnej wagi mięsnej i że są w stanie samo-

dzielnie znaleźć pokarm dla siebie na terenie osa-

dy oraz w jej okolicach, a także na polach i w la-

sach. Mogą być doglądane przez dzieci i starców,

a zatem pozwalają nieproduktywnym członkom

społeczności brać aktywny udział w gospodar-

Page 124: Reprinted from - Princeton

1702

stwie domowym. Świnie to także zwierzęta szyb-

ko mnożące się, zatem nie ma potrzeby utrzymy-

wać ich dużego stada zarodowego.

Owce i kozy odgrywały nieco bardziej zło-

żoną rolę. Są trudniejsze w hodowli niż świnie,

gdyż muszą być hodowane nieco dłużej i mają

za każdym razem tylko jedno lub dwa młode.

Konieczne jest zatem pozostawianie większego

stada zarodowego. Zazwyczaj należy utrzymy-

wać dość duże stado, tak aby utrata jednej czy

dwóch sztuk z powodu drapieżników nie była

stratą niepowetowaną.

Bydło w gospodarce neolitycznej można by

uznać za siłę napędową o szczególnie wielkim

potencjale. Jest ono wielkie i ciężkie, a zatem

potrzebuje przestrzeni, zarówno na zewnątrz,

jak i wewnątrz. Bydło rośnie wolno i rozmna-

ża się stosunkowo wolno, zwykle dając jedno

młode w miocie, a zatem musi być hodowane

dłużej niż owce i kozy. Ponadto niesie ze sobą

wyższy stopień ryzyka. Jednakże zyski przyno-

szone przez bydło są pokaźne. Po pierwsze, do-

starcza ono ogromnych ilości mięsa, które może

być zjedzone natychmiast lub zabezpieczone do

przyszłego użytku przez wędzenie względnie

suszenie oraz wymienione w transakcjach mię-

dzy gospodarstwami domowymi. Dostarcza po-

nadto wielkich skór, zaś jeśli chodzi o wykorzy-

stanie pochodnych produktów takich jak mleko

oraz zwierzęcego sprzężaju, dowody pochodzą-

ce z południowo–wschodnich Kujaw z piątego

tysiąclecia BC są niejednoznaczne. Logicznie

rzecz biorąc, wydaje się jasne, że szeroko roz-

powszechnione użycie produktów pochodnych,

które w sposób pewny i udokumentowany wy-

stępują w czwartym tysiącleciu BC nie pojawi-

ły się nagle, w pełni ukształtowane. Musiało być

ono poprzedzone działalnością ludzi oraz ich

eksperymentami w okresie, kiedy główne ele-

menty neolitycznej gospodarki mięsnej zostały

ustalone i ustabilizowane.

Poszukiwanie porównawczych danych, do-

tyczących szczątków zwierzęcych z piątego ty-

siąclecia BC w centralnej części Europy pro-

wadzi do zaskakującego wniosku, że ciągle jest

bardzo niewiele naddunajskich zespołów kości

zwierzęcych w porównaniu z tymi, które odkry-

to na Niżu Polskim. O ile próby z południowej

Skandynawii i najbardziej na północ wysuniętej

części Niemiec, a także z położonych nad jezio-

rami osad z północnych Alp są regularnie pu-

blikowane, to włożono bardzo niewiele pracy

w analizę szczątków zwierzęcych, pochodzących

z osad neolitycznych ze świata naddunajskiego.

Jest to w zasadniczej części wynikiem złego za-

chowania kości w środowisku lessowym. Jednak

wydaje się, biorąc nawet pod uwagę ten czyn-

nik, że ilość analiz archeozoologicznych osad

naddunajskich jest daleka od tego, czego można

było spodziewać się po zainteresowaniu kośćmi

zwierzęcymi 30 lat temu oraz informacjami ja-

kich one dostarczają na temat zachowania czło-

wieka z tamtego okresu.

Zasadniczym wyjątkiem od powyższego

uogólnienia jest skupisko stanowisk neolitycz-

nych w Basenie Paryskim, a w szczególności

późnej ceramiki wstęgowej rytej (Rubané Re-

cent) ze schyłku szóstego tysiąclecia BC i jej na-

stępców, czyli grup Villeneuve–Saint–Germain

(VSG) i Cerny z piątego tysiąclecia BC. Tak jak

w wielu próbkach szczątków zwierzęcych gru-

py brzesko–kujawskiej kultury lendzielskiej, ze-

społy zwierzęce VSG są zwykle zdominowane

przez udomowione bydło (zazwyczaj około 60–

80% GLS). Natomiast ilość owcy/kozy (między

5 a 20%) i świni (między 10 a 30%) jest więk-

sza niż we wcześniejszych zespołach szczątków

zwierzęcych kultury ceramiki wstęgowej ry-

tej, pochodzących z tego samego obszaru (patrz

R. Arbogast 1995, wykres 6). Są znaczne wyjąt-

ki od tego uogólnienia, takie jak Longueil–Sa-

int–Marie LBR II i LBR III, gdzie próbki szcząt-

ków zwierzęcych zawierają znaczną liczbę świń

(odpowiednio 67% i 38%), mniej bydła i bardzo

mało owcy/kozy (R. Arbogast 1995). Pomimo

pewnej odmienności w charakterze od próbek

kości zwierzęcych grupy brzesko–kujawskiej

kultury lendzielskiej, fauna VSG wykazuje po-

dobną do niej heterogeniczność, w przeciwień-

stwie do skrajnej przewagi udomowionego by-

dła na stanowiskach kultury ceramiki wstęgowej

rytej.

Page 125: Reprinted from - Princeton

1703

Bedault i Hachem (L. Bedault 2006, L. Be-

dault i L. Hachem 2008) proponują aby uznać,

że we wczesnej VSG gospodarka była głównie

nakierowana na bydło, a dodatkowo na owce

i kozy jako gatunki inwentarza żywego o ważno-

ści mniejszej tylko od bydła. R. Arbogast (1995,

s. 327) proponuje, aby uznać, że wzrost użycia

świni w VSG zapowiada środkowo neolityczne

gospodarki zwierzęce. Zespoły szczątków zwie-

rzęcych w jasny sposób dostarczają kolejnego

przykładu pojawiania się dojrzałej gospodar-

ki zwierzęcej podczas piątego tysiąclecia p.n.e.,

w odróżnieniu od wcześniejszych, zdominowa-

nych przez bydło gospodarek zwierzęcych z szó-

stego tysiąclecia BC.

Rozwój dojrzałej gospodarki zwierzęcej

w Basenie Paryskim w drugiej połowie piątego

tysiąclecia BC kontynuuje kultura Cerny, któ-

ra pojawia się aby zastąpić w tym rejonie VSG.

Pojawia się ona wraz z nowymi cechami kultu-

rowymi, takimi jak długie kurhany z nasypami

ziemnymi, zagrody i nowe formy użytkowania

ziemi. Zespoły szczątków zwierzęcych kultu-

ry Cerny są zdominowane przez bydło, ze świ-

niami teraz stale obecnymi na drugim miejscu.

Profile śmiertelności bydła w kulturze Cerny su-

gerują, że produkty pochodne, takie jak mleko

i sprzężaj występują teraz w bardziej znaczący

sposób w strategii postępowania ze zwierzętami

(A. Tresset 1997, s. 303–309).

Innym rejonem Europy środkowej, któ-

ry dostarcza bogatego świadectwa dla regio-

nalnych gospodarek zwierzęcych w piątym ty-

siącleciu BC jest Kotlina Karpacka. Warto tu

rozpatrzyć ostatnio przedstawione sprawozda-

nie dotyczące zespołu szczątków zwierzęcych

z osady kultury tiszapolgarskiej w Vésztö–Bikeri

położonej w dolinie rzeki Körös (W. A. Parkin-

son, R. W. Yerkes i A. Gyucha 2002; A. Nikode-

mus 2003)2. Nikodemus przeanalizowała zespół

szczątków zwierzęcych liczący 2838 zidentyfi-

kowanych osobników, z których 83% należało

do udomowionych ssaków, przy czym większość

pozostałych pochodziła od dzikich zwierząt ko-

pytnych, ryb, ptaków i żółwi. GLS głównych go-

spodarczych gatunków ssaków w Vésztö–Bikeri

(ryc. 1368) wykazuje uderzające podobieństwo

2 Autor jest wdzięczny Amy Nicodemus z Uniwersytetu Michigan (University of Michigan) za pozwolenie cytowania jej pracy magister-skiej z 2003 roku, przedstawionej na Wydziale Antropologii Stanowe-go Uniwersytetu Florydy (Florida State University).

do ogólnej proporcji jednostek taksonomicz-

nych odkrytych np. w Osłonkach. Świnia stano-

wi ¼ GSL, zaś owca i koza dalsze 32%. Łowiec-

two dzikich zwierząt kopytnych jest niskie, lecz

zauważalne. Ponadto, dane śmiertelności dla in-

wentarza żywego z Veszto–Bikeri świadczą, że

produkcja mięsa była ciągle głównym celem, co

zgadza się z danymi uzyskanymi z próbek Ku-

jawskich.

Odmienny obraz prezentuje próbka szcząt-

ków zwierzęcych pochodzących z lendzielskiej

jamy osadowej z Melk–Winden w Austrii (E.

Pucher 2004). Ogólna liczba 2207 GLS pochodzi

od pięciu udomowionych i czternastu dzikich

jednostek gatunkowych ssaków, wraz z trzema

typami ptaków i żółwiem błotnym. Zasadnicza

gospodarczo jednostka (GSL =2064) była zdo-

minowana przez jelenia, sarnę i dziką świnię,

podczas gdy ¼ GSL pochodzi od udomowione-

go bydła (ryc. 1369). Odkryto bardzo mało ko-

ści owcy i kozy, brak jest również jakichkolwiek

pewnych kości owcy. Bardziej skrajny przypa-

dek wykorzystywania jelenia jest ukazany przez

zwierzęce szczątki kostne pochodzące z osady

typu Kreisgrabenanlagen z Ölkam, także w Au-

strii (M. Schmitzberger 2001). W Olkam prawie

90% z 3462 należących do ssaków GLS pocho-

dzi od dzikich zwierząt kopytnych, w szczegól-

ności od jelenia, ale zawiera również znaczące

domieszki dzikiej świni i sarny, wraz z pewną

ilością dzikiego bydła (ryc. 1370 u dołu). Tutaj

także odkryto bardzo mało kości owcy i kozy,

przy braku wyraźnych kości owcy, wraz ze sto-

sunkowa małą ilością bydła i kości udomowio-

nej świni.

Piąte tysiąclecie BC przyniosło, co może być

nazwane „dojrzałą gospodarką zwierzęcą” w ca-

łej Europie środkowej, zaś zwierzęce szczątki

kostne ze stanowisk grupy brzesko–kujawskiej

kultury lendzielskiej w rejonie Brześcia Kujaw-

skiego i Osłonek odzwierciedlają ten rozwój.

Gospodarka ta była inna, niż pionierskia gospo-

darka zwierzęca szóstego tysiąclecia BC, któ-

ra charakteryzowała wczesne społeczności rol-

Page 126: Reprinted from - Princeton

1704

nicze. W Europie środkowej pionierskie wzorce

gospodarowania, są przeważnie mocno skiero-

wane ku udomowionemu bydłu. W dojrzałej

gospodarce zwierzęcej, można znaleźć większe

zróżnicowanie gatunków inwentarza żywego,

z których każdy odgrywa szczególną rolę, nie

tylko przez swój udział w sposobie odżywia-

nia człowieka, lecz także w użyteczności ekono-

micznej w gospodarstwie domowym.

Pomimo, że były to ciągle gospodarki na-

stawione na produkcję mięsa, to jednak istnie-

je możliwość, że mleczarskie produkty były wy-

korzystywane w sposób uboczny. Nakostniaki

(Exostoses) na dolnych partiach kończyn bydła

dostarczają przesłanek, że mogły to być wczesne

próby zwierzęcego sprzężaju, którego potwier-

dzone zastosowanie pochodzi z czwartego ty-

siąclecia BC. Chociaż restrukturyzacja gospo-

darki zwierzęcej w celu większego użytkowania

produktów pochodnych nie miała miejsca aż do

czwartego tysiąclecia BC, to taka dojrzała go-

spodarka zwierzęca w poprzednim tysiącleciu

stanowiła etap w kierunku Rewolucji Produk-

tów Pochodnych, wraz z jej konsekwencjami, tj.

tworzeniem się bogactwa oraz zróżnicowaniem

w pozycji społecznej i władzy.

W tym samym czasie dzikie bogactwa na-

turalne odgrywały niską, lecz stałą rolę w go-

spodarce zwierzęcej grupy brzesko–kujawskiej.

Na dzikie zwierzęta parzystokopytne, takie jak

dzikie bydło, dzika świnia, jeleń i sarna polowa-

no zapewne raczej przy nadarzającej się okazji

aniżeli w sposób systematyczny. Rzadsze, dzi-

kie gatunki, takie jak dziki koń czy niedźwiedź,

były na pewno tylko wtedy przedmiotem ło-

wów, kiedy nadarzała się okazja, a więc zapew-

ne wówczas, gdy zawędrowały zbyt blisko osad,

związanych z nimi pól lub łączących je szlaków.

Z drugiej strony, zwierzęta futerkowe, takie jak

wydra, a szczególnie bóbr były szczególnym ce-

lem zabiegów człowieka, co pokazuje czynność

oprawiania i skórowania bobra, która wystąpiła

w Brześciu Kujawskim i Pikutkowie.

Wykorzystanie żółwi, ryb i ptactwa wod-

nego uzupełniało gospodarkę opartą o eksplo-

atację ssaków. Intensywność wykorzystywania

wodnych bogactw naturalnych dopiero wte-

dy staje się widoczna, kiedy stanowiska z grupy

brzesko–kujawskiej są porównywane ze współ-

czesnymi sobie stanowiskami na innych tere-

nach Europy środkowej, gdzie uzyskanie od-

osobnionych śladów żółwia, ryb i ptaków jest

uznawane za niezwykłe, podczas gdy na połu-

dnio–wowschodnich Kujawach takie znaleziska

są wszechobecne. Każda z tych systematycznych

jednostek zwierzęcych mogła mieć swoją pozy-

cję w cyklu rocznym. Ptactwo wodne w szcze-

gólności mogło być zdobyczą zimową i wiosen-

ną, podczas gdy żółwie były zapewne łapane

podczas cieplejszych miesięcy.

Praca ta naświetla ważność badań nad

eksploatacją zwierząt w skali regionu, w prze-

ciwieństwie do budowania ogólnego wzorca

zachowań w oparciu o jedno odosobnione sta-

nowisko. Pomimo, że odkrycie tak wielu stano-

wisk neolitycznych z pokaźnym zbiorem kości

zwierzęcych w ramach pojedynczego regionu

w Europie środkowej jest rzadkością, atrakcyj-

ność analizy regionalnej jest oczywista. Dopiero

kiedy wystarczające próbki szczątków zwierzę-

cych z wielu różnych regionów zostaną w pełni

przebadane, faktycznie będzie możliwe zrozu-

mienie zróżnicowanego sposobu wykorzystania

zwierząt w neolicie.

Z języka angielskiego tłumaczyli

Agata i Bogusław Maryniak

Page 127: Reprinted from - Princeton

References

Aaris-Sørensen, K. 1980 Depauperation of the mammalian fauna of

the island of Zealand during the Atlantic period. Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening 142: 131-138.

Adams, S. 1975 Sheep and cattle grazing in forests: a review.

Journal of Applied Ecology 12(1): 143-152. Andersen, R., P. Duncan and J. D. C. Linnell (editors) 1998 The European Roe Deer: the Biology of

Success. Scandinavian University Press, Oslo/Boston.

Anthony, D. and D. Brown 2000 Eneolithic horse exploitation in the Eurasian

steppes: diet, ritual, and riding. Antiquity 74: 75-86.

Arbogast, R., A. Petrequin and P. Petrequin 1995 Le fonctionnement de la cellule domestique

d'après l'étude des restes osseux d'animaux: le cas d'un village néolithique du lac de Chalain (Jura, France). Anthropozoologica (21): 131-146.

Bakels, C. 1978 Four Linearbandkeramik Settlements and

their Environment: a Paleoecological Study of Sittard, Stein, Elsloo and Hienheim. Leiden University Press, Leiden.

Balasse, M., H. Bocherens, A. Tresset, A. MariottiI and J. Vigne 1997 Émergence de la production laitière au

Néolithique? Contribution de l'analyse isotopique d'ossements de bovins archéologiques. Comptes Rendus de l'Académie des Sciences. Série 2. Sciences de la Terre et des Planètes 325(12): 1005-1010.

Bartosiewicz, L., V. Boroneant, C. Bonsall and S. Stallibrass 2006 Size ranges of prehistoric cattle and pig at

Schela Cladovei (Iron Gates Region, Romania). Analele Banatului 14(1):23-42.

Bartosiewicz, L., W. van Neer and A. Lentacker 1997 Draught Cattle: Their Osteological

Identification and History. Musée Royal de l'Afrique Centrale, Tervuren, Belgium.

Bedault, L. 2006 The exploitation of animals in Villeneuve-

Saint-Germain society at the end of the early Neolithic in the Paris basin. Paper presented at the 12th Annual Conference of the European Association of Archaeologists, Kraków, Poland.

Bedault, L. and L. Hachem 2008 Recherches sur les sociétés danubiennes à

partir du Bassin parisien: une approche structurelle des données archéozoologiques. In Fin des Traditions Danubiennes dans le Néolithique du Bassin Parisien et de la Belgique (5100-4700 BC), edited by Burnez-Lanotte L., Ilett M. and A. P., pp. in press. Société Préhistorique Française, Paris.

Bednorz, J. 1976 Ptaki Wodne i B�otne Zagospodarowanych

��k Zalewowych w Dolinie Warty ko�o Poznania. Adam Mickiewicz University Zoological Series 5, Pozna�.

Benecke, N. 1994 Archäozoologische Studien zur Entwicklung

der Haustierhaltung in Mitteleuropa und Südskandinavien von den Anfängen bis zum ausgehenden Mittelalter. Akademie Verlag, Berlin.

Bennett, D. and R. Hoffmann 1999 Equus caballus. Mammalian Species (628):

1-14. Bieniek, A. 2002 Archaeobotanical analysis of some early

Neolithic settlements in the Kujawy region, central Poland, with potential plant gathering activities emphasised. Vegetation History and Archaeobotany 11(1-2): 33-40.

Bochenski, L. 1982 Szcztki ptaków z neolitycznej osady w

Bronocicach. Acta Zoologica Cracoviensia 26(5): 159-166.

Page 128: Reprinted from - Princeton

Boessneck, J. 1969 Osteological differences between sheep

(Ovis aries Linne) and goat (Capra hircus Linne). In Science in Archaeology, edited by D. Brothwell, and Eric Higgs, pp. 331–358. Praeger Publishers, New York.

1977 Die Tierknochen aus der Siedlung der

Rössener Kultur von Schöningen, Kreis Helmstedt, Eichendorfstrasse, und die Probleme ihrer Ausdeutung. Neue Ausgrabunden und Forschungen in Niedersachsen 11: 153-156.

1978 Die Vogelknochen aus der Moorsiedlung

Hüde I am Dümmer, Kreis Grafschaft Diepholz. Neue Ausgrabungen und Forschungen in Niedersachsen 12: 155-169.

Boessneck, J., J. Jequier and H. Stampfli 1963 Seeberg Burgäschisee-Süd. Die Tierreste.

Acta Bernensia 2. Verlag Stampfli, Bern. Bogaard, A. 2004 Neolithic Farming in Central Europe: an

Archaeobotanical Study of Crop Husbandry Practices. Routledge, London, New York.

Bogucki, P. 1979 Tactical and strategic settlements in the

early Neolithic of lowland Poland. Journal of Anthropological Research 35(2): 238-246.

1980 Neolithic bird remains from Brze��

Kujawski, Poland. OSSA: International Journal of Skeletal Research 7: 33-40.

1981 Early Neolithic Economy and Settlement in

the Polish Lowlands. Ph.D., Harvard University.

1982 Early Neolithic Subsistence and Settlement

in the Polish Lowlands. BAR International Series 150. British Archaeological Reports, Oxford, England.

1984 Patterns of animal exploitation in the Early

Neolithic of the Polish lowlands. In Animals and Archaeology: 4. Husbandry in Europe, edited by J. Clutton-Brock and C. Grigson, pp. 35-44. BAR International Series 227. British Archaeological Reports, Oxford.

1984 Ceramic sieves of the Linear Pottery Culture and their economic implications. Oxford Journal of Archaeology 3(1): 15–30.

1986 The antiquity of dairying in temperate

Europe. Expedition 28(2): 51-58. 1988 Forest Farmers and Stockherders: Early

Agriculture and its Consequences in North-Central Europe. Cambridge University Press, Cambridge.

1989 Exploitation of domestic animals in

Neolithic Central Europe. In Early Animal Domestication and its Cultural Context, edited by P. J. Crabtree, D. Campana and K. Ryan, pp. 118-134. MASCA Research Papers in Science and Archaeology. Museum Applied Science Center for Archaeology, Philadelphia.

1993 Animal traction and household economies in

Neolithic Europe. Antiquity 67(256): 492-503.

1995 Prelude to agriculture in north-central

Europe. In Before Farming: the Role of Plants and Animals in Early Societies, edited by D. V. Campana, pp. 105-116. Research Papers in Science and Archaeology. vol. 12 Supplement. University Museum, MASCA, Philadelphia.

2003 Neolithic dispersals in riverine interior

central Europe. In The Widening Harvest. The Neolithic Transition in Europe: Looking Back, Looking Forward, edited by A. Ammerman and P. Biagi, pp. 249-272. Archaeological Institute of America, Boston.

Bökönyi, S. 1971 The development and history of domestic

animals in Hungary: the Neolithic through the Middle Ages. American Anthropologist 73(3): 640-674.

Bollongino, R., C. Edwards, K. Alt, J. Burger and D. Bradley 2006 Early history of European domestic cattle as

revealed by ancient DNA. Biology Letters 2(1): 155-159.

Page 129: Reprinted from - Princeton

Boyle, K. V. 2006 Neolithic wild game animals in Western

Europe: the question of hunting. In Animals in the Neolithic of Britain and Europe. [Neolithic Studies Group Seminar Papers 7.], edited by D. Sarjeantson and D. Field, pp. 10-23. Oxbow Books, Oxford.

Brown, D. and D. Anthony 2000 Eneolithic horse exploitation in the Eurasian

steppes: diet, ritual and riding. Antiquity 74: 75-86.

Brown, T. 1997 Clearances and clearings: deforestation in

Mesolithic/Neolithic Britain. Oxford Journal of Archaeology 16(2): 133-146.

Campana, D. V. and P. J. Crabtree 1987 ANIMALS - a C language computer

program for the analysis of faunal remains and its use in the study of early Iron Age fauna from Dun Ailinne. Archaeozoologia 1(1): 57-68.

Childe, V. G. 1942 The antiquity and function of antler axes and

adzes. Antiquity 16(63): 258-264. Clark, K. M. 2006 Dogs and wolves in the Neolithic of Britain.

In Animals in the Neolithic of Britain and Europe. [Neolithic Studies Group Seminar Papers 7.], edited by D. Sarjeantson and D. Field, pp. 32-41. Oxbow Books, Oxford.

Clutton-Brock, J. 1995 Origins of the dog: domestication and early

history. In The Domestic Dog: Its Evolution, Behaviour and Interactions with People, edited by J. Serpell, pp. 8–20. Cambridge University Press, Cambridge.

Coles, J. and B. Orme 1983 Homo sapiens or Castor fiber. Antiquity 57:

95-102. Constantin, C., D. Mordant and D. Simonin (eds.) 1997 La Culture de Cerny: Nouvelle économie,

Nouvelle Société au Néolithique. Actes du Colloque International de Nemours, 9-10-11 Mai 1994. Mémoires du Musée de préhistoire d'Ile-de-France, no 6. A.P.R.A.I.F., Nemours.

Copley, M., R. Berstan, S. Dudd, S. Aillaud, A. Mukherjee, V. Straker, S. Payne and R. Evershed 2005 Processing of milk products in pottery

vessels through British prehistory. Antiquity 79(306): 895-908.

Coppinger, R. and R. Schmeider 1995 Evolution of working dogs. In The Domestic

Dog: Its Evolution, Behavior, and Interactions with People, edited by J. Serpell, pp. 21-47. Cambridge University Press, Cambridge.

Crabtree, P. J. 1989 West Stow, Suffolk: Early Anglo-Saxon

Animal Husbandry. East Anglian Archaeology 47. Suffolk County Planning Department, Ipswich.

Craig, O. 2002 The development of dairying in Europe:

potential evidence from food residues on ceramics. Documenta Prehistorica 29: 97-107.

Craig, O., J. Chapman, C. Heron, L. Willis, L. Bartosiewicz, G. Taylor, A. Whittle and M. Collins 2005 Did the first farmers of central and eastern

Europe produce dairy foods? Antiquity 79(306): 882-894.

Cupere, B. de., A. Lentacker, W. van Neer, M. Waelkens and L. Verslype 2000 Osteological evidence for the draught

exploitation of cattle: first applications of a new methodology. International Journal of Osteoarchaeology 10(4): 254-267.

Degerbøl, M. and B. Fredskild 1970 The Urus (Bos primigenius Bojanus) and

neolithic domesticated cattle (Bos taurus domesticus Linne) in Denmark. Det Kongelige Danske Videnskabernes Selskab Biologiske Skrifter 17(1): 1-177.

Degerbøl, M. and H. Krog 1951 Den europæiske sumpskildpadde (Emys

orbicularis L.) i Danmark. Danmarks Geologiske Undersøgelse 2(78): 1-130.

Dickson, J., K. Oeggl and L. Handley 2003 The Iceman reconsidered. Scientific

American 288(5): 70-79.

Page 130: Reprinted from - Princeton

Dobney, K., A. Ervynck, U. Albarella and P. Rowley-Conwy 2004 The chronology and frequency of a stress

marker (linear enamel hypoplasia) in recent and archaeological populations of Sus scrofa in north-west Europe, and the effects of early domestication. Journal of Zoology 264(02): 197-208.

Dobney, K. and G. Larson 2006 Genetics and animal domestication: new

windows on an elusive process. Journal of Zoology 269(2): 261-271.

Döhle, H.-J. 1993 Haustierhaltung und Jagd in der

Linienbandkeramik - ein Überblick. Zeitschrift für Archäologie 27(1): 105-124.

1997 Zum Stand der Untersuchungen an

neolithischen Tierknochen aus Mitteldeutschland. Jahresschrift für mitteldeutsche Vorgeschichte 79: 111-147.

Driesch, A. von den 1976 A Guide to the Measurement of Animal

Bones from Archaeological Sites. Peabody Museum of Archaeology and Ethnology, Harvard University, Cambridge, Mass.

Edwards, C., R. Bollongino, A. Scheu, A. Chamberlain, A. Tresset, J. Vigne, J. Baird, G. Larson, S. Ho, T. Heupink, B. Shapiro, A. Freeman, M. Thomas, R. Arbogast, B. Arndt, L. Bartosiewicz, N. Benecke, M. Budja, L. Chaix, A. Choyke, E. Coqueugniot, H. Döhle, H. Göldner, S. Hartz, D. Helmer, B. Herzig, H. Hongo, M. Mashkour, M. Özdogan, E. Pucher, G. Roth, S. Schade-Lindig, U. Schmölcke, R. Schulting, E. Stephan, H. Uerpmann, I. Vörös, B. Voytek, D. Bradley and J. Burger 2007 Mitochondrial DNA analysis shows a Near

Eastern Neolithic origin for domestic cattle and no indication of domestication of European aurochs. Proceedings of the Royal Society B: Biological Sciences 274(1616): 1377-1385.

Ervynck, A., K. Dobney, H. Hongo and R. Meadow 2002 Born free: new evidence for the status of

pigs from Çayönü Tepesi, Eastern Anatolia. Paléorient 27: 47-73.

Ewersen, J. 2003 Heidmoor: Beispiel Spurensuche. Beitraege

zur Archaeozoologie und Praehistorischen Anthropologie 4: 51-56.

Gaba�ówna, L. 1963 lady osadnictwa kultur z cyklu

wst�gowych w Radziejowie Kujawskim. Prace i Materia�y Muzeum Archeologicznego i Etnograficznego. Seria Archeologiczna 9: 25-91.

Gautier, A. 1984 How do I count you? Let me count the ways.

Problems in archaeozoological quantification. In Animals and Archaeology 4: Husbandry in Europe, edited by C. Grigson and J. Clutton-Brock, pp. 237-251. BAR International Series 227. British Archaeological Reports, Oxford.

Gebert, C. and H. Verheyden-Tixier 2001 Variations of diet composition of red deer

(Cervus elaphus L.) in Europe Mammal Review 31(3-4): 189-201.

Gentry, A., J. Clutton-Brock and C. Groves 2004 The naming of wild animal species and their

domestic derivatives. Journal of Archaeological Sciencei 31: 645–651.

Gilbert, A. and B. Singer 1982 Reassessing zooarchaeological

quantification. World Archaeology 14(1): 21-40.

Götherström, A., C. Anderung, L. Hellborg, R. Elburg, C. Smith, D. Bradley and H. Ellegren 2005 Cattle domestication in the Near East was

followed by hybridization with aurochs bulls in Europe. Proceedings: Biological Sciences 272(1579): 2345-2350.

Grant, A. 1975 The animal bones. In Excavations at

Portchester Castle I. Roman, edited by B. W. Cunliffe, pp. 378-408, 437-450. Society of Antiquaries, London.

1982 "The use of tooth wear as a guide to the age

of domestic ungulates," in Ageing and Sexing Animal bones from Archaeological Sites, edited by B. Wilson, C. Grigson, and S. Payne, pp. 91-108. BAR British Series 109. British Archaeological Reports, Oxford.

Grayson, D. 1973 On the methodology of faunal analysis.

American Antiquity 38(4): 432-439.

Page 131: Reprinted from - Princeton

Grigson, C. 1982 Porridge and pannage: pig husbandry in

Neolithic Europe. In Archaeological Aspects of Woodland Ecology, edited by S. Limbrey and M. Bell, pp. 297–314. BAR International Series 146. British Archaeological Reports, Oxford.

1969 The uses and limitations of differences in

absolute size in the distinction between the bones of aurochs (Bos primigenius) and domestic cattle (Bos taurus)," in Domestication and Exploitation of Plants and Animals, edited by P. J. Ucko and G. W. Dimbleby, pp. 277-294. Duckworth, London.

Grygiel, R. 1986 Household cluster as a fundamental social

unit of the Brze�� Kujawski group of the Lengyel culture in the Polish lowlands. Prace i Materia�y Muzeum Archeologicznego i Etnograficznego: Seria Archeologiczna 31: 43-334.

2004 Neolit i Pocz�tki Epoki Br�zu w Rejonie

Brze�cia Kujawskiego i Os�onek (The Neolithic and Early Bronze Age in the Brze�� Kujawski and Os�onki Region) 1. Konrad Ja�d�ewski Foundation for Archaeological Research, Museum of Archaeology and Ethnography, �ód�.

Grygiel, R. and P. Bogucki 1990 Neolithic manufacture of antler axes at

Brze�� Kujawski, Poland. Archeomaterials 4(1): 69-76.

Guilday, J. 1971 Biological and Archeological Analysis of

Bones from a 17th Century Indian Village (46 PU 31), Putnam County, West Virginia. Report of Archeological Investigations 4. West Virginia Geological and Economic Survey, Morgantown.

Gumi�ski, W. 2005 Bird for dinner: Stone age hunters of Dudka

and Szczepanki, Masurian Lakeland, NE-Poland. Acta Archaeologica 76: 111-148.

Harland, J., J. Barrett, J. Carrott, K. Dobney and D. Jaques 2003 The York System: An integrated

zooarchaeological database for research and teaching. Internet Archaeology 13: http://intarch.ac.uk/journal/issue13/harland_index.html.

Hofmann, R. 1989 Evolutionary steps of ecophysiological

adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 78(4): 443-457.

Hüster, H. 1983 Die Fischknochen der neolithischen

Moorsiedlung Hüde I am Dümmer, Kreis Grafschaft Diepholz. Neue Ausgrabungen und Forschungen in Niedersachen 16: 401-480.

J�drzejewska, B. and W. J�drzejewski 1998 Predation in Vertebrate Communities : the

Bia�owie�a Primeval Forest as a Case Study. Springer, Berlin/New York.

Ja�d�ewski, K. 1938 Cmentarzyska kultury ceramiki wst�gowej i

zwizane z nimi �lady osadnictwa w Brze�ciu Kujawskim. Wiadomo�ci Archeologiczne 15: 1-105.

Jenkins, S. and P. Busher 1979 Castor canadensis. Mammalian Species

(120): 1-8. Jensen, G. 1996 Effektive okser af kronhjortens tak. In

Arkaeologiske Eksperimenter i Lejre, edited by M. Meldgaard and M. Rasmussen, pp. 40-48. Naturens Verden/Historisk-Archæogisk Forsøgcenter, Lejre.

Johannsen, N. N. 2006 Draught cattle and the South Scandinavian

economies of the 4th millennium BC. Environmental Archaeology 11(1): 35-48.

Page 132: Reprinted from - Princeton

Johansson, L. 1981 Bistoft LA 11. Siedlungs-und

Wirstchaftsformen im frühen Neolithikum Norddeutschlands und Südskandinaviens in Festschrift für Karl Wilhelm Struve zum 65. Geburtstag. Offa. Berichte und Mitteilungen zur Urgeschichte, Frühgeschichte und Mittelalterarchäologie Neumünster 38: 91-129.

Johansson, L. and F. Johansson 1979 Socio-ekonomiska strukturer i tidigt

neolitikum och deras förutsättningar: studier över Bistoft LA 11, ett boplatsfynd från Schleswig-Holstein. Göteborgs universitet, Institutionen för arkeologi.

Kalis, A., J. Merkt and J. Wunderlich 2003 Environmental changes during the Holocene

climatic optimum in central Europe-human impact and natural causes. Quaternary Science Reviews 22(1): 33-79.

Kalis, A. and J. Meurers-Balke 1997 Landnutzung im Neolithikum. Neolithikum.

Geschichtlicher Atlas der Rheinlande 2.1 2: 25–55.

Klassen, L. 2004 Frühes Kupfer im Norden: Untersuchungen

zu Chronologie, Herkunft und Bedeutung der Kupferfunde der Nordgruppe der Trichterbecherkultur. Jysk Arkæologisk Selskab, Aarhus.

Kreuz, A. 2008 Closed forest or open woodland as natural

vegetation in the surroundings of Linearbandkeramik settlements? Vegetation History and Archaeobotany 17(1): 51-64

Larson, G., U. Albarella, K. Dobney, P. Rowley-Conwy, J. Schibler, A. Tresset, J.-D. Vigne, C. J. Edwards, A. Schlumbaum, A. Dinu, A. Balacsescu, G. Dolman, A. Tagliacozzo, N. Manaseryan, P. Miracle, L. Van Wijngaarden-Bakker, M. Masseti, D. G. Bradley and A. Cooper 2007 Ancient DNA, pig domestication, and the

spread of the Neolithic into Europe. Proceedings of the National Academy of Sciences 104(39): 15276-15281.

Larson, G., K. Dobney, U. Albarella, M. Fang, E. Matisoo-Smith, J. Robins, S. Lowden, H. Finlayson, T. Brand, E. Willerslev, P. Rowley-Conwy, L. Andersson and A. Cooper 2005 Worldwide phylogeography of wild boar

reveals multiple centers of pig domestication. Science 307(5715): 1618-1621.

Lasota-Moskalewska, A. and H. Kobry� 1990 The size of aurochs skeletons from Europe

and Asia in the period from the Neolithic to the Middle Ages. Acta Theriologica 35(1-2): 89-109.

Lasota-Moskalewska, A., H. Kobry� and K. wie�y�ski 1987 Changes in the size of the domestic and wild

pig in the territory of Poland from the Neolithic to the Middle Ages. Acta Theriologica 32(1-10): 51-81.

Lenk, P., U. Fritz, U. Joger and M. Wink 1999 Mitochondrial phylogeography of the

European pond turtle, Emys orbicularis (Linnaeus 1758). Molecular Ecology 8(11): 1911-1922.

Louwe Kooijmans, L. P. 1993 Mesolithic/Neolithic transformation in the

lower Rhine basin. In Case Studies in European Prehistory, edited by P. Bogucki, pp. 95-145. CRC Press, Boca Raton.

Magnell, O. 2004 The body size of wild boar during the

Mesolithic in southern Scandinavia. Acta Theriologica 49(1): 113-130.

Makowiecki, D. 2003 Historia Ryb i Rybo�owstwa w Holocenie na

Ni�u Polskim w �wietle Bada Archeoichtiologicznych. Instytut Archeologii i Etnologii Polskiej Akademii Nauk, Pozna�.

Marciniak, A. 1999 Faunal Materials and Interpretive

Archaeology—Epistemology Reconsidered. Journal of Archaeological Method and Theory 6(4): 293-320.

2005 Placing Animals in the Neolithic: Social

Zooarchaeology of Prehistoric Farming Communities. UCL Press, London.

Page 133: Reprinted from - Princeton

Marshall, F. and T. Pilgram 1993 NISP vs. MNI in Quantification of Body-

Part Representation. American Antiquity 58(2): 261-269.

McQuade, M. and L. O’Donnell 2007 Late Mesolithic fish traps from the Liffey

estuary, Dublin, Ireland. Antiquity 81(313): 569-584.

Meadow, R. and M. Zeder (editors) 1978 Approaches to Faunal Analysis in the

Middle East. Peabody Museum of Archaeology and Ethnology, Harvard University.

Meadow, R. H. 1978a Effects of context on the interpretation of

faunal remains: a case study. In Approaches to Faunal Analysis in the Middle East., edited by R. Meadow and M. Zeder, pp. 15-21. Peabody Museum of Archaeology and Ethnology, Cambridge, Mass.

1978b "Bonecode" -- a system of numerical coding

for faunal data from Middle Eastern sites. In Approaches to Faunal Analysis in the Middle East.,, edited by R. H. Meadow and M. A. Zeder, pp. 169-186. Peabody Museum of Archaeology and Ethnology, Cambridge, Mass.

1981 Early Animal Domestication in South Asia:

A First Report of the Faunal Remains from Mehrgarh, Pakistan. South Asian Archaeology: 143–179.

1983 Notes on the faunal remains from Mehrgarh,

with a focus on cattle (Bos). South Asian Archaeology: 34–40.

1999 The use of size index scaling techniques for

research on archaeozoological collections from the Middle East. In Historia Animalium Ex Ossibus. Beiträge zur Paläoanatomie, Archäologie, Ägyptologie, Ethnologie, und Geschichte der Tiermedizin, edited by C. Becker, H. Manhart, J. Peters and J. Schibler, pp. 285-300. Verlag Marie Leidorf, Rahden/Westf.

Midgley, M. S. 1985 Review of Bogucki, Early Neolithic

Subsistence and Settlement in the Polish Lowlands. Bulletin of the Institute of Archaeology, London 21/22: 176-177.

2005 The Monumental Cemeteries of Prehistoric Europe. Tempus, Stroud. Milisauskas, S. 1999 The earliest evidence of wheeled vehicles in

Europe and the Near East. Antiquity 73: 778-90.

Mitchell, F. J. G. 2005 How open were European primeval forests?

Hypothesis testing using palaeoecological data. Journal of Ecology 93(1): 168-177.

Mitrus, S. and M. Zemanek 2003 European pond tortoise, Emys orbicularis,

neonates overwintering in the nest. Herpetological journal 13(4): 195-198.

2004 Body size and survivorship of the European

pond turtle Emys orbicularis in Central Poland. Biologia, Bratislava 59(14): 103-107.

Modderman, P. 1988 The Linear Pottery Culture: diversity in

uniformity. Berichten van de Rijksdienst voor het Oudheidkundig Bodemonderzoek 38: 63-139.

Moran, N. and T. O’Connor 1994 Age attribution in domestic sheep by

skeletal and dental maturation: a pilot study of available sources. International Journal of Osteoarchaeology 4: 267–285.

Najbar, B. and E. Szuszkiewicz 2007 Nest-site fidelity of the European pond turtle

Emys orbicularis (Linnaeus, 1758) (Testudines: Emydidae) in western Poland. Acta Zoologica Cracoviensia 50A(1-2): 1-8.

Nalepka, D. 2005 Late Glacial and Holocene

Palaeoecological Conditions and Changes of Vegetation Cover Under Early Farming Activity in the South Kujawy Region (Central Poland). Acta Palaeobotanica Supplementum No. 6. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków.

Page 134: Reprinted from - Princeton

Nicodemus, A. 2003 Animal Economy and Social Change During

the Neolithic-Copper Age Transition on the Great Hungarian Plain. Master of Science thesis, Florida State University.

Nobis, G. 1975 Zur Fauna des ellerbekzeitlichen

Wohnplatzes Rosenhof in Ostholstein. In Archaeozoological studies, pp. 160-163. Amsterdam: North-Holland Pub. Co., 1975.

1978 Problems of the early husbandry of domestic

animals in northern Germany and Denmark. Archaeo-Physika 10: 378-379.

Noe-Nygaard, N. and M. U. Hede 2006 The first appearance of cattle in Denmark

occurred 6000 years ago: an effect of cultural or climate and environmental changes. Geografiska Annaler, Series A: Physical Geography 88(2): 87-95.

Noe-Nygaard, N., T. D. Price and S. U. Hede 2005 Diet of aurochs and early cattle in southern

Scandinavia: evidence from 15N and 13C stable isotopes. Journal of Archaeological Science 32(6): 855-871.

O'Connor, T. 2000 The Archaeology of Animal Bones. Sutton,

Stroud. 2003 The Analysis of Urban Animal Bone

Assemblages: A Handbook for Archaeologists. York Archaeological Trust/Council for British Archaeology, York.

Parkinson, W. A., R. W. Yerkes and A. Gyucha 2002 The transition from the Neolithic to the

Copper Age: excavations at Vésztö-Bikeri, Hungary, 2000-2002. Journal of Field Archaeology 29(1): 101-121.

Pasitschniak-Arts, M. 1993 Ursus arctos. Mammalian Species (439): 1-

10. Payne, S. and G. Bull 1988 Components of variation in measurements

of pig bones and teeth, and the use of measurements to distinguish wild from domestic pig remains. Archaeozoologia II/1 2: 27-66.

Plug, C. and I. Plug 1990 MNI counts as estimates of species

abundance. South African Archaeological Bulletin 45: 53-57.

Pucher, E. 2004 Der mittelneolithische Tierknochenkomplex

von Melk-Winden (Niederösterreich). Annalen des Naturhistorischen Museums in Wien A Mineralogie Petrologie Geologie Palaeontologie Archaeozoologie Anthropologie Praehistorie 105A: 363-403.

Redding, R. W. 1984 Theoretical determinants of a herder's

decisions: modeling variation in the sheep/goat ratio. In Animals and Archaeology: 3. Early Herders and their Flocks, edited by J. Clutton-Brock and C. Grigson, pp. 161-170. BAR International Series 202. British Archaeological Reports, Oxford.

1991 The role of the pig in the subsistence system

of ancient Egypt: a parable on the potential of faunal data. In Animal Use and Culture Change, edited by P. J. Crabtree and K. Ryan, pp. 20-30. MASCA Research Papers in Science and Archaeology. Supplement to Volume 8. MASCA, the University Museum of Archaeology and Anthropology, University of Pennsylvania, Philadelphia.

Riedel, K., K. Pohlmeyer and D. von Rautenfeld 2004 An examination of Stone Age/Bronze Age

adzes and axes of red deer (Cervus elaphus L.) antler from the Leine Valley, near Hannover. European Journal of Wildlife Research 50(4): 197-206.

Rolett, B. V. and M. Chiu 1994 Age estimation of prehistoric pigs ("Sus

scrofa") by molar eruption and attrition. Journal of Archaeological Science 21(3): 377-86.

Rollefson, G. and I. Köhler-Rollefson 1992 Early neolithic exploitation patterns in the

Levant: Cultural impact on the environment. Population & Environment 13(4): 243-254.

Page 135: Reprinted from - Princeton

Rosell, F., O. Bozser, P. Collen and H. Parker 2005 Ecological impact of beavers Castor fiber

and Castor canadensis and their ability to modify ecosystems. Mammal Review 35(3-4): 248-276.

Rosenberg, M., R. Nesbitt, R. W. Redding and B. L. Peasnall 1998 Hallan Çemi, pig husbandry, and post-

Pleistocene adaptations along the Taurus-Zagros arc (Turkey). Paléorient 24(1): 25-41.

Rowley-Conwy, P. 1995 Wild or domestic? On the evidence for the

earliest domestic cattle and pigs in south Scandinavia and Iberia. International Journal of Osteoarchaeology 5: 115-126.

Russell, N. 1993 Hunting, Herding and Feasting: Human Use

of Animals in Neolithic Southeast Europe. Ph.D. dissertation, University of California, Berkeley.

1999 Symbolic dimensions of animals and meat at

Opovo, Yugoslavia. In Material Symbols: Culture and Economy in Prehistory, pp. 153-172. Center for Archaeological Investigations, Southern Illinois University, Carbondale.

2004 Livestock of the early farmers. In Ancient

Europe 8000 B.C.–A.D. 1000: Encyclopedia of the Barbarian World, edited by P. Bogucki and P. J. Crabtree, pp. 211-217. Scribners/Gale Group, Farmington Hills, Michigan.

Schley, L. and T. J. Roper 2003 Diet of wild boar Sus scrofa in Western

Europe, with particular reference to consumption of agricultural crops.. Mammal Review 33(1): 43-56.

Schmid, E. 1972 Atlas of Animal Bones: for Prehistorians,

Archaeologists and Quaternary Geologists. Elsevier, London.

Schmitzberger, M. 1999 Jungsteinzeitliche Wildvogelfunde aus

Ölkam/OÖ. Jahrbuch des Oberösterreichischen Musealvereines Gesellschaft für Landeskunde 144: 431-437.

2001 Die Tierknochen aus der mittelneolithischen Kreisgrabenanlage Ölkam (Oberösterreich). Jahrbuch des Oberösterreichischen Musealvereines Gesellschaft für Landeskunde 146(1): 43-86.

Schmitzberger, M. and E. Pucher 2003 Holozäne Biberfunde (Castor fiber L.) aus

Österreich. Denisia 9: 13-19. Semperé, A., V. Sokolov and A. Danilkin 1996 Capreolus capreolus. Mammalian Species

(538): 1-9. Slater, J. 2007 Prehistoric find located beneath the waves.

swissinfo.ch, http://www.swissinfo.org/eng/feature/detail/Prehistoric_find_located_beneath_the_waves.html, accessed September 10, 2007.

Soboci�ski, M. 1985 Szcztki kostne z osad ludno�ci kultury

ceramiki wst�gowej na Kujawach (ze studiów nad rozwojem kultur wst�gowych na Kujawach). Roczniki Akademii Rolniczej w Poznaiu 164: 87-127.

Sommer, R. and N. Benecke 2005 The recolonization of Europe by brown

bears Ursus arctos Linnaeus, 1758 after the Last Glacial Maximum. Mammal Review 35(2): 156-164.

2006 Late Pleistocene and Holocene development

of the felid fauna (Felidae) of Europe: a review. Journal of Zoology 269(1): 7-19.

Steppan, K. 2001 Ur oder Hausrind? Die Variabilität der

Wildtieranteile in linearbandkeramischen Tierknochenkomplexen. In Rôle et Statut de la Chasse dans le Néolithique Ancien Danubien (5500 - 4900 av. J.-C.). edited by R.-M. Arbogast, C. Jeunesse and J. Schibler, pp. 171-186. Verlag Marie Leidorf, Rahden/Westf.

Suttie, J. M. and P. F. Fennessy 1992 Recent advances in the physiological control

of velvet antler growth. In The Biology of Deer, edited by R. Brown, pp. 471-486. Springer, New York.

Page 136: Reprinted from - Princeton

Teichert, M. 1999 Ur- und frühgeschichtliche Knochenreste

des Bibers, Castor fiber L., aus den östlichen Bundesländern Deutschlands. Hercynia 32(1): 99-109.

Tresset, A. 1997 L'approvisionnement carné Cerny dans le

contexte néolithique du Bassin parisien. Mémoires du Musée de Préhistoire d'Ile-de-France (6): 299-314.

2005 L'avifaune des sites mesolithiques et

neolithiques de Bretagne (5500 a 2500 av. J-C.): implications ethnologiques et biogeographiques. Revue de Paleobiologie Volume Special 10: 83-94.

Uerpmann, H.-P. 1977 Betrachtungen zur Wirtschaftsform

neolithischer Gruppen in Südwestdeutschland. Fundberichte aus Baden-Württemberg 3: 144-161.

1979 Probleme der Neolithisierung des

Mittelmeerraums. Beihefte zum Tübinger Atlas des Vorderen Orients, Reihe B 28. Reichert-Verlag, Wiesbaden.

Ultsch, G. 2006 The ecology of overwintering among turtles:

where turtles overwinter and its consequences. Biological Reviews 81(03) : 339-367.

Vera, F. W. M. 2000 Grazing Ecology and Forest History. CABI

Publishing, Wallingford (UK). Watson, J. P. N. 1979 The estimation of the relative frequencies of

mammalian species: Khirokitia 1972. Journal of Archaeological Science 6(2): 127-37.

Wilson, B., J. Hamilton, D. Bromwell, and P.

Armitage. 1978. "The animal bones," in The Excavation of an

Iron Age Settlement, Bronze Age Ring Ditches, and Roman Features at Ashebille Trading Estate, Abingdon (Oxfordshire), 1974-1976, edited by M. Parrington, pp. 110-139. London: Council for British Archaeology (Research Report 28).

Wright, J., C. Jones and A. Flecker 2002 An ecosystem engineer, the beaver,

increases species richness at the landscape scale. Oecologia 132(1): 96-101.

Zeder, M. A. and B. Hesse 2000 The initial domestication of goats (Capra

hircus) in the Zagros Mountains 10,000 years ago. Science 287(5461): 2254-2257.

Zeiler, J. 2006 Birds. In Schipluiden. A Neolithic

Settlement on the Dutch North Sea Coast c3500 cal BC, edited by L. P. Louwe Kooijmans and P. F. B. Jongste, pp. 421-442. Analecta Praehistorica Leidensia. vol. 37/38. Leiden University Faculty of Archaeology, Leiden.

Zvelebil, M. 2006 Mobility, contact, and exchange in the Baltic

Sea basin 6000-2000 BC. Journal of Anthropological Archaeology 25(2): 178-192.