21
1 RESPONSE OF A RECTANGULAR PLATE TO BASE EXCITATION Revision E By Tom Irvine Email: [email protected] April 10, 2013 Variables mn A amplitude coefficient a length b width D plate stiffness factor E elastic modulus h plate thickness k m wavenumber M plate mass x M bending moment m, n, u, v mode number indices Poisson's ratio mass per volume z relative displacement, out-of-plane mn Z normalized mode shape n m participation factor excitation frequency mn natural frequency mn modal damping z relative displacement, out-of-plane w(t) base input acceleration W( ) Fourier transform of base input acceleration ) , y , x ( Z Relative displacement ) , y , x ( U Absolute Acceleration

RESPONSE OF A RECTANGULAR PLATE TO BASE … Introduction Consider the rectangular plate in Figure 1. Assume that it is simply-supported along each edge. Figure 1. Normal Modes Analysis

  • Upload
    hadung

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

1

RESPONSE OF A RECTANGULAR PLATE TO BASE EXCITATION

Revision E

By Tom Irvine

Email: [email protected]

April 10, 2013

Variables

mnA amplitude coefficient

a length

b width

D plate stiffness factor

E elastic modulus

h plate thickness

km wavenumber

M plate mass

xM bending moment

m, n, u, v mode number indices

Poisson's ratio

mass per volume

z relative displacement,

out-of-plane

mnZ normalized mode shape

nm participation factor

excitation frequency

mn natural frequency

mn modal damping

z relative displacement,

out-of-plane

w(t) base input acceleration

W() Fourier transform of

base input acceleration

),y,x(Z Relative displacement

),y,x(U Absolute Acceleration

2

Introduction

Consider the rectangular plate in Figure 1. Assume that it is simply-supported along each

edge.

Figure 1.

Normal Modes Analysis

Note that the plate stiffness factor D is given by

2

3

112

EhD

(1)

The governing equation of motion is

02t

z2h

4y

z4

2y2x

z42

4x

z4D

(2)

Assume a harmonic response.

)tjexp()y,x(Z)t,y,x(z (3)

a

b

Y

X 0

3

0)tjexp(Z2h)tjexp(4y

Z4

2y2x

Z42

4x

Z4D

(4)

0Z2h4y

Z4

2y2x

Z42

4x

Z4D

(5)

The boundary conditions are

0)y,x(xM,0)y,x(Z for x = 0, a (6)

0)y,x(yM,0)y,x(Z for y = 0, b (7)

Assume the following displacement function which satisfies the boundary conditions,

where c is an amplitude coefficient and m an n are integers.

b

ynsin

a

xmsinmnA)y,x(mnZ (8)

The partial derivates are

b

ynsin

a

xmcosmnA

a

mmnZ

x (9)

b

ynsin

a

xmsinmnA

2

a

mmnZ

2x

2 (10)

b

ynsin

a

xmcosmnA

3

a

mmnZ

3x

3 (11)

4

b

ynsin

a

xmsinmnA

4

a

mmnZ

4x

4 (12)

Similarly,

b

ynsin

a

xmsinmnA

4

n

nmnZ

4y

4 (13)

Also,

b

ynsin

a

xmsinmnA

2

a

n2

a

mmnZ

2y2x

2 (14)

0b

ynsin

a

xmsinmnA2h

b

ynsin

a

xmsinmnA

4

b

n2

b

n2

a

m2

4

a

mD

(15)

02h

4

b

n2

b

n2

a

m2

4

a

mD

(16)

4

b

n2

b

n2

a

m2

4

a

m

h

D2 (17)

4

b

n2

b

n2

a

m2

4

a

m

h

D (18)

5

2

b

n2

a

m

h

D (19)

Note that the wave numbers are

a/mmk (20)

b/nnk (21)

Normalized Mode Shapes

The mode shapes are normalized such that

1b

0

a

0dydx2)y,x(mnZh (22)

b

ynsin

a

xmsinmnAmnZ (23)

1b

0

a

0dydx

2

b

ynsin

a

xmsinmnAh

(24)

1b

0

a

0dydx

2

b

ynsin

a

xmsin2

mnAh

(25)

1b

0

a

0dydx

b

yn2cos1

a

xm2cos12

mnA4

h

(26)

6

1dyb

0

a

0a

xm2sin

xm2

ax

b

yn2cos12

mnA4

h

(27)

1dyb

0 b

yn2cos12

mnA4

ah

(28)

1

b

0b

yn2sin

yn2

by2

mnA4

ah

(29)

12mnA

4

abh

(30)

abh

42mnA

(31)

abh

4mnA

(32)

abh

2mnA

(33)

abhM (34)

M

2mnA (35)

Note that mnA is considered to be dimensionless, although the units must be consistent

within the analysis.

7

Participation Factors

The mass density is constant. Thus

b

0

a

0dydx)y,x(mnZhnm (36)

b

0

a

0dydx

b

ynsin

a

xmsinmnAhnm (37)

b

0

a

0dydx

b

ynsin

a

xmsinhmnAnm (38)

b

0

a

0dydx

b

ynsin

a

xmsin

M

h2nm (39)

b

0dy

a

0b

ynsin

a

xmcos

m

a

M

h2nm (40)

b

0dy

b

ynsin1mcos

m

a

M

h2nm (41)

b

0b

xncos

n

b1mcos

m

a

M

h2nm

(42)

1ncos1mcos2nm

ab

M

h2nm

(43)

8

1ncos1mcos2nm

1

M

M2nm

(44)

1ncos1mcos2nm

1M2nm

(45)

Effective Modal Mass

b

0

a

02dydx)y,x(mnZh

2b

0

a

0dydx)y,x(mnZh

mn,effm (46)

The modes shapes are normalized such that

1b

0

a

02dydx)y,x(mnZh (47)

Thus

2b

0

a

0dydx)y,x(mnZhmn,effm

(48)

2nmmn,effm (49)

9

Response to Base Excitation

The forced response equation for a plate with base motion is

2t

w2h

2t

z2h

4y

z4

2y2x

z42

4x

z4D

(50)

where w is base excitation.

The term on the right-hand-side is the inertial force per unit area.

The displacement is

q

1m

r

1n

)t(mnT)y,x(mnZ)t,y,x(z (51)

b

ynsin

a

xmsin

M

2)y,x(mnZ (52)

2t

w2h

2t

z2h

4y

z4

2y2x

z42

4x

z4D

(53)

10

2t

w2h

q

1m

r

1n

)t(mnT)y,x(mnZ2t

2h

q

1m

r

1n

)t(mnT)y,x(mnZ4y

4D

q

1m

r

1n

)t(mnT)y,x(mnZ2y2x

4D2

q

1m

r

1n

)t(mnT)y,x(mnZ4x

4D

(54)

11

2t

w2h

q

1m

r

1n

)t(mnT2t

2)y,x(mnZh

q

1m

r

1n

)t(mnT)y,x(mnZ4y

4D

q

1m

r

1n

)t(mnT)y,x(mnZ2y2x

4D2

q

1m

r

1n

)t(mnT)y,x(mnZ4x

4D

(55)

b

ynsin

a

xmsin

M

2)y,x(mnZ (56)

b

ynsin

a

xmsin

4x

4)y,x(mnZ

4x

4 (57)

)y,x(mnZ

4

a

m)y,x(mnZ

4x

4

(58)

b

ynsin

a

xmsin

2y2x

4)y,x(mnZ

2y2x

4 (59)

12

b

ynsin

a

xmsin

b

n

a

m)y,x(Z

yx

22

mn22

4

(60)

)y,x(mnZ

2

b

n2

a

m)y,x(mnZ

2y2x

4

(61)

b

ynsin

a

xmsin

4y

4)y,x(mnZ

4y

4 (62)

b

ynsin

a

xmsin

4

b

n)y,x(mnZ

4y

4 (63)

)y,x(mnZ

4

b

n)y,x(mnZ

4y

4

(64)

2t

w2h

q

1m

r

1n

)t(mnT2t

2)y,x(mnZh

q

1m

r

1n

)t(mnT)y,x(mnZD

4

b

n

q

1m

r

1n

)t(mnT)y,x(mnZD2

2

b

n2

a

m

q

1m

r

1n

)t(mnT)y,x(mnZD

4

a

m

(65)

13

2t

w2h

q

1m

r

1n

)t(mnT2t

2)y,x(mnZh

q

1m

r

1n

)t(mnT)y,x(mnZ

4

b

n2

b

n2

a

m2

4

a

mD

(66)

4

b

n2

b

n2

a

m2

4

a

m

D

2h

2t

w2h

q

1m

r

1n

)t(mnT2t

2)y,x(mnZh

q

1m

r

1n

)t(mnT)y,x(mnZD

2hD

(67)

2t

w2h

q

1m

r

1n

)t(mnT2t

2)y,x(mnZh

q

1m

r

1n

)t(mnT)y,x(mnZ2h

(68)

14

Multiply each term by )y,x(vuZ .

2t

w2)y,x(vuZh

q

1m

r

1n

)t(mnT2t

2)y,x(mnZ)y,x(vuZh

q

1m

r

1n

)t(mnT)y,x(mnZ)y,x(vuZ2h

(69)

Integrate with respect to surface area.

b

0

a

0dxdy

q

1m

r

1n

)t(mnT)y,x(mnZ)y,x(vuZ2h

b

0

a

0dxdy

q

1m

r

1n

)t(mnT2t

2)y,x(mnZ)y,x(vuZh

b

0

a

0dxdy

q

1m

r

1n

)y,x(vuZ2t

w2h

(70)

15

q

1m

r

1n

b

0

a

0dydx)y,x(mnZ)y,x(vuZ)t(mnT2h

q

1m

r

1n

b

0

a

0dydx)y,x(mnZ)y,x(vuZ)t(mnT

2t

2h

q

1m

r

1n

b

0

a

0)y,x(vuZ

2t

w2h

(71)

The eigenvectors are orthogonal such that

b

0

a

00dydx)y,x(mnZ)y,x(vuZh for u m or v n (72)

b

0

a

01dydx)y,x(mnZ)y,x(vuZh for u = m and v = n (73)

16

q

1m

r

1n

b

0

a

0dydx)y,x(mnZ

2t

w2h

q

1m

r

1n

)t(mnT2t

2q

1m

r

1n

)t(mnT2

(74)

b

0

a

0dydx)y,x(mnZ

2t

w2h)t(mnT2)t(mnT

2t

2 (75)

2td

w2dnm)t(mnT2)t(mnT

2td

2d (76)

Add a damping term.

2td

w2dnm)t(mnT2)t(mnT2

mnmn2)t(mnT2td

2d (77)

)t(nm)t(mn2)t(mn

2mnmn2)t(mn wTTT (78)

17

The following solution is taken from Reference 3. The transfer function is

q

1m

r

1n mnmn2j)22mn(

)y,x(mnZmn),y,x(H (79)

W

),y,x(Z),y,x(H

(80)

The relative displacement is

q

1m

r

1n mnmn2j)22mn(

)y,x(mnZmn),y,x(Z W (81)

q

1m

r

1n mnmn22

mn

mn

2j)(

b

ynsin

a

xmsin

M

2),y,x(Z W (82)

The relative velocity is

q

1m

r

1n mnmn22

mn

mnmn

2j)(

)y,x(Zj),y,x(Z W (83)

q

1m

r

1n mnmn22

mn

mn

2j)(

b

ynsin

a

xmsin

M

2j),y,x(Z W (84)

18

The absolute acceleration is

q

1m

r

1n mnmn22

mn

mnmn2

2j)(

)y,x(Z1),y,x W(U (85)

q

1m

r

1n mnmn22

mn

mn2

2j)(

b

ynsin

a

xmsin

M

21),y,x W(U (86)

The bending moments are

,y,xZ

yxD,y,xM

2

2

2

2

xx (87)

,y,xZ

xyD,y,xM

2

2

2

2

yy (88)

Let z be the distance from the centerline in the vertical axis.

The bending stresses from Reference 4 are

,y,xZ

yx1

zE,y,x

2

2

2

2

2xx

(89)

19

q

1m

r

1n mnmn22

mn

mn2

2

2

2

mn

2xx2j)(

)y,x(Zyx

1

zE,y,x W

(90)

q

1m

r

1n mnmn22

mn

2

2

2

2

mn2

2xx2j)(

b

ynsin

a

xmsin

b

n

a

m

M

2

1

zE,y,x W

(91)

,y,xZ

xy1

zE,y,x

2

2

2

2

2yy

(92)

q

1m

r

1n mnmn22

mn

mn2

2

2

2

mn

2yy2j)(

)y,x(Zxy

1

zE,y,x W

(93)

q

1m

r

1n mnmn22

mn

2

2

2

2

mn2

2yy2j)(

b

ynsin

a

xmsin

a

m

b

n

M

2

1

zE,y,x W

(94)

20

,y,xZ

yx1

zE,y,x

2

xy

(95)

q

1m

r

1n mnmn22

mn

mn

2

mn

xy2j)(

)y,x(Zyx

1

zE,y,x W

(96)

q

1m

r

1n mnmn22

mn

mn2

xy2j)(

b

yncos

a

xmcos

ab

mn

M

2

1

zE,y,x W

(97)

References

1. Dave Steinberg, Vibration Analysis for Electronic Equipment, Wiley-Interscience,

New York, 1988.

2. Arthur W. Leissa, Vibration of Plates, NASA SP-160, National Aeronautics and

Space Administration, Washington D.C., 1969.

3. T. Irvine, Steady-State Vibration Response of a Cantilever Beam Subjected to Base

Excitation Revision A, Vibrationdata, 2009.

4. J.S. Rao, Dynamics of Plates, Narosa, New Delhi, 1999.

21

APPENDIX A

Normal Stress-Velocity Relationship

The maximum absolute spatial stresses for a given mode m,n are

mnmn

22mn

2

2

2

2

mn2

2maxmn,xx2j)(

b

n

a

m

M

2

1

zEW

(A-1)

mnmn

22mn

2

2

2

2

mn2

2maxmn,yy2j)(

b

n

a

m

M

2

1

zEW

(A-2)

The maximum spatial velocity for a given mode m,n is

mnmn

22mn

mnmaxmn

2j)(M

2Z W

(A-3)

Thus

maxmn2

2

2

22

2maxmn,xx Zb

n

a

m

1

zE

(A-4)

maxmn2

2

2

22

2maxmn,yy Zb

n

a

m

1

zE

(A-5)