32
Cenni alla risposta Cenni alla risposta sismica di strutture in sismica di strutture in campo non lineare campo non lineare Corso di Ingegneria Sismica – Prof. Ezio Faccioli – A.A. 2006 /07

Risposta sismica delle strutture

Embed Size (px)

DESCRIPTION

E. Faccioli, Ingegneria Sismica PoliMI, 2007.

Citation preview

Page 1: Risposta sismica delle strutture

Cenni alla risposta Cenni alla risposta sismica di strutture in sismica di strutture in

campo non linearecampo non lineare

Corso di Ingegneria Sismica – Prof. Ezio Faccioli – A. A. 2006 /07

Page 2: Risposta sismica delle strutture

Definizione dei livelli prestazionali in strutture soggette a sisma

1. completa operatività: non vengono interrotte le attività e i danni sono trascurabili;

2. operatività (stato limite di danno): non vengono interrotte le attività e si verificano danni marginali;

3. riparabilità: i danni sono tali da interrompere le attività ma sono riparabili;

4. salvaguardia della vita ( stato limite ultimo): la vita umana non viene messa in pericolo, ma si verificano danni ingenti, talvolta irreparabili, con interruzione delle attività;

5. collasso: i danni mettono a rischio la stabilità della struttura e la vita umana.

Page 3: Risposta sismica delle strutture

Comportamento duttile di strutture (1)

L’andamento non lineare della curva caratteristica può essere approssimato con una spezzata bilineare. E’ possibile definire quindi:

• la rigidezza secante a snervamento: pendenza della risposta elastica idealizzata k=Fy/∆∆∆∆y;

• la resistenza, ovvero la massima forza Fy che la struttura può sopportare rimanendo in campo elastico;

• la duttilità, rapporto tra lo spostamento ∆∆∆∆ subito in un generico istante e lo

spostamento allo snervamento ∆∆∆∆y: µµµµ =∆∆∆∆/∆∆∆∆y;

• la capacità di duttilità della struttura, µµµµc =∆∆∆∆m////∆∆∆∆y.

Fy, ∆∆∆∆y = forza e spostamento al

limite elastico;

F0 = massima forza che l’elemento è

in grado di sopportare;

∆∆∆∆m = massimo spostamento ammesso nei calcoli;

∆∆∆∆u = spostamento di collasso.

Page 4: Risposta sismica delle strutture

Comportamento duttile di strutture (2)

La capacità di duttilitàdella struttura dovrà essere

confrontata con la domanda di duttilità richiesta alla

struttura da un certo terremoto.

Il comportamento prestazionale della struttura è governato:

• dalla rigidezza, per terremoti di piccola intensità;

• dalla resistenza, per terremoti di media intensità;

• dalla duttilità, per terremoti di elevata intensità.

DUTTILITA’

Materiale

Sezione

Elemento strutturale

Struttura

Page 5: Risposta sismica delle strutture

Duttilità del materiale

• E’ la capacità del materiale di sopportare deformazioni anelastiche senza arrivare a rottura.

• La duttilità di deformazione è il rapporto tra la deformazione corrente e la deformazione allo snervamento µµµµεεεε=εεεε/εεεεy.

Una buona duttilità di deformazione del materiale favorisce elevate capacità di deformazione a livello di sezione, elemento e struttura. L’acciaio soddisfa tale condizione, il calcestruzzo necessita di elevati livelli di confinamento.

Page 6: Risposta sismica delle strutture

Duttilità flessionale della sezione

• E’ la capacità di sopportare elevate domande di curvatura in campo anelastico prima della crisi della sezione.

• La duttilità di curvatura è il rapporto tra la curvatura corrente e la curvatura allo snervamento µµµµφφφφ=ΦΦΦΦ/ΦΦΦΦy.

La duttilità di curvatura per sezioni in CA dipende dall’armatura e dal carico assiale. Carico assiale elevato e eccessiva armatura longitudinale possono produrre il collasso a compressione del calcestruzzo. Elevate percentuali di armatura trasversale ben distribuita aumentano la duttilità della sezione per effetto del confinamento.

Page 7: Risposta sismica delle strutture

Duttilità dell’elemento strutturale

• E’ la capacità dell’elemento di sopportare spostamento o rotazioni in campo anelastico prima della crisi dell’elemento stesso.

• La duttilità di spostamento dell’elemento è il rapporto tra lo spostamento corrente e la spostamento allo snervamento µµµµ∆∆∆∆=∆∆∆∆/∆∆∆∆y.

Page 8: Risposta sismica delle strutture

Duttilità della struttura

• E’ la capacità (in termini di spostamento) di una struttura di rispondere all’azione del sisma entrando in campo non lineare prima della crisi della struttura stessa, identificata generalmente dalla formazione di un meccanismo di collasso.

• La duttilità di spostamento della struttura è il rapporto tra lo spostamento corrente e la spostamento allo snervamento di un punto significativo della struttura, ad esempio un punto in sommità: µµµµ∆∆∆∆=∆∆∆∆/∆∆∆∆y.

Page 9: Risposta sismica delle strutture

Relazione tra duttilità locale e globale

Page 10: Risposta sismica delle strutture

Altri aspetti che influiscono positivamente sulla duttilità della struttura:

• continuità degli elementi strutturali, per assicurare alle forze orizzontali un percorso fino a terra;

• ridondanza degli elementi strutturali, per ridistribuire le sollecitazioni, evitare rotture fragili e ritardare il collasso;

• regolarità della distribuzione delle masse, delle rigidezze e delle resistenze, per ridurre gli effetti torsionali, le concentrazioni di domanda di resistenza e duttilità, la formazione di meccanismi di piano debole;

• masse ridotte e sufficiente rigidezza, per ridurre danni non strutturali e effetti del secondo ordine (instabilità geometrica).

Page 11: Risposta sismica delle strutture

Gerarchia delle resistenze (1)

La moderna ingegneria sismica si prefigge lo scopo di di rendere massima la capacità dell’intera struttura di deformarsi e dissipare energia prima di arrivare al collasso, disponendo le zone dissipative nell’intero sistema in modo tale da favorire il verificarsi della modalità di collasso desiderata

⇒ capacity design o progetto secondo la gerarchia delle resistenze

Operativamente, ciò si traduce nel fare in modo che modalità di danno e collasso di tipo duttile precedano sempre le modalità di collasso fragile, impedendone il verificarsi.

Page 12: Risposta sismica delle strutture

Gerarchia delle resistenze (2)

Il capacity design si propone di individuare, tra i possibili meccanismi dicollasso, ed a parità di domanda di duttilità imposta dal sisma, quello che si produca con la minima rotazione delle cerniere plastiche, in modo tale da rendere massima la capacità dissipativa della struttura.

A parità di domanda di duttilitàglobale ∆m, le rotazioni delle cerniere plastiche nel caso (a) sono inferiori.

((((a) ) ) ) θθθθmt=∆∆∆∆m/H

(b) θθθθmc=∆∆∆∆m/h

Page 13: Risposta sismica delle strutture

Simulazione numerica del comportamento sismico di un edificio progettato secondo la gerarchia delle resistenze.

Page 14: Risposta sismica delle strutture

Gerarchia delle resistenze (3)

Tra gli accorgimenti da seguire generalmente per una corretta applicazione del capacity design si citano i seguenti:

• distribuire le resistenze in modo uniforme al fine di evitare la formazione di poche zone concentrate con elevata ri chiesta di duttilità;

• evitare meccanismi di piano debole;

• evitare rotture per taglio (no travi tozze);

• integrità dei nodi trave-colonna;

• privilegio per la configurazione “trave debole – col onna forte”;

• prevenire il collasso della fondazione.

Page 15: Risposta sismica delle strutture

Esempi di collasso per piano terra debole

Golcuk

Terremoto di Izmit, Turchia, 17 agosto 1999

Terremoto di Northridge, California, 17 gennaio 1994

Page 16: Risposta sismica delle strutture

Collasso per piano intermedio debole

Terremoto di Kobe, Giappone, 17 gennaio 1995

Page 17: Risposta sismica delle strutture

Esempio di rottura a taglio su colonne tozze

Page 18: Risposta sismica delle strutture

Esempio di rottura in corrispondenza di nodi trave-colonna

Terremoto di Izmit, Turchia, 17 agosto 1999

Page 19: Risposta sismica delle strutture

Esempio di collasso per brusca variazione di rigidezza in pianta

Terremoto di Kobe, Giappone, 17 gennaio 1995

Page 20: Risposta sismica delle strutture

Esempio di applicazione di isolatori sismici alla base di un edificio a Kobe, Giappone

Page 21: Risposta sismica delle strutture

ESEMPIO DI ISOLATORE ELASTOMERICO

Page 22: Risposta sismica delle strutture

ESEMPIO DI ISOLATORE CON MOLLE IN ACCIAIO

Page 23: Risposta sismica delle strutture

ESEMPIO DI ISOLATORI SISMICI IN PIOMBO

Page 24: Risposta sismica delle strutture

APPLICAZIONE DI ISOLATORI SISMICI (PENDOLO AD ATTRITO) PER IL SOSTEGNO DELLA COPERTURA DEL

NUOVO AEROPORTO DI ISTANBUL

Page 25: Risposta sismica delle strutture

Curve forza-spostamento per diversi tipi di dispositivi di isolamento

Page 26: Risposta sismica delle strutture

Effetto della duttilità sugli spettri di risposta

oscillatore visco elastico lineare

oscillatore non lineare

eq gmu cu k u mx+ + = −&& & &&

( ) gmu cu F u mx+ + = −&& & &&

Page 27: Risposta sismica delle strutture

Spettri di risposta anelastici

( ) ( )txm

uFuu g

Sn &&&&& −=++ ξω2

In alternativa al calcolo non lineare, risulta spesso conveniente riferirsi ad un comportamento “lineare equivalente” nel quale la rigidezza iniziale viene sostituita con una rigidezza equivalente (keq) corrispondente ad un prefissato livello di duttilità. Il periodo naturale di vibrazione ed il rapporto di smorzamento varieranno di conseguenza.

Equazione del moto

Legame forza-spostamento

1

keq

Page 28: Risposta sismica delle strutture

Sistemi molto flessibili (Tn elevato)

Per strutture con Tn>Tsisma, ovvero con periodo proprio iniziale (calcolato in campo elastico) maggiore del periodo corrispondente alla massima risposta elastica spettrale per il terremoto in esame, il massimo spostamento raggiunto dal sistema anelastico in campo non lineare tende ad essere pari a quello raggiunto dal corrispondente sistema in campo elastico (approssimazione di uguale spostamento).

E’ allora possibile ricavare la relazione tra forza statica equivalente del

sistema elastico e anelastico, definendo il fattore di riduzione

della forza R

µ=≈===y

maxa

y

maxe

y,s

maxe,s

maxa,s

maxe,s

u

u

u

u

F

F

F

FRmax

gmax xu →

Page 29: Risposta sismica delle strutture

Sistemi molto rigidi (Tn basso)

Per strutture con Tn->0, il sistema si muove solidalmente con il terreno: la forza che dovrà essere sopportata sarà pertanto pari al prodotto della massa dell’edificio per l’accelerazione del terreno, indipendentemente dal tipo di risposta elastica o anelastica. Se tale forza (Fg) è superiore al limite elastico, il sistema non potrà sopportarla, qualunque sia la sua duttilità. In tale campo di periodi, è allora necessario progettare la struttura in modo che rimanga comunque in campo elastico per forze proporzionali

all’accelerazione del sisma (approssimazione di uguale accelerazione ).

1max,

max, ==as

es

F

FR

maxmax

max 0

gs xmF

u

&&→

Page 30: Risposta sismica delle strutture

Per strutture con Tn->Tsisma, si assume che il massimo spostamento raggiunto dal sistema anelastico in campo non lineare sia tale da fornire una energia di deformazione pari a quella dovuta allo spostamento del corrispondente sistema elastico. (approssimazione di uguale energia).

12max,

max, −== µas

es

F

FR

Sistemi a comportamento intermedio (Tn Tsisma)

( )( ) ( )maxmax,

max,

max,2

1eaysyeyses uuFuuFF −=−−

Page 31: Risposta sismica delle strutture

‘Zone’ dello spettro di risposta

maxmax

12

12

12

ea

AeAa

uu

SS

R

−=

−=

−=

µµ

µ

µ

maxmax

1

ea

AeAa

uu

SS

R

=

==

maxe

maxa

AeAa

uu

SS

R

=

=

=

µ

µ

Page 32: Risposta sismica delle strutture

0 1 2 3Tn (s)

0

2

4

6

8

Fatto

re r

idu

zio

ne R

R = µ

R = 1

R = √2µ−1

Effetto della duttilità sullo spettro di rispostaAccelerogramma di Bagnoli Irpino (23/11/1980)

0 1 2 3Tn (s)

0

100

200

300

400

500

Acc

eler

azio

ne s

pettr

ale

(g)

Spettro e lastico 5%

Spettro e lasto-plastico (µ=4)

Lo spettro elasto-plastico a duttilità costante è anche denominato spettro di resistenza: se moltiplicato per la massa, fornisce infatti la resistenza a snervamento necessaria affinchè la struttura risponda all’accelerazione del suolo con la prefissata duttilità