RYCKAERT

Embed Size (px)

Citation preview

  • 7/31/2019 RYCKAERT

    1/26

    Ultra-Widebandcommunication technology

    for sensor network

    applicationsJulien Ryckaert

    [email protected]

  • 7/31/2019 RYCKAERT

    2/26

    The vision of Ambient Intelligence

    An environment where technology isembedded, hidden in the background

    Fred BoekhorstPhilips Research, ISSCC 02

  • 7/31/2019 RYCKAERT

    3/26

    Health Care of the Future

    Fitness for you!

  • 7/31/2019 RYCKAERT

    4/26

    Increase Productivity

    Home of the Future

  • 7/31/2019 RYCKAERT

    5/26

  • 7/31/2019 RYCKAERT

    6/26

    Energy

    S e n s

    i n g

    clock

    A sensor node is a completelyautonomous device

    P r o c e s s

    i n g

    C o m m u n

    i c a

    t i o n

  • 7/31/2019 RYCKAERT

    7/26

    Three major challenges in thecommunication module

    Ultra-low power : >2 years autonomy Ultra-small size : non-invasive Ultra-low cost : disposable

    Energy

    S e n s i n g

    clock

    P r o c e s s i n g

    C o m m

    u n i c a t i o n

    Low communication performance :

  • 7/31/2019 RYCKAERT

    8/26

    POWER CONSUMPTION

    PERFORMANCE

    ?

  • 7/31/2019 RYCKAERT

    9/26

    In reality, the total Energyconsumption must be minimized

    What does it cost to transfer a bit of information?

    Power consumption (Energy/time)

    Data rate (bits/time)= Energy/bit

    Power Energy/bit

    but Data rate Energy/bit

  • 7/31/2019 RYCKAERT

    10/26

    How does it look like today?

    50 Mbps

    After CEA-LETI

    E n e r g y

    / b i t ( n J / b i t )

    10E0

    10E1

    10E2

    10E3

    10E4

    1Mbps 250kbps 10 to 150 kbps

    Increasing data rate

    The active time of the radio must be minimized!!!

  • 7/31/2019 RYCKAERT

    11/26

    POWER CONSUMPTION

    PERFORMANCE

    ?UWB

  • 7/31/2019 RYCKAERT

    12/26

    Traditional Communicationsystems use continuous waves

    NarrowBand Communication

    time frequency

    Each user/application has its own

    spectrum band

  • 7/31/2019 RYCKAERT

    13/26

    Impulse Radio UWB uses shortpulses

    Pulse-based Ultra WideBand communication

    time frequency

    Emitted power must be low

    enough to avoid jamming

  • 7/31/2019 RYCKAERT

    14/26

    Active Active

    Sleep

    Power

    Activate the radio only whenneeded

    The active time of the radio is reduced:

    Radio duty - cycling

  • 7/31/2019 RYCKAERT

    15/26

    FCC: UWB communication must bedone in the 3.1-10GHz band

    10.6

    -41dBm/MHz

    3.11 F [GHz]

    Full-7GHz Band

    10.6

    -41dBm/MHz

    3.11 F [GHz]

    Minimum 500MHz band

    More users

    FCC

  • 7/31/2019 RYCKAERT

    16/26

    IEEE standard for low data-ratesensor networks

    1 s

    1 s

    Burst

    Activate the transmitter only whenneeded to achieve low-power

    3% Active! 97% Inactive

  • 7/31/2019 RYCKAERT

    17/26

    The standard imposes someconstraints on the signals

    Pulses are BPSK modulated1

    0

    Fcarrier = N x Fpulse

    Pulse repetition frequency multiple of carrier frequency

  • 7/31/2019 RYCKAERT

    18/26

    DigitallyControlled

    Oscillator (DCO)

    ProgrammableDivider (DIV)

    7:20Div 16

    DCO register

    E-LDetector

    RFout

    Chip

    Burst Code

    Data

    Trigger

    Clock31.2MHz Enable

    DigitalModulator

    (DMO)

    499.2MHz chip rate

    RF LO3-10GHz

    Control loop

    FPGA

    31.2MHz

    Data

    E/LDCO fine frequencyconfiguration bits

    499.2MHz

    4

    CONTROL LOOP

    Overall transmitter architecture

    (ISSCC 07)

  • 7/31/2019 RYCKAERT

    19/26

    Time-domain measurement of the output signal

    1 0 0 1 1 1 0 1 1 1 0 0 1 1 0 1

    Same energy efficiency as first transmitter!

  • 7/31/2019 RYCKAERT

    20/26

    Correlation can be done eitherin Analog or in Digital domain

    ADC

    Analog

    Correlation

    Decision

    ADCDigital

    Correlation(Matched Filter)

    Decision

    High Sampling rate Power Hungry

    Very precise timing Power Hungry

  • 7/31/2019 RYCKAERT

    21/26

    Full system block diagram

    LOTiming circuit

    DigitalController(System

    Configurationand

    Interfacing)

    ADC

    ADC

    Q

    I

    LNA

    DL

    Clk/Rst

    Serial/ParOut

    I/O bus

    CAL

    CAL

    Analog Output

    Clk

    RFin

    (ISSCC 06)

    DL DL DL

  • 7/31/2019 RYCKAERT

    22/26

    What about power consumption?

    State-of-art narrowband solutions (Zigbee): TX: 10mW RX: 2mW

    UWB solutions: TX: 0.5-1mW RX: 0.3mW

    / 10

  • 7/31/2019 RYCKAERT

    23/26

    UWB has other advantages

    Positioning by measuring the time of arrival

    Security : UWB power spectrum below thebackground noise

    TX RX

    TXD T

    D L

    Background noise (kT)

  • 7/31/2019 RYCKAERT

    24/26

    Other impulse Radioimplementations exist

    Example: MIT (US) proposes a similar concept:

    But uses a proprietary UWB communication interface

  • 7/31/2019 RYCKAERT

    25/26

    Therefore the question: shouldsensor networks be standardized?

    Pros: Interoperability (add nodes in the network) Market pressure decreases cost

    Cons: Solution biased by the big ones Security Less interferences (?)

    Sandardization aspect is an old controversialdebate for healthcare wireless systems

  • 7/31/2019 RYCKAERT

    26/26

    Conclusions

    UWB offers today a 10x improvement onpower consumption.

    UWB has other interesting advantages inthe context of sensor networks: security,positionning,

    An IEEE standard exists today (IEEE802.15.4a), but its use in wirelesshealthcare systems is still a debate.