99
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra 1 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. AuthorsNames Segmento de Tierra Ana Laverón Simavilla E-USOC/Dpto. de Vehículos Aeroespaciales ETSI de Aeronáuticos, UPM

Segmento de Tierra - UPM · architecture, i.e., the bent-pipe design – The introduction of some satellite constellations and on-board processing started to become really complicated

Embed Size (px)

Citation preview

Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra

1 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. AuthorsNames

Segmento de Tierra

Ana Laverón Simavilla

E-USOC/Dpto. de Vehículos Aeroespaciales

ETSI de Aeronáuticos, UPM

2 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Contents

• Introduction

• Basic description of the Ground Segment

• Design considerations

– Coverage required per S/C

– Type of orbit/mission

– Number of S/Cs

– Number of P/Ls and data processing needs

– Manned or unmanned missions

– Number and location of Ground Stations

– Security issues

• Ground Segment requirements

• Cost reduction scenarios

3 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Contents

• Ground segment definition and functions

• High level architecture. Core elements

• Alternative architectures for different missions

• Ground segment phases

4 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

INTRODUCTION

5 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Space system

• Space segment

• Ground segment

– Infrastructure and systems needed to operate the space segment

– Link between the final users and the space segment

• Users segment

6 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Relevance of the Ground Segmet

• Importance of Ground Segment in Satellite Communications – Until not long ago, satellites were based on a relatively simple

architecture, i.e., the bent-pipe design

– The introduction of some satellite constellations and on-board processing started to become really complicated for the satellite industry

• Some architectures have very complex Space Segment

• Some architectures adopted simpler Space Segment and more complex Ground Segment

– According to ESA

• 80% of the satellite communications market is in the ground segment - sale of satellite terminal equipment and provision of value-added services

• 20% space segment itself - satellite production, launch and operations

– The satellite and space industry lives in a contradiction: while people’s attention is often focused on the space segment, it is the ground segment that does a lot of the work that adds value to satellite communications

8 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Relevance of the Ground Segment

Ground Space

Requirements

Functionality Real-time embedded

Interoperability P/L specific

Autonomy Reuse bus

Architecture

Distributed network Processor constrained

Integration

More COTS Standard bus interfaces

More external interfaces

Team

Dispersed 1 or 2 teams

Different processes

Code size

2.0-4.0 M SLOC 0.01-0.5 M SLOC

• Criticality of SW design

Ground Software

is Highest Risk!!!

9 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

BASIC DESCRIPTION OF THE

GROUND SEGMENT

10 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Space system main blocks

Space

segmentEnd users

Ground segment

Data

managementTM/TC

TM/TC

Users data

Operations support

Spacecraft operations

Payload operations

Mission operations

Ground

StationTM/TC

11 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Ground Segment main elements

• Ground Stations

– Tracking

– Reception of TM (HR & LR from P/L & S/C)

– Uplink of TC (P/L & S/C)

• Control Centers

– Mission Control

– P/L Operations

– S/C Operations

– Coordination of Ground Stations

– Data archiving

– Data processing

• Final users

– Telecommunication users

– Scientists

– …

12 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Data management paths

Space

segmentEnd users

Ground segment

Data Relay

Operations support Requests

Mission data Mission data

Command &

Tracking data

Mission data

H&S TM

13 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

DESIGN CONSIDERATIONS

14 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Design considerations

• Coverage required per S/C

• Type of orbit/mission

• Number of S/Cs

• Number of P/Ls and data processing needs

• Manned or unmanned mission

• Number and location of Ground Stations

• Security issues

15 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Design considerations

• Coverage required per S/C

• Type of orbit/mission

• Number of S/Cs

• Number of P/Ls and data processing needs

• Manned or unmanned mission

• Number and location of Ground Stations

• Security issues

16 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Coverage required per S/C 1/6

• Coverage: frequency and amount of time per orbit that a S/C needs to be linked to the GS

– It depends on many factors

• Amount of data to be transferred

– TC and housekeeping TM is not an issue

– P/L data can be an issue

– Data rate of the downlink

• S/C Autonomy

– Lack of onboard command storage

– Requirement to receive mission data

• Manned missions

• Need of continuous access, e.g. telecommunications S/Cs

• Phase of the mission (e.g. LEOP)

– It can determine the number and location of the Ground Stations

17 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Coverage required per S/C 2/6

• Coverage study

– Circle of accessibility: it depends on the Ground Station (, minimum elevation) and the S/C (h, altitude)

18 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Coverage required per S/C 3/6

Coverage area from Torrejón and Maspalomas (=5º)

– Solid lines – INGENIO (Sun-synchronous, 667,78 km)

– Dashed lines – PAZ (Sun-synchronous, 510 km)

19 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Coverage required per S/C 4/6

– Passes over the station (e.g. EURECA daily passes)

• Number of consecutive passes

• Duration of the passes

20 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Coverage required per S/C 5/6

Three first orbits of ERS-1 ( i=98.5º, h=785 km) during the Launch and Early Orbit Phase (LEOP)

21 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Coverage required per S/C 6/6

• How can the coverage influence the Ground Station design or selection?

1. Determine the P/L data to be transfered (e.g. Biomass)

a) P/L data rate (e.g.: 102 Mbps )

b) Duty cycle (e.g.: 20%)

2. Select a Ground Station location (e.g. Svalbard, Norway for Biomass)

a) Study the coverage

i. Frequency of the passes

ii. Duration of each pass

3. From 1. and 2. determine the downlink data rate needed (e.g. 100-250 Mb/s)

4. Does the selected Ground Station meet the requirement?

22 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Design considerations

• Coverage required per S/C

• Type of orbit/mission

• Number of S/Cs

• Number of P/Ls and data processing needs

• Manned or unmanned mission

• Number and location of Ground Stations

• Security issues

23 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Type of orbit/mission 1/6

• Each type of orbit/mission can make use of different communication links, each type of link require different Ground Station setups – LEO, MEO

Store and forward link

Crosslink in communication satellite systems

Make use of available communication services Air Force Satellite Control Network (AFSCN)

NASA Tracking and Data Relay Satellite System (TDRSS)

– Molniya

– GEO

Store and forward link

Ground Station relays

Crosslink in communication satellite systems

24 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Type of orbit/mission 2/6

– Space Science missions

Store and forward link

Make use of available communication services

ESA Tracking Stations Network (ESTRACK)

NASA Deep Space Network (DSN)

25 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Type of orbit/mission 3/6

• LEO with store and forward link

– High transmission delay for communications with 1 S/C (Starsys)

– Constellations with many gateways (Globalstar)

– Reduced transmitter power due to low altitude

– If the data amount is high

• Many Ground Stations

• Very high data rates

26 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Type of orbit/mission 4/6

• LEO with crosslink

– Used in communication satellite systems

– Large coverage area

– Possibility of polar coverage

– Highly survivable due to mutiple paths

– Reduced jamming susceptibility due to limited Earth view area

– Reduced transmitter power due to low altitude

27 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Type of orbit/mission 5/6

• GEO with GS relay

• No need to switch between satellites

• No need of antenna tracking

• High-cost launch

• High-cost satellite

• High-coverage

• No polar regions coverage

28 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Type of orbit/mission 6/6

• Molniya orbit

– Coverage in high latitudes

– Low-cost launch

– Complex network control

– Need for GS antenna pointing

– Need for S/C handover

29 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Design considerations

• Coverage required per S/C

• Type of orbit/mission

• Number of S/Cs

• Number of P/Ls and data processing needs

• Manned or unmanned mission

• Number and location of Ground Stations

• Security issues

30 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Number of S/Cs

• Overlaps of S/Cs at the same Ground Station

• Gaps between S/Cs passes

– Should be enough to enable the change from one S/C to the other

• Complex operations

31 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Design considerations

• Coverage required per S/C

• Type of orbit/mission

• Number of S/Cs

• Number of P/Ls and data processing needs

• Manned or unmanned mission

• Number and location of Ground Stations

• Security issues

32 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Number of P/Ls and

data processing needs 1/3

• The data user’s requirements determine the complexity of the distribution systems

– Acceptable error rate

– Acceptable delay receiving the

• TM – “TM available in less than 3 hours after sensing” (impact on coverage requirement)

• processed TM in different levels – “Level 3 TM available in less than 5 hours after sensing” (impact on data handling and P/L CC)

• Number of final users

• Location of the final users

33 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Number of P/Ls and

data processing needs 2/3

• If the S/C has several instruments each user will probably need – all the data from one of the P/Ls

– a small portion from the other P/Ls

– a portion of housekeeping TM

– a portion of Flight Dynamics TM

• Different users will need data processed in different Levels

• The data processing for higher levels require the knowledge and cooperation of scientists

34 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Number of P/Ls and

data processing needs 3/3

• Committee on Data Management, Archiving and Computing (CODMAC) Data Level Definitions

– Level 0: reconstructed, unprocessed instrument/payload data at full resolution; raw engineering measurements (any and all communications artifacts, e.g. synchronization frames, communications headers, duplicate data removed)

– Level 1: reconstructed, unprocessed instrument data at full resolution, time-referenced, and annotated with ancillary information, including radiometric and geometric calibration coefficients and georeferencing parameters, e.g., platform ephemeric, computed and appended but not applied to the Level 0 data

– Level 2: derived geophysical variables at the same resolution and location as the Level 1 source data

– Level 3: variables mapped on uniform space-time grid scales, usually with some completeness and consistency

– Level 4: model output or results from analyses of lower level data (i.e., variables derived from multiple measurements)

• Some others – Raw TM: as downlinked from the S/C

– Level 1B: Level 1 data processed to sensor units

37 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Design considerations

• Coverage required per S/C

• Type of orbit/mission

• Number of S/Cs

• Number of P/Ls and data processing needs

• Manned or unmanned mission

• Number and location of Ground Stations

• Security issues

38 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Manned or unmanned mission

• Security requirements

• Safety requirements

• Safe return of astronauts

• 24x7 Ops coverage vs. Automated Ops

39 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Design considerations

• Coverage required per S/C

• Type of orbit/mission

• Number of S/Cs

• Number of P/Ls and data processing needs

• Manned or unmanned mission

• Number and location of Ground Stations

• Security issues

40 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Number and location

of Ground Stations

• Existing or new

• Dedicated or shared

• Fixed or mobile

41 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Design considerations

• Coverage required per S/C

• Type of orbit/mission

• Number of S/Cs

• Number of P/Ls and data processing needs

• Manned or unmanned mission

• Number and location of Ground Stations

• Security issues

42 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Security issues

• End-to-end lines

• Use of the www

43 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

GROUND SEGMENT

REQUIREMENTS

44 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Ground segment requirements 1/2

• Ground segment requisites

– Support the operations, data processing and handling with

• High reliability

• High availability

• High fidelity

• High flexibility

• High security

– Cost reasons will reduce some/all of the above characteristics of the GS

• Cost considerations

– Operations 30-40% of the overall programme

45 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Ground segment requirements 2/2

• Type of requirements

– No loss of data

• No missing passes

• No missing data

– Fast return of critical data

– Regular return of bulk data

– Rapid response for critical commanding

– Ease of access to data

– Data management security

• Compromises to reduce redundacies and cost

– Acceptance of small loss of passes (1 in 1000)

– Acceptance of small loss of data (<1%)

– No rapid return of non-urgent data (data available <3 hours after sensing)

46 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

COST REDUCTION SCENARIOS

47 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Cost reduction scenarios 1/3

• Reliability

– Some small passes loss and data loss should be accepted as they should not risk the mission, and enable important cost reduccions in redundant HW, SW and operations costs

– This is not applicable to manned missions

• Data availability

– Real-time and near real time data is expensive, and should be reduced to the critical phases of the mission

• Commisioning

• Troubleshooting…

– Processing and transferring the data in very short times is also very expensive by means of human resources (24x7) and communication links (bandwidths)

48 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Cost reduction scenarios 2/3

• Data management security

– Security policies are also very expensive and its need should be evaluated carefully

• Dedicated communication links

• Operation support tools in secure networks

• SW development

– Increasing the ammount of COTS SW should reduce the development costs

– Reuse of SW from previous similar missions should also be increased

49 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Cost reduction scenarios 3/3

• Increase autonomy of operations to reduce manpower costs

– Tracking

– Automatic retuning of the frequency set-up

– Automatic reception and storage of downlinked TM

– Automatic conversion of critical raw data to engineering units

– Automatic checking of critical data

– Automatic dialing to on-call engineers

– Automatic distribution of data to end users

– Automatic production of summary TM quality

– Uplink of automated procedures

50 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

GROUND SEGMENT DEFINITION

AND FUNCTIONS

51 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Ground segment

Definition

ECSS-E-70 all ground facilities and personnel involved in the preparation or execution of mission operations

52 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Mission operations

Comprise the subset of mission engineering activities identifiable for:

– flight operations

– ground operations

– logistics engineering

required to operate the space segment.

53 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Ground segment composition

Space

Segment

Element

Element

Element

Ground Segment

Ground Operations

Organization

Ground Systems

En

tity

A Element

Element

Organization A

Element

Element

Facility A

Element

Element

Organization B

Element

Element

Facility B

En

tity

B

Space

Operations

Organization

Element

Element

Element

Ground Segment Domain

54 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Mission operations and mission success

• Ground systems and operations are key elements of a space system and as such play an essential

role in achieving mission success.

• Mission success is defined as the achievement of the target mission objectives as expressed in terms

of the quantity, quality and availability of delivered mission products and services within a given

cost envelope.

• Mission success requires successful completion of a long and complex process covering the

definition, design, implementation, validation, in flight operations and post operational activities,

involving both the ground segment and also space segment elements.

• It involves technical activities, as well as human and financial resources, and encompasses the full

range of space engineering disciplines. Moreover it necessitates a close link between the design of

the ground segment and the space segment in order to ensure proper compatibility between both

elements of the complete space system.

55 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Ground systems

Definition

ECSS-E-70 All ground infrastructure elements that are used to support the preparation activities leading up to mission operations, the

conduct of mission operations and all post-operational activities

56 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Functions of the Ground Segment

• Maintain RF communications links

• Provide S/C control to ground operators

• Process and archive telemetry (Tracking, Health & Safety)

• Provide P/L control to ground operators

• Process and archive telemetry (P/L data)

• Support Mission Operations

• Provide P/L data to the end users

• Provide communications between CCs

57 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Functions of the Ground Segment

• Provide S/C control to ground operators

– Number of S/C and orbital configurations

– Tracking methods

• Range and range rate

• Antenna viewing angles

• External tracking network

• Spacecraft autonomy

• Provide P/L control to ground operators

– Number of P/Ls

– Number and location of P/L control centers

58 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Functions of the Ground Segment

• Process and archive telemetry (P/L data)

– Number and location of expert centers

– Amount of data generated by the P/Ls

– Delay between data acquisition and data submittal to users

– Processing complexity

• On board

• On ground

59 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Functions of the Ground Segment

• Provide P/L data to the end users

– Number and location of users

– Amount of data to be delivered to the users

– Direct link or processed data

• Communications between CCs

– TM

– TC

– Voice

– Video

– Mail

60 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

HIGH LEVEL ARCHITECTURE.

CORE ELEMENTS

61 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Ground system elements

• The facilities point of view

• The data flow point of view

• The SW elements point of view

• The functional point of view

• …

62 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Ground system elements

STC

EGOS

ESA Ground Operations Software System

MPS

63 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Space

Segment

Platform

Payload

Ground Segment

Mission

Control

System

(MCS)

Ground

Station

System

(GSTS)

Ground

Communications

Subnet (GCS)

Electrical Ground

Support

Equipment

(EGSE)

Space

subnet

link

Space

subnet

link

Assembly

integration

and test subnet

AIT subnet

Space &

Ground

Simulation

System (SGSS)

GC

S

GCS

Mission

Exploitation

System

(MES)

GCS

1. Mission control system (MCS)

2. Mission exploitation system (MES)

3. Ground station system (GSTS)

4. Ground communication subnet (GCS)

5. Space & Ground simulation system (SGSS)

6. Electrical ground support equipment (EGSE)

Ground system elements

64 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Space

Segment

Platform

Payload

Ground Segment

Mission

Control

System

(MCS)

Ground

Station

System

(GSTS)

Ground

Communications

Subnet (GCS)

Electrical Ground

Support

Equipment

(EGSE)

Space

subnet

link

Space

subnet

link

Assembly

integration

and test subnet

AIT subnet

Space &

Ground

Simulation

System (SGSS)

GC

S

GCS

Mission

Exploitation

System

(MES)

GCS

Ground system elements

1. Mission control system (MCS)

2. Mission exploitation system (MES)

3. Ground station system (GSTS)

4. Ground communication subnet (GCS)

5. Space & Ground simulation system (SGSS)

6. Electrical ground support equipment (EGSE)

65 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Mission control system (MCS)

Elements required to control the mission and to exploit the products, which are:

- Operations control system (OCS)

a. Flight dynamics (FDS)

- Payload control system (PCS)

- Data distribution

- Data base

- Mission exploitation system (MES)

66 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Mission control system (MCS)

Operations control system

(OCS) supporting

a. Flight operations

b. Ground operations

c. Mission control

d. Analysis of performance of

the mission

e. Analysis of the performance

of the system

f. Control over the system

configuration

67 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Mission control system (MCS)

Flight dynamics system (FDS)

a. Prediction of orbital elements

b. Attitude determination

c. Manoeuvres planning and

specification of all the

operational stages

- LEOP

- DRIFT

- Commissioning

- Nominal operations

d. Prediction of antenna

visibility

e. Acquisition and processing of

external geophysical and

dynamical data

f. Prediction of relevant

operational events

68 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Mission control system (MCS)

Payload control system (PCS)

supporting

a. Planning of the payload

elements

b. Monitoring and control of

the payload elements

c. Performance evaluation of

the payload elements

69 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Ground system elements

Nav

igat

ion

elem

ents

Ant

enna

poi

ntin

g co

mm

ands

TC

history

TC

results

Navigation requests

TM

Tra

ckin

g da

taTC

schedule

Space link schedule

Flight schedules, updates & plans

OCS

FDS MPS

Relations between main MCS elements

70 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Mission control system (MCS)

Data distribution

- Repository of all the data

collected during the mission

lifetime

Mission data Base

- Definition of all the mission

data

71 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Data distribution system (DDS)

• Instrument data processing for 3 instruments

Decrypter

Mission Data

1 Mbps

Instrument

Data

Deconmutator

1 Mbps

Instrument A

Data Buffer &

Deconmutator

Instrument B

Data Buffer &

Deconmutator

Instrument B

Data Buffer &

Deconmutator

User A

Conmutator

User A

Conmutator

User A

Conmutator

Recorder

Recorder

Recorder

500 kbps

700 kbps

1 Mpbs

10

kbps

8

kbps

12

kbps

520 kbps

722 kbps

1018 kpbs

520 kbps

722 kbps

1018 kpbs

72 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Data distribution system (DDS)

• Data processing

Ground Segment

P/L CC

DecrypterSC Data

Instrument

Data

Deconmutator

1 Mbps

Instrument A

Data Buffer,

Deconmutator

& Processing

Instrument A

Data for other

instruments

Instrument A

Data Buffer,

Conmutator &

Processing

Other

Instruments

Data

Data for

Other

Instruments

MCC

FOCC

FO Data

HK Data

FO Data

Deconmutator for

Instrument A, Data

Buffer, & Processing

HK Data

Deconmutator for

Instrument A, Data

Buffer, & Processing

Instrument A

Expert Center

Instrument A

Data Buffer,

Conmutator &

Processing

Calibration/

Data

Users

community

Requests/

Processed

Data

73 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Space

Segment

Platform

Payload

Ground Segment

Mission

Control

System

(MCS)

Ground

Station

System

(GSTS)

Ground

Communications

Subnet (GCS)

Electrical Ground

Support

Equipment

(EGSE)

Space

subnet

link

Space

subnet

link

Assembly

integration

and test subnet

AIT subnet

Space &

Ground

Simulation

System (SGSS)

GC

S

GCS

Mission

Exploitation

System

(MES)

GCS

Ground system elements

1. Mission control system (MCS)

2. Mission exploitation system (MES)

3. Ground station system (GSTS)

4. Ground communication subnet (GCS)

5. Space & Ground simulation system (SGSS)

6. Electrical ground support equipment (EGSE)

74 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Provide users with mission products

- Raw data (images, TM)

- Rectified data (geometrically and radiometrically) using satellite housekeeping TM and other PL housekeeping TM

Long term archive, for generation of products and for dissemination to users

Statistic about the quality of the data, and reports of the mission performance

Supporting the users establishing high level production plan

Mission exploitation system (MES)

75 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Space

Segment

Platform

Payload

Ground Segment

Mission

Control

System

(MCS)

Ground

Station

System

(GSTS)

Ground

Communications

Subnet (GCS)

Electrical Ground

Support

Equipment

(EGSE)

Space

subnet

link

Space

subnet

link

Assembly

integration

and test subnet

AIT subnet

Space &

Ground

Simulation

System (SGSS)

GC

S

GCS

Mission

Exploitation

System

(MES)

GCS

Ground system elements

1. Mission control system (MCS)

2. Mission exploitation system (MES)

3. Ground station system (GSTS)

4. Ground communication subnet (GCS)

5. Space & Ground simulation system (SGSS)

6. Electrical ground support equipment (EGSE)

76 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Ground Station system (GSTS)

It is the direct interface with the space segment while in orbit, and with the MCS.

It provides support functions for controlling the space segment elements and exploiting the mission products

Logical instances:

a. GSTS-SSC: in support of space segment control for the platform and payload

b. GSTS-ME: in support of mission exploitation

77 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Ground station system (GSTS)

− RF chains (uplink/downlink) dealing with the transmission/reception of signal to/from the space segment

− Baseband units performing modulation/demodulation of the signals to/from the space segment

− RF and baseband units performing the tracking

Antenna

RF Equipment

TM/TC Processors

Station M & C

Ground Station

78 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Ground station system (GSTS)

• Routine navigation of a spacecraft around the Solar System relies on two tracking methods: ranging and two-way Doppler

- Precisely measuring the time it takes radio signals to travel to and from a spacecraft gives the distance from the ground station;‘two-way range’. (Random errors down to 1 m)

- measuring the signal’s Doppler shift provides the craft’s velocity along that line-of-sight; ‘range-rate’. (Random errors down to 0,1 mm/s)

79 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Ground station system (GSTS)

• The other two position coordinates, against the sky background, are obtained only indirectly from the motion of the ground station as the Earth rotates

• The craft’s velocity components in the plane-of-sky are not measured and can only be found from how the position changes from day to day

80 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Ground station system (GSTS)

• Angular spacecraft positioning can be measured using two widely separated antennas to simultaneously track a transmitting probe: Differential One-way Range (DOR)

– Delta-DOR corrects errors “tracking” a quasar in a direction close to the spacecraft for calibration. (Errors down to 500 billionths of a degree/nanoradian)

81 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Ground station system (GSTS)

− Processing elements to perform the handling of the data sent by the MCS that has to be transmitted to the space segment

− Processors dealing with the formating of the data structures (packets) to be transmited to the MCS

− Processors/processes dealing with the monitoring and control of the network elements

− Calibration units to verify the station performances

− Test units

Antenna

RF Equipment

TM/TC Processors

Station M & C

Ground Station

82 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Ground station system (GSTS)

− From the reception stand-point

a. Conditioning

b. Filtering

c. Sychronisation

d. Demultiplexing

e. Packetization

of the downlinked data

− From the transmition point of view

a. Check data streams generated within the GS

b. Modulate the signals

c. Amplify the signals

Antenna

RF Equipment

TM/TC Processors

Station M & C

Ground Station

83 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Space

Segment

Platform

Payload

Ground Segment

Mission

Control

System

(MCS)

Ground

Station

System

(GSTS)

Ground

Communications

Subnet (GCS)

Electrical Ground

Support

Equipment

(EGSE)

Space

subnet

link

Space

subnet

link

Assembly

integration

and test subnet

AIT subnet

Space &

Ground

Simulation

System (SGSS)

GC

S

GCS

Mission

Exploitation

System

(MES)

GCS

Ground system elements

1. Mission control system (MCS)

2. Mission exploitation system (MES)

3. Ground station system (GSTS)

4. Ground communication subnet (GCS)

5. Space & Ground simulation system (SGSS)

6. Electrical ground support equipment (EGSE)

84 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Ground communications

subnetwork (GCS)

It connects all operational ground facilities.

a. Commnunications equipment to send/receive data

b. Communication lines and services

Other subnetworks are:

a. Space link subnet

b. AIT subnet

85 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Space

Segment

Platform

Payload

Ground Segment

Mission

Control

System

(MCS)

Ground

Station

System

(GSTS)

Ground

Communications

Subnet (GCS)

Electrical Ground

Support

Equipment

(EGSE)

Space

subnet

link

Space

subnet

link

Assembly

integration

and test subnet

AIT subnet

Space &

Ground

Simulation

System (SGSS)

GC

S

GCS

Mission

Exploitation

System

(MES)

GCS

Ground system elements

1. Mission control system (MCS)

2. Mission exploitation system (MES)

3. Electrical ground support equipment (EGSE)

4. Ground station system (GSTS)

5. Ground communication subnet (GCS)

6. Space & Ground simulation system (SGSS)

86 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Space and ground

simulation facility (SSF)

- It supports the validation of critical operational data

a. Databases

b. Procedures

- It supports training activities

SSF

Space

seg

men

t

mon

itorin

g

Ground segm

ent

monitoring

Ra

dio

me

ter

au

xili

ary

da

ta

Gro

und s

egm

net

com

mands

Space s

egm

net

com

mands

87 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Space

Segment

Platform

Payload

Ground Segment

Mission

Control

System

(MCS)

Ground

Station

System

(GSTS)

Ground

Communications

Subnet (GCS)

Electrical Ground

Support

Equipment

(EGSE)

Space

subnet

link

Space

subnet

link

Assembly

integration

and test subnet

AIT subnet

Space &

Ground

Simulation

System (SGSS)

GC

S

GCS

Mission

Exploitation

System

(MES)

GCS

Ground system elements

1. Mission control system (MCS)

2. Mission exploitation system (MES)

3. Ground station system (GSTS)

4. Ground communication subnet (GCS)

5. Space & Ground simulation system (SGSS)

6. Electrical ground support equipment (EGSE)

88 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Electric ground support

equipment (EGSE)

It is part of the overall ground support equipment (GSE), supporting the verification of the space segment during assembly, integration and test (AIT)

It supports operations in the use of the GMs

M&C

MDB

Simulator EGSE

89 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

ALTERNATIVE ARCHITECTURES

FOR DIFFERENT MISSIONS

90 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

• James Webb Telescope GS (launch 2013)

• MSG GS

– Facilities diagram

– Functional block diagram

• ISS GS

– Columbus GS

– ATV GS

• COTS GS

91 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

JWT GS

Madrid

Goldstone

Camberra

S b

and

- Commands

- Observations

- Observation plan

- FSW loads

- Ranging/tracking

- Contingency TM stream

X-b

and

- Recorder data

- Nominal TM stream

- Recorder data files

- TM stream

- Ranging/tracking - Commands

- Ranging/tracking

Jet Propulsion

Laboratory

(JPL)

- Cache recorder data

- Schedule DSN resources

Level 0 processing

of recorder data

Flight Dynamics

Facility (FDF)Ranging/tracking

Ephemerides

Science and Operations Center (SOC)

Flight Operations Center

(FOS)

Command & Telemetry

System (CTS)Recorder data files

TM

Commands

FSW loads

DSN schedule

Project Reference

Database

Management

System (PRD MS)

PR

D D

ata

Observatory

test-bed (OTB)

PRD Data

TM

Cmd

Proposal Planning

System (PPS)

Ephemerides

Observation

plans

Payload control

system

Data Management

System (DMS)

PL image

data

Recorder

Data

filesActuators

Cmds

PRD Data

Data

products

Proposals

Ep

he

me

rid

es

Flight SW

development labs

FS

W lo

ad

s

New development

JWT & NGST development

Other developtmens

92 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

MSG GS

• Facilities diagram

Communications backbone

EGSE LEOPBack-up and

Ranging Ground

Station

(BRGS)

Primary Ground

Station

(PGS)

Central Facility

(CF)

Back-up Satellite

control center

(BSCC)

Satellite M&C

- TM/TC

- Tracking

- Tracking

- TM/TC (back-up)

Space and

Ground Simulation

Facility

(SGSF)

Ground Segment M&C

Image Processing

Facility

(IMPF)

Data Acquisition

and Dissemination

Facility

(DADF)

Meteorological

Products

Extraction Facility

(MPEF)

Re

ctifie

d

ima

ge

s

Products

Rectified images

MSG Archive and

Retrieval Facility

(U-MARF)

Raw & rectified images

TM

Products

93 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

MSG GS

• Functional block diagram

TM TC

Rangin

g

Radiometer data stre

am

EGSELEOP

GS

Monitor

& Control

Space and

Ground Segment

Simulation

M&C

Operations

preparation

Image acquisition

and processing

S/C

Monitor

& Control

Mission Planning

& Scheduling

Metereological

product extraction

Archiving

&

Retrieval

End user support

center

Re

ctifie

d

da

ta

Ca

libra

tio

n

da

ta

Rectified &

raw data

Retrieval of data

Radiometer aux. data

Flight dynamics data

Sch

ed

ule

s

& a

ctiiv

itie

s

Simulation

data

Simulation

data

TC

TC & TMTM

Products

Re

trie

va

l

of p

rod

ucts

Retrieval

of products

Retrieval

of products

94 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

ATV GS

95 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Columbus GS

96 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

GROUND SEGMENT PHASES

97 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Ground segment phases 1/3

PHASE 0/A B

OBJECTIVE Mission analysis and feasibility Ground segment preliminary design

ACTIVITIES

REVIEWS GS Requirements Review GS Preliminary Design Review

INPUTS/OUTPUTS Mission RD Mission Ops Concept (D)

Customers RD (D) Space-to-Ground ICD (D)

EGSE Requirements from the SSC Customer RD

GS Baseline Definition

- Identify characteristics,

constraints, conceps.

- Assess feasibility (GS

perspective)

- Precise definition of the GSB to confirm

feasibility, prepare choice of suppliers,

start the implementation

- The GS is decomposed into its main

elements

GSRR GSPDR

System definition

98 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Ground segment phases 2/3

PHASE C D

OBJECTIVE

GS Detailed design GS Production and Validation

Production Integration and technical verification and validation

Operational validation

ACTIVITIES

REVIEWS

- GS Design to

element level

and start

implementation

-Definition of the

ops. Org. And

start of

production of

mission

operations data

Procure GS

facilities and

elements

GSCDR ORR

Ground Segment Implementation

Train personnel

Validate full GS

Includes

preliminary

validation of

mission data

Operations

99 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Ground segment phases 3/3

PHASE E F

OBJECTIVE

Operations execution Disposal

LEOP & commissioning Routine operations

ACTIVITIES

REVIEWS

Acquire mission

orbit/configuration

and quality space

segment

Operate and

exploit mission in-

orbit

Space and

Ground Segment

disposal

IOQR IOORs MCOR

Operations

100 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

GS preparation process

101 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

BIBLIOGRAPHY

102 Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla

Bibliography

1. Ground systems and operations – Part 1: Principles and requirements

2. Ground systems and operations – Part 2: Document requirements definition

3. James Webb Space Telescope Project. Mission Operations Concept Document

4. MSG Ground Segment Design Specification (GSDS)

5. EGOS, ESA Ground operations Software System, SpaceOps 2004, N. Peccia

6. Space mission analysis and design, J.R. Wertz and W.J. Larson

7. Spacecraft systems engineering, P. Fortescue and J. Stark