40
Selected literatures introduction about gas- liquid flow in microchannels Reporter: Zhang Weihua Supervisor: Professor Xin Feng

Selected literatures introduction about gas-liquid flow in microchannels

  • Upload
    shaw

  • View
    50

  • Download
    0

Embed Size (px)

DESCRIPTION

Selected literatures introduction about gas-liquid flow in microchannels. Reporter: Zhang Weihua Supervisor: Professor Xin Feng. Contents. Fundamentals. Flow patterns Mixer geometry Pressure drop. Fundamentals. Flow patterns. - PowerPoint PPT Presentation

Citation preview

Page 1: Selected literatures introduction about gas-liquid flow in  microchannels

Selected literatures introduction about gas-liquid flow in microchannels

Reporter: Zhang WeihuaSupervisor: Professor Xin Feng

Page 2: Selected literatures introduction about gas-liquid flow in  microchannels

I • Fundamentals

II • Maldistribution

III• Producing droplets

IV• Simulation methods

V• Research orientation and aim

Contents

Page 3: Selected literatures introduction about gas-liquid flow in  microchannels

Fundamentals

Flow patterns

Mixer geometry

Pressure drop

Page 4: Selected literatures introduction about gas-liquid flow in  microchannels

Jean-François Manceau et al. New regime of droplet generation in a T-shape microfluidic junction (2013)

Flow patterns

minθ

Fundamentals

Page 5: Selected literatures introduction about gas-liquid flow in  microchannels
Page 6: Selected literatures introduction about gas-liquid flow in  microchannels

Fundamentals

Mixer geometry

K.D.P. Nigam et al. Slug flowin curved microreactors: Hydrodynamic study (2007)

Page 7: Selected literatures introduction about gas-liquid flow in  microchannels

Fundamentals

Pressure drop

Page 8: Selected literatures introduction about gas-liquid flow in  microchannels

J.C.Schouten et al. Pressure drop of gas–liquid Taylor flow in round micro-capillaries for low to intermediate Reynolds numbers (2009)

BrethertonBretherton’s analysis is valid for very small liquid film thickness df and in absence of significant inertial and gravitational forces, i.e. Cab → 0 and

1<</= 21 σuDρWe bhb

And results in:32

67.0= bc

f CaDd

cbb D

σCaP 3

2

)3(16.7=Δ

Aussillous and Quéré:

32

32

34.3+1

67.0=

b

b

c

f

Ca

CaDd

Page 9: Selected literatures introduction about gas-liquid flow in  microchannels

KreutzerKreutzer et al. consider the liquid flow in the slugs to be a fully developed Hagen–Poiseuille flow

cDUρf

zP 4

)21(=

dd 2

Fanning-

))(+1(16

= b

gl

gl

s

c

gls Ca

ReLD

aRe

f

)+

()dd(=)

dd(

sb

ssc LL

LzP

zP --

)32

)3(16.7+1(

16=

32

bs

bc

gls CaL

CaDRe

f

212

1

)+(Re2=

4))+(

21(=)

dd(

c

lggls

clgss D

UUμfD

UUρfzP-

Page 10: Selected literatures introduction about gas-liquid flow in  microchannels

Fig. 1 Schematic of Taylor flow showing the definitions of the unit cell, gas bubble length Lb and the liquid slug length Ls. The lengths of the nose Lnose and tail Ltail sections of the gas bubble are also indicated

lgfb

bb UUu

AA

uAA

+=)1(+ -

Mass balance-based Model

fb

bbb

l uAA

δLFAA

U )1(+)+(= -sb

bb LL

uF

+=)(= δLF

AA

U bbb

g -

Page 11: Selected literatures introduction about gas-liquid flow in  microchannels

)+()+(32

=)+)()+(21

)(4

)(Re16

(=Δ 22

1gl

δLD

UUμδLUUρ

DP b

c

lglblg

cs

)34.3+1()3(16.7

=Δ32

32

bc

bb CaD

CaσP

)34.3+1()3(16.7

+)+()+(32

=Δ+Δ=Δ32

32

2bc

bb

c

lglbsuc CaD

CaσδL

DUUμ

PPP

Accounting for a non-negligible liquid film thickness:

The frictional pressure loss in one liquid slug:

The pressure drop over a unit cell:

))34.3+1)(+)(+(32

)3(16.7+1(

)+()+)(+(32

=

))34.3+1(

)3(16.7+)+(

)+(32(

+1

=+

Δ=)

dd(

32

32

32

32

21

2

bblgl

bc

sbc

bgl

bc

bb

c

lgl

sbsb

uc

CaδLUUμCaDσ

LLDδLUUμ

CaDCaσ

δLD

UUμLLLL

PzP-

The pressure drop over a unit length of channel:

Pressure drop Model

Page 12: Selected literatures introduction about gas-liquid flow in  microchannels

22

32=

)+()+)(+(32

c

ll

sbc

blgl

DUμ

LLDδLUUμ

bblgl CaAA

UUμσ 1

=)+(

)34.3+

1+32

3×16.7+1(

32=)

dd(

31

32

2bbbb

c

c

ll

CaCaAA

δLD

DUμ

zP-

)34.3+

1+32

3×16.7+1)(

Re16

(=31

32

gl bbbb

cs CaCaA

AδL

Df

l

b

bb UF

AA

δL=

+1

)34.3+

132

3×16.7+1)(

Re16

(=31

32

gl bbl

bcs CaCaU

FDf

)34.3+

132

3×16.7+1(

32=)

dd(

31

32

2bbl

bc

c

l

CaCaUFD

zP-

Substituting, then get:

Rewritten by:

And:

For a stagnant liquid film:

Then:

Page 13: Selected literatures introduction about gas-liquid flow in  microchannels

Experimental:

Page 14: Selected literatures introduction about gas-liquid flow in  microchannels
Page 15: Selected literatures introduction about gas-liquid flow in  microchannels

Maldistribution

Elevated pressure

Microchannel Network

Page 16: Selected literatures introduction about gas-liquid flow in  microchannels

MaldistributionElevated pressure

Chen Guangwe et al. Gas-liquid two-phase flow in microchannel at elevated pressure(2013)

Page 17: Selected literatures introduction about gas-liquid flow in  microchannels
Page 18: Selected literatures introduction about gas-liquid flow in  microchannels
Page 19: Selected literatures introduction about gas-liquid flow in  microchannels
Page 20: Selected literatures introduction about gas-liquid flow in  microchannels
Page 21: Selected literatures introduction about gas-liquid flow in  microchannels
Page 22: Selected literatures introduction about gas-liquid flow in  microchannels

M. Saber,J.M.Commenge. Microreactor numbering-up in multi-scale networks for industrial-scale applications: Impact of flow maldistribution on the reactor performances. (2007)

MaldistributionMicrochannel Network

Page 23: Selected literatures introduction about gas-liquid flow in  microchannels

1

1

1

=

2=1212 ++2=Δ n

ni

iqRQRQRP ∑

4

128=

m

mm Dπ

LμR

( ))max(

min)max(100=

qqq

Md-

q

qqN

Sd

N

ii

ˆ

)ˆ(1

1

100= 1=

2∑ --

optB

BoptB

CCC

dvˆ

100=-

∑ Nii i

Ni

iA

Bii

A

B

qCC

q

CC

=1=

=

1=0

0

∑ )(=

ˆ

The frictional pressure drop through the two-scale device:

The flow Maldistribution and Standard/Yield deviation defined as:

With:

Page 24: Selected literatures introduction about gas-liquid flow in  microchannels

Robustness

Page 25: Selected literatures introduction about gas-liquid flow in  microchannels

11

Δ=*Δ

QRPN

PNormalized pressure drop:

Page 26: Selected literatures introduction about gas-liquid flow in  microchannels

Microdroplets

T-controlled bubble condensation method

Luo GS et al. Generation of monodispersed microdroplets by temperature controlled bubble condensation processes (2013)

Page 27: Selected literatures introduction about gas-liquid flow in  microchannels

Figure 2. Main components of the temperature controlled microfluidic system. (a) The mini-evaporator fabricated from a stainless steel pipe (b) The air bath (bottom-up) fabricated with anodized aluminum. A glass window is placed on the metal shell to observe the inside. (c) The capillary embedded coflowing generators (d) The cooling unit with 2 m long cooling pipe.

Page 28: Selected literatures introduction about gas-liquid flow in  microchannels
Page 29: Selected literatures introduction about gas-liquid flow in  microchannels
Page 30: Selected literatures introduction about gas-liquid flow in  microchannels

Simulation

Fan LS et al. Experiment and lattice Boltzmann simulation of two-phase gas–liquid flows in microchannels (2007)

Page 31: Selected literatures introduction about gas-liquid flow in  microchannels

))v,(),x((1

=),x()1+,c+x( )( σσeqσi

σiσ

σii

σi nftf

τtftf ---

The simulation was performed on the D2Q9 lattice

),(=),( txftxni

σi

σ ∑

σσ

σσ

ρτ

F+u=v

∑ σσσ

σσσσ

τρ

τρ∑ u=u

The number density and momentum of each component:

),(c=),(u txftxni

σii

σσ ∑The equilibrium value of the velocity:

Where:

Page 32: Selected literatures introduction about gas-liquid flow in  microchannels

σs

σf

σ F+F=F

),(=),( txfmtxρi

σi

σ

σ ∑∑),(F

21

+),(=),(U),( txtxfcmtxtxρi

σ

i

σii

σ

σ ∑∑∑),(),(

21

+),(=),( 22 txψtxψGctxnctxp σ

σσ

σσσs

σ

σs

∑∑

iiσ

σ iiσσ

σσf ψTGψ c)c+x()x(=F ∑ ∑-

iii i

isσσσ

s sTGψ c)c+x()x(=F ∑ ∑-

The interaction force on component σ:

The macroscopic variables:

Page 33: Selected literatures introduction about gas-liquid flow in  microchannels
Page 34: Selected literatures introduction about gas-liquid flow in  microchannels
Page 35: Selected literatures introduction about gas-liquid flow in  microchannels
Page 36: Selected literatures introduction about gas-liquid flow in  microchannels
Page 37: Selected literatures introduction about gas-liquid flow in  microchannels
Page 38: Selected literatures introduction about gas-liquid flow in  microchannels
Page 39: Selected literatures introduction about gas-liquid flow in  microchannels
Page 40: Selected literatures introduction about gas-liquid flow in  microchannels

Research OrientationI

Influence of mixing zone geometry on gas-liquid flow pattern and slug formation

II

Novel method to reduce maldistribution or non-uniformity in microreactor numbering-up

III

Experimental and numerical simulation of suitable microdroplet producing method

IV

Explore applicable LBM method to simulate gas-liquid flow in microchannel

V

More …