48
Shuichi Noguchi KEK 6-th ILC School, November 2011 1 Superconducting Cavity Design ( RF, Mechanical, Thermal ) Material Fabrication Techniques Surface Treatment Surface Inspection Vertical Measurement Cavity Behavior Diagnostics Part -1

Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity Design ( RF, Mechanical, Thermal ) Material Fabrication Techniques

Embed Size (px)

Citation preview

Page 1: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 1

Superconducting Cavity Design ( RF, Mechanical, Thermal ) Material Fabrication Techniques Surface Treatment Surface Inspection Vertical Measurement Cavity Behavior Diagnostics

Part-1

Page 2: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 2

SRF Cavity Peculiarities

Surface Condition is essential,   but is usually irregular and contaminated. No Theory except BCS Surface Resistance.

   RF Magnetic Field Limit ? Many Steps in Production & Clean Works to realize Ideal Surface

Page 3: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 3

SRF Cavity PeculiaritiesProperty Reality Consequence

Superconducting Need Helium   Thin Wall for better Cooling

  Nb , Type II Need Magnetic Shield Even Hext << Hc1 Multi Layer Structure

Material Not Uniform, Not Ideal Grain Boundary Large Grain ?  

  Contaminated Surface Irregularity, Contamination Lattice Orientation  

    Field Enhancement, H & E  

RF Superconductivity Not Lossless but Very Low Loss Residual Surface Resistance 0.3 nΩ/ mgauss

  Maximum Field Limit   Smooth Shape, Less Holes

  High Impedance 、 HOM   Need HOM Dumper

       

Structure Material is Expensive Thin Wall Mechanical Stability, Coating

ProductionDeep Drawing + Machining + EBW

Defect   Quench  

       

Surface TreatmentChemical Treatment + Ultra pure Water Rinsing

Contamination Quench, Field Emission

Assembly Class 10 Clean Room   Scatter of Performance

       

Peripheral Thermal Insulation in Vacuum    

       

Many Critical Components   Ceramic Break    

Others Vacuum Seal  

       

Page 4: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 4

Superconducting Cavity

Accelerator

Users

Cryostat

Refrigerator

High Power RF

Low Level RF

Input CouplerHOM Coupler

Tuner

Forming , EBWSurface Treatment

Particle PhysicsMaterial ScienceMedical Application

Design

Page 5: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 5

Design ProcessDesign Parameters Input Constraints  

       

Frequency, Structure Accelerating, Deflecting,....   Mode

  Particle β   gap Length

  Ring / Linac   Iris Aperture

       

Operating Gradient Accelerator Scale, CW / Pulse Beam Power (Coupler)  

      Cooling Power  

Material      

       

Operating Temperature Frequency, Structure, Gradient Cooling Power  

       

Cavity Unit Length Beam Current, Gradient Beam Power (Coupler)  

  Accelerator Scale HOM damping  

       

Module Length Accelerator Scale    

       

If Pbeam>>Pcavity Normal      

Page 6: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 6

> 0.4 < 0.4

Particle e, Proton Proton, Ion

FrequencyRing 0.3~0.5 GHz

Linac 0.7~3 GHzLinac 50~300 MHz

Beam Current Ring >1 A Linac > 100 mA > 1mA < 1mA

Accelerating Elliptical Spoke,

Spoke, Half Wave, Quarter Wave

Deflecting Crab Cavities

Focusing RFQ

Structure Examples

Page 7: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 7

Accelerating Gap

g

E

E

z

SpaceDistribution

g

tcz

dzztrzEZ

cos0,eGainEnergy

Page 8: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 8

Accelerating Gap

g

g ~

Small enough g

Lower Frequency

-Mode

0-Mode

Page 9: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 9

Eacc

Acceleration by RF Cavity

Frequency

Shape

Beam

RF Resonator, Strong E field on axis

Z

- Mode

Page 10: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 10

Cavity RF Parameters

22

2

0

2

2

2

00

222

0

,

,

22,

2

Cavityacc

SCavity

accsh

S

S

LW

E

Q

R

R

G

Q

RL

P

ER

dSH

dVHG

R

G

P

WQ

dVEdVHWdSHR

P

dzztrzEL

EL

zCavity

acc cos0,1

0

Page 11: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 11

General RF DesignPreference Compromise

Power Efficiency Higher Rsh Rsh of HOM

Aperture

Acceleration Efficiency

Enough Acceleration Gap Frequency Cavity Size

Multi-Gap/Cell

Beam Quality Enough Aperture Rsh

Page 12: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 12

Q-E Curves  ( Performance )

Q0

Quench ?

Global Heating

Q Switch

Field Emission

Ideal (Constant Q = Constant Rs, T)

5.15.2 exp SP

SP EEI

Quench

Quench

Multipacting

Q Slope

H Q-Dieses

Eacc

Page 13: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 13

RFQINFN-Legnaro

DifficultyHigh Power CouplerEnd Flange ContactFrequency Tuning

Page 14: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 14

Quarter Wave (/4) & Split Ring

ANLCoaxial Resonator

Mechanical Vibration, High Power Coupler

Page 15: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 15

Half

Beam

Page 16: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 16

Half to SpokeBy Squeezing the Height

Page 17: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 17

Multicell Spoke

Page 18: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 18

Two Axis Coupled Cavity

Acceleration Beam

Coupler

Drive Beam

Page 19: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 19

f

1

Smaller Riris

R / Q ; LargerEsp / Eacc ; SmallerHsp / Eacc ; SmallerCell Coupling ; SmallerCleaning ; More DifficultAlignment ; Tight

RF Design, = 1

Page 20: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 20

The mechanical design of a cavity follows its RF design:

Lorentz Force Detuning

Mechanical Resonances

Mechanical Design Cavities

-0.006

-0.003

0

0.003

0 20 40 60z [mm]

P [N

/mm

^2]

Lorentz Force Detuning

E and H at Eacc = 25 MV/m in TESLA inner-cup

50 MV/m

92 kA/m

Mechanical Design

Page 21: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 21

Surface deformation without and with stiffening ring (courtesy of I. Bonin, FERMI)

Mechanical Design Cavities

10-4m 3∙10-5m

No stiffening ringWall thickness 3mm

Stiffening ring at r=54mmWall thickness 3mm

kL = -1 Hz/(MV/m)2Essential for the operation of a pulsed acceleratorΔf = kL(Eacc)2

Lorentz Force Deformation

- df

- df

Page 22: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 22

Lorentz ( Maxwell ) Detuning Kjac

ket

K tuner

K cavityFZ FZ

Fz

Fr

42 N

135 N

Eacc = 35MV/m

    TTF Saclay-I STF Slide Jack Blade

A Hz / (MeV/m)2 0.37(TESLA) 0.37(TESLA) 0.37(TESLA)

B N / (MeV/m)2 0.034 0.034 0.034

df / dl Hz /μm 300 300 300

KS N /μm 20 72 22

Kjacket N /μm 50 95 40

Ktuner N /μm 30 290 50

Stationary Δf (31.5 MV/m) Hz 880 510 800

f (Compensation) Hz 510 140 460

Necessary Tuning Stroke μm 1.7 0.5 1.5

Page 23: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 23

k

kkk

k

k

kk

kk

kk

m

Fx

td

xd

Qtd

xd

FFtsxtsx

2

2

2

;,,

Deformation is the Sum of all the Mechanical Modes

Page 24: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 24

Two Dominant Mechanical ModesSingle –Cell

~ +

~2500Hz~200Hz

Need Stiff Cavity

Need Stiff Jacket-Tuner System

2-nd order mode Fundamental mode

F(H2)

F(E2)

Page 25: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 25

1/9 mode 204Hz

2/9 mode 376Hz

3/9 mode 548Hz

FixFree

Longitudinal Modes

9000N by Tuner

Page 26: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 26

Transverse Modes

1/9 56Hz

2/9 141Hz

3/9 251Hz

Page 27: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 27

Material

High Purity Niobium is almost an unique

Choice at the moment. RRR~300

Pb ( Plating ) was used for some Application.

Nb3Sn (Vapor Deposition + Heat Treatment)

NbTiN (Sputtering)

High Tc Materials are still very difficult.

Page 28: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 28

Niobium Sheet Fabrication

Page 29: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 29

Niobium Insufficient recrystallization,formability and mechanicalproperties are effected

Fully recrystallized material after appropriate heat treatment (after rolling operation)X. Singer, DESY

Page 30: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 30

Large Grain directly from Ingot

Lattice Orientation, Slippage at Boundary

Page 31: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 31

Property of Nb2~5k Room Temperature

Density 8.57

Lattice Structure B.C.C

Melting Temperature 2468℃

Conductivity ~ 2x109 ・ m

Thermal Conductivity 20 ~ 50 W / m ・k

Yield Strength ~ 600 MPa ~ 40 MPa

Tensile Strength ~ 900 MPa ~ 160 MPa

Elongation ~ 15% ~ 40%

Yang Module ~ 100 GPa

Vickers Hardness ~ 500 MPa

Page 32: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 32

Niobium Thermal Conductivity Post-Purification Treatment (G.R.Myneni, Jlab)

RRR ; Residual Resistance Ratio

Wiedemann-Franz

k2.4

k2.4k300

RRR

Tres

TL

Page 33: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 33

Cooling Efficiency

0

10

10

10

Q

100 10 20 30 40

Eacc [MV/m]

K-14 Cavity

1.8 K4.2 KE-quench (T)E-rf limit2.17 K

50

11

10

9

8

He-II

He-I

0

0.05

0.10.15

0.2

0.25

Q,

Hea

t flu

x [

W/c

m ]

0.3

0.35

0.4

1.5 2 2.5 3He - Temperature [K]

K-14 Cavity

Heat flux -QuenchHeat flux -rf power

3.5 4 4.5

2

.

(no Quench)

0

10

20

30

40

50

1.5

Eac

c-qu

ench

[M

V/m

]

2 2.5 3 3.5 4 4.5

-point

He - Temperature [K]

K-14

C-3

MK-0

M-1

He-IHe-II

(SRF93’)

TemperatureMappingSystem

Quench Limit Heat Flux

He-I / He-II

1.8K

4.2K

(EPAC96’)

2.17K

Page 34: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 34

Cavity Fabrication

Page 35: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 35

Cavity (9 Zeller)

Endhalbzell-Endrohr- Einheit

kurz

Endhalbzell- Endrohr- Einheit

lang

Flansch(Hauptkoppler-

Stutzen)

Flansch(Endflansch)

HOM-Kopplerkurze Seite

Rippe RippeAnbindung(end-kurz-lang)

Endhalbzellekurz

AntennenflanschNW 12

HOM-KopplerDESY

End-kurz-lang

Formteil F

Bordscheibelange Seite

Endhalbzellelang

Flansch(end-kurz-lang)

HOM-Kopplerlange Seite

Flansch(Endflansch)

Antennenstutzenlang

Endrohrlang

AntennenflanschNW 12

Formteil Flang

HOM-KopplerDESY

End-kurz-lang

Hauptkoppler-stutzen

Endrohrkurz

Cavity (9 cell TESLA / TTF design)

End group 1 End group 2Hantel

Normalhalb-Zelle

Normalhalb-Zelle

Stützring

Nb-BlechNormalhalelle

Nb-BlechNormalhalbzelle

Dumb-bell

Overview over cavity fabrication

Page 36: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 36

Fabrication of STF Baseline CavitiesCenter-cells

(Tokyo Denkai ; RRR~300 Nb)

End-groupsHOM coupler

Magnetic Shield

Page 37: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 37

Half Cell Press Forming

Iris ThinnerEquator Thicker

Page 38: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 38

Fabrication

Page 39: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 39

Beam Pipe & HOM Coupler

Wire cutting of Nb BrockBeam tube

HOM Coupler

Page 40: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 40

Deepdrawing & Port Forming

Page 41: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 41

End GroupTi End Plate

End cell & End group

Page 42: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 42

Electron Beam Welding (Jlab)Dumbbells Stiffening Rings

Page 43: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 43

Dumbbells

With Stiffener

Page 44: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 44

Page 45: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 45

Electron Beam Welding (Jlab)

Page 46: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 46

STF Baseline Cavity

Page 47: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 47

Other Fabrication Technique Hydro forming (W.Singer,DESY) Spinning (V.Palmieri,INFN

Legnaro)

Page 48: Shuichi Noguchi 、 KEK 6-th ILC School, November 20111 Superconducting Cavity  Design ( RF, Mechanical, Thermal )  Material  Fabrication Techniques

Shuichi Noguchi 、 KEK

6-th ILC School, November 2011 48

Thin Niobium Films Sputtering