32
EQUIPMENT SIZING Dr. M. Fadhil A. Wahab Dr. Muhammad Abbas Ahmad Zaini SKF4153PLANT DESIGN

SKF4153 PLANT DESIGN EQUIPMENT SIZING

  • Upload
    others

  • View
    4

  • Download
    2

Embed Size (px)

Citation preview

Page 1: SKF4153 PLANT DESIGN EQUIPMENT SIZING

EQUIPMENT SIZING

Dr. M. Fadhil A. Wahab

Dr. Muhammad Abbas Ahmad Zaini

SKF4153‐ PLANT DESIGN

Page 2: SKF4153 PLANT DESIGN EQUIPMENT SIZING

What to design ??

Consider the following block diagram.

LMcicocpchohihph TAUTTcmTTcmQ Δ⋅⋅=−⋅⋅=−⋅⋅= )()( )()(

⎟⎟⎠

⎞⎜⎜⎝

⎛ΔΔ

Δ−Δ=Δ

2

1

21

lnTT

TTTLM

Page 3: SKF4153 PLANT DESIGN EQUIPMENT SIZING

For shell‐and‐tube heat exchangers, tubes are typically ¾‐in. O.D., 

16 ft long, and on 1‐in. triangular spacing.  A 1‐ft I.D. shell can 

accommodate 300 ft2 tubes outside area, 2‐ft: 1330 ft2, 3‐ft: 3200 ft2.

The tube side is for corrosive, fouling, scaling, hazardous, high T & 

P, and expensive fluids.  The shell side is for more viscous, cleaner, 

lower flow rate, evaporating and condensing fluids. 

Shell‐and‐Tube Heat Exchangers

Reference: W.D. Seider, J.D. Seider, D.R. Lewin, Product and Process Design Principles: Synthesis, Analysis and Evaluation, John Wiley and Sons, Inc., 2010.

Page 4: SKF4153 PLANT DESIGN EQUIPMENT SIZING

Pumping action‐ cause increase the elevation, velocity and pressure of a fluid.

Main purpose to provide energy to move liquids from one place to another.

Common application is to increase the pressure of liquid.

Page 5: SKF4153 PLANT DESIGN EQUIPMENT SIZING

F is molar flow rate; v is molar volume; P is pressure

Due to smaller liquid molar volume, pump requires less power than compressor for the same molar flow rate and increase in P.

Normally the outlet T of liquid increase only slightly.

To increase a pressure of a stream, pump a liquid rather than compress a gas, unless refrigeration is needed.  

(Note: to condense a gas through refrigeration and then pump the condensate are expensive)

Power Requirement

Page 6: SKF4153 PLANT DESIGN EQUIPMENT SIZING

Capacity (Q) in gal/min (gpm) [conversion, 1ft3= 7.48 gal]

Pump head (H) in ft or m.

H =V

d

2

2g+ z

d+

Pd

ρdg

⎛ ⎝ ⎜

⎞ ⎠ ⎟ −

Vs

2

2g+ z

s+

Ps

ρsg

⎛ ⎝ ⎜

⎞ ⎠ ⎟

for negligible ΔV and Δz and constant ρ ,

H =ΔPρ g

Subscripts d and s refer to discharge and suction, respectively.

Pump Characteristics

Page 7: SKF4153 PLANT DESIGN EQUIPMENT SIZING

For heads up to 3200 ft (multiple stages) and flow rates in the range 10 to 5000 gpm, use centrifugal pump.

For high heads up to 20000 ft and flow rate up to 500 gpm, use reciprocating pump.

Less common are axial pumps for heads up to 40 ft for flow ratesin the range of 20 to 100000 gpm and rotary pumps for heads up to 3000 ft for flow rate in the range 1 to 1500 gpm.

For liquid water, 

Head of 3000 ft correspond to ΔP of 1300 psi,

Head of 20000 ft correspond to ΔP of 8680 psi.

Heuristics

Page 8: SKF4153 PLANT DESIGN EQUIPMENT SIZING

For liquid flow, we need to include the following when determining the required pumping head. 

A pipeline pressure drop of 2 psi/100ft of pipe

A control valve pressure drop of at least 10 psi

A pressure drop of 4 psi per 10‐ft rise in elevation

Estimate the theoretical horsepower (THp) for pumping liquid using,

Heuristics (cont’d)

THp = (gpm) pressure increase, psi( ) /1714

Reference: W.D. Seider, J.D. Seider, D.R. Lewin, Product and Process Design Principles: Synthesis, Analysis and Evaluation, John Wiley and Sons, Inc., 2010.

Page 9: SKF4153 PLANT DESIGN EQUIPMENT SIZING

Compressor: to increase the velocity and/or pressure of gases.

Presence of liquid can damage the compressor blades.

Centrifugal, positive displacement and momentum transfer.

If exit T exceeds 375 oF, a multistage compressor with intercoolers must be employed.

Expander or expansion turbine: used in place of valve to recoverpower as pressure is decreased.

The gas T is reduced, check for possible condensation avoid impeller erosion. 

Often chilling of gas is more important than the power recovery.

For high P liquid, the power recovery through turbine is not economical.

Page 10: SKF4153 PLANT DESIGN EQUIPMENT SIZING

THp (adiabatic) for compressing a gas.

SCFM= std cubic ft per min at 60oF and 1 atm

T1 inlet gas T in oR

P1 and P2 are inlet and outlet P (absolute)

a=(k‐1)/k  where k=Cp/Cv is specific heat ratio

T2 is estimated as,

Thp = SCFM T1

8130a⎛ ⎝

⎞ ⎠

P2

P1

⎛ ⎝ ⎜

⎞ ⎠ ⎟

a

−1⎡

⎣ ⎢

⎦ ⎥

T2

= T1

P2

P1

⎛ ⎝ ⎜

⎞ ⎠ ⎟

a

Page 11: SKF4153 PLANT DESIGN EQUIPMENT SIZING

Determine the tower operating conditions (T,P), and the type of condenser.

Determine the equilibrium number of stages and reflux required.

Select an appropriate contacting method (plates or packing).

Determine the number of actual plates or packing height required, as well as the locations of feed and product.

Determine the tower diameter.

Determine other factors that may influence tower operation.

Page 12: SKF4153 PLANT DESIGN EQUIPMENT SIZING

Proximity of critical conditions should be avoided.

Typical operating P is 1 to 415 psia (29 bar).

For vacuum operation P > 5 mmHg.

Normally total condenser is used (except for low boiling components and where vapor distillate is  desired).

Preliminary  material balance to estimate the distillate and bottom product compositions.

Distillation Tower Operating Conditions

Page 13: SKF4153 PLANT DESIGN EQUIPMENT SIZING

Assume cooling water available at 90oFAlgorithm: Tower Pressure & Condenser Type

PD : Dist PPB: Bottom PPB=PD+10 psia

Reference: W.D. Seider, J.D. Seider, D.R. Lewin, Product and Process Design Principles: Synthesis, Analysis and Evaluation, John Wiley and Sons, Inc., 2010.

Page 14: SKF4153 PLANT DESIGN EQUIPMENT SIZING

Other Things to Consider

If top stream contains both condensable and non‐condensable components, the condenser is designed to produce both vapor distillate and liquid distillate.

The PD is calculated at 120oF for the condensable components 

in liquid distillate. 

For vacuum operation, the vapor distillate is sent to vacuum pump.

If refrigerant is used, always consider placing water‐cooled partial condenser ahead of it (to reduce coolant requirement).

Page 15: SKF4153 PLANT DESIGN EQUIPMENT SIZING

Design of Distillation Tower

What to design ??

Consider the following scenarios:

At total reflux ratio

Minimum no. of stages

High utility cost

At minimum reflux ratio

Infinite no. of stages

Low utility cost

PD

V

L

D

R=L/D

Page 16: SKF4153 PLANT DESIGN EQUIPMENT SIZING

Valid for single feed, distillate and bottoms, i.e. Ordinary Distillation.

To estimate: 

Reflux ratio

No. of equilibrium stages & feed location.

Quite accurate for ideal mixtures of narrow boiling range.

Not for non‐ideal mixtures, azeotropes and mixtures of wide‐boiling range (need to use rigorous model).

Fenske‐Underwood‐Gilliland (FUG) Method

Page 17: SKF4153 PLANT DESIGN EQUIPMENT SIZING

Step 1: Use Fenske Equation to determine minimum number of equilibrium stages (i.e. at total reflux, D=0, R=∞)

d and b are component molar flowrates at distillate and bottom respectively. HK (heavy key), LK (light key), α is relative volatility

Nmin

=Log d

LK

bLK

⎛ ⎝ ⎜

⎞ ⎠ ⎟

bHK

dHK

⎛ ⎝ ⎜

⎞ ⎠ ⎟

⎣ ⎢

⎦ ⎥

logαLK , HK

Step 2: Also use Fenske Equation to determine the distribution of non‐key component between distillate and bottom (d/b) streams at total reflux.  Good estimate for the distribution (d/b) at finite reflux conditions.

HKNK

HK

HK

NK

NK

db

bd

LogN

,min logα

⎥⎦

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

=

Page 18: SKF4153 PLANT DESIGN EQUIPMENT SIZING

Step 3: Using Underwood Equation to determine minimum reflux ratio (Rmin) that correspond to infinite number of equilibrium stages (N=∞).

∑ −=−

θαα

i

iFi xq1

∑ −=+

θαα

i

iDi xR 1min

Solve Ө by trial and error.  Note: αHK (equals 1) < Ө < αLK. 

Refer C.J. Geankoplis textbook for detail calculations. 

Step 4: Using Gilliland correlation to estimate the actual number of equilibrium stages (N) at a specified ratio of R/Rmin.  Note: R = 1.1~1.5 Rmin.

Page 19: SKF4153 PLANT DESIGN EQUIPMENT SIZING

Step 5: Estimate the feed location by using Fenske Equation.

Calculate NR,min for rectifying section (between feed and distillate) and NS,min for stripping section (between feed and bottom).

Assume that, NR,min/NS,min =NR/NS; also N=NR+NS.

NR, min

=Log d

LK

fLK

⎛ ⎝ ⎜

⎞ ⎠ ⎟

fHK

dHK

⎛ ⎝ ⎜

⎞ ⎠ ⎟

⎣ ⎢

⎦ ⎥

logαLK , HK

NS , min

=Log f

LK

bLK

⎛ ⎝ ⎜

⎞ ⎠ ⎟

bHK

fHK

⎛ ⎝ ⎜

⎞ ⎠ ⎟

⎣ ⎢

⎦ ⎥

logαLK , HK

Alternatively, use Erbar‐Maddox correlation and Kirkbride equation (refer to Geankoplis text book). 

Page 20: SKF4153 PLANT DESIGN EQUIPMENT SIZING

• For column with one feed, one absorbent or stripping agent, and two product streams.

• To estimate minimum absorbent (Lmin) or stripping agent (Vmin)  flow rate, and the number of equilibrium stages N.

• Instead of relative volatility α, this method uses Ae=L/KV  for absorption and Se=KV/L for stripping.

Kremser Shortcut Method for Absorption and Stripping

Page 21: SKF4153 PLANT DESIGN EQUIPMENT SIZING

Minimum absorbent molar flow rate

absorbed be togasin component key offraction is )1(P, and T averageat computedcomponent key of value-K is

)1(min

K

K

A

K

AinK

K

VKL

φ

φ

−=

Typical actual absorbent rate L,

L = 1.5Lmin

Absorption Tower

To calculate number of equilibrium stages N, use

φAK

=A

eK−1

AeK

N +1 −1A

eK=

LK

KV

Where,

Page 22: SKF4153 PLANT DESIGN EQUIPMENT SIZING

Min stripping agent molar flow rate

stripped be toliquid feed in thecomponent key offraction is )1(P and T averageat computedcomponent key of value-K is

)1(min

K

K

S

K

SK

in

KKLV

φ

φ

−=

Typical actual stripping agent rate V,

V = 1.5Vmin

Stripping Tower

To calculate number of equilibrium stages N, use

φSK

=S

eK−1

SeK

N +1 −1 Where, SeK

=K

KV

L

Page 23: SKF4153 PLANT DESIGN EQUIPMENT SIZING

Plate efficiency (Eo) to convert Nequilibrium (equilibrium stages) to actual trays (Nactual).

Height equivalent to a theoretical plate (HETP) Height equivalent to a theoretical plate (HETP) to convert Nequilibrium to packed height.

Plate Efficiency and HETP

Nactual

=N

equilibrium

Eo

Packed Height = Nequilibrium

(HETP)

Page 24: SKF4153 PLANT DESIGN EQUIPMENT SIZING

Column Height (ft) = 

(Nactual ‐ 1) x (Tray Spacing)

+ Height of sump below bottom tray

+ Disengagement height above top tray

Height of Tray Tower

Note:

For structural reasons, tower height must not 

exceed 200 ft.  If calculated height exceeding 

200 ft, consider using tower in series.

Page 25: SKF4153 PLANT DESIGN EQUIPMENT SIZING

Values of HETP are usually derived from experimental data for a particular type and size of packing.

Packing vendors/manufacturers can provide HETP values.

Typical values of :

For modern random packing: 2 ft

For structured packing: 1 ft

HETP as a function of nominal diameter of random packings, and specific surface area as recommended by Kister (1992). 

Height equivalent to a theoretical plate (HETP)

Page 26: SKF4153 PLANT DESIGN EQUIPMENT SIZING

Tower diameter is calculated to avoid flooding (i.e. liquid began to 

fill the tower and leave with vapor at top).

The diameter depends on,

Flowrates of vapor and liquid.

Properties of vapor and liquid.

Why Tower Diameter ?

Page 27: SKF4153 PLANT DESIGN EQUIPMENT SIZING

Tower inside diameter,

DT

=4G

fUf( )π 1 −

Ad

AT

⎛ ⎝ ⎜

⎞ ⎠ ⎟ ρ G

⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥

12

Flooding velocity,

Uf

= C ρL

− ρG

ρG

⎛ ⎝ ⎜

⎞ ⎠ ⎟

12

Diameter of Tray Tower

Page 28: SKF4153 PLANT DESIGN EQUIPMENT SIZING

( )( )

( )

0.1 if 2.0=

0.10.1 if 9

1.01.0=

1.0 if 1.0

Also,

/L/G=parameter ratio flow

liquid ofdensity gas ofdensity area sectional-cross insidetower areadowncomer

0.85 to0.75= velocityflooding offraction liquid of rate flow mass=L gas of rate flow mass

5.0

≤≤−

+

≤=

=

====

==

LG

LGLG

LGT

d

LGLG

LG

Td

F

FF

FAA

F

AAfG

ρρ

ρρ

Page 29: SKF4153 PLANT DESIGN EQUIPMENT SIZING

( )[ ]

tray on the area hole total=A )2(A= tray theof area active=A

1.0)/(A0.06 tray withsievefor 5.0/A5 = 1.0)/(A tray withsievefor 1=

trayscap bubble and for valve 1= factor area hole

)absorption (typical system foamingfor 0.75-0.5= on)distillati (typical system foaming-nonfor 1=

factor foamingdyne/cmin tension surface is /20)(=factor tension surface

19.4) figure (see plate perforatedfor parameter capacity

parametercapacity

hTa

hh

h

0.2

d

aa

a

HA

F

ST

SB

HAFSTSB

A

AAA

F

FF

C

FFFCC

≤≤+≥

=

==

=

==

σσ

Page 30: SKF4153 PLANT DESIGN EQUIPMENT SIZING

Tower inside diameter,

DT

=4G

fUf( )πρ

G

⎣ ⎢

⎦ ⎥

12

For flooding velocity, use

{ } { }

liquid ofdensity vapor ofdensity 0.70= velocityflooding offraction

32.2ft/s=g 19.1) Table (Seefactor packing 2

)(2

2

====

⎟⎟⎠

⎞⎜⎜⎝

⎛=

LG

P

LLlOH

GPf

fF

ffgFU

Y

ρρ

μρρ

ρ

Diameter of Packed Tower

Page 31: SKF4153 PLANT DESIGN EQUIPMENT SIZING

( ) ( ) ( )[ ]

{ }

{ }cP 20 to0.3 from es viscositiliquidfor valid

96.0greater),or in. 1diameter nominal packing random(for function Viscosity

1.4 to0.65 from ratiosdensity for valid

6313.06776.28787.0

function,Density

Tower)Tray in (asparameter ratio flow 10; to0.01=Yfor validln007544.0ln1501.0ln0371.17121.3exp

,

19.0

2)(2)(2

32

LL

L

LOH

L

LOHL

LG

LGLGLG

f

f

FFFFY

Where

μμ

ρρ

ρρ

ρ

=

⎟⎟⎠

⎞⎜⎜⎝

⎛−⎟⎟

⎞⎜⎜⎝

⎛+−=

=−−−−=

Page 32: SKF4153 PLANT DESIGN EQUIPMENT SIZING

References

• J.M. Coulson, J.F. Richardson, R.K. Sinnot, Chemical Engineering Vol. 6, Pergamon Press, 1985.

• L.T. Biegler, I.E. Grossman, A.W. Westerberg, Systematic Methods of Chemical Process Design, Prentice Hall, 1997.

• Monograph, Process Design and Synthesis, Universiti Teknologi Malaysia, 2006/07

• R. Smith, Chemical Process Design, McGraw Hill, 1995.• W.D. Seider, J.D. Seider, D.R. Lewin, Product and Process Design 

Principles: Synthesis, Analysis and Evaluation, John Wiley and Sons, Inc., 2010.