6
A028 165 林恆勝 1 、洪緯忠 1 、葉原孝 1 1 國立高雄應用科技大學模具工程系 (after market, AM) 270 MPa 340 MPa DYNAFORM CAE(computer-aided engineering) FLD : 1. 270 MPa 340 MPa DYNAFORM CAE FLD (forming limit diagram) Song [1] U Qui [2] DYNAFORM 75 75 Shi [3] [4] DYNAFORM CAE [5] CAD [6] B180H 2. 2.1 2.1.1 270 MPa = 592 0.28 340 MPa DYNAFORM CAE = 636 0.27 ATOS STL 1 CATIA CAD DIE MODEL CAE 2 2.1.2 (drawing ratio) 5~7 mm 3 2.1.3 6 mm 13.5 mm 3 mm 4

sme.org.twsme.org.tw/2012 第八屆全國精密製造研討會論文集... · 67>? c? de 9 U fg H 90 ton ¾9 gf¿À Á h ?tt m 67z+ ij Ij 7k % 3. 3.1 æ 10 U >ék¿ÀYçèÁ lm

  • Upload
    dinhbao

  • View
    224

  • Download
    0

Embed Size (px)

Citation preview

  • 2012 SME 2012 2012 Conference on Society Of Manufacturing EngineersSME 2012

    A028 165

    CAECAECAECAE 1 1 1

    1

    (after market, AM) 270 MPa 340 MPa DYNAFORM CAE(computer-aided engineering) FLD

    : 1. 270 MPa 340

    MPa DYNAFORM CAE FLD (forming limit diagram) Song [1] U Qui[2] DYNAFORM 75 75 Shi[3] [4]

    DYNAFORM CAE [5] CAD

    [6] B180H 2.

    2.1 2.1.1 270 MPa = 5920.28 340 MPa DYNAFORM CAE = 6360.27 ATOS STL 1 CATIACADDIE MODEL CAE 2 2.1.2 (drawing ratio) 5~7 mm 3 2.1.3 6 mm 13.5 mm 3 mm 4

  • 2012 SME 2012 2012 Conference on Society Of Manufacturing EngineersSME 2012

    166 A028

    2.2 2.2.1 5 125710 mm/ms 6 5 mm/ms 2.2.2 5 51015202530 mm 7 10 mm 2.2.3 5 357911 8 7 2.2.4 507090110130150 ton 9 90 ton

    3. 3.1 10 3.2 270 340 MPa 270 MPa 90 ton 340 MPa 11(a)-(f) 3.3 340 MPa FLD 5090150 ton340 MPa FLD 12(a)(b)(c) 50 ton 150 ton 90 ton 123 3.4 340 MPa Shock Line Shock Line DYNAFORMShock Line(tracking)13Shock Line

    3.5 340 MPa DYNAFORM 14 3.2 mm 5.5 mm 2.3 mm 3 mm 4. CAE

    4 270 340 MPa 5 k n r ( 1)( 2) n

    k = (1)

    0 45 902

    4

    r r rr

    + += (2) 340 MPa 270

    5. 6.

    1. J. H. Song, H. Huh and, S. H. Kim, Stress-Based Springback reduction of a channel shaped

    auto-body part with high-strength steel using

    response surface methodology, Journal of

    Engineering Materials and Technology, vol.129, pp.

    397-406, 2007.

    2. H. Qiu, Y. Huang and Q Liu, The study of engine hood panel forming based on numerical simulation

    technology. Journal of Materials Processing

    Technology. 187-188 (2007) 140-144

    3. Xiaoxiang Shi, Jun Chen, Yinghong Peng, Xueyu Ruan, A new approach of die shape optimization

    for sheet metal forming processes, Department of

    Plasticity Technology, Shanghai Jiao Tong

    University, 2004.

    4. 2010 5. 2008 6.

  • 2012 SME 2012 2012 Conference on Society Of Manufacturing EngineersSME 2012

    A028 167

    2012

    7. 1.

    2. CADDIE MODEL

    3.

    4.

    5

    (a) point 1

    (b) point 2 6.

    (mm) (mm/ms)(mm) (mm/ms)

  • 2012 SME 2012 2012 Conference on Society Of Manufacturing EngineersSME 2012

    168 A028

    (a) point 1

    (b) point 2 7.

    (a) point 1

    (b) point 2 8.

    9.

    10. FLD

    (a) 270 MPa 50 ton

    (mm) (mm)

  • 2012 SME 2012 2012 Conference on Society Of Manufacturing EngineersSME 2012

    A028 169

    (b) 340 MPa 50 ton

    (c) 270 MPa 90ton

    (d) 340 MPa 90ton

    (e) 270 MPa 150ton

    (f) 340 MPa 150 ton 11.

    (a) 340 MPa 50ton

    (b) 340 MPa 90 ton

    (c) 340 MPa 150ton 112. FLD

  • 2012 SME 2012 2012 Conference on Society Of Manufacturing EngineersSME 2012

    170 A028

    13. Shock Line

    14. 340 MPa 1 340 MPa 50 ton

    No. 1 16.9% 2 13.2% 3 9.8% 4 11.2% 5 12.3% 6 21.4% 7 11.3%

    2 340 MPa 90 ton No. 1 17.9% 2 16.4% 3 13.1% 4 14.7% 5 9.3% 6 22.9% 7 8.1%

    3 340 MPa 150 ton

    No. 1 21.9% 2 20.7% 3 20.5% 4 20% 5 5.4% 6 24.4% 7 5.2%

    4 (1) 10 mm (2) 7 (3) 5 mm/ms (4) 90 ton

    5 270 MPa 340 MPa

    k n 0r 45r 90r r 270 592 0.28 1.865 1.686 2.192 1.857

    340 636 0.27 1.72 1.76 2.36 1.823

    A CAE Analysis of Metal Stamping of

    Fender with High-Strength Steel

    Heng-Sheng Lin1

    , Wei-Zhong Hong1,

    Yuan-Xiao Ye1

    1Department of Mold & Die Engineering

    National Kaohsiung University of Applied

    Sciences

    Kaohsiung, TAIWAN

    Abstract On echoing the advocating of green technology,

    the demand for using high-strength steel to reduce

    automobile weight and hence fuel consumption are

    increasing. At the same time, the production of

    high-strength steel is practical and the scrap of the steel

    is recyclable. Thinner steel sheet can achieve same

    strength level with lighter weight according to the safety

    design. This work investigated the plausibility in

    converting deep drawing of steel sheets from 270 to 340

    MPa strength. The workpiece is used as the front fender

    of aftermarket automobile parts. Finite element software

    DYNAFORM was utilized to provide the distribution of

    thickness and FLD analysis. The simulation indicated

    the conversion of high-strength steel was plausible.

    Keywords: Metal Stamping, High-Strength Steel, Fender

    165 166 167 168 169 170