32
Space to Reason Space to Reason Markus Knauff Markus Knauff University of Gießen [email protected]giessen.de [email protected] giessen.de www.unigiessen.de/cms/cognition For every complex problem, there is an answer that is clear simple and wrong answer that is clear , simple, and wrong. H.L. Mencken (1880 1956)

Space to Reason

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Space to Reason

Space to ReasonSpace to ReasonMarkus KnauffMarkus KnauffUniversity of Gieß[email protected][email protected] giessen.dewww.uni‐giessen.de/cms/cognition

For every complex problem, there is an answer that is clear simple and wronganswer that is clear, simple, and wrong.

H.L. Mencken  (1880 ‐ 1956)

Page 2: Space to Reason

I bilit d Cit Pl iImageability  and City Planning

• What does the city's form actually mean to the people who live there? What can the citylive there? What can the city planner do to make the city's image more vivid and memorable gto the city dweller? To answer these questions, Lynch, formulates a new criterion‐imageability‐and shows its potential value as a guide for thepotential value as a guide for the building and rebuilding of cities.

© Markus KnauffUCSB – 04/16/10 2UCSB,  Feb/23/12

Page 3: Space to Reason

Visual imagery and reasoning

• Visual imagery helps to reason: Huttenlocher(1968), Shaver, Pierson, and Lang (1976), ( 968), Shaver, Pierson, and ang ( 976),Clement and Falmagne (1986), and many othersothers

• Visual imagery does not help: Sternberg g y p g(1980), Richardson (1987), Johnson‐Laird, Byrne and Tabossi (1989) Newstead PollardByrne and Tabossi (1989), Newstead, Pollard, and Griggs (1986), and many others

© Markus KnauffUCSB – 04/16/10 © Markus KnauffUCSB,  Feb/23/12 3© Markus Knauff

Page 4: Space to Reason

The core ideaThe core idea ..

h h d l h f• … to re‐examine the orthodox visual theory of reasoning, to reject it, and to propose a spatial h f dtheory of reasoning in its stead. 

• … to show that not visual images, but rather the… to show that not visual images, but rather the ability to mentally construct and inspect more abstract spatial representations is critical forabstract spatial representations is critical for reasoning. 

h h b f b h i l i• .. to show that by means of behavioral reasoning experiments, experiments using functional MRI, and 

i l d li© Markus KnauffUCSB – 04/16/10 © Markus KnauffUCSB,  Feb/23/12

computational modeling.4

Page 5: Space to Reason

The visual‐impedance hypothesisKnauff & Johnson‐Laird (2002). Memory & Cognition, 30, 363‐371.

• Orthodox hypothesis: visual relations help to construct visual images and thusto construct visual images and thus support the process of reasoning 

• Alternative hypothesis: visual relations elicit irrelevant visual images and thuselicit irrelevant visual images and thus impede the process of reasoning                visual impedance hypothesis= visual‐impedance hypothesis

© Markus KnauffUCSB – 04/16/10 © Markus KnauffUCSB,  Feb/23/12 55© Markus Knauff

Page 6: Space to Reason

Reasoning and imageabilityg g y

• Four sorts of problems:

• visual problems – e g cleaner-dirtier• visual problems – e.g. cleaner-dirtier

• visuo-spatial problems – e.g. above-below

• spatial problems – e.g. to the north-to the south

• control problems – e.g.better-worse

• Participants solved reasoning problems with the four sorts of relations

© Markus KnauffUCSB – 04/16/10 © Markus KnauffUCSB,  Feb/23/12 66© Markus Knauff

Page 7: Space to Reason

Response latencies

i l bl

Knauff & Johnson‐Laird (2002). Memory & Cognition, 30, 363‐371.

• visual problems were significantly slower than the otherthan the other problems (Wilcoxontest z = 3.07; p < .002)p )

• No difference between the other sorts ofthe other sorts of problems

• Imageability does notImageability does not help; it even impedes reasoning

visual control visuo-spatial spatial

© Markus KnauffUCSB – 04/16/10 © Markus KnauffUCSB,  Feb/23/12 7

g

7© Markus Knauff

Page 8: Space to Reason

Congenitally Blind ReasonersKnauff & May (2006). Quarterly Journal of Experimental Psychology, 59, 16‐177.

• accuracy [rel. frequency of correct responses]

• response latency [in msec]p ]

1 8000

0,9

4000

6000

0,8

2000

4000

0,7visual relations control

l tivisuospatial

l ti

0visual relations control visuospatial

© Markus KnauffUCSB – 04/16/10

relations relations visual relations controlrelations

visuospatialrelations

8© Markus KnauffUCSB,  Feb/23/12

Page 9: Space to Reason

Sighted ReasonersKnauff & May (2006). Quarterly Journal of Experimental Psychology, 59, 16‐177.

• accuracy [rel. frequency of correct responses]

• response latency [in msec]p ]

15001

1100

13000,9

700

9000,8

500

700

visual relations control relations visuospatial0,7

visualrelations

controlrelations

visuospatialrelations

© Markus KnauffUCSB – 04/16/10

prelations

9© Markus KnauffUCSB,  Feb/23/12

Page 10: Space to Reason

Blindfolded Sighted ReasonersKnauff & May (2006). Quarterly Journal of Experimental Psychology, 59, 16‐177.

• accuracy [rel. frequency of correct responses]

• response latency [in msec]p ]

11700

0,9 1300

1500

0,8

700

900

1100

0,7visual relations control visuospatial

500

700

visual relations control visuospatial

© Markus KnauffUCSB – 04/16/10

relations relationsvisual relations control

relationsvisuospatial

relations

10© Markus KnauffUCSB,  Feb/23/12

Page 11: Space to Reason

Replications and Extensionsof the visual impedance effectof the visual impedance effect

• Dyslexia• Bacon, A.M., Handley, S.J., Dennis I. & Newstead, S.E. (2008). Reasoning strategies: the

role of working memory and verbal spatial ability European Journal of Cognitiverole of working memory and verbal‐spatial ability. European Journal of Cognitive Psychology, 20(6), 1065 ‐ 1086.

• Bacon, A.M., Handley, S.J. and McDonald, E.L. (2007). Reasoning and dyslexia: a spatialstrategy may impede reasoning with visually rich information British Journal ofstrategy may impede reasoning with visually rich information. British Journal ofPsychology, 98(1), 79‐92.

• Psychopharmacology/ Bezodiaziones:Psychopharmacology/ Bezodiaziones:• S. Pompéia , G. M. Manzano, M. Pradella‐Hallinan and O. F. A. Bueno (2007). Effects of 

lorazepam on deductive reasoning. Psychopharmacology, 527 ‐ 536

• Individual differences• DeLeeuv, K. Hegarty, M (2008). What Diagrams Reveal about Representations in  

© Markus KnauffUCSB – 04/16/10 © Markus KnauffUCSB,  Feb/23/12

e eeu , . ega ty, ( 008). at ag a s e ea about ep ese tat o sLinear Reasoning, and How They Help. Diagrams, 89‐102.

Page 12: Space to Reason

Neural Activity During Reasoning andimageability

• Four sorts of problems:

• visual problems e g cleaner dirtier• visual problems – e.g. cleaner-dirtier

• visuo-spatial problems – e.g. above-below

• spatial problems – e.g. to the north-to the southsouth

• control problems – e.g.better-worse

© Markus KnauffUCSB – 04/16/10 © Markus KnauffUCSB,  Feb/23/12 1212© Markus Knauff

Page 13: Space to Reason

Activity in ALL problems Knauff et al. (2003). Journal of Cognitive Neuroscience, 15 (4), 559‐573.

Contrast: all problems vs. baseline (p < .001)

© Markus KnauffUCSB – 04/16/10 © Markus KnauffUCSB,  Feb/23/12 1313© Markus Knauff

Page 14: Space to Reason

Activity in visual problemsKnauff et al. (2003). Journal of Cognitive Neuroscience, 15 (4), 559‐573.

Contrast: visual problems vs. control problems (p < .001)

© Markus KnauffUCSB – 04/16/10 © Markus KnauffUCSB,  Feb/23/12 1414© Markus Knauff

Page 15: Space to Reason

Reasoning and working memoryKnauff et al., (2004). Spatial Cognition & Computation, 4, 167‐189 

• Participants solved transitive inferences (N = 3 X 48) as main task (k = 48)

• Four different secondary tasks were solved concurrently:concurrently:

• Visuo-spatial: location of objects (1)

• visual: brightness of Objects (2)

ti l l ti f t (3)• spatial: location of tones (3)

• Kontrolle: pitch of tones (4)

© Markus KnauffUCSB – 04/16/10 © Markus KnauffUCSB,  Feb/23/12 15

Kontrolle: pitch of tones (4)

15© Markus Knauff

Page 16: Space to Reason

Problems

The red circle lies tothe left of the green rectanglethe left of the green rectangle.

The green rectangle lies to theThe green rectangle lies to the left of the blue square.

Does it follow:

The red circle lies to theThe red circle lies to theleft of the blue square?

© Markus KnauffUCSB – 04/16/10 © Markus KnauffUCSB,  Feb/23/12 1616© Markus Knauff

Page 17: Space to Reason

Valid InferencesKnauff et al., (2004). Spatial Cognition & Computation, 4, 167‐189 

85,883,3

785

85

90

)

• Visual secondary tasks had no negative effect on

baselinebaseline78,5

674

75

80

es (m

ain

task

)

baseline reasoning performance

• Spatial secondary tasks had a disrupting effect on67,4

65

70

rect

resp

onse had a disrupting effect on

reasoning performance (Wilcoxon test z = 2.19; p < 05)

55

60

% c

or < .05)

• Reasoning and spatial secondary tasks are

50visual acoustical

nonspatial spatial (secondary task)

secondary tasks are processes in the same spatial subsystem of working memory

© Markus KnauffUCSB – 04/16/10 © Markus KnauffUCSB,  Feb/23/12 17

non-spatial spatial (secondary task) working memory

17© Markus Knauff

Page 18: Space to Reason

Three phases of an inference…Fangmeier, Knauff, Ruff, & Sloutsky (2006). Journal of Cognitive Neuroscience, 4, 559‐573.

• premise processing phase: comprehension and processing of the premisesprocessing of the premises 

• integration phase: construction of a single gintegrated model of the premise information; the premises are no longer p grepresented as separate entities in working memory 

• lid ti h l ti• validation phase: evaluation of the logical validity of a presented conclusion

© Markus KnauffUCSB – 04/16/10 © Markus KnauffUCSB,  Feb/23/12 18© Markus Knauff

Page 19: Space to Reason

“Visual Areas” only in Phase I and IIFangmeier, Knauff, Ruff, & Sloutsky (2006). Journal of Cognitive Neuroscience, 4, 559‐573.

• premise processing phase:middle occipital gyrus, and superior temporal gyrussuperior temporal gyrus, bilaterally

integration phase: anteriorintegration phase: anterior prefrontal cortex and occipito‐temporal gyrus

validation phase:      prefrontal gyrus, inferior p gy ,parietal lobule (L); precuneus (R)

© Markus KnauffUCSB – 04/16/10 © Markus KnauffUCSB,  Feb/23/12 19© Markus Knauff

Page 20: Space to Reason

Acoustical problemsFangmeier &  Knauff (2009). Brain Research, 1249, 181‐190.

• premise processing phase: comprehension and processing of the premisesthe premises 

• integration phase: construction of i l i d d l f ha single integrated model of the 

premise information; the premises are no longer represented asare no longer represented as separate entities in working memory 

• validation phase: evaluation of the logical validity of a presented 

© Markus KnauffUCSB – 04/16/10 © Markus KnauffUCSB,  Feb/23/12

g y pconclusion

20© Markus Knauff

Page 21: Space to Reason

Acoustical ProblemsFangmeier &  Knauff  (2009). Brain Research, 1249, 181‐190.

• premise processing phase:superior parietal gyrus, 

bil llprecuneus, bilaterally

integration phase: superior integration phase: superior temporal gyrus, anterior heschl gyrus (BA 41 , 42)

APFC

validation phase:      prefrontal gyrus (L), parietal p gy ( ), plobule (L); precuneus (R)

© Markus KnauffUCSB – 04/16/10 © Markus KnauffUCSB,  Feb/23/12 21© Markus Knauff

Page 22: Space to Reason

Verbalizer vs. Visualizer(Gazzo & Knauff, in prep.)

Easy to visualize  difficult to visualize  Easy to visualize  difficult to visualize 

rors

(%)

rs(%

)

err

error

© Markus KnauffUCSB – 04/16/10 © Markus KnauffUCSB,  Feb/23/12 22© Markus Knauff

Page 23: Space to Reason

Individual differences and neural activity

P i i (N 12) l d 32 i i I f

Ruff, C. C., Knauff, M., Fangmeier, T., & Spreer, J. (2003). Neuropsychologia, 41, 1241‐1253

• Participants (N = 12) solved 32 transitive Inferences 

• participants spatial‐constructive Intelligence were tested with the “Block Design Test” of the German equivalent to the Wechsler Adult Intelligence Scale (HAWIE‐91)

• min: IQBDT = 103

• max: IQBDT = 128QBDT

• mean: IQBDT = 114.

• positive correlation of spatial‐constructive intelligence and number of correct responses (r = .76, p < .01)

© Markus KnauffUCSB – 04/16/10 © Markus KnauffUCSB,  Feb/23/12 2323© Markus Knauff

Page 24: Space to Reason

Negative correlation between BOLD and visuo‐spatial IQRuff, C. C., Knauff, M., Fangmeier, T., & Spreer, J. (2003). Neuropsychologia, 41, 1241‐1253

Contrast: all Problems vs. baseline (p < .001) with BDT score as Covariate (x = 0, Y = - 62, z = 36).

© Markus KnauffUCSB – 04/16/10 © Markus KnauffUCSB,  Feb/23/12 24

(p ) ( , , )

24© Markus Knauff

Page 25: Space to Reason

Preferred mental models

V ifi ti f t di ll lid d

Rauh, R., Hagen, C., Knauff, M., Kuß, T., Schlieder, C., & Strube, G. (2005). Spatial Cognition & Computation, 5, 239‐26Jahn, G., Knauff, M. & Johnson‐Laird, P. N. (2007). Memory & Cognition, 35, 2075‐2087

• Verification: faster andmore often correctly

60

70

80

90

100

Logically valid, expected

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13

15 4

20,820

25

Empirically found

100

15,4

7 310

15

50

60

70

80

90

100

5,257,3

0

5

10

0

10

20

30

40

50 0preferred non-preferred

errors in % resonse time in sec

© Markus KnauffUCSB – 04/16/10 © Markus KnauffUCSB,  Feb/23/12

01 2 3 4 5 6 7 8 9 10 11 12 13

errors in % resonse time in sec

25© Markus Knauff

Page 26: Space to Reason

Preferred Conclusions in Reasoning:Berendt’s “visual account”Berendt s visual account

© Markus KnauffUCSB – 04/16/10 © Markus KnauffUCSB,  Feb/23/12 26© Markus Knauff

Page 27: Space to Reason

Preferred Conclusions in Reasoning:Schlieder’s “spatial account”Schlieder s spatial account

© Markus KnauffUCSB – 04/16/10 © Markus KnauffUCSB,  Feb/23/12 27© Markus Knauff

Page 28: Space to Reason

Modelling results

• How many preferences can be reconstructed?

• I t 18 t f 72 f• Imagery account: 18 out of 72 preferences unexplained

• Spatial account: 2 out of 72 preferences unexplained

• The spatial a o nt is more parsimonio s and an• The spatial account is more parsimonious and can reconstruct more empirically found preferences. 

© Markus KnauffUCSB – 04/16/10 © Markus KnauffUCSB,  Feb/23/12 28

Page 29: Space to Reason

The PRISM modelRagni, M. Knauff, M., & Nebel, B. (2005). Proceedings of the 27th Annual Conference of the Cognitive Science Society, (pp. 1797‐1802).Ragni, M., Fangmeier, T., Brüssow, S., & Knauff, M. (submitted).

© Markus KnauffUCSB – 04/16/10 © Markus KnauffUCSB,  Feb/23/12 29© Markus Knauff

Page 30: Space to Reason

Knauff, M. (to appear). Space to Reason. C b id MA MIT PCambridge, MA: MIT Press.

© Markus KnauffUCSB – 04/16/10 3030© Markus KnauffUCSB,  Feb/23/12

Page 31: Space to Reason

T k h

• previous studies have often shown activation of visual

Take‐home‐message

• previous studies have often shown activation of visual association cortices which points to the role of “visual mental imagery” in reasoningg y g

• the theory explains why visual brain areas are indeed involved in premise processing and the construction ofinvolved in premise processing and the construction of an initial static representation of the initial model

• b t th t b t t ti l t ti h ld i• but that more abstract spatial representations held in parietal cortices are crucial for the actual reasoning processesprocesses

• Thus: visual images can impede reasoning

© Markus KnauffUCSB – 04/16/10 © Markus KnauffUCSB,  Feb/23/12 3131© Markus Knauff

Page 32: Space to Reason

Space to ReasonSpace to ReasonMarkus KnauffMarkus KnauffUniversität Gieß[email protected][email protected] giessen.dewww.uni‐giessen.de/cms/cognition

For every complex problem, there is an answer that is short simple and wronganswer that is short, simple, and wrong.

H.L. Mencken  (1880 ‐ 1956)