33
Spin-1 particle and the ATLAS Diboson excess Tomohiro Abe (KEK) based on the works 1507.01185: TA, Ryo Nagai, Shohei Okawa, Masaharu Tanabashi 1507.01681: TA, Teppei Kitahara, Mihoko Nojiri 基研研究会 PPP2015 2015.9.15

Spin-1 particle and the ATLAS Diboson excessppp.ws/PPP2015/slides/abe.pdfSpin-1 particle and the ATLAS Diboson excess! Tomohiro Abe (KEK) ! based on the works 1507.01185: TA, Ryo Nagai,

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Spin-1 particle and the ATLAS Diboson excessppp.ws/PPP2015/slides/abe.pdfSpin-1 particle and the ATLAS Diboson excess! Tomohiro Abe (KEK) ! based on the works 1507.01185: TA, Ryo Nagai,

Spin-1 particle and

the ATLAS Diboson excess!

Tomohiro Abe (KEK) !

based on the works 1507.01185: TA, Ryo Nagai, Shohei Okawa, Masaharu Tanabashi 1507.01681: TA, Teppei Kitahara, Mihoko Nojiri

!基研研究会 PPP2015   2015.9.15

Page 2: Spin-1 particle and the ATLAS Diboson excessppp.ws/PPP2015/slides/abe.pdfSpin-1 particle and the ATLAS Diboson excess! Tomohiro Abe (KEK) ! based on the works 1507.01185: TA, Ryo Nagai,

今日話したいこと

A �"��!�+0)6965�(564(3?�!

A 9705��Ò�x¸�[^ÆÁ�e éĢÎīå��,.� �N,.� �N.�����e r�u�ûó�e �-%�,�:?8EIED�7DEC7BO��ăÔûó�!

A ����� �",$�hQWt�%@�ÍÐi��[�e FF�f�0Q�f�03�f�@;JI��!

A meo

Page 3: Spin-1 particle and the ATLAS Diboson excessppp.ws/PPP2015/slides/abe.pdfSpin-1 particle and the ATLAS Diboson excess! Tomohiro Abe (KEK) ! based on the works 1507.01185: TA, Ryo Nagai,

ATLAS diboson excess

1.5 2 2.5 3 3.5

Even

ts /

100

GeV

1−10

1

10

210

310

410DataBackground model1.5 TeV EGM W', c = 12.0 TeV EGM W', c = 12.5 TeV EGM W', c = 1Significance (stat)Significance (stat + syst)

ATLAS-1 = 8 TeV, 20.3 fbs

WZ Selection

[TeV]jjm1.5 2 2.5 3 3.5

Sign

ifica

nce

2−1−0123

(a)

1.5 2 2.5 3 3.5Ev

ents

/ 10

0 G

eV

3−10

2−10

1−10

1

10

210

310

410DataBackground model

= 1PIM, k/RS1.5 TeV Bulk G = 1PIM, k/RS2.0 TeV Bulk G

Significance (stat)Significance (stat + syst)

ATLAS-1 = 8 TeV, 20.3 fbs

WW Selection

[TeV]jjm1.5 2 2.5 3 3.5

Sign

ifica

nce

2−1−0123

(b)

1.5 2 2.5 3 3.5

Even

ts /

100

GeV

3−10

2−10

1−10

1

10

210

310

410DataBackground model

= 1PIM, k/RS1.5 TeV Bulk G = 1PIM, k/RS2.0 TeV Bulk G

Significance (stat)Significance (stat + syst)

ATLAS-1 = 8 TeV, 20.3 fbs

ZZ Selection

[TeV]jjm1.5 2 2.5 3 3.5

Sign

ifica

nce

2−1−0123

(c)

Figure 5: Background-only fits to the dijet mass (mj j) distributions in data (a) after tagging with the WZ selection,(b) after tagging with the WW selection and (c) after tagging with the ZZ selection. The significance shown inthe inset for each bin is the di↵erence between the data and the fit in units of the uncertainty on this di↵erence.The significance with respect to the maximum-likelihood expectation is displayed in red, and the significance whentaking the uncertainties on the fit parameters into account is shown in blue. The spectra are compared to the signalsexpected for an EGM W 0 with mW0 = 1.5, 2.0, or 2.5 TeV or to an RS graviton with mGRS = 1.5 or 2.0 TeV.

to the shape of the signal, and N is a log-normal distribution for the nuisance parameters, ✓, modellingthe systematic uncertainty on the signal normalisation. The expected number of events is the bin-wisesum of the events expected for the signal and background: nexp

= nsig

+ nbg

. The number of expectedbackground events in dijet mass bin i, ni

bg, is obtained by integrating dn/dx obtained from eqn. (1) overthat bin. Thus nbg

is a function of the dijet background parameters p1, p2, p3. The number of expectedsignal events, nsig

, is evaluated based on MC simulation assuming the cross section of the model undertest multiplied by the signal strength and including the e↵ects of the systematic uncertainties described in

16

1.5 2 2.5 3 3.5

Even

ts /

100

GeV

1−10

1

10

210

310

410DataBackground model1.5 TeV EGM W', c = 12.0 TeV EGM W', c = 12.5 TeV EGM W', c = 1Significance (stat)Significance (stat + syst)

ATLAS-1 = 8 TeV, 20.3 fbs

WZ Selection

[TeV]jjm1.5 2 2.5 3 3.5

Sign

ifica

nce

2−1−0123

(a)

1.5 2 2.5 3 3.5

Even

ts /

100

GeV

3−10

2−10

1−10

1

10

210

310

410DataBackground model

= 1PIM, k/RS1.5 TeV Bulk G = 1PIM, k/RS2.0 TeV Bulk G

Significance (stat)Significance (stat + syst)

ATLAS-1 = 8 TeV, 20.3 fbs

WW Selection

[TeV]jjm1.5 2 2.5 3 3.5

Sign

ifica

nce

2−1−0123

(b)

1.5 2 2.5 3 3.5

Even

ts /

100

GeV

3−10

2−10

1−10

1

10

210

310

410DataBackground model

= 1PIM, k/RS1.5 TeV Bulk G = 1PIM, k/RS2.0 TeV Bulk G

Significance (stat)Significance (stat + syst)

ATLAS-1 = 8 TeV, 20.3 fbs

ZZ Selection

[TeV]jjm1.5 2 2.5 3 3.5

Sign

ifica

nce

2−1−0123

(c)

Figure 5: Background-only fits to the dijet mass (mj j) distributions in data (a) after tagging with the WZ selection,(b) after tagging with the WW selection and (c) after tagging with the ZZ selection. The significance shown inthe inset for each bin is the di↵erence between the data and the fit in units of the uncertainty on this di↵erence.The significance with respect to the maximum-likelihood expectation is displayed in red, and the significance whentaking the uncertainties on the fit parameters into account is shown in blue. The spectra are compared to the signalsexpected for an EGM W 0 with mW0 = 1.5, 2.0, or 2.5 TeV or to an RS graviton with mGRS = 1.5 or 2.0 TeV.

to the shape of the signal, and N is a log-normal distribution for the nuisance parameters, ✓, modellingthe systematic uncertainty on the signal normalisation. The expected number of events is the bin-wisesum of the events expected for the signal and background: nexp

= nsig

+ nbg

. The number of expectedbackground events in dijet mass bin i, ni

bg, is obtained by integrating dn/dx obtained from eqn. (1) overthat bin. Thus nbg

is a function of the dijet background parameters p1, p2, p3. The number of expectedsignal events, nsig

, is evaluated based on MC simulation assuming the cross section of the model undertest multiplied by the signal strength and including the e↵ects of the systematic uncertainties described in

16

A 77�J�&�J�%'%%''�J�:=6�-(:�1,:9�e C7II�E<�1�T� -;/���e BE97B�I?=D?U97D9;��03���\��00� �\��33� �\�e =BE87B�I?=D?U97D9;��03� �\

�-%�,��1(-� �������

Page 4: Spin-1 particle and the ATLAS Diboson excessppp.ws/PPP2015/slides/abe.pdfSpin-1 particle and the ATLAS Diboson excess! Tomohiro Abe (KEK) ! based on the works 1507.01185: TA, Ryo Nagai,

CMS の同じプロセスには excess 無し

Resonance mass (TeV)1 1.5 2 2.5 3

WZ)

(pb)

→ B

(W'

× σ

-310

-210

-110

1ObservedExpected (68%)Expected (95%)

WZ→W'

= 8 TeVs, -1CMS, L = 19.7 fb �&,��1(�� �� �

Page 5: Spin-1 particle and the ATLAS Diboson excessppp.ws/PPP2015/slides/abe.pdfSpin-1 particle and the ATLAS Diboson excess! Tomohiro Abe (KEK) ! based on the works 1507.01185: TA, Ryo Nagai,

lepton を含む崩壊モードに excess 無し

[GeV]W'm500 1000 1500 2000 2500

WZ)

[pb]

→W

') x

BR(W

'→

(pp

σ

-310

-210

-110

1

10

210 ATLAS = 8 TeVs

-1 Ldt = 20.3 fb∫Observed 95% CL

Expected 95% CL

uncertaintyσ 1±

uncertaintyσ 2±

EGM W' c = 1

�"��!�%'�J3<���1,:9�

[GeV]W’m400 600 800 1000 1200 1400 1600 1800 2000

ZW

) [p

b]→

BR(

W’

× W

’) →

(pp

σ

-310

-210

-110

1

10

210ATLAS

= 8 TeVs-1L dt = 20.3 fb∫

EGM W’, c = 1Expected 95% CLObserved 95% CL

uncertaintyσ 1 ±

uncertaintyσ 2 ±

�"��!�%'�J�1,:9���3,7:659�

[GeV]m200 400 600 800 1000 1200 1400 1600 1800 2000

WZ)

[pb]

→ B

(X×

X)

→ (p

-210

-110

1

10

210 Expected 95% CL Limitσ 1±95% CL σ 2±95% CL

Observed LimitEGM W’HVT A(gv=1) HVT A(gv=3) HVT B(gv=3)

ATLAS-1Ldt = 20.3 fb∫=8 TeV, s

�"��!�%'�J3<��33�

(GeV)TCρW', M

500 1000 1500 2000

B (p

b)⋅

σ

-510

-410

-310

-210

-110

1

(GeV)TCρW', M

500 1000 1500 2000

B (p

b)⋅

σ

-510

-410

-310

-210

-110

1 CMS

(8 TeV)-119.5 fb

Observed 95% CL

Expected 95% CL

σ 1±Expected

σ 2±Expected

W'σ

TCσ

��!�%'�J3<���33� �&,��1(�� �� �

�-%�,��1(-� ��������-%�,��1(-� �������

�-%�,��1(-� �������

Page 6: Spin-1 particle and the ATLAS Diboson excessppp.ws/PPP2015/slides/abe.pdfSpin-1 particle and the ATLAS Diboson excess! Tomohiro Abe (KEK) ! based on the works 1507.01185: TA, Ryo Nagai,

diboson の各崩壊過程のまとめfinal states ATLAS CMS

VV → jets excess no excess

WZ → ℓvWZ → jets + ℓℓWZ → ℓv +

no excess no excess

A �>*,99�j��"��!�i�77�J�$$�J�1,:9�®ÃhinÇ°�e BE=7B��03���\��00� �\��33� �\�e =BE87B��03� �\�!

A �>*,99�jÉgt¶¢iÏrUF�!

A fygÆÁd,>*,99Sº�³§RÌPcQVYej ��e Į�ĨIJ�Ê�ĨIJ]Ìx�µ��ÌxĨIJ��Į���ďď�!

Page 7: Spin-1 particle and the ATLAS Diboson excessppp.ws/PPP2015/slides/abe.pdfSpin-1 particle and the ATLAS Diboson excess! Tomohiro Abe (KEK) ! based on the works 1507.01185: TA, Ryo Nagai,

Excess についてわかっていること

A �Ò������j��~��e ����������ğġy��!

A �������iª«jT`yebNcNgN�e SC@���C/S����� ;/�e i��¨»Á°¿Ú��ăÔy�÷ã�ül

���������

���������

1.5 2 2.5 3 3.5

Even

ts /

100

GeV

2−10

1−10

1

10

210

310

410Data

Background model

Significance (stat)

Significance (stat + syst)

ATLAS-1 = 8 TeV, 20.3 fbs

WW+ZZ Selection

[TeV]jjm1.5 2 2.5 3 3.5

Sign

ifica

nce

2−024 1.5 2 2.5 3 3.5

Even

ts /

100

GeV

2−10

1−10

1

10

210

310

410Data

Background model

Significance (stat)

Significance (stat + syst)

ATLAS-1 = 8 TeV, 20.3 fbs

WW+ZZ+WZ Selection

[TeV]jjm1.5 2 2.5 3 3.5

Sign

ifica

nce

2−024

�-%�,��1(-� �������

Page 8: Spin-1 particle and the ATLAS Diboson excessppp.ws/PPP2015/slides/abe.pdfSpin-1 particle and the ATLAS Diboson excess! Tomohiro Abe (KEK) ! based on the works 1507.01185: TA, Ryo Nagai,

Works in market ( ~50 papers)

A !705���!�J�%%��!�J�''��!!

A !705����%@�J�%'��'@�J�%%��!!!!

A !705���

����� ���������������������������������� ���������������������� ��������������������� ������� ���

������������������������������ ������������������������������������������������������������������������������������� ������������������������������������������������������������������������������ �������� ����������������������� �������������������������������������������� ��������� ���������������������������������� ���������� ������������������������������� �������������������� ���������������������� ����������������������������������������� ���

������������������� �����������

Page 9: Spin-1 particle and the ATLAS Diboson excessppp.ws/PPP2015/slides/abe.pdfSpin-1 particle and the ATLAS Diboson excess! Tomohiro Abe (KEK) ! based on the works 1507.01185: TA, Ryo Nagai,

spin 別の特徴A !705���!�J�%%��!�J�''��

e Ĝį��ýòĊpÿ��l�e ĕâ�Ďċ~�m�rlo�l��Ĉn��$��$�87H��o���oo��4(CKH7�-E8;�-IKCKH7�R��5��e m�rlrgĈ�^ð�ð�¬a¡y�úÈv���čÅ��4����� ���5�!

A !705����%@�J�%'��'@�J�%%��e éĢÎīå�ēĆy��ħĘ��q�cĈ��,.� �N,.� �N.���d�e Ďċ�}rv�ï����9>E?9;�E<�!?==I�7D:�<;HC?ED�I;9JEHI��

ij ĖÏ�§�®¸¡¥pk�Ďċ]cgĈ�õöv��¬a¡d�ij %;<J�+?=>J�Ďċ�ij {�ė�

!A !705���

e ĠÆİÒ`]Ěĭðí`

Page 10: Spin-1 particle and the ATLAS Diboson excessppp.ws/PPP2015/slides/abe.pdfSpin-1 particle and the ATLAS Diboson excess! Tomohiro Abe (KEK) ! based on the works 1507.01185: TA, Ryo Nagai,

spin 別の特徴(私見)

A !705���!�J�%%��!�J�''��e Ĝį��ýòĊpÿ��l�e ĕâ�Ďċ~�m�rlo�l��Ĉn��$��$�87H��o���oo���e m�rlrgĈ�^úÈv�¬a¡��m|�!

A !705����%@�J�%'��'@�J�%%��e éĢÎīå�ēĆy��ħĘ��q�cĈ��,.� �N,.� �N.���d�e Ďċ�}rv�ï����9>E?9;�E<�!?==I�7D:�<;HC?ED�I;9JEHI��

ij ĖÏ�§�®¸¡¥pk�Ďċ]cgĈ�õöv��¬a¡d�ij %;<J�+?=>J�Ďċ�ij {�ė�

!A !705���

e ĠÆİÒ`]Ěĭðí`

spin1 に着目します

Page 11: Spin-1 particle and the ATLAS Diboson excessppp.ws/PPP2015/slides/abe.pdfSpin-1 particle and the ATLAS Diboson excess! Tomohiro Abe (KEK) ! based on the works 1507.01185: TA, Ryo Nagai,

σ(pp → W’/Z’ → WZ/WW) の見積もりA ,>*,99�iº�h¯�gµ¦¿jF�!

A �"��!Rri�6B*0(3�gÂj´N�!

A %@'@x�N^²©j�­�MtSE²©hqac�,>*,99�h¯�eZutµ¦¿iÂj»O�

e ��<8�e ���<8�e ���<8�e ��<8�!

A µ¦¿xfO�¿ptRhqacÈPj�TV±wt�C�e þèpÿ��l�l�páě�ñn����e ��knz��Ĉkt�y

Page 12: Spin-1 particle and the ATLAS Diboson excessppp.ws/PPP2015/slides/abe.pdfSpin-1 particle and the ATLAS Diboson excess! Tomohiro Abe (KEK) ! based on the works 1507.01185: TA, Ryo Nagai,

�?=�<HEC��-%�,��1(-� �������

1.5 2 2.5 3 3.5

Even

ts /

100

GeV

1−10

1

10

210

310

410DataBackground model1.5 TeV EGM W', c = 12.0 TeV EGM W', c = 12.5 TeV EGM W', c = 1Significance (stat)Significance (stat + syst)

ATLAS-1 = 8 TeV, 20.3 fbs

WZ Selection

[TeV]jjm1.5 2 2.5 3 3.5

Sign

ifica

nce

2−1−0123

(a)

1.5 2 2.5 3 3.5

Even

ts /

100

GeV

3−10

2−10

1−10

1

10

210

310

410DataBackground model

= 1PIM, k/RS1.5 TeV Bulk G = 1PIM, k/RS2.0 TeV Bulk G

Significance (stat)Significance (stat + syst)

ATLAS-1 = 8 TeV, 20.3 fbs

WW Selection

[TeV]jjm1.5 2 2.5 3 3.5

Sign

ifica

nce

2−1−0123

(b)

1.5 2 2.5 3 3.5

Even

ts /

100

GeV

3−10

2−10

1−10

1

10

210

310

410DataBackground model

= 1PIM, k/RS1.5 TeV Bulk G = 1PIM, k/RS2.0 TeV Bulk G

Significance (stat)Significance (stat + syst)

ATLAS-1 = 8 TeV, 20.3 fbs

ZZ Selection

[TeV]jjm1.5 2 2.5 3 3.5

Sign

ifica

nce

2−1−0123

(c)

Figure 5: Background-only fits to the dijet mass (mj j) distributions in data (a) after tagging with the WZ selection,(b) after tagging with the WW selection and (c) after tagging with the ZZ selection. The significance shown inthe inset for each bin is the di↵erence between the data and the fit in units of the uncertainty on this di↵erence.The significance with respect to the maximum-likelihood expectation is displayed in red, and the significance whentaking the uncertainties on the fit parameters into account is shown in blue. The spectra are compared to the signalsexpected for an EGM W 0 with mW0 = 1.5, 2.0, or 2.5 TeV or to an RS graviton with mGRS = 1.5 or 2.0 TeV.

to the shape of the signal, and N is a log-normal distribution for the nuisance parameters, ✓, modellingthe systematic uncertainty on the signal normalisation. The expected number of events is the bin-wisesum of the events expected for the signal and background: nexp

= nsig

+ nbg

. The number of expectedbackground events in dijet mass bin i, ni

bg, is obtained by integrating dn/dx obtained from eqn. (1) overthat bin. Thus nbg

is a function of the dijet background parameters p1, p2, p3. The number of expectedsignal events, nsig

, is evaluated based on MC simulation assuming the cross section of the model undertest multiplied by the signal strength and including the e↵ects of the systematic uncertainties described in

16

0

2

4

6

8

10

1.8 1.9 2 2.1 2.2

even

t n

um

ber

mW’[GeV]

dataBenchmark

� �v��r

σ(pp → W’/Z’ → WZ/WW) の見積もり

Page 13: Spin-1 particle and the ATLAS Diboson excessppp.ws/PPP2015/slides/abe.pdfSpin-1 particle and the ATLAS Diboson excess! Tomohiro Abe (KEK) ! based on the works 1507.01185: TA, Ryo Nagai,

estimate(1) 2TeV bin だけ

0

2

4

6

8

10

1.8 1.9 2 2.1 2.2

even

t num

ber

mW’[GeV]

dataBenchmark

0

2

4

6

8

10

1.8 1.9 2 2.1 2.2

mW’[GeV]

data4.6 × Benchmark

-;/���8?D�~s���

k��Æ���l�m�Ên�b

;N9;IIăÔ�÷ã�ýòĊ��<8�N���������-)

²©¦¾Æ�y÷ã�ül

Page 14: Spin-1 particle and the ATLAS Diboson excessppp.ws/PPP2015/slides/abe.pdfSpin-1 particle and the ATLAS Diboson excess! Tomohiro Abe (KEK) ! based on the works 1507.01185: TA, Ryo Nagai,

estimate(2) 全部 error bar に入るようにしてみる

;HHEH�87H��Í�}ÉÆ��;N9;IIăÔ�÷ã�ýòĊ�

�<8�N� ��������-)

0

2

4

6

8

10

1.8 1.9 2 2.1 2.2

mW’[GeV]

data2.5 × Benchmark

0

2

4

6

8

10

1.8 1.9 2 2.1 2.2

mW’[GeV]

data4.6 × Benchmark

-;/�8?D�~sÊ}ÉÆ_�;N9;IIăÔ�÷ã�ýòĊ�

�<8�N���������-)

~l�ąm

Page 15: Spin-1 particle and the ATLAS Diboson excessppp.ws/PPP2015/slides/abe.pdfSpin-1 particle and the ATLAS Diboson excess! Tomohiro Abe (KEK) ! based on the works 1507.01185: TA, Ryo Nagai,

estimate(3) event 数だけ数えるA %%�%'�''�9,3,*:065�

e �;L;DJI�7J����-;/�8?D�e ��;L;DJI�7J� ��-;/�8?D�e ��;L;DJ��7J� ��-;/�8?D�e ��E<�;N9;II�;L;DJ�����!

e ����\�N�%KC?DEI?JO�N�;X9?;D9O��!

e \�FFf0Qf03��\�FFf3Qf00��T���-)

�?=�<HEC��-%�,��1(-� �������

1.5 2 2.5 3 3.5

Even

ts /

100

GeV

2−10

1−10

1

10

210

310

410Data

Background model

Significance (stat)

Significance (stat + syst)

ATLAS-1 = 8 TeV, 20.3 fbs

WW+ZZ+WZ Selection

[TeV]jjm1.5 2 2.5 3 3.5

Sign

ifica

nce

2−024

Page 16: Spin-1 particle and the ATLAS Diboson excessppp.ws/PPP2015/slides/abe.pdfSpin-1 particle and the ATLAS Diboson excess! Tomohiro Abe (KEK) ! based on the works 1507.01185: TA, Ryo Nagai,

σ(pp → W’/Z’ → WZ/WW) の見積もり

A �"��!Rri�6B*0(3�gÂj´N�!

A fO�¿ptRhqacÈPj�TV±wt�e ���<8�ČÕk��ll~�m�e àā�����<8��Ħwl�

!

A eYvd�C�77�J�$@�J�$/�����-)�4�&,��1(�������5�e ıÜùм¯¦¾ª�a�Đ}yĎċ���]]\�FF�f�/Q�f�/3��T�\�FF�f�/Q�f�/>� �����^u�äĀ�q�l�

!

A HÀ�I�-)�x�¡[cE]u��j�[N�¼£¨S�cRr¥Puk·N

Page 17: Spin-1 particle and the ATLAS Diboson excessppp.ws/PPP2015/slides/abe.pdfSpin-1 particle and the ATLAS Diboson excess! Tomohiro Abe (KEK) ! based on the works 1507.01185: TA, Ryo Nagai,

残りの時間で話したいこと

A 9705���ÆÁxKbesMXm\�e r�u�ûó�ıÜù�ĩĝÑ�Þ�ĥn�Ďċ�m��pÎËgÆÁ�e �ĔıÜùÐ�Ďċ�^ð�¥²a a�õöv�d�e �Ďċ����låĂ�^ÔÂ�¶¥¦aËÝ�Äìv���!

A 77�J���������J�1,:9��G�i�����8;5���diÅÄ�e �<8���r�l�]0Q3Q�Ďċ�ĤĒûó

Page 18: Spin-1 particle and the ATLAS Diboson excessppp.ws/PPP2015/slides/abe.pdfSpin-1 particle and the ATLAS Diboson excess! Tomohiro Abe (KEK) ! based on the works 1507.01185: TA, Ryo Nagai,

model

Page 19: Spin-1 particle and the ATLAS Diboson excessppp.ws/PPP2015/slides/abe.pdfSpin-1 particle and the ATLAS Diboson excess! Tomohiro Abe (KEK) ! based on the works 1507.01185: TA, Ryo Nagai,

模型セットアップA !#����>�!#�����>�#�����J�#��� ���!

A :/8,,��0..9�+6;)3,:9�e �����,.� ���N�,.� ���f�,.� �L�e �����,.� ���N�.��� �f�.���L���e �����,.� ���N�.��� �f�.���L��!

e � Ą�Ö¥ ½a�����£a¤É�ć�����e ëô^êØÐÇøÕ��������)�;L;D������)�E::�����F7?H�E<�9>7H=;:�!?==I��

!A �z��{���

e ����,.� �����,.� �����.��� ����� ���������EH�� ������� ��e �����,.� �����,.� �����.��� �����������**����e ĪßÛģïÙ������ ����

9*/,4(:0*�70*:;8,��CEEI;�DEJ7J?ED�

LYukawa=� ¯QiH3

✓yiju 0

0 yijd

◆✓ujR

djR

◆+ (h.c.) + (lepton sector)

-��7D:�$?J7DE�R��

!#��� #����

!#����

��

�� ��

Page 20: Spin-1 particle and the ATLAS Diboson excessppp.ws/PPP2015/slides/abe.pdfSpin-1 particle and the ATLAS Diboson excess! Tomohiro Abe (KEK) ! based on the works 1507.01185: TA, Ryo Nagai,

模型のパラメータA � ����G��

e Ĭî�±½¹a¦j���!

e ęî�±½¹a¦j���!

e  ©³¾Á¢i���!

e L;LÓ×h��

It is convenient to use a di↵erent set of the parameters instead of these parameters. Weuse the following 13 parameters to fix the parameters in the electroweak sector,

r, v3, v, ↵, mZ , mZ0 , mh, mH0 , mH , mA, F , Z , gWW 0H0 . (34)

Here, we use r, v3, v instead of three µ parameters. is fixed by the charged Higgs massor the CP-odd Higgs mass. The six �’s have the same information as three CP-evenHiggs masses and their mixing angles (mh, mH , mH0 , ✓1, ✓2, ✓3). We can use mZ , mZ0 ,and ↵(= e2/4⇡) instead of the gauge couplings. In addition, we can exchange (✓1, ✓2,✓3) with (F , Z , gWW 0H0). Since the values of four parameters, v, mZ , ↵, and mh arealready known, the remaining nine parameters are free parameters of this model. In ouranalyses, we take mh = 125 GeV.

We find F is severely constrained close to 1 in mA � mh regime. When the heavyHiggs masses are universal, mA = mH0 = mH , the expression of a quartic coupling �3

by our parameter choice (Eq. (34)) becomes very simple,

�3(µ = mZ0) =2F

2

m2h

v2+

1� 2F

2

m2A

v2. (35)

Theoretical conditions (see subsection 3.2 for more detail) demand 0 < �3 < 4⇡, namely

F >

pm2

A � 8⇡v2pm2

A �m2h

' 1� 8⇡v2 �m2h

2m2A

= 1� 0.2

✓2TeV

mA

◆2

, (36)

and

F <mAp

m2A �m2

h

' 1 +m2

h

2m2A

= 1 + 0.002

✓2TeV

mA

◆2

. (37)

Here we assumed mA � mh to obtain the last expressions.Similarly, we find that the coupling ratio Z is also severely constrained close to its

maximized value in mA � mh regime. Typically, the allowed regime is Z = 1�O(1)%.The detailed description is given in Appendix A.

In the following discussion, we take F ' 1, mA = mH = mH0 = O(1) TeV,gWW 0H0 = 0, and we always choose Z to be its maximal value. For the most part ofour numerical analysis, Z is set to 0.95 - 1.00.

3 Phenomenology of Spin-1 Resonances

In this section, we discuss the properties of the W 0 and Z 0 such as production cross sec-tion and decay branching ratios, and also discuss both the theoretical and experimentalconstraints. In the following, we show some formulae with approximation, which helpto understand the parameter dependence. However, we use the exact formulae in ournumerical calculations.

8

It is convenient to use a di↵erent set of the parameters instead of these parameters. Weuse the following 13 parameters to fix the parameters in the electroweak sector,

r, v3, v, ↵, mZ , mZ0 , mh, mH0 , mH , mA, F , Z , gWW 0H0 . (34)

Here, we use r, v3, v instead of three µ parameters. is fixed by the charged Higgs massor the CP-odd Higgs mass. The six �’s have the same information as three CP-evenHiggs masses and their mixing angles (mh, mH , mH0 , ✓1, ✓2, ✓3). We can use mZ , mZ0 ,and ↵(= e2/4⇡) instead of the gauge couplings. In addition, we can exchange (✓1, ✓2,✓3) with (F , Z , gWW 0H0). Since the values of four parameters, v, mZ , ↵, and mh arealready known, the remaining nine parameters are free parameters of this model. In ouranalyses, we take mh = 125 GeV.

We find F is severely constrained close to 1 in mA � mh regime. When the heavyHiggs masses are universal, mA = mH0 = mH , the expression of a quartic coupling �3

by our parameter choice (Eq. (34)) becomes very simple,

�3(µ = mZ0) =2F

2

m2h

v2+

1� 2F

2

m2A

v2. (35)

Theoretical conditions (see subsection 3.2 for more detail) demand 0 < �3 < 4⇡, namely

F >

pm2

A � 8⇡v2pm2

A �m2h

' 1� 8⇡v2 �m2h

2m2A

= 1� 0.2

✓2TeV

mA

◆2

, (36)

and

F <mAp

m2A �m2

h

' 1 +m2

h

2m2A

= 1 + 0.002

✓2TeV

mA

◆2

. (37)

Here we assumed mA � mh to obtain the last expressions.Similarly, we find that the coupling ratio Z is also severely constrained close to its

maximized value in mA � mh regime. Typically, the allowed regime is Z = 1�O(1)%.The detailed description is given in Appendix A.

In the following discussion, we take F ' 1, mA = mH = mH0 = O(1) TeV,gWW 0H0 = 0, and we always choose Z to be its maximal value. For the most part ofour numerical analysis, Z is set to 0.95 - 1.00.

3 Phenomenology of Spin-1 Resonances

In this section, we discuss the properties of the W 0 and Z 0 such as production cross sec-tion and decay branching ratios, and also discuss both the theoretical and experimentalconstraints. In the following, we show some formulae with approximation, which helpto understand the parameter dependence. However, we use the exact formulae in ournumerical calculations.

8

It is convenient to use a di↵erent set of the parameters instead of these parameters. Weuse the following 13 parameters to fix the parameters in the electroweak sector,

r, v3, v, ↵, mZ , mZ0 , mh, mH0 , mH , mA, F , Z , gWW 0H0 . (34)

Here, we use r, v3, v instead of three µ parameters. is fixed by the charged Higgs massor the CP-odd Higgs mass. The six �’s have the same information as three CP-evenHiggs masses and their mixing angles (mh, mH , mH0 , ✓1, ✓2, ✓3). We can use mZ , mZ0 ,and ↵(= e2/4⇡) instead of the gauge couplings. In addition, we can exchange (✓1, ✓2,✓3) with (F , Z , gWW 0H0). Since the values of four parameters, v, mZ , ↵, and mh arealready known, the remaining nine parameters are free parameters of this model. In ouranalyses, we take mh = 125 GeV.

We find F is severely constrained close to 1 in mA � mh regime. When the heavyHiggs masses are universal, mA = mH0 = mH , the expression of a quartic coupling �3

by our parameter choice (Eq. (34)) becomes very simple,

�3(µ = mZ0) =2F

2

m2h

v2+

1� 2F

2

m2A

v2. (35)

Theoretical conditions (see subsection 3.2 for more detail) demand 0 < �3 < 4⇡, namely

F >

pm2

A � 8⇡v2pm2

A �m2h

' 1� 8⇡v2 �m2h

2m2A

= 1� 0.2

✓2TeV

mA

◆2

, (36)

and

F <mAp

m2A �m2

h

' 1 +m2

h

2m2A

= 1 + 0.002

✓2TeV

mA

◆2

. (37)

Here we assumed mA � mh to obtain the last expressions.Similarly, we find that the coupling ratio Z is also severely constrained close to its

maximized value in mA � mh regime. Typically, the allowed regime is Z = 1�O(1)%.The detailed description is given in Appendix A.

In the following discussion, we take F ' 1, mA = mH = mH0 = O(1) TeV,gWW 0H0 = 0, and we always choose Z to be its maximal value. For the most part ofour numerical analysis, Z is set to 0.95 - 1.00.

3 Phenomenology of Spin-1 Resonances

In this section, we discuss the properties of the W 0 and Z 0 such as production cross sec-tion and decay branching ratios, and also discuss both the theoretical and experimentalconstraints. In the following, we show some formulae with approximation, which helpto understand the parameter dependence. However, we use the exact formulae in ournumerical calculations.

8

It is convenient to use a di↵erent set of the parameters instead of these parameters. Weuse the following 13 parameters to fix the parameters in the electroweak sector,

r, v3, v, ↵, mZ , mZ0 , mh, mH0 , mH , mA, F , Z , gWW 0H0 . (34)

Here, we use r, v3, v instead of three µ parameters. is fixed by the charged Higgs massor the CP-odd Higgs mass. The six �’s have the same information as three CP-evenHiggs masses and their mixing angles (mh, mH , mH0 , ✓1, ✓2, ✓3). We can use mZ , mZ0 ,and ↵(= e2/4⇡) instead of the gauge couplings. In addition, we can exchange (✓1, ✓2,✓3) with (F , Z , gWW 0H0). Since the values of four parameters, v, mZ , ↵, and mh arealready known, the remaining nine parameters are free parameters of this model. In ouranalyses, we take mh = 125 GeV.

We find F is severely constrained close to 1 in mA � mh regime. When the heavyHiggs masses are universal, mA = mH0 = mH , the expression of a quartic coupling �3

by our parameter choice (Eq. (34)) becomes very simple,

�3(µ = mZ0) =2F

2

m2h

v2+

1� 2F

2

m2A

v2. (35)

Theoretical conditions (see subsection 3.2 for more detail) demand 0 < �3 < 4⇡, namely

F >

pm2

A � 8⇡v2pm2

A �m2h

' 1� 8⇡v2 �m2h

2m2A

= 1� 0.2

✓2TeV

mA

◆2

, (36)

and

F <mAp

m2A �m2

h

' 1 +m2

h

2m2A

= 1 + 0.002

✓2TeV

mA

◆2

. (37)

Here we assumed mA � mh to obtain the last expressions.Similarly, we find that the coupling ratio Z is also severely constrained close to its

maximized value in mA � mh regime. Typically, the allowed regime is Z = 1�O(1)%.The detailed description is given in Appendix A.

In the following discussion, we take F ' 1, mA = mH = mH0 = O(1) TeV,gWW 0H0 = 0, and we always choose Z to be its maximal value. For the most part ofour numerical analysis, Z is set to 0.95 - 1.00.

3 Phenomenology of Spin-1 Resonances

In this section, we discuss the properties of the W 0 and Z 0 such as production cross sec-tion and decay branching ratios, and also discuss both the theoretical and experimentalconstraints. In the following, we show some formulae with approximation, which helpto understand the parameter dependence. However, we use the exact formulae in ournumerical calculations.

8

It is convenient to use a di↵erent set of the parameters instead of these parameters. Weuse the following 13 parameters to fix the parameters in the electroweak sector,

r, v3, v, ↵, mZ , mZ0 , mh, mH0 , mH , mA, F , Z , gWW 0H0 . (34)

Here, we use r, v3, v instead of three µ parameters. is fixed by the charged Higgs massor the CP-odd Higgs mass. The six �’s have the same information as three CP-evenHiggs masses and their mixing angles (mh, mH , mH0 , ✓1, ✓2, ✓3). We can use mZ , mZ0 ,and ↵(= e2/4⇡) instead of the gauge couplings. In addition, we can exchange (✓1, ✓2,✓3) with (F , Z , gWW 0H0). Since the values of four parameters, v, mZ , ↵, and mh arealready known, the remaining nine parameters are free parameters of this model. In ouranalyses, we take mh = 125 GeV.

We find F is severely constrained close to 1 in mA � mh regime. When the heavyHiggs masses are universal, mA = mH0 = mH , the expression of a quartic coupling �3

by our parameter choice (Eq. (34)) becomes very simple,

�3(µ = mZ0) =2F

2

m2h

v2+

1� 2F

2

m2A

v2. (35)

Theoretical conditions (see subsection 3.2 for more detail) demand 0 < �3 < 4⇡, namely

F >

pm2

A � 8⇡v2pm2

A �m2h

' 1� 8⇡v2 �m2h

2m2A

= 1� 0.2

✓2TeV

mA

◆2

, (36)

and

F <mAp

m2A �m2

h

' 1 +m2

h

2m2A

= 1 + 0.002

✓2TeV

mA

◆2

. (37)

Here we assumed mA � mh to obtain the last expressions.Similarly, we find that the coupling ratio Z is also severely constrained close to its

maximized value in mA � mh regime. Typically, the allowed regime is Z = 1�O(1)%.The detailed description is given in Appendix A.

In the following discussion, we take F ' 1, mA = mH = mH0 = O(1) TeV,gWW 0H0 = 0, and we always choose Z to be its maximal value. For the most part ofour numerical analysis, Z is set to 0.95 - 1.00.

3 Phenomenology of Spin-1 Resonances

In this section, we discuss the properties of the W 0 and Z 0 such as production cross sec-tion and decay branching ratios, and also discuss both the theoretical and experimentalconstraints. In the following, we show some formulae with approximation, which helpto understand the parameter dependence. However, we use the exact formulae in ournumerical calculations.

8

It is convenient to use a di↵erent set of the parameters instead of these parameters. Weuse the following 13 parameters to fix the parameters in the electroweak sector,

r, v3, v, ↵, mZ , mZ0 , mh, mH0 , mH , mA, F , Z , gWW 0H0 . (34)

Here, we use r, v3, v instead of three µ parameters. is fixed by the charged Higgs massor the CP-odd Higgs mass. The six �’s have the same information as three CP-evenHiggs masses and their mixing angles (mh, mH , mH0 , ✓1, ✓2, ✓3). We can use mZ , mZ0 ,and ↵(= e2/4⇡) instead of the gauge couplings. In addition, we can exchange (✓1, ✓2,✓3) with (F , Z , gWW 0H0). Since the values of four parameters, v, mZ , ↵, and mh arealready known, the remaining nine parameters are free parameters of this model. In ouranalyses, we take mh = 125 GeV.

We find F is severely constrained close to 1 in mA � mh regime. When the heavyHiggs masses are universal, mA = mH0 = mH , the expression of a quartic coupling �3

by our parameter choice (Eq. (34)) becomes very simple,

�3(µ = mZ0) =2F

2

m2h

v2+

1� 2F

2

m2A

v2. (35)

Theoretical conditions (see subsection 3.2 for more detail) demand 0 < �3 < 4⇡, namely

F >

pm2

A � 8⇡v2pm2

A �m2h

' 1� 8⇡v2 �m2h

2m2A

= 1� 0.2

✓2TeV

mA

◆2

, (36)

and

F <mAp

m2A �m2

h

' 1 +m2

h

2m2A

= 1 + 0.002

✓2TeV

mA

◆2

. (37)

Here we assumed mA � mh to obtain the last expressions.Similarly, we find that the coupling ratio Z is also severely constrained close to its

maximized value in mA � mh regime. Typically, the allowed regime is Z = 1�O(1)%.The detailed description is given in Appendix A.

In the following discussion, we take F ' 1, mA = mH = mH0 = O(1) TeV,gWW 0H0 = 0, and we always choose Z to be its maximal value. For the most part ofour numerical analysis, Z is set to 0.95 - 1.00.

3 Phenomenology of Spin-1 Resonances

In this section, we discuss the properties of the W 0 and Z 0 such as production cross sec-tion and decay branching ratios, and also discuss both the theoretical and experimentalconstraints. In the following, we show some formulae with approximation, which helpto understand the parameter dependence. However, we use the exact formulae in ournumerical calculations.

8

�����������

A ÎÉi^o��dj¹½e|����}jÊ��e C!���C!Q���C���� -;/�e [�������[3�T����=00Q!Q����

!A �8��< ��iLbx���G�e[clt�

��������������������������������

Page 21: Spin-1 particle and the ATLAS Diboson excessppp.ws/PPP2015/slides/abe.pdfSpin-1 particle and the ATLAS Diboson excess! Tomohiro Abe (KEK) ! based on the works 1507.01185: TA, Ryo Nagai,

粒子の質量¹½

9705� 9705�� 9705���

h

W 0, Z 0

W,Z

t

H±, A0 H H 0

�",$

��,$

0;�7IIKC;�V J>;O�7H;� -;/��JE�7LE?:�;=�0Q�f�0����V J>;O�7H;�:;=;D;H7J;:��<EH�I?CFB?9?JO�

-;/�<EH�J>;�;N9;II

Page 22: Spin-1 particle and the ATLAS Diboson excessppp.ws/PPP2015/slides/abe.pdfSpin-1 particle and the ATLAS Diboson excess! Tomohiro Abe (KEK) ! based on the works 1507.01185: TA, Ryo Nagai,

W’ branching ratio and width1000 1500 2000 2500 3000 3500 40000.001

0.01

0.1

1

mW ' @GeVDG totHW'Lêm W

'1000 1500 2000 2500 3000 3500 4000

0.001

0.01

0.1

1

mZ' @GeVD

G totHZ'Lê

mZ'

WZWh

2 jets

tb

lȞhH+

ZH+ , WA, WH

1000 1500 2000 2500 3000 3500 40000.001

0.01

0.1

1

mW ' [GeV]

Br(W'ĺ2X

)

ZhWW2 jets

W±H

±

, ZH

hA

ll

tt bbȞȞ

1000 1500 2000 2500 3000 3500 40000.001

0.01

0.1

1

mZ' [GeV]Br

(Z'ĺ2X

)

Figure 3. The total widths and the branching ratios of the extra vector bosons, W 0 and Z 0. Wetake v3 = 200GeV, r = 0.13, F = 1.00, and mA = mH0 = mH = 2 TeV. Here, 2jets meansBr(W 0 ! ud)+Br(W 0 ! sc) or Br(Z 0 ! uu)+Br(Z 0 ! dd)+Br(Z 0 ! ss)+Br(Z 0 ! cc),`⌫ means Br(W 0 ! e⌫e) ( =Br(W 0 ! µ⌫µ) =Br(W 0 ! ⌧⌫⌧ )), `` means Br(Z 0 ! ee) (=Br(Z 0 ! µµ) =Br(Z 0 ! ⌧⌧)), ⌫⌫ means Br(Z 0 ! ⌫e⌫e)+Br(Z 0 ! ⌫µ⌫µ)+Br(Z 0 ! ⌫⌧⌫⌧ ),and W±H⌥ means Br(W 0 ! W+H�) =Br(W 0 ! W�H+).

11

1000 1500 2000 2500 3000 3500 40000.001

0.01

0.1

1

mW ' @GeVDG totHW'Lêm W

'1000 1500 2000 2500 3000 3500 4000

0.001

0.01

0.1

1

mZ' @GeVD

G totHZ'Lê

mZ'

WZWh

2 jets

tb

lȞhH+

ZH+ , WA, WH

1000 1500 2000 2500 3000 3500 40000.001

0.01

0.1

1

mW ' [GeV]

Br(W'ĺ2X

)

ZhWW2 jets

W±H

±

, ZH

hA

ll

tt bbȞȞ

1000 1500 2000 2500 3000 3500 40000.001

0.01

0.1

1

mZ' [GeV]Br

(Z'ĺ2X

)

Figure 3. The total widths and the branching ratios of the extra vector bosons, W 0 and Z 0. Wetake v3 = 200GeV, r = 0.13, F = 1.00, and mA = mH0 = mH = 2 TeV. Here, 2jets meansBr(W 0 ! ud)+Br(W 0 ! sc) or Br(Z 0 ! uu)+Br(Z 0 ! dd)+Br(Z 0 ! ss)+Br(Z 0 ! cc),`⌫ means Br(W 0 ! e⌫e) ( =Br(W 0 ! µ⌫µ) =Br(W 0 ! ⌧⌫⌧ )), `` means Br(Z 0 ! ee) (=Br(Z 0 ! µµ) =Br(Z 0 ! ⌧⌧)), ⌫⌫ means Br(Z 0 ! ⌫e⌫e)+Br(Z 0 ! ⌫µ⌫µ)+Br(Z 0 ! ⌫⌧⌫⌧ ),and W±H⌥ means Br(W 0 ! W+H�) =Br(W 0 ! W�H+).

11

e C!���C!Q���C���� -;/�e M?:J>�?I�D7HHEM�� �� ;/�<EH�C0Q��� -;/�

����4 ;/5 ����4 ;/5

�+�0Q�f

� 1�

Y�0Q� JEJ7B�

��

Page 23: Spin-1 particle and the ATLAS Diboson excessppp.ws/PPP2015/slides/abe.pdfSpin-1 particle and the ATLAS Diboson excess! Tomohiro Abe (KEK) ! based on the works 1507.01185: TA, Ryo Nagai,

results

e 9EBEH;:�H;=?ED�?I�;N9BK:;:�!

e EH7D=;�B?D;I�7H;�\�!

e \����<8�?I�;N9BK:;�8O�/Q�f�/>�!

e \����<8�ED�8EB:�EH7D=;�B?D;��FEII?8BBO�;NFB7?D�J>;�;N9;II��!

e :7I>;:�B?D;I�7H;�M?J>�$�<79JEH��$�T����������������������

0.51

3

5

8

0.05 0.10 0.15 0.20 0.25

160

180

200

220

240

r

v 3@Ge

VD

sHpp ÆW'ÆWZL+sHpp Æ Z'Æ[email protected]

1

3

58

0.05 0.10 0.15 0.20 0.25

160

180

200

220

240

r

v 3@Ge

VD

sHpp ÆW'ÆWZL+sHpp Æ Z'ÆWWL@fbD

0.5

1

3

5

0.05 0.10 0.15 0.20 0.25

160

180

200

220

240

r

v 3@Ge

VD

sHpp ÆW'ÆWZL+sHpp Æ Z'ÆWWL@fbD

Figure 8. The cross sections of W 0 and Z 0 with two gauge bosons in their final states. Wetake mZ0 = 1.9 TeV (left panel), 2.0 TeV (middle panel), and 2.1 TeV (right panel). The colorfilled regions are excluded or constrained. The blue regions are excluded by the experimentalbounds. The regions of g1(µ = mZ0) > 4⇡ are represented by yellow. The cyan regionsare excluded by the bounded below condition. The green regions are constrained from theperturbativity and stability conditions where their cut o↵ scale is 100 (10) TeV in the lightergreen (darker green) region. Below the thick orange lines, the cross section �(pp ! V 0 ! V V )is enough to explain the diboson excess at ATLAS. After taking account of the K-factor, theboundaries of the regions change to the dashed orange lines, and the regions below the dashedblue lines are excluded by the LHC bounds.

Below the thick orange line the cross section �(pp ! V 0 ! V V ) is enough toexplain the total number of the diboson excess events at ATLAS. Here we apply theevent selection e�ciencies for extended gauge model (cf. 10 - 16 % at mJJ = 2 TeV) [1]. We find that these regions are still allowed from the experimental and theoreticalconstraints. Note that a part of these regions are constrained from the stability conditionat ⇤̄ = 100 TeV filled with light green. However, once we take into account the higherorder correction, these constraint would be weaker as we discussed in Sec. 3.2.1. In theparameter regions shown in the figure, �(pp ! W 0 ! WZ)/�(pp ! Z 0 ! WW ) ' 2.This is because the custodial symmetry is enhanced for small r regime.

In the figure we show the leading order (LO) production cross sections. Next-to-leading order and next-to-leading logarithmic (NLO+NLL) corrections to the productionof W 0 and Z 0 are evaluated in Ref [45, 46], and K-factor (�/�LO) is about 1.3. Thismeans that once we consider the QCD correction, the production cross sections in thefigures should be scaled by about 30 %, and the LHC bounds become severer, whilethe theoretical constraints do not change. After taking account of the K-factor, theLHC diboson excess can be explained for the regions below dashed orange lines, and theregions below the dashed blue lines are excluded by the LHC bounds.

Figure 9 shows �(pp ! W 0 ! Wh). The parameter choices and the color notations

20

JH?L?7B?JO�8EKD:

8EKD:;:�8;BEM

%!��8EKD:

������

� ��4 ;/5

Page 24: Spin-1 particle and the ATLAS Diboson excessppp.ws/PPP2015/slides/abe.pdfSpin-1 particle and the ATLAS Diboson excess! Tomohiro Abe (KEK) ! based on the works 1507.01185: TA, Ryo Nagai,

prospect for LHC run-2

Page 25: Spin-1 particle and the ATLAS Diboson excessppp.ws/PPP2015/slides/abe.pdfSpin-1 particle and the ATLAS Diboson excess! Tomohiro Abe (KEK) ! based on the works 1507.01185: TA, Ryo Nagai,

95% exclusion limit at LHC run-2

e 03�f�>7:HEDI�e 0Q�M?:J>��� � ;/�e CE:;B�?D:;F;D:;DJ�H;IKBJ��7I�BED=�7I�M?:J>�?I�D7HHEM�

1600 1800 2000 2200 2400 2600 2800 3000 3200 3400

even

ts/10

0GeV

5

10

15

20

25background distribution at 13TeV 10 fb-1

[GeV]jjm [GeV]jjm1600 1800 2000 2200 2400 2600 2800 3000 3200 3400

fract

ion

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

distribution at 13TeVjjreconstructed m

mW ’ = 2 TeV2.4 TeV2.8 TeV3.2 TeV

Figure 14. mjj distributions for background (left panel) and signal (right panel) atp

s = 13TeV. The background distribution is for 10 fb�1 and signal distributions are normalized to be1 for various input W 0 mass.

1800 2000 2200 2400 2600 2800 3000 32000

10

20

30

40

mW ' [GeV]

ı(ppĺ

W'ĺ

WZ

)[fb

]

Expected limit at 13 TeV

5 fb-1

10 fb-1

50 fb-1

100 fb-1

Figure 15. Expected limit on �(pp ! W 0 ! WZ) atp

s = 13 TeV. We take �tot(W 0) =25 GeV.

26

7605:�-68�+0)6965�,>*,99�(:�����

Page 26: Spin-1 particle and the ATLAS Diboson excessppp.ws/PPP2015/slides/abe.pdfSpin-1 particle and the ATLAS Diboson excess! Tomohiro Abe (KEK) ! based on the works 1507.01185: TA, Ryo Nagai,

Summary

Page 27: Spin-1 particle and the ATLAS Diboson excessppp.ws/PPP2015/slides/abe.pdfSpin-1 particle and the ATLAS Diboson excess! Tomohiro Abe (KEK) ! based on the works 1507.01185: TA, Ryo Nagai,

まとめA �",$�¬¤h�+0)6965�,>*,99�SMsm\�)?�:/,��"��!�

e �&,����;N9;II�üw�e À³¬Á�ĉ��:?8EIED��ğġºa­���;N9;II�üw�e D?9;�;N;H9?I;�JE�9EDI?:;H��,&�!

A ÆÁxKbѾ[^���%@�(5+�'@���e r�u�ûó�ıÜù�ĩĝÑ�Þ�ĥn�Ďċ�m��pÎËgÆÁ�e \�FF�f�/Q�f�BL����\�FF�f�/Q�f�/>��päĀ�e \�FF�f�/Q�f�//������<8��ûó�!

A 78697,*:�-68�����8;5���e -;/�;N9;II���0Q3Q�ăÔy�ûóå�^��<8�������çÃ�ĤĒ�q�

Page 28: Spin-1 particle and the ATLAS Diboson excessppp.ws/PPP2015/slides/abe.pdfSpin-1 particle and the ATLAS Diboson excess! Tomohiro Abe (KEK) ! based on the works 1507.01185: TA, Ryo Nagai,

Backup slides

Page 29: Spin-1 particle and the ATLAS Diboson excessppp.ws/PPP2015/slides/abe.pdfSpin-1 particle and the ATLAS Diboson excess! Tomohiro Abe (KEK) ! based on the works 1507.01185: TA, Ryo Nagai,

Monte Carlo part

Page 30: Spin-1 particle and the ATLAS Diboson excessppp.ws/PPP2015/slides/abe.pdfSpin-1 particle and the ATLAS Diboson excess! Tomohiro Abe (KEK) ! based on the works 1507.01185: TA, Ryo Nagai,

What we did in MC part

A �65:,��(836�e *���:?@;J�7I�� ��������6��T��<8������&����-;/��F-���� ;/��IGHJ4I5����-;/��8O�)2-!"�� ���

e I?=D7B��FF�f�0Q�f�03��C0Q�����-;/�JE�� �-;/��M?:J>�� � ;/�e -KD;����<EH�<H7=C;DJ7J?ED�7D:�>7:HED?P7J?ED�e :;J;9JEH�I?CKB7JEH��;%)!�,��?I�CE:?U;:�KI?D=��7IJ#;J��e 9KJI��I7C;�7I�J>;�9KJI�KI;:�8O��-%�,�

A �;8����8,9;3:�e M;�9>;9A;:�I?=D7B�:?IJH?8KJ?EDI�7=H;;�M?J>�J>;��-%�,�H;IKBJ����-;/��e M;�<EKD:���E<�879A�=HEKD:�?I�JM?9;�E<�J>;��-%�,�H;IKBJ���-;/��e M;�I97B;�EKH�� �� �<EH���-;/�7D7BOI?I

Page 31: Spin-1 particle and the ATLAS Diboson excessppp.ws/PPP2015/slides/abe.pdfSpin-1 particle and the ATLAS Diboson excess! Tomohiro Abe (KEK) ! based on the works 1507.01185: TA, Ryo Nagai,

More on our model

Page 32: Spin-1 particle and the ATLAS Diboson excessppp.ws/PPP2015/slides/abe.pdfSpin-1 particle and the ATLAS Diboson excess! Tomohiro Abe (KEK) ! based on the works 1507.01185: TA, Ryo Nagai,

constraint on (r, v3)-plane

0.1 0.5 1.0 5.0 10.0 50.050

100

150

200

r

v 3[G

eV]

0.05

mZ’ = mheavy Higgs = 2 TeV, F = 1.00

(a)

0.1 0.5 1.0 5.0 10.0 50.050

100

150

200

r

v 3[G

eV]

0.05

mZ’ = mheavy Higgs = 2 TeV, F = 0.99

(b)

0.1 0.5 1.0 5.0 10.0 50.050

100

150

200

r

v 3[G

eV]

0.05

mZ’ = 2 TeV, mheavy Higgs = 1 TeV, F = 1.00

(c)

Figure 5. The theoretical and experimental constraints in r - v3 plane. We take three di↵erentparameter choice for (mZ0 , mA, F ). The white regions are allowed from all constraints. Thecolored regions are constrained. Gray: the perturbativity conditions for the Higgs quarticcouplings. Yellow: the perturbativity conditions for g1. Cyan: the bounded below condition.Green: the global minimum vacuum condition. Magenta: the stability condition. Blue:the LHC bounds. Red: constraints from the electroweak precision measurements. Black: nophysical solutions. The detail explanation is in the text.

17

g1 > 4π

8EKD:;:�8;BEM8EKD:;:�8;BEM

JH?L?7B?JO�8EKD:

JH?L?7B?JO�8EKD:

IJ78?B?JO�8EKD:

!"�7(8(4,:,89

%@�:6�%'

%@�:6�%/

%@�:6�3<��9630+,��'@�:6�33��+(9/,+�

56�963;:065

Page 33: Spin-1 particle and the ATLAS Diboson excessppp.ws/PPP2015/slides/abe.pdfSpin-1 particle and the ATLAS Diboson excess! Tomohiro Abe (KEK) ! based on the works 1507.01185: TA, Ryo Nagai,

σ(pp → W’ → WZ)+σ(pp → Z’ → WW) [fb]

0.1

0.5

0.5

1

1

5

10

0.1 0.5 1.0 5.0 10.0 50.050

100

150

200

r

v 3[G

eV]

0.05

mZ’ = mheavy Higgs = 2 TeV, F = 1.00

Figure 7. Contours of the cross section �(pp ! W 0)Br(W 0 ! WZ) + �(pp ! Z 0)Br(Z 0 !WW ) at

ps = 8TeV in a unit of [fb]. We take mZ0 = mA = mH0 = mH = 2 TeV,

F = 1.00. The blue regions are excluded by the current experimental bounds, and theregions of g1(µ = mZ0) > 4⇡ are filled with yellow.

Since the separation of WW , WZ, and ZZ channels are not good and there are sig-nificant overlap among them, we investigate the total cross section �(pp ! W 0)Br(W 0 !WZ)+�(pp ! Z 0)Br(Z 0 ! WW ) at

ps = 8TeV in Fig. 7. In this figure, mZ0 = mA =

mH0 = mH = 2 TeV, F = 1.00 are taken. The blue regions are excluded by the currentexperimental bounds discussed in Sec. 3.2, and the regions of g1(µ = mZ0) > 4⇡ is filledwith yellow. Here we do not show the constraints from the Higgs sector. The crosssection of about 6 fb can be extracted from the number of excess events and the signalselection e�ciency quoted in Ref. [1]. This cross section can be achieved in the regionswhere r is much smaller than 1. This is because the production cross section is enhancedby r�2. Hence, we focus on r ⌧ 1 regions in the remains of the paper.

Note that the strongest LHC constraint to the parameter where the ATLAS dibosonexcess can be explained comes from full hadronic channel of �(pp ! V 0 ! V h) [40],e.g. �(pp ! V 0 ! V h) . 7 fb for mZ0 = 2 TeV. This implies �(pp ! V 0 ! V V ) < 7 fbas we discussed in Sec. 3.1. If the coupling ratio Z deviates from 1, this LHC boundbecomes weaker, because this relation can be modified. However, in this model Z isseverely constrained close to 1 in mA � mh regime (see Appendix A).

We show �(pp ! V 0 ! V V ) in Fig. 8, for mZ0 = 1.9, 2.0, and 2.1 TeV. We takeF = 1.00, and all heavy scalar mass to be the same as mZ0 , mZ0 = mA = mH0 = mH .The color filled regions are excluded or constrained. The color notation is given in thecaption. We find that the cross section is sensitive to the mass. For example, by a changeof mZ0 from 1.9 to 2 TeV (5 % mass di↵erence), the cross section is decreased by about40 %. This is because the PDF rapidly changes in the heavier mass regions (see Fig. 2).

19

e \����<8�<EH�IC7BB���H;=?ED