46
March 2007 1 SPIRAL2 - Weizmann-Soreq-Louvain 18 Ne GANIL Louvain la Neuve

SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

Embed Size (px)

Citation preview

Page 1: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 1

SPIRAL2 - Weizmann-Soreq-Louvain

18Ne

GANIL

Louvain la Neuve

Page 2: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 2

SPIRAL2 - Weizmann-Soreq-Louvain

Secondary neutrons + fission

BUT

Also light RIB’s

Page 3: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 3

SPIRAL2 - Weizmann-Soreq-Louvain

Accelerator artist view

176 MHz 3.8 m 1.5 MeV/u

M/q2

1st cryostat 6 SC HWR 176 MHz 0=0.09

2nd – 6th cryostats 40 SC HWR 176

MHz 0=0.15

40 MeV x 2 mA p / d RF SC linac

Page 4: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 4

SPIRAL2 - Weizmann-Soreq-Louvain

ECR Ion Source, LEBT and RFQ in situ

The SARAF accelerator

at Soreq, Israel.

Winter 2007

Page 5: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 5

SPIRAL2 - Weizmann-Soreq-Louvain

Fusion Reactions in the Sun:The CNO cycle

14O

17F

(,p)

…..

Proposed at GANIL

Page 6: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 6

SPIRAL2 - Weizmann-Soreq-Louvain

Mass accretion from a companion into a neutron star (black hole).

Role of 14O, 15O and 18Ne in the physics

of x-ray bursts

4He(15O,)19NEM. Wiescher et al. Erice Conference, 2007

J.L. Fisker et al., arXiv:astro-ph/070241

Page 7: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 7

SPIRAL2 - Weizmann-Soreq-Louvain

X-Ray Bursts and the “rp” process

The rp process and x-ray bursts - site of nucleo-synthesis

These movies simulate an x-ray burst and the rapid-proton capture (“rp”) process. The calculation begins at T9=T/10^9 K=40 with only neutrons and protons. As time progresses and the temperature drops below T9=10, nucleons assemble into 4He nuclei then into heavier mass nuclides. Once T9 falls below about 4, the QSE among the heavy nuclei begins to break down. Charged-particle reactions freeze out, and flow to higher mass number occurs via nuclear beta decay. This is the classical r-process phase.

Page 8: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 8

SPIRAL2 - Weizmann-Soreq-Louvain

The Astrophysical Journal, 650 (2006) 332J.L. Fisker et al.The Importance of 15O() 19Ne to X-Ray Bursts and Superbursts

Arxive-ph/0702412 Feb. 2007

J.L. Fisker et al.

Experimental measurements of the 15O( )19Ne reaction rate vs.

observations of type I X-ray bursts

Nuclear Physics A 718, (2003)  605

B. Davids et al.

Alpha-decay branching ratios of near-threshold states in 19Ne and the

astrophysical rate of 15O(α,γ)19NePRC 67 065809 (2003)

K. E. Rehm et al.

Branching ration of the 4.033 MeV 3/2+ state in 19Ne

Nuclear Physics A 688 (2001)465c.

S. Cherubini et al.

The 15O()19Ne reaction using a 18Ne radioactive beam

Partial sample of representative papers

Page 9: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 9

SPIRAL2 - Weizmann-Soreq-Louvain

A first experimental approach to the 15O + elastic scattering - Eur. Phys. J. A27, 183 (2006)

F. Vanderbist, P. Leleux, C. Angulo, E. Casarejos, M. Couder, M. Loiselet, G. Ryckewaert,

P. Descouvemont, M. Aliotta, T. Davinson, Z. Liu, and P.J. Woods

Recent experiments have determined (or put limits to ) for levels in 19Ne up to 5.092 MeV excitation energy. A conclusion is that a direct measurement of the 15O(, )19Ne

reaction in the region of astrophysical interest is currently impossible: 15O beams of intensity larger than 1011 pps on target would be required indeed to measure the 15O(a, )19Ne

cross-section in inverse kinematics in the energy region surrounding the first state above threshold, at 4.033 MeV….

Page 10: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 10

SPIRAL2 - Weizmann-Soreq-Louvain

14N(d,2n)14O cross section and yield 14N(d,n)15O cross section and yield for a 2 mA deuteron beam for a 2 mA

deuterons beam

But, extraction of atomic oxygen…

Long-learned lesson:

“orders-of-magnitude improvement in sensitivity of measurement –

enhanced understanding and possibilities”.

Page 11: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 11

SPIRAL2 - Weizmann-Soreq-Louvain

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81

Alpha Energy (MeV)

Cro

ss S

ectio

n (m

b)

0.0E+00

5.0E+09

1.0E+10

1.5E+10

2.0E+10

2.5E+10

3.0E+10

Yie

ld (a

tom

s/se

c) (I

nten

sity

0.1

mA

) Alice Yield [at/s]

O16(a,2n)18Ne

0.0

0.5

1.0

1.5

2.0

2.5

15 17 19 21 23 25 27 29 31 33 35 37 39 41

Proton Energy (MeV)

Cro

ss S

ectio

n (m

b)

0.0E+00

1.0E+11

2.0E+11

3.0E+11

4.0E+11

5.0E+11

6.0E+11

7.0E+11

8.0E+11

9.0E+11

Yie

ld (ato

ms/s

ec) (In

ten

sity 2

mA

)

Alice Yield [at/s]

F19(p,2n)18Ne

Tentative results

Lower yield, but, better extraction..

Page 12: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 12

SPIRAL2 - Weizmann-Soreq-Louvain

The beam (from Mats Lindroos – CERN)Production of an intense collimated neutrino (anti neutrino) beam directed at neutrino detectors via decay of accelerated radioactive ions

Decay

RingISOL target & Ion source

SPL

CyclotronsStorage ring and fast cycling synchrotron

6He 6Li e-18Ne 18Fe+

PS

SPSTo the French Alps

Page 13: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 13

SPIRAL2 - Weizmann-Soreq-Louvain

EURISOL INTERNATIONAL ADVISORY PANEL : .…“no progress has been made with the study of alternative production schemes

of 6He and 18Ne using low energy beams and strongly recommends that this study be completed…. The outcome of this study is an essential ingredient for the analysis whether it is technically feasible to decouple EURISOL and the beta-beams completely

Page 14: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 14

SPIRAL2 - Weizmann-Soreq-Louvain

Two stage production scheme

1 cm

40 MeV d5 mA

200 kWL=5 cm D=5 cm

5 cm

R=5 cm

9Be

fast n

Primary target

Secondary target

7Li(d,xn)

9Be(n,)6He

9Be(n,2n)8Be

Target:

C, Be, Li..

Page 15: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 15

SPIRAL2 - Weizmann-Soreq-Louvain

6He production (n,) cross section

0

20

40

60

80

100

120

0 2 4 6 8 10

neutron energy (MeV)

Cro

ss s

ecti

on

(m

b) Bass 1961

Savilev 1958Stelson 1957Stelson 1957MCNP

9Be(n,)6He

0

100

200

300

400

500

600

700

0 5 10 15 20

n energy (MeV)

Cro

ss s

ectio

n (m

b)

0.0E+00

5.0E+11

1.0E+12

1.5E+12

2.0E+12

2.5E+12

3.0E+12

3.5E+12

n flu

x pe

r 2

mA

d (

s-1)

9Be(n,2n)

9Be(n,)6He

n in Be target

Production yield of the order of 1013 6He per 1 mA d@40 MeV

Remember also 11B(n,)8Li

Page 16: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 16

SPIRAL2 - Weizmann-Soreq-Louvain

8Li energies of interestE(8Li [MeV])

3

6

Page 17: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 17

SPIRAL2 - Weizmann-Soreq-Louvain

R&D Steps

Via neutron converter – 6He, 8Li, ..

Simulations – Geant4, MCNP – PRODUCTION rate of ~1013/mA!!!

Converter design

Target design – Extraction (Be fibers, “microballs..)

Direct production – 14,15O, 18Ne,..

Design of targets (heat) for direct production (O and Ne);

materials (gas?), …

Extraction. Nitrogen is “bad”. Perhaps C02? M. Loiselet, LLN

12C(3He,n)14O and 12C(4He,n)15O Experiment: Beam, Team, Detectors (RMS-like, Si ball, EXOGAM..)…

Page 18: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 18

SPIRAL2 - Weizmann-Soreq-Louvain

Towards a full proposal – objectives and milestones.

2007-2009 Proposal to FP7 (Task 7.1) . Towards establishing a true collaboration.

Initial target design. R&D studies of both n-converter and direct production.

2009-2011 Target (s) manufacturing. Parameters for experimental setup.

2012-……. SPIRAL-II

Page 19: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 19

SPIRAL2 - Weizmann-Soreq-Louvain

SUMMARY

Presented ideas for light radio-nuclei production and use at SPIRAL2

Scientific Case

Calculations and simulations exist – but much more R&D needed

“Road Map” towards a full experiment

OPEN COLLABORATION – participation welcome!!

Page 20: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 20

SPIRAL2 - Weizmann-Soreq-Louvain

g.s.

‘2000

Type II Supernovae 8Li(,n)11B

Page 21: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 21

SPIRAL2 - Weizmann-Soreq-Louvain

MCNP 6He yield simulatio

n

Li

1 cm

2 mA80 kW

L=5 cm D=5 cm

5 cm

R=5 cm

9Be

fast n

Primary target

Secondary target

7Li(d,xn)

9Be(n,)6He

9Be(n,2n)8Be

0

5E+12

1E+13

1.5E+13

2E+13

2.5E+13

2 3 4 5 6

Be target radius (cm)

6H

e yi

eld

(at

m/s

)

D=5 cmD=10 cm

Simulated by Keren Lavie

Assuming:

1. a source target of solid Beryllium in place of liquid Li.

2. Secondary Be target at natural density.

Page 22: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 22

SPIRAL2 - Weizmann-Soreq-Louvain

Typical X-ray bursts:

• 1036-1038 erg/s• duration 10 s – 100s• recurrence: hours-days• regular or irregular

Frequent and very brightphenomenon !

(stars 1033-1035 erg/s)

Page 23: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 23

SPIRAL2 - Weizmann-Soreq-Louvain

Production of 14O

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Proton Energy (MeV)

Cro

ss S

ecti

on

(m

b)

0.0E+00

2.0E+11

4.0E+11

6.0E+11

8.0E+11

1.0E+12

1.2E+12

1.4E+12

Yie

ld (

ato

ms/

sec)

(In

ten

sity

2m

A)

CS [mb] CS Fit Yield [at/s]

14N(p,n)14O

Page 24: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 24

SPIRAL2 - Weizmann-Soreq-Louvain

sm = 3•10-19 [/eV], but…..

Page 25: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 25

SPIRAL2 - Weizmann-Soreq-Louvain

neutron flux in secondary target

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

3.0E-03

3.5E-03

4.0E-03

4.5E-03

5.0E-03

0 10 20 30 40 50

neutron enrgy (MeV)

n f

lux

per

init

ial n

(1/

cm2)

total0-1 cm4-5 cm9-10 cm

x

y

z

(0,0,0)

10cm

5cm Ben-Source

MCNP

K. Lavie

100% natural density

Page 26: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 26

SPIRAL2 - Weizmann-Soreq-Louvain

flux cross section overlap

0

100

200

300

400

500

600

700

0 5 10 15 20

n energy (MeV)

Cro

ss s

ectio

n (m

b)

0.0E+00

5.0E+11

1.0E+12

1.5E+12

2.0E+12

2.5E+12

3.0E+12

3.5E+12

n flu

x pe

r 2

mA

d (

s-1)

9Be(n,2n)

9Be(n,)6He

n in Be target

Page 27: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 27

SPIRAL2 - Weizmann-Soreq-Louvain

0.000

0.002

0.004

0.006

0.008

0.010

0 2 4 6 8 10

Position along the Be target (cm)

n 1.5

-15

Me

V fl

ux (

1/n

ini/c

m2)

100 % natural density Be target

production efficiency as function of Be target slide

MCNP

K. Lavie

Page 28: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 28

SPIRAL2 - Weizmann-Soreq-Louvain

Production of other isotope

0.1

1.0

10.0

100.0

1000.0

0 5 10 15 20

neutron energy (MeV)

Cro

ss s

ectio

n (m

b)

11B(n,p)11Be11B(n,a)8Li

0.1

1.0

10.0

100.0

1000.0

0 5 10 15 20

neutron energy (MeV)

Cro

ss s

ectio

n (m

b)

19F(n,p)19O19F(n,a)16N

]/[107.1 8138 sLiLidt

dN

Analytical calculation

Page 29: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 29

SPIRAL2 - Weizmann-Soreq-Louvain

Production of other isotope

0.1

1.0

10.0

100.0

1000.0

0 5 10 15 20

neutron energy (MeV)

Cro

ss s

ectio

n (m

b)

23Na(n,p)23Ne23Na(n,a)20F

0.1

1.0

10.0

100.0

1000.0

0 5 10 15 20

neutron energy (MeV)

Cro

ss s

ectio

n (m

b)

27Al(n,p)27Mg27Al(n,a)24Na

Page 30: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 30

SPIRAL2 - Weizmann-Soreq-Louvain

A new idea ….

There is a very noticeable lack of accelerators for STABLE BEAMS at

HIGH CURRENT. There is now even a separate European network for

such present and future facility.

Say, one installs at the SARAF a high-q ECR source and then one can

obtain beams of 240 MeV 12C, 320 MeV 16O etc. at hundreds of A

Build a high-efficiency- large solid angle Recoil Mass Separator or a

gas-filled magnet for nuclear structure and astrophysics.

To be explored…(!?)

Page 31: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 31

SPIRAL2 - Weizmann-Soreq-Louvain

0

1

2

3

4

5

6

7

8

9

10

8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Deuteron Energy (MeV)

Cro

ss S

ectio

n (m

b)

0.0E+00

5.0E+11

1.0E+12

1.5E+12

2.0E+12

2.5E+12

3.0E+12

3.5E+12

4.0E+12

Yie

ld (ato

ms/s

ec) (In

ten

sity 2

mA

)

AliceEmpireIIAlice Yield [at/s]EmpireII Yield [at/s]

14N(d,2n)14O

Page 32: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 32

SPIRAL2 - Weizmann-Soreq-Louvain

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

18 20 22 24 26 28 30 32 34 36 38 40

Proton Energy (MeV)

Cro

ss S

ectio

n (m

b)

0.0E+00

5.0E+12

1.0E+13

1.5E+13

2.0E+13

2.5E+13

3.0E+13

3.5E+13

4.0E+13

Yie

ld (ato

ms/s

ec

) (In

ten

sity 2

mA

)

Alice Alice-fit Yield [at/s]

160(p,pn)15O

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

200.0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Deuteron Energy (MeV)

Cro

ss S

ectio

n (m

b)

0.0E+00

5.0E+12

1.0E+13

1.5E+13

2.0E+13

2.5E+13

Yie

ld (ato

ms/s

ec) (In

ten

sity 2

mA

)

Alice Alice-fit Yield [at/s]

14N(d,n)15O

Page 33: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 33

SPIRAL2 - Weizmann-Soreq-Louvain

Primary target fast n

spectrum

IFMIF S.P.Simakov et al.

2002

<En>=15 MeV

Page 34: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 34

SPIRAL2 - Weizmann-Soreq-Louvain

Accelerator layout

RFQ

PSM Module 2 Module 3 Module 4 Module 5 Module 6

MEBT

176 MHz

3.8 m

1.5 MeV/u

M/q2

1st cryostat

6 SC HWR

176 MHz

0=0.09

2nd – 6th cryostats

40 SC HWR

176 MHz

0=0.15

40 MeV x 2 mA p / d RF SC linac

Page 35: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 35

SPIRAL2 - Weizmann-Soreq-Louvain

Page 36: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 36

SPIRAL2 - Weizmann-Soreq-Louvain

Page 37: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 37

SPIRAL2 - Weizmann-Soreq-Louvain

0

100

200

300

400

500

600

700

0 5 10 15 20

n energy (MeV)

Cro

ss s

ectio

n (m

b)

0.0E+00

5.0E+11

1.0E+12

1.5E+12

2.0E+12

2.5E+12

3.0E+12

3.5E+12

n flu

x pe

r 2

mA

d (

s-1)

9Be(n,2n)

9Be(n,)6He

n in Be target

SiteRef.Production rate (6He/s)

Available for experiment (6He/s)

SARAF (2mA)This work2.4∙1013 *3∙1011

Beta-beam]25[6.3∙10128∙1011

Ganil-SPIRAL I]26[9∙107

Dubna-DRIB]27[1.5∙105

Louvain-la-Neuve]28[5.3∙106

Table 1 – comparison of 6He production yield for different laboratories• Assume the transmission efficiency for 6He extraction ionization and transport is ~ 1% [25].

Page 38: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 38

SPIRAL2 - Weizmann-Soreq-Louvain

Model dependence of the neutrino-deuteron disintegration cross sections at

low energieshttp://il.arxiv.org/abs/nucl-th/0702073v1

Page 39: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 39

SPIRAL2 - Weizmann-Soreq-Louvain

EURISOL INTERNATIONAL ADVISORY PANEL- Recent Report:

…“no progress has been made with the study of alternative production schemes of 6He and 18Ne using low energy beams and strongly recommends that this study be completed within the next year. The outcome of this study is an essential ingredient for the analysis whether it is technically feasible to decouple EURISOL and the beta-beams completely”.

Page 40: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 40

SPIRAL2 - Weizmann-Soreq-Louvain

Next step in simulation

Optimization: By adding a Be reflector √ As function of Be target density,

structure Including construction metals As function of L, D and R

L D

R

Page 41: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 41

SPIRAL2 - Weizmann-Soreq-Louvain

And Now What??.....

6He and the magnetic moment of the neutrino

Interest

Target NO Post-acceleration results

8Li(,n)11B and Type II Supernovae

14O(,p)17F and 15O(,)19Ne and x-ray bursts - nucleo-synthesis

Interest

Interest

Target

Target Post-acceleration

Post-acceleration

results

results

Page 42: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 42

SPIRAL2 - Weizmann-Soreq-Louvain

Page 43: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 43

SPIRAL2 - Weizmann-Soreq-Louvain

Present Status – SARAF Phase I – March ‘07

Building ready

Source and LEBT ready

RFQ installed and being conditioned

SC resonators installed in cryostat, individually tested,

waiting for final test of entire module.

First beam at ~4-5 MeV – Summer ’07

Page 44: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 44

SPIRAL2 - Weizmann-Soreq-Louvain

Beam Intensity = 2 mA (protons, deuterons) ; 0.2 mA (alphas) Proton Deuteron Alpha

5

40

5

40

5

40

Energy(MeV) Target

product Yield(a/s)

product

Yield(a/s)

product

Yield(a/s)

product

Yield(a/s)

product

Yield(a/s)

product

Yield(a/s) He6 5.09E+11 Li8 3.63E+11 Li8 1.56E+13 Li9 4.18E+08

Li7 Be7 2.11E+11 Be7 1.27E+13 Be7 1.59E+13 Be10 1.90E+11 N13# 9.31E+12 Be7 9.62E+11 N13 2.58E+12 Li8 3.32E+09 Be7 1.49E+02 Be10 5.40E+08 Be7 3.63E+08 C11 3.89E+10

B8 2.34E+11 Be11 6.50E+05 C14 2.96E+10 C10 1.76E+10 B8 4.72E+08 N13 4.46E+08 C11 3.13E+13 B12 5.90E+12 O14 5.51E+09 N11 2.21E+08 C11 6.68E+12 O15 6.37E+11 N12 1.86E+12 N12 2.58E+11

C12 N13# 7.50E+12

# - Yields are not including the half life of isotopes #

Yield Calculations: Sergei Vaintraub, HUJI

6He, 8Li and others also via a d+ 7Be neutron converter; the 11B(n,)8Li and 9Be(n,)6He reactions

80

Page 45: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007 45

SPIRAL2 - Weizmann-Soreq-Louvain

Examples of Reactions with RNB’s for Astrophysics

• 8B(p,)9C

• 8B(,p)11C

• 9C(,p)12N

• 11C(p,)12N

Page 46: SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

March 2007

SPIRAL2 - Weizmann-Soreq-Louvain

11C(p,)12N, S(E) = E (E) exp(2)

Direct Capture is important at stellar energies except for the places of resonances , 2+, E

x=0.960 MeV and 2- 1.191

E0=0.030, E

0=0.020 MeV for CNO E

0=0.18, E

0=0.16 MeV for Novae