76
1 授課教師 : 張斐章

Statistic and Probabilities in Hydrology

Embed Size (px)

DESCRIPTION

Statistic and Probabilities in Hydrology

Citation preview

  • 1 :

  • 22.1 Introduction

    2.2 Statistical Parameters

    2.3 Theoretical Probability Distribution

    2.4 Frequency Analysis

  • 32.5 Graphic Method Using Probability Paper

    2.6 Confidence Limits

    2.7 Regression and Correlation

    2.8 Multivariate Linear Regression and Correlation

  • 4**2.9 Analysis of Time Series

    **2.10 Dependence Models

    2.11 Chi-square Test of Goodness of Fit

  • 52.1 Introduction

    :

  • 62.1 Introduction

    : , ., , .,.

  • 72.2 Statistical ParametersMean

    for a grouped series with N data points Arithmetic Mean

    Geometric Mean

    1

    1 Nav i

    iX X

    N = =

    ( )1/1 2 3... Ngm nX X X X X=

  • 82.2 Statistical ParametersMean

    for a grouped series with N data points Harmonic Mean

    Weighted Mean1 1 2 3

    1 1 1 1 1...hm N

    i i n

    N NX

    X X X X X=

    = = + + + +

    1 1 2 2

    1 2

    ......

    n nw

    n

    w X w X w XXw w w+ + += + + +

  • 92.2 Statistical ParametersExample :

    Station A B C D E F G H IRainfall(cm) 51.8 32.0 28.7 43.4 38.6 50.5 59.6 31.5 31.7

    Area(sq. km) 31.0 58.0 31.5 31.0 86.0 71.0 27.0 43.5 66.0

    Arithmetic Mean51.8 32.0 28.7 ... 31.7 367.8 40.87

    9 9i

    av

    XX

    N+ + + += = = =

    Geometric Mean( ) ( )1/ 1/91 2 3... 51.8 32.0 ... 31.7 39.6Ngm nX X X X X= = =

  • 10

    2.2 Statistical Parameters

    Harmonic Mean

    1 1 2 3

    9 9 38.421 1 1 0.2342251 1 1 1 1 ...... 51.8 32 31.7

    hm N

    i i n

    N NX

    X X X X X=

    = = = = = + + ++ + + +

    Weighted Mean

    1 1 2 2 9 9

    1 2 9

    ... 51.8 31 32 58 ... 31.7 66 17688 39.75... 31 58 ... 66 445w

    w X w X w XXw w w+ + + + + + = = = =+ + + + + +

  • 11

    2.2 Statistical ParametersMedian

    , . , .

    Mode , . , .

    ( 1/ 2): nMe X +=( / 2) ( / 2 1):

    2n nX XMe +

    +=

  • 12

    2.2 Statistical ParametersStandard Deviation

    , .

    ( )21

    1

    n

    ii

    x x

    n =

    = ( )2

    1

    N

    ii

    x

    N

    =

    =

  • 13

    2.2 Statistical Parameters

    Coefficient of Variation, C.V., , , C.V..

    . .C Vx=

    2

  • 14

    2.2 Statistical ParametersCoefficient of Skewness

    ( )33 1 i avX XN =

    ( )( ) ( )2

    33 1 2 i av

    N X XN N

    = 33. .C S

    =

  • 15

    2.2 Statistical ParametersCoefficient of Skewness

    0sC

    Coefficient of Kurtosis

  • 18

    2.3 Theoretical Probability Distribution

    Biominal Distribution 1. n2. , ,

    3. , P4. x

    ( ) ( )1 n xn xxf x C P P =

  • 19

    2.3.1.1 Biominal DistributionExample, 20%. .

    (1) ?

    (2) ?

    5 0 50(0) (0.2) (0.8) 0.328p C= =

    5 1 41(1) (0.2) (0.8) 0.41p C= =

    5, 0.2, 0.8n p q= = =

  • 20

    2.3.1.1 Biominal DistributionExample, 5.

    (1) ?

    (2) ?

    10, 0.2, 0.8n p q= = =10 0 100(0) (0.2) (0.8) 0.107p C= =

    10 2 82(0) (0.2) (0.8) 0.302p C= =

  • 21

    Poisson Distribution 1. n 2. p 3. p n ( finite )

    ( ) 0 0,1,2,...

    !

    xef x xx

    = > =

  • 22

    2.3.1.2 Poisson DistributionExample

    80, 300 mm 0.02.

    (1) 300 mm ?

    ( ) ( )3 0.2

    0.0210

    0.02 10 0.20

    0.23 0.0011

    3!

    pnnp

    ep

    === = =

    = =

  • 23

    2.3.2 Continuous DistributionNormal Distribution

    1. ,2. 3.,,

    ( )

    = 2)(

    21exp

    21

    xxf x

  • 24

    2.3.2 Continuous DistributionLog-Normal Distribution z = log x

    2

    ln121( ) 0,

    2

    z

    z

    x

    z avf x e x zx

    = > =

  • 25

    2.3.2 Continuous DistributionExtreme Value Distribution

    1. 2.

    3.

  • 26

    2.4 Frequency Analysis

    4.5.

    1.2.3.

  • 27

    (i) Frequency factor

    Dr. Ven Te Chow, 1951()

    (ii)Plotting position 2.5

  • 28

    Return periodTx

    1( )

    TP X x

    =

    X ()x (200cms)

  • 29

    ( ) 11 1PT

    =

    1( )P X xT

    =

    n

    n

    11n

    T

    11 1n

    T RiskRisk

  • 30

    Q. 40()(Risk)RR=5%T

    11 1n

    RT

    = 4010.05 1 1 780T year

    T = =

    Answer

  • 31

    (i)Frequency factor

    (XT)

    T av

    T

    X x x

    kX =

    = av: T

    ::

    TXx

    x

    :k frenquncy factor

  • 32

    Frequency factorkTXT

    TX k = +k

    1.2.3.k-TTk

  • 33

    2.4.1 Gumbels Distribution

    ( Extreme-value type I distribution )

    [ ] ( )( )

    ( ) ( ) ( )( )

    ln ln ( ) ln ln 1

    ln ln ln 1

    ln ln ln 1

    6 6 ln ln ln 1

    6 ln ln1

    6 0.57721 ln ln1

    T

    a x F x Pc

    X a c T T

    c c T T where a c

    T T

    TT

    TT

    + = = = = =

    = = + = +

  • 34

    6 0.57721 ln ln 1TTX

    T

    = + TX k = +

    { }6 0.57721 ln ln

    1

    0.45005 0.7797 ln ln ( 1)

    TkT

    T T

    = + = +

  • 35

    2.4.2 Pearson Type-III Distribution

    (Three parameters gamma distribution)

    (skewed data)

    10 01( ) exp

    ( )

    0

    x x x xf x

    x

    =

  • 36

    TXT1.Cs ()2.NN100

    1+8.5/N* Cs3.k-Ttables 2.8a & 2.8bk4.ChowsXT

    TX k = +

  • 37

    2.4.3 Log-Pearson Type-III Distribution

    x10

    10logx x

    37

  • 38

    1.2.yyCs ()3.NN1001+8.5/N* Cs

    4.k-Ttables 2 .8a & 2.8b k5.ChowsYT

    10logy x=

    10 TYTX =

    TXT

  • 39

    2.4.3 Normal Distribution

    Cs 02.8a 2.8bk Cs 0

    Cs 0(2.30)

    tx2.6k

    xt x t = = +

  • 40

    2.4.3 Log Normal Distribution

    Cs 02.8a 2.8bk Cs 0

    xy=ln(x)xx

    lnx x

    ln( )1 1( ) exp22

    y

    yy

    xf x

    x

    =

  • 41

    10 TYTX =k 2.9

    ChowsYT

    k( )

    2

    2

    0.5

    exp 2 1

    1

    y y ykk

    e =

    CvCs 33S V VC C C= +

  • 42

    Example 2.8

    Q.T50100

    Table 2.10 annual maximum runoff recordsYear 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959

    Runoff(mm) 133 94.5 76 87.5 92.7 71.3 77.3 85.1 122.8 69.4

    Year 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969

    Year 1970 1971 1972 1973 1974Runoff(mm) 91 106.8 102.2 87 84

    Runoff(mm) 81 94.5 86.3 68.6 82.5 90.7 99.8 74.4 66.6 65

  • 43

    Ans. Example 2.8

    For the seriesFor the series

    ( )

    ( )

    1/ 2 1/ 2

    3 3

    2170 86.8 25

    5156.7 = 14.6

    Mean

    Standard deviatio 6 1 25 1

    14.66 0.1689

    n

    Coefficient of variation

    Coefficien

    86.81 t of s

    1kewness

    iav

    i av

    v

    s

    xx mm

    n

    x xmm

    n

    C

    NCN N

    = = = =

    = =

    = =

    ( ) ( )

    ( ) ( )

    3

    3

    2

    1 25 = 41793.7 0.55314.66 25 1 25 2

    i avx x

    =

  • 44

    Example 2.8

    For the log transferred seriesFor the log transferred series

    ( ) ( )

    1/ 2

    3

    Mean

    Standard deviation

    Coefficient of

    48.381 1.9327 25

    0.124358 0.072 25 1

    0.072 0.03721.9327

    1 25 0.

    variation

    Coefficient of skewn 001762 =0.072 25 1 25

    ess2

    av

    v

    s

    y mm

    mm

    C

    C

    = = = = = =

    0.197 =

  • 45

    Example 2.8

    Extreme Value Type-IExtreme Value Type-I

    2.7 T50100k

    50

    50

    100

    3.088 and 3.729

    86.8 3.088 14.66 132.086.8 3.729 14.66 141.

    '

    5

    T av

    100

    From Chow s relation X x kk k

    X mmX mm

    = =

    = + == + =

    = +

  • 46

    Example 2.8

    Pearson Type-IIIPearson Type-III

    Cs=0.5532.8(a) Cs=0.553T50100k

    50

    50

    100

    2.315 and 2.70

    86.8 3.088 2.315 120.786.8 3.729 2.70 126.

    '

    4

    T av

    100

    From Chow s relation X x kk k

    X mmX mm

    = =

    = + == + =

    = +

  • 47

    Example 2.8

    Log Pearson Type-IIILog Pearson Type-III

    Cs=0.1972.8(a) Cs=0.197T50100k

    50

    50

    1002.0875005

    502.110535

    100

    2.15 and 2.70

    1.932737 0.071983 2.15 2.08750051.932737 0.071983 2.70 2.110535

    1

    '

    22.3129.0

    T av

    100

    From Chow s relk k

    Y mmY mmX e mmX

    ation Y

    e

    k

    m

    y

    m

    == =

    = + == + =

    = == =

    +

  • 48

    Example 2.9Q. 280 m3/sec40

    m3/sec 10400 m3/sec

    Given thatGiven that

    xav=280 m3/sec40 m3/sec

    XT=400 m3/sec

    TP

  • 49

    Example 2.9Assume Gumbel distribution for data.

    XTxavk

    400 = 280 40 k k3

    From Chows relationFrom Chows relation

    0.45005+0.7797 ln ln1

    TkT

    =

    ( ) ( )4.42483 0.45-0.7797 ln ln

    1

    exp exp 0.01197 1.0120491

    84

    TT

    T eT

    T year

    = = = =

    =

    For Gumbel For Gumbel

  • 50

    Example 2.9

    The Probability of the eventThe Probability of the event

    P = 1 / T = 1/84 = 0.0119

    occurring in next 10 yearsoccurring in next 10 years10 101 11 1 1 1 0.1128 11.3%

    84T = = =

  • 51

    Graphical Method Using Probability Paper2.5

    Plotting position

    1. 2.

    1950 2851951 150

  • 52

    3. m

    14. x

    P[Xxm]m/(N+1) N( )

    1950 2851951 1501952 501953 121954 4451955 135

    xm1954 4451950 2851951 1501955 1351952 501953 12 6

    54321

    P [Xxm]1 0.14287 =2 0.28577 =3 0.42887 =4 0.57147 =5 0.71437 =6 0.85717 =

  • 53

    5. TT 1/P (N+1)/m

    515

    [ ]1[ ] 0.25

    m

    m

    if T

    P X x

    P X x

    = = = =

    121953501952

    1351955150195128519504451954

    xm

    654321

    P [Xxm]1 0.14287 =2 0.28577 =3 0.42887 =4 0.57147 =5 0.71437 =6 0.85717 =

    285445

    19501954

    21 1 0.14287 =

    2 0.28577 =

    5X294.6 cms

  • 54

    6. PX

    7. (Frequency curve)

  • 55

    2.5.1 Construction of Probability Paper

    kT

    1. ()2. ()

  • 56

  • 57

  • 58

    2.5.2 Selection of Type of Distribution

    (Extreme value distribution)

    Extreme value Type-III distribution

    Log normal distribution

    Exponential distribution

  • 59

    2.6 Confidence Limits

    Confidence Limits

    TU T

    TL T

    TU T TL

    X X S xX X S xX X X

    = + = > >

    1

    2 1/ 2(1 1.3 1.1 ) :

    nwhere x an

    a k kk

    == + +

  • 60

    S

    Confidence limit(%)

    50 68 80 90 95 99

    Value of S 0.674 1.00 1.282 1.645 1.96 2.58

  • 61

    Regression and Correlation 2.7

    EX

    (regression line)

    y = f (x)

    (coefficient of correlation)

  • 62

    2.7.1 Graphical Method

  • 63

    2.7.2 Analytical Method

    ( Method of Least squares ) xy

    y = a + bx

    Se

    ( )( )

    2

    01

    2

    1

    SN

    e i eii

    N

    i ii

    y y

    y a bx

    =

    =

    =

    =

  • 64

    y = a + bx

    Se

    2

    2

    0

    0

    i i

    i i

    i i i

    i i i

    y Na b x

    y Na b x

    xy a x b x

    xy a x b x

    == + == +

    ( )21

    S 0N

    e i ii

    y a bx=

    = =

    ( )( )

    2

    22

    22

    i i i i i i i

    i i

    i i i i

    i i

    y x x x y y b xa

    NN x x

    N x y x yb

    N x x

    = =

    =

  • 65

    2.7.3 Correlation

    (correlation coefficient , )

  • 66

    ( ),,

    i i

    x y

    Cov x y =

    ( ) ( ) ( )

    ( )( ) ( )

    1

    2 2 2 2

    2 22 2

    1 ,

    =

    =

    N

    i i i x i yi

    i i x y

    i x i y

    i i i i

    i i i i

    Cov x y x yN

    x y N

    x N y N

    x y x y N

    x x N y y N

    =

    =

    ( )yi y i xx

    y x =

  • 67

    2.7.4 Significance of Parameters

    abFor testing b

    For testing a

    2(1 )r

    rSN=

    1/ 2

    2

    ( ) ( 2)(1 )

    b Nt rb r =

    1/ 2

    2 2 2

    ( ) ( 2)(1 )( )n av

    a Nt rb r x

    = +

  • 68

    2.7.5 Standard Form of Bivariate Equations

    LinearExponentialParabolaHigher order equationOther forms of equations:

    y a bx= +axy be=by ax=

    21 2 3 1

    nny a a x a x a x+= + + + +K

    ( ) ( )a xby a y yx b x a bx

    = + = =+ +

  • 69

    Example 2.13Q. 2.14

    y=a+bx

    where y is runoff and x is rainfall of July, respectively

    see Table2.15

    Assume a linear relationAssume a linear relation

    ( )( )

    2

    22

    22

    94.95

    0.704

    i i i i i

    i i

    i i i i

    i i

    y x x x ya

    N x x

    N x y x yb

    N x x

    = =

    = =

  • 70

    Example 2.13

    y=-94.95+0.704x =0.855

    Test for

    = 0.081

    the value of is significantly different from zero

    2(1 )

    rrSN=

    3 0.855 3 0.081 1.0983 0.855 3 0.081 0.6124 0.855 4 0.081 1.1794 0.855 4 0.081 0.531

    r

    r

    r

    r

    SSSS

    + = + = + = = ++ = + = + = = +

  • 71

    Example 2.13

    Assume a non-linear relationAssume a non-linear relation y=axb

    log => log(y) = log(a)+blog(x)Y = A+BX log(a) = -1.839 => a = 0.0145

    b = 1.563 see Table2.16

    y=0.0145x1.563

  • 72

    2.8 Multivariate Linear Regression and Correlation

    x1x2xx =b0 + b1x1 + b2x2

    => 0 1 1 2 22

    1 0 1 1 1 2 1 2

    22 0 2 1 1 2 2 2

    x Nb b x b x

    xx b x b x b x x

    xx b x b x x b x

    = + += + += + +

    :

  • 73

    2.11 Chi-Square Test of Goodness of Fit

    (chi-square test)

    2

    222

    2

    1 1

    ( )i ei ii iei ei

    Q P ZP P

    = =

    = =

  • 74

    vOiPei

  • 75

    Example 2.19Q. 2.3 2

    Mean = 74.27

    Variance = {5(45-74.27)2++2(115-74.27)2} / 55 = 315.85

    Standard Deviation = (315.85)0.5 = 17.78

    zi of col. (6) (for row 4)=

    For zi = 0.329, F(xi) = 0.5 + 0.129 = 0.629 and so on

    80 74.27 0.32917.78

    x = =

  • 76

    The chi-square test statistics is calculated in col. (9)

    For example, 0.141 in row(4) is

    For degrees of freedom of (8-2-1) = 5,

    22 {55(0.2 0.224) } 0.141

    0.224 = =

    20.95 11.1 =

    Since 4.459