88
 Eidgenössische Technische Hochschule Zürich Stochastic Models  1 Lecture 4: 4. Stochastic Channel Models Contents: Radio c hannel simulation Stochastic modelling COST 207 model CODIT model T urin- Suzuki -Hashemi model Saleh-V alenzuela model

Stochastic Models

Embed Size (px)

DESCRIPTION

Stochastic Models

Citation preview

  • EidgenssischeTechnische Hochschule

    Zrich

    Stochastic Models 1

    Lecture 4:

    4. Stochastic Channel Models

    Contents:

    Radio channel simulation

    Stochastic modelling

    COST 207 model

    CODIT model

    Turin-Suzuki-Hashemi model

    Saleh-Valenzuela model

  • EidgenssischeTechnische Hochschule

    Zrich

    Stochastic Models 2

    4. Stochastic Channel Models

    Contents (contd):

    WAND model

    Spencer-Jeffs-Jensen-Swindlehurst model

    IEEE 802.11 model

    3GPP Stochastic Channel Model

  • EidgenssischeTechnische Hochschule

    Zrich

    Stochastic Models 3

    Main application fields of stochastic channel models:

    Design and optimization of communication systems:- Design of the constituents of communication systems- Optimization of the behaviour and performance of these constituents- Analytical or simulation-based investigations of the performance of these

    constituents

    Monte Carlo simulations for system performance assessment- Link-level simulations (today)

    - System-level simulations (today)

    - Simulation of cooperative networks (coming soon)

    in complex scenarios as close as possible to real operation conditions

    Stochastic channel models (SCMs) are crucial and indispensable tools inthe design of communication systems.

    The importance of stochastic channel modelling

  • EidgenssischeTechnische Hochschule

    Zrich

    Stochastic Models 4

    The different approaches for channel simulations:

    Stored Channel Models (ATDMA)

    Measured space-variant or time-variant delay spread func-tions (SFs) are selected according to some specified cri-teria to form classes of so-called reference channels.These delay SFs are stored and can be read on demandfor simulation purposes.

    Example:Reference space-variant delay SF inan atypical microcellular urbanenvironments:

    Radio channel simulation

  • EidgenssischeTechnische Hochschule

    Zrich

    Stochastic Models 5

    The different approaches for channel simulations (contd):

    Deterministic Channel Models

    These models employ ray optical techniques (ray tracing, raylaunching combined with UTD method) to compute the delay SFor the direction-delay SF using some more or less extensive geo-graphical information (buildinglayout, electric properties ofwalls and floors, etc.) about thepropagation environment underconsideration.

    Radio channel simulation

  • EidgenssischeTechnische Hochschule

    Zrich

    Stochastic Models 6

    The different approaches for channel simulations (contd):

    Stochastic Channel Models (COST 207, CODIT)

    - A parametric model for the delay SFs is derived.

    - Realizations of the delay SF are thengenerated according to specifiedprobability distributions of the modelparameters.

    - These probability distributions aregathered by means of statisticalanalyses of measurement datacollected during extensive measure-ment campaigns.

    0

    5

    10

    15

    20 05

    1015

    2025

    0

    0.2

    0.4

    0.6

    0.8

    1

    real time [ms]delay [mys]Delay [ s] Time [ms]t

    g t ;( )Example: COST 207 HT

    Radio channel simulation

  • EidgenssischeTechnische Hochschule

    Zrich

    Stochastic Models 7

    Comparison of the different approaches:

    Channelsimulationapproaches

    Computationalexpense

    Intrinsicvariability of the

    models

    Retained channelfeatures

    Challenge

    Referencechannels

    High(storage)

    Low(=number of

    stored channels)

    All Choice of theappropriate

    selection criteria

    Deterministicchannel models

    High(identification of

    the dominantpropagation

    paths)

    Medium(=number ofenvironmentsconsidered)

    Part of them(ray optical

    methods are notexact)

    Identification ofthe dominantprop. paths +

    accurate methodfor computing

    the path weights

    Stochasticchannel models

    Low High(probability

    distributions)

    Part of them(depending on the

    model used)

    Incorporate allrelevant channel

    features

    Radio channel simulation

  • EidgenssischeTechnische Hochschule

    Zrich

    Stochastic Models 8

    Features to be incorporated into SCMs:

    Stochasticchannel model

    Environment:Type of environment

    Frequency range

    Transceiver characteristics:Trajectory, velocity

    BandwidthAntenna (array) types

    Short-term fluctuations:Fast fading

    Long-term fluctuations:Path loss

    ShadowingTransitionsDelay drift

    Drift in directionsBirth & death of paths

    Channel dispersionDelay

    Direction of departureDirection of incidence

    Doppler frequencyPolarization

    Short range/term (fast)fading

    Stochastic modelling

  • EidgenssischeTechnische Hochschule

    Zrich

    Stochastic Models 9

    Requirements for SCMs:

    Completeness

    SCMs must reproduce all effects that impact on the performance of com-munication systems.

    => Guarantee simulation scenarios close to reality=> Full basis for system comparisons

    Accuracy

    SCMs must accurately describe these effects.=> Realistic results from analytical and/or simulation-based investigations

    Simplicity/low complexity

    Each effect must be described by a simple model.=> Enable theoretical study of some particular system aspects and performance=> Tractable computational effort to simulate the channel in Monte Carlo simulations

    Stochastic modelling

  • EidgenssischeTechnische Hochschule

    Zrich

    Stochastic Models 10

    Approach for SCM:

    Specification of the area type additional system parame-

    ters (array characteristics,mobile velocity, etc.)

    Statistical processing of data obtained fromextensive measurement campaigns in the

    identified areasEstimation of the probability density func-

    tions of the parameters occurring in theparametric system function

    Realizations of the system function,e.g. g t ;( )

    Software package generating a specific para-metric system function of the channel, e.g.

    g t ;( ) gi t( ) i t( )( )i 1=

    N

    Stochastic modelling

  • EidgenssischeTechnische Hochschule

    Zrich

    Stochastic Models 11

    Model for :gi t( )

    giST( )

    t( ) gi c, t( ) gi d, t( )+=

    Short-term fluctuations:

    Specular part:

    : Doppler frequency

    gi c, t( ) hi c, j2it( )exp=i

    Diffuse part:is a WSS zero-mean circular symmetric com-

    plex Gaussian process specified by its ACF

    or equivalently its (Doppler) spectrum :

    gi d, t( )Ri t( )

    Pi ( )

    Ri t( ) Pi ( )t

    Stochastic modelling

  • EidgenssischeTechnische Hochschule

    Zrich

    Stochastic Models 12

    Model for (contd):

    Long-term fluctuations (path loss & shadowing effect):

    : time-dependent path loss computed from one of the modelspresented in Lecture 3.

    : real zero-mean Gaussian process with ACF .

    Usually,

    gi t( )

    gi t( ) 10L t( )10

    ----------

    10

    Li vt( )10

    ------------------

    giST( )

    t( )=

    L t( )

    Li d( ) RLi d( )

    RLi d( ) 2 d2 2( )exp=

    : standard deviation of

    : decorrelation lengthSmall macrocells:

    Li d( ) 6 8 dB=

    5 8m=

    Stochastic modelling

  • EidgenssischeTechnische Hochschule

    Zrich

    Stochastic Models 13

    Models for :

    Short-term fluctuations:

    where is a specified random point process.

    Long-term fluctuations:

    where is the above random point process and

    is a sequence of random processes describing the drift of the components inthe time-variant SF on the delay axis.

    i t( )

    i t( ) i=1 2 , i , , ,{ }

    i t( ) i i t( )+=1 2 , i , , ,{ } i t( ){ }

    Stochastic modelling

  • EidgenssischeTechnische Hochschule

    Zrich

    Stochastic Models 14

    Main characteristics:

    Cell type Macrocell

    Area Typical non-hilly urban (TU), bad hilly urban (BU) Non-hilly rural area (RA), hilly terrain (HT)

    Frequency range Around 1 GHz

    Time-variant SF

    Input Area type Vehicle velocity Number of components in Delay and Doppler resolution

    g t ;( ) PN---- j 2it i+( ){ }exp i( )

    i 1=

    N

    =

    g t ;( )

    COST 207 model

  • EidgenssischeTechnische Hochschule

    Zrich

    Stochastic Models 15

    Normalized delay-Doppler scattering function:

    We can decompose as

    The COST 207 models are specified by the two functions:

    Pn ,( )1P---P ,( ) Pn ,( ) d d 1=( )

    Pn ,( )

    Pn ,( ) Pn ( ) Pn ( )=Normalized delayscattering function

    Delay-dependent normalizedDoppler scattering function

    Pn ( ) Pn ,( ) d( )

    Pn ( )Pn ( )

    COST 207 model

  • EidgenssischeTechnische Hochschule

    Zrich

    Stochastic Models 16

    Normalized delay scattering function:

    Typical urban non-hilly area (TU):

    MSvLocal

    scattering

    Pn ( )( )exp ; 0 s[ ] 7

    0 ; elsewhere

    0 1 2 3 4 5 6 70

    0.2

    0.4

    0.6

    0.8

    1

    1.2Pn ( )

    [s]

    COST 207 model

  • EidgenssischeTechnische Hochschule

    Zrich

    Stochastic Models 17

    Normalized delay scattering function (contd):

    Pn ( )( )exp ; 0 s[ ] 5

    0.5 5 ( )exp ; 5 s[ ] 10 0 ; elsewhere

    Typical bad urban hilly area (BU):

    MSv Local

    scattering

    Distantscattering

    0 1 2 3 4 5 6 7 8 9 100

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7Pn ( )

    [s]

    COST 207 model

  • EidgenssischeTechnische Hochschule

    Zrich

    Stochastic Models 18

    Normalized delay scattering function (contd):

    Typical rural non-hilly area (RA):

    Pn ( )9.2( )exp ; 0 s[ ] 0.7

    0 ; elsewhere

    Pn ( )

    [s]

    MSv Localscattering

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    COST 207 model

  • EidgenssischeTechnische Hochschule

    Zrich

    Stochastic Models 19

    Normalized delay scattering function (contd):

    Pn ( )3.5( )exp ; 0 s[ ] 2

    0.1 15 ( )exp ; 15 s[ ] 20 0 ; elsewhere

    Typical hilly terrain (HT):

    Pn ( )

    [s]

    MSv

    Localscattering

    Distantscattering

    0 2 4 6 8 10 12 14 16 18 200

    0.5

    1

    1.5

    2

    2.5

    3

    COST 207 model

  • EidgenssischeTechnische Hochschule

    Zrich

    Stochastic Models 20

    Normalized Doppler scattering function:

    MSv

    Many scattererswith nearly thesame featuresuniformly dis-tributed around

    the MS

    Pn ( )1

    D---------- 1

    1 v D( )2

    ---------------------------------- ; D The parameter settings in the COST 231 tables are not appropriate forinvestigating the performance of systems which exploit channelfrequency selectivity,e.g. GSM with frequency hopping.

    Solution:Choose an irregularly spacing of the delays or randomly select them.

    i mi= mi 0.2s=

    COST 207 model

  • EidgenssischeTechnische Hochschule

    Zrich

    Stochastic Models 32

    The COST 207 tables (contd):Frequency hopping:

    Real channel frequency transfer function:

    Transfer function of the COST 207 channel:

    B1 B2 B2'B1'

    B1 B2 B2'B1'

    Bc 0.2=

    f

    f

    H f( )

    H f( )

    1------

    COST 207 model

  • EidgenssischeTechnische Hochschule

    Zrich

    Stochastic Models 33

    Main characteristics:

    Cell type Macro-, micro, picocell

    Area Macrocell: urban, suburban, suburban hillyrural, rural hilly

    Microcell: dense urban linear street, town square, industrial area Indoor: floor cell in buildings, corridor,

    large and very large rooms

    Frequency band 2 GHz range Up to 20 MHz signal bandwidth

    Time-variant SF

    Input Area type Vehicle velocity System bandwidth

    g t ;( ) gi t( ) i t( )( )i 1=

    N

    CODIT model

  • EidgenssischeTechnische Hochschule

    Zrich

    Stochastic Models 34

    Short-term variations of :gi t( )

    xxxxxxx

    xxxxxxx

    i c, i j,

    xxxxxxxxxxxxxxxxxxx

    xxxxxxxxxxxxxxxxxxxx

    Specular part Diffuse part

    giST( )

    t( ) hi c, j2v--- i c,( )cos t exp hi j, j2

    v--- i j,( )cos t exp

    j 1=

    J

    +=

    ,

    uniformly distributed over

    : mean power of the th component

    : coherent to diffuse power ratio of the th component

    hi c, i c,=

    hi c,{ }arg 0 2 ),[

    hi j, N 01J---i d,

    2,

    E gi t( )2[ ] i c,

    2i d,

    2+ i

    2= i

    i c, i d,( )2

    i

    CODIT model

  • EidgenssischeTechnische Hochschule

    Zrich

    Stochastic Models 35

    Probability distribution of the azimuths and :i c, i j,

    Scatterer i

    v

    i c,

    i j,

    MS0 2

    pi j, ( )

    i c,

    i j, N i c, 0.15[radian]2

    ,( )mod2

    CODIT model

  • EidgenssischeTechnische Hochschule

    Zrich

    Stochastic Models 36

    Long-term variations of :

    Shadowing effects:

    gi t( )

    gi t( ) zi t( ) gi ST( ) t( )=Term describing the

    long-term fluctuations

    zi t( ) 1 zi2qi------ v---t i+ cos+ 1 2zi

    zi t( )

    tqiv ( )--------------: Random variable uniformly distributed overi 0 2 ),[

    CODIT model

  • EidgenssischeTechnische Hochschule

    Zrich

    Stochastic Models 37

    Long-term variations of (contd):Emergence of the components:

    Fading of the components:

    is a random variable uniformly distributed over .

    gi t( )

    1zi t( )1

    1vt z

    5------------- 6

    +

    ------------------------------- ; vt z

    1 ; vt z>

    zi t( )

    tz v

    1zi t( )1

    1vt z

    5------------- 6

    +

    ------------------------------- ; vt z

    1 ; vt z

  • EidgenssischeTechnische Hochschule

    Zrich

    Stochastic Models 38

    Short-term variations of :

    Long-term variations of :

    i t( )

    i t( ) i=

    i t( )

    i t( ) i i 12pi------ v---t i+ cos++= i

    2i

    i t( )

    tpiv ( )--------------: Random variable uniformly distributed overi 0 2 ),[

    CODIT model

  • EidgenssischeTechnische Hochschule

    Zrich

    Stochastic Models 39

    Selection of the parameters of :

    The number of components depends on the area type but is fixed for agiven area, .

    The parameters describing the

    behaviour of the components of are random variables specified by

    probability distributions.

    g t ;( )N

    N max 20=

    J 100=

    i2

    i c, i d,( )2 i c, zi qi i i pi, , , , , , ,gi t( )

    CODIT model

  • EidgenssischeTechnische Hochschule

    Zrich

    Stochastic Models 40

    Setting Tables:

    Example: Suburban hilly environment:

    i2 zii i [s ] qi pi i [ns ]

    E hi2[ ]2

    Var hi2[ ]

    --------------------------

    Source: CODIT Report: Final Propagation Modeli

    2

    i

    N

    1=

    CODIT model

  • EidgenssischeTechnische Hochschule

    Zrich

    Stochastic Models 41

    Setting Tables (contd):

    Example: Power delay spectrum generated with the previous table:

    S

    o

    u

    r

    c

    e

    :

    C

    O

    D

    I

    T

    R

    e

    p

    o

    r

    t

    :

    F

    i

    n

    a

    l

    P

    r

    o

    p

    a

    g

    a

    t

    i

    o

    n

    M

    o

    d

    e

    l

    CODIT model

  • EidgenssischeTechnische Hochschule

    Zrich

    Stochastic Models 42

    Example: Microcell LOS Area:

    Contour plot of a realization of :g d ;( ) Evolution of the correspondingdelay scattering function

    D

    i

    s

    t

    a

    n

    c

    e

    d

    [

    ]

    P

    o

    w

    e

    r

    [

    d

    B

    ]

    Delay [ns] Delay [ns]

    Source: CODIT Report: Final Propagation Model

    d 80=

    d 0=

    CODIT model

  • EidgenssischeTechnische Hochschule

    Zrich

    Stochastic Models 43

    Example: Indoor Picocell LOS Area:

    Contour plot of a realization of :g d ;( ) Evolution of the correspondingdelay scattering function

    P

    o

    w

    e

    r

    [

    d

    B

    ]

    Delay [ns] Delay [ns]

    Source: CODIT Report: Final Propagation Model

    D

    i

    s

    t

    a

    n

    c

    e

    d

    [

    ]

    CODIT model

  • EidgenssischeTechnische Hochschule

    Zrich

    Stochastic Models 44

    Main characteristics:

    Cell type Macro-, micro- and picocell(by appropriately setting the probability densities of model parame-ters)

    Area Urban

    Frequency range 500MHz -1GHz

    Time-invariant delay SF

    Main features Time-invariant Clustering of the components in is reproduced by modelling

    the sequence as a Poisson point process or a modificationthereof.

    g t ;( ) h ( ) hi i( )i 1=

    N

    = =

    h ( )i{ }

    Turin-Suzuki-Hashemi model

  • EidgenssischeTechnische Hochschule

    Zrich

    Stochastic Models 45

    Modelling as a Poisson point process:

    is a Poisson point process with rate :

    : Number of points in the time interval

    i{ }i{ } ( )

    ( )

    T

    1 2 i N

    T( )

    i 1

    T( ) ( ) dT

    N T T

    P N T n=[ ] T( )n

    n!--------------- T( )( )exp= E N T[ ] Var N T[ ] T( )= =[ ]

    Turin-Suzuki-Hashemi model

  • EidgenssischeTechnische Hochschule

    Zrich

    Stochastic Models 46

    Modelling as a homogeneous Poisson point process:

    In this case, the delay differences are independent randomvariables which are (identically) exponentially distributed with parameter :

    Drawback of the Poisson model:It does not describe sufficiently accurately the clustering of the componentsas observed in measured delay SFs.

    i{ } ( ) =i i 1

    pi i 1 ( )

    pi i 1 ( ) ( )exp=

    Probability density of :i i 1

    1

    Turin-Suzuki-Hashemi model

  • EidgenssischeTechnische Hochschule

    Zrich

    Stochastic Models 47

    Estimated rates in outdoor environments:

    1ft 1ns

    S

    o

    u

    r

    c

    e

    :

    P

    a

    p

    e

    r

    b

    y

    T

    u

    r

    i

    n

    a

    t

    a

    l

    .

    Turin-Suzuki-Hashemi model

  • EidgenssischeTechnische Hochschule

    Zrich

    Stochastic Models 48

    Modelling as a modified Poisson point process:

    The rate depends on the random sequence in the following way:

    i{ } ( ) i{ }

    The basic rate is multiplied by a factor

    during a predetermined relaxation interval at

    each :

    : Clustering effect

    : Poisson point process

    : Isolated delay points

    Values for and (macrocell):

    (arbitrarily selected)

    (estimated from measure-ments)

    0 ( ) css

    ics 1>

    cs 1=

    cs 1