114
$9086-$9-$%M-000/CH-561 NA’AL $HI!$' %ECHNICAL MAN&AL CHA!%E# 561 $&BMA#INE $%EE#ING AND DI’ING $)$%EM$ DI$%#IB&%IN $%A%EMEN% C: DI$%#IB&%IN A&%H#I*ED % &.$. G’E#NMEN% AGENCIE$ AND %HEI# CN%#AC%#$; ADMINI$%#A%I’E/!E#A%INAL &$E; 28 $E!%EMBE# 1990. %HE# #E"&E$%$ F# %HI$ DC&MEN% (ILL BE #EFE##ED % %HE NA’AL $EA $)$%EM$ CMMAND ($EA-04%D). DE$%#&C%IN N%ICE: DE$%#) B) AN) ME%HD %HA% (ILL !#E’EN% DI$CL$&#E F CN%EN%$ # #ECN$%#&C%IN F %HE DC&MEN%. $&!E#$EDE$: $9086-$9-$%M-000/CH-561 #1 F A&G&$% 1991 !&BLI$HED B) DI#EC%IN F CMMANDE#, NA’AL $EA $)$%EM$ CMMAND 1 JAN&A#) 1992 $ECND #E’I$IN

Submarien Steering Gear

  • Upload
    alex

  • View
    70

  • Download
    11

Embed Size (px)

Citation preview

Page 1: Submarien Steering Gear

$����$��$%������ �

��'�� $��!$� %�������� ���&��

���!%�# �

$&���#��� $%��#���

��� ��'��� $)$%��$

��$%#��&%� � $%�%����% �� ��$%#��&%� � �&%� #�*�� % &�$� � '�#����% �������$

��� %���# � �%#��% #$� ������$%#�%�'�� !�#�%� ��� &$�� �� $�!%����# ��� %��#

#�"&�$%$ � # %��$ � �&���% (��� �� #���##�� % %�� ��'�� $�� $)$%��$ � �����

�$����%���

��$%#&�%� �� %������$%# )�)��)��%� �%��%(���!#�'��%��$�� $&#� �� �%��%$ ##�� �$%#&�%� �

� %�� � �&���%�

$&!�#$���$� $����$��$%������ � # � �&�&$% ��

!&���$��� �) ��#��%� � � � ������#� ��'�� $�� $)$%��$ � �����

���&�#) ���

$�� �� #�'�$� �

Page 2: Submarien Steering Gear

������������������������

��

���� �� ��������� � ���

��! �"�#!

�$� �$��

�&/(" �*! � �"-/&#& �/&+* �(3("�#���(3("�#�� & /%-0 1& � /%-0 �� �� /%-0 ���������� �(�*'� ������� �(�*'� ��� �� �(�*'� �� /%-0 ������� �(�*'� �� /%-0 ������� �(�*'� �� /%-0 ������� �(�*'� �� /%-0 ������� �(�*'� �� /%-0 ������� �(�*'� �� /%-0 ������� �(�*'� �� /%-0 ������� �(�*'� �� /%-0 ������� �(�*'�

��"-+ &* /%&. +(0)* &*!& �/". �* +-&$&*�( ,�$"�

������ �� �� ������� �� ���� �� �����

�%&. -"1&.&+* +- %�*$" /+ /%" %�,/"- %�. �""* ,0�(&.%"! �*! ,-&*/"! "(" /-+*& �((3 #-+) � !&$&/&4"!

!�/���." #&("� �%" !�/���." #&(" &. )�&*/�&*"! 2&/% /%" 0--"*/ %�*$" ./�/0. #+- "� % %�,/"-� �� % *"2 +-

-",(� ")"*/ ,�$" +*/�&*. /%"." 2+-!. &* /%" %"�!"- � ����� � � � � ��� �# /%" )�*0�( %�. �""* -"5

1&."! +- %�*$"! .&* " &/. +-&$&*�( &..0"� /%" �"1&.&+* �*! �%�*$" �0)�"- �/ /%" /&)" /%" )�*0�( 2�. "*5

/"-"! &*/+ /%" !�/���." 2&(( �(.+ �" &* (0!"! &* /%" %"�!"-�

�%" &*&/&�( !&$&/�( !�/���." &..0" 2&(( *+/ .%+2 %�*$" ��-. +- %�*$" *0)�"- #++/"-.� .&* " �(( ,-"1&+0.

-"1&.&+*. �*! #+-)�( %�*$". %�1" �""* &* +-,+-�/"! &*/+ /%" !�/���."� �+- #0/0-" %�*$".� /%" %�*$"

��-. �*! %�*$" *0)�"- #++/"-. 2&(( �" &* (0!"! +* �(( *"2 +- -",(� ")"*/ ,�$". +# /%" %�*$" ,� '�$"�

Page 3: Submarien Steering Gear

�������� ��������������

Page 4: Submarien Steering Gear

�����������������������

�!%!�� ��

�����#$"�!

����� �� ���� ����������� ��������

��� ��

����

��

������

�������

������ �� �������

� �� � ����� ���� ��� �� � � � ���� ��� ��� ������� �� ��� ��� �

�� ���� � ��� �� � �� � � � � �� � � ��� � ��� ����

Page 5: Submarien Steering Gear

�����������������������

�!%!�� ��

�����#$"�!

����� �� ���� ����������� ��������

��� ��

����

��

������

�������

������ �� �������

� �� � ����� ���� ��� �� � � � ���� ��� ��� ������� �� ��� ��� �

�� ���� � ��� �� � �� � � � � �� � � ��� � ��� ����

Page 6: Submarien Steering Gear

�����������������������

������������ ���������������

%

�� ���� ��

���� ���� �������� �� ������ � �����

�!'!#'!&$ �!#"

������� �� ������������

� ����� #' �" �� �'�!�$��� "'"#��" ���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� ���� %�!����� !�""$!� "'"#�� � !�""$!� �������� ���� � � � � � � � �� ����� ���"#��#� !�""$!� "'"#��� ���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� ����� �&�! "�$!��" �������" �� � �!�#��� ���� � � � � � � � � � � � � � � � � � � � �� ������ #' �" �����$�� ���#!�� ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� ����� !�#� ���#!�� ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� ����� �"�#��� ���#!�� ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� ������ �$#���#�� ����" �� ���#!�� ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� ������ �$#���#�� "#��!��� ���#!�� ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � �� ������ �$#���#�� �� #� ���#!�� ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� ������ �������� �$#���#�� "#��!��� ��� ��%���� ���� � � � � � � � � � � � �� ����� �54:8522,8 �6,8(:054� ���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� ����� ������� 0*:580(2 �0962(?� ���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� ���� "'"#��� �!�#��� !�""$!� ���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� ����� #' ���� ��%��� ���#!�� "'"#�� ���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

������� �� ����������� �������� �� � ����� ���

� ���� ���#!�� "#�#��� ��� ����#" ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� ��� &��������$�� �""������" ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� ����� ���!����' "#��!��� "#��� �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� ���� ���#!�� ���$������#������ �� � � � � � � � � � � � � � � � � � � � � � � � � � �� ���� "'���!�!�"��%�!" �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� ����� #!��"��#�! "�!%� �� �����!" �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� ���� "�!%� ���#!�� %��%�" ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� ���� ����#!��'�!�$��� "�!%� %��%�" ��� � � � � � � � � � � � � � � � � � � � � � � � �� ���� "%������ (4+ "%������ ",8<5 %(2<,9 ��� � � � � � � � � � � � � � � � � �� ���� "%������ #587;, �5:58 �+(6:,8 ��� � � � � � � � � � � � � � � � � � � � � � � � � �� ���� �2,*:85/?+8(;20* ",8<5 %(2<, �;22 �+1;9:3,4: � � � � � � � � � � � � � � � � � � � �� ��� �,4+0> %(2<,9 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� ���� ������������'�!�$��� "�!%� %��%� ��� � � � � � � � � � � � � � � � � � � �� ����� ""� �� �2(99 � �,4+0> �,*/(40*(2��?+8(;20* ",8<5 %(2<, ��� � � � � �� ����� #!����# �2(99 � "(8.,4: �,*/(40*(2��?+8(;20* ",8<5 %(2<, ��� � �� ���� !���!�������$��" ���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� ����� ���&!�#� ���$"#���# ���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� ����� !(:, �+1;9:3,4: $904. %(2<, �25= �030:,89 ��� � � � � � � � � � � � � � � � � � �� ����� !(:, �+1;9:3,4: �4<52<04. ",8<5 �3620-0,89 ��� � � � � � � � � � � � � � � � � � �� ����� "�!%� %��%� !� ��! ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� ����� "/06)5(8+ !,6(08 ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� ���� �,65: �,<,2 !,6(08 ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� ���� #,9: ":(4+9 (4+ �7;063,4: ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� ����� ",8<5 %(2<, �02:,8 �(04:,4(4*, ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� ����� �>:,84(2 �02:,89 ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Page 7: Submarien Steering Gear

�����������������������

��$��$�#� ����

����� ������������������"!% !&���

������ �28*62&0 �.08*67 ���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ������� ��#�� ������� "��"�� ���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ������� �!�� ������������ ��� ���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �������� ��� ���� ��� ��� �������% ���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ������� ��#�� ������� "��"� ���� "��"�� ���� � � � � � � � � � � � � � � � � � � � ������� ��� ��� �!����� ����� ������ ��� �%� ��� ���� � � � � � � � � � � � � � � �������� ������ ����� ������ ��� ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �������� �!$�����% ����� ������ ��� ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � ������� ���������� ����� ������ ��� ����� � � � � � � � � � � � � � � � � � � � � � � � � � ������� �274*(8.32 �63(*)96*7 ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �������� �366*(8.:* �(8.32 ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ������ � �274*(8.32 3+ �2,0* �2).(&836 &2) �**)'&(/ 6&271.88*67 ����� � � � � � � ������ � � ������ �����"��� �%���!��� �%������� ����� � � � � � � � � � � � � � � � � ������ � ��� �� ��� ������� ��� ��� �� ����� ����� � � � � � � � � � � � � � � � � � � ������ �%����� ���� ������� ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ������ �<8*62&0 �*&07 ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ������ � �28*62&0 �*&07 ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ������ � �6.8*6.& +36 �<8*62&0 �*&07 ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ������ �*; �*&07 ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ������ � �*40&(*1*28 �*&07 ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �������� �6.8*6.& +36 �28*62&0 �*&07 ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �������� �*40&(*1*28 �6.8*6.& ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �������� �*&/&,* �+8*6 �*&0 �*40&(*1*28 ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � �������� �=0.2)*6 �*&0 �*&/&,* *78 ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ������� �911&6= 3+ �=2&1.( �*&0 �*&/&,* �*59.6*1*287 ����� � � � � � � � � � � � � ������� ���������� �� ��� �� ��� ������� ����� � � � � � � � � � � � � � � � � � � �������� ��� ����%���������� ��������� ����� � � � � � � � � � � � � � � � � � � � � � �������� �*(311*2)*) "*6.+.(&8.32 �63(*)96* ����� � � � � � � � � � � � � � � � � � � � � � � ������� �08*62&8.:* "*6.+.(&8.32 �63(*)96* ����� � � � � � � � � � � � � � � � � � � � � � � � � � �������� ����"�� �� �%������ ���� ���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��������� 3659.2, �+ �=0.2)*6 �*&) �&78*2*67� ���� � � � � � � � � � � � � � � � � � � � � � � ��������� 3659.2, 3+ �=)6&90.( �=0.2)*6 �392)&8.32 �&78*2*67 ���� � � � � � � � � � ��������� �274*(8.32 3+ �&1 �<.&0 �3:*1*28 ���� � � � � � � � � � � � � � � � � � � � � � � � � ��������� �=)6&90.( �&1�3:*1*28 ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �������� �((*48&'0* �&1�3:*1*28 ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �������� �%������ ��� �� ������� ��#�� ��� ���� ��� ��� � � � � � � � � ��������� �-.11.2, 83 �'8&.2 �3(/.2, �3;*0 �0.2*1*28 ����� � � � � � � � � � � � � � � � ��������� �.7832 �3(/.2, �3;*0 �*03(&8.32 ����� � � � � � � � � � � � � � � � � � � � � � � � � � � ��������� � ��� ��"��� ���� ��"� ���� � �� ���������� ����� � � � � � � ��������� ��� ���� �0&77 �&1 �834 �4*6&8.32 ����� � � � � � � � � � � � � � � � � � � ��������� ���� �0&77 &2) ������� �0&77 �&1 �834 �4*6&8.32 ����� � � � � � � � � �������� �366*(8.32 3+ ���� �0&77 &.063) �834 �.7&0.2*1*28 ����� � � � � � � � � �������� ������ ����� ����#� �� ��"��� ���� ��"� � �� ��� �

��� ���� ��� ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��������� � ������ �����"������������� ���� ����� � � � � � � � � � � � � � � � � � � � � ��������� %����� � ������ ��� ��"��� ���� ���������� � ����� � � �������� � ������ �����"��� ������� ��!����� ����� � � � � � � � � � � � � � � � ��������� �3940.2, �278&00&8.32 �*59.6*1*287 ����� � � � � � � � � � � � � � � � � � � � � � � � � ��������� �3940.2, 03(/.2, �3087 ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��������� �3940.2, �.7&77*1'0= ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Page 8: Submarien Steering Gear

�����������������������

��$��$�#� ����

����� ������������������"!% !&���

�������� �4* �48'8/43 ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

������� ./2 �/88/3- ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

������� �+8+62/3/3- 8.+ !./)03+77 4, ' �+51')+2+38 ./2 ��� � � � � � � � � � � � � �

�������� �+8+62/3/3- 8.+ !./)03+77 4, ' �+; ./2 ����� � � � � � � � � � � � � � � � � � � � �

�������� �'</292 �114;'(1+ ./2 !./)03+77 �.'3-+7 ����� � � � � � � � � � � � � � � � �

������� �+'77+2(1= 4, �4951/3-7 ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�������� �**/8/43'1 �422+387 �551/)'(1+ 84 �+'77+2(1= ���� � � � � � � � � � � � � � �

�������� !������ ��� ��#��� ������!��� ��� ���� � � � � � � � � � � � � � � � �

�������� �447+ �4951/3- ���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�������� �+24:'1 4, � � �1'77 !.649-. �911 �433+)8/3- �4*7 ���� � � � � � �

�������� ������!��� ��� �"�����!��� ���� � � � � � � � � � � � � � � � � � � � � � � � � � � �

������� �4* �1/3+2+38 �64(1+27 ���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�������� �4* �1/3+2+38 �64)+*96+ ���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

������� � ��� �1'77 �'/6;'8+6 �/:/3- �=*6'91/) �=1/3*+6

�1/3+2+38 �64)+*96+ ���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�������� �4* �1/3+2+38 #+6/,/)'8/43 ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

������� !������ ��� ��#��� �"��� �&������ � ������ ��� � � � � �

������� �9/*+ �=1/3*+6 �437869)8/43 ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

������ �9/*+ �=1/3*+6 �/3+6 �9((+6 +'1'38 ��� � � � � � � � � � � � � � � � � � � � � � � � �

������� �9/*+ �=1/3*+6 �/3+67 $+1*+* /3 �1')+ ��� � � � � � � � � � � � � � � � � � � � � � � �

������� �9/*+ �=1/3*+6 �4:+67 '3* �')0/3- �+8'/3+67 ���� � � � � � � � � � � � � � � � � �

������ �9/*+ �=1/3*+6 �/7843 ���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

������� !����� ��� &��� ���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

������� ��� � !����� �"! ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

������� �%�� ������ !������ !��� ��������� ��� � � � � � � � � � � � � � � � �

������� ����� ��� �� !�� !������ !�����!��� "����� ��� � � � � �

������� ��� � !����� ��& ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

������ !����� ��� �" ���� ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

������ ���� !�� ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

������� ������� ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

������� �+'6/3- �9(6/)'8/43 ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

������ �4963'1 �+'6/3-7 ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

������� 5.+6/)'1 �+'6/3-7 ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�������� !.6978 �+'6/3-7 ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�������� �97./3-7 ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�������� �6477.+'* �/3 �19-7 �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�������� !.6978 $'7.+67 �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

������� �9**+6 �'66/+6 �+'6/3-7 ���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

������� �+'6/3- �1+'6'3)+7 ���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�������� �+'6/3- �1+'6'3)+ !'(1+7 ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�������� 8+63 �1'3+7 �/381+ �+'6/3- �6')0+87 '3* �77+2(1/+7 ����� � � � � � � � � � � �

������� �� !���� ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�������� !��� ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�������� �����"�����!�� ���!��� ��� �� "������� ��

��������! ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�������� ���������� ��������! ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�������� �551/)'8/43 ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�������� �+786/)8/437 '3* �+5468/3- ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

������� �438641 96,')+7 ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Page 9: Submarien Steering Gear

��� � �� !���������� ���

����!�����������!��! ���+*.)*/&%�

)0

��!��� � �����!��� ����!�!���

�$-$'-$,( �$'&

������ ���!��� "����� ��!� ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ������ ���!��� "����� ��!� ����!���� ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � ������� � !��� ���� ����!�!��� ��� "����� �����!���

�� !�� �"���� ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��!��� �� �#����� ��!����� ��� ����!������ ���"������!

������ !������ ��� ��#��� �%���"��� % !����!���������!�����!��� ��� ���!��� ���#�� �� ��� � � � � � � � � � � � � � � � � � � �

����� !������ ��� ��#�����!����� ���!�����!������"������! ��� !�� "������� ���!% �������� ��� � �

����� ��# �� ���������������� ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ������ !������ �����#����� % !��"��'���&� ��� � � � � � � � � � � � � � � � � � � � �

����������

�,,&*%)1 �$'&

�������$ � !������ �����#��� �%���"��� �%��������!����� ������� ���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�������$ � !������ �����#��� �%���"��� �%���������� ���#��� ������"��� ���� � � � � � � � � � � � � � � � � � � � �

�������$ � !������ �����#��� �%���"��� �%���������� �" ���� ��� � ��� ��� "������� � ���� �

�������$ � !������ �����#��� �%���"��� �%���������� �" ���� ��� ��� � ������ "������� � ���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�������$ � !������ �����#��� �%���"��� �%��������!!�� ���! �" ����� ���� � � � � � � � � � � � � � � � � � � � � � � � � � � �

�������$ � !������ �����#��� �%���"��� �%��������#�� �" ����� ���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�������$ � !������ �����#��� �%���"��� �%�������� !�� �" ����� ���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�������$ � !������ �����#��� !����� ��� �" ����� ���� � � � � � � � �

Page 10: Submarien Steering Gear

�����������������������

������ ����

������������� ��������������

����� $)!���� #$�"� ��&��� � �$" � #)#$�� � " ##� ������ ##�� � ���## ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

������ $)!���� #$��"��� ��� ��&��� � �$" � #$�$� �� ���� � � � � � � � � � � � � �������� #�"& &��&�� �" ##�#��$� ��� &��'� ���� � � � � � � � � � � � � � � � � � � � � � � � � � �������� ##� ��� ���## #�"& &��&�� �%��$� ��� ����"��� ���� � � � � � � � � � � � � ������ � $"����$ ���## #�"& &��&�� �%��$� ��� ����"��� ���� � � � � � � � � � �������� ##� ��� ���##������������)�"�%��� #�"& #)#$��

����"����)� ��� ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �������� $"����$ ���##������������)�"�%��� #�"& #)#$��

����"����)� ��� ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �������� $)!���� #$��"��� �����&��� �)�"�%��� �)�����"� ���� � � � � � � � �������� �)�����" #��� ������� $�#$ ���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �������� !�#$ ������ ����"���� ��$�"����$� � ����� � � � � � � � � � � � � � � � � � � � � ������� �)�"�%��� "�� �(���� &����$ ��#!��$� �� ����� � � � � � � � � � � � � � � ������� �)�"�%��� �)�����" !�#$ � ��������$ #���

��� � ����� � '�� "�� ��$� �� ���� � � � � � � � � � � � � � � � � � � � � � � �������� #$�! ��) #� $� ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �������� ����"�� �""�������$ +* #$��"��� ��� #$�"� ��&���

���"� ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ������ � ���"'�$�" ��&��� �""�������$� ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �������� � %!���� �""�������$� ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �������� � ��$� � � ��������$��"�#� ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �������� �)�"�%��� �)�����" !�#$ � "�$����"� ����� � � � � � � � � � � � � � � � � � � � � � � �������� " � ��������$ �����'�$� � %!���� "�� &��� �� �� � � � � � � � � � � �������� �%��� �)�����" ��� � ����$��� " �� �� �� � � � � � � � � � � � � � � � � � � � � � � �������� ,�%��)� ����" !�#$ � " �� �� �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �������� ���"'�$�" !����# "����������$� �� �� � � � � � � � � � � � � � � � � � � � � � � � � � � ��������� #$ �� ���"��� ����"���� ��#!��$� �� ���� � � � � � � � � � � � � � � � � � � � � � ��������� #$ �� ���"��� ����"���� ��#!��$� � � " #��!# '�$�

#��!��$ ##�� ���� ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ������� � ���"'�$�" !����# $����" ��#!��$� �� ����� � � � � � � � � � � � � � � � � � � � � � � � ��������� #$�"� ��&��� !����� ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��������� "%���" �##����)� ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��������� $)!���� %$� �"� ���"���� ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��������� $)!���� "%���" #!��"���� ���"���� ���� � � � � � � � � � � � � � � � � � � � � � � � � ������� #$��"��� �����&��� �)�"�%��� �)�����" ��$�"���

#���&���� ���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ������� $)!���� �)�"�%��� �)�����" ���� #���&���� ���� � � � � � � � � � � � � � � � ������� $)!���� ��� ���## �)�"�%��� �)�����" ���� �%#����� ���� � � � � � ������� $)!���� !"� ��� ���## �)�"�%���

�)�����"���� �%#����� ���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ������� #$��"��� �����&��� �)�"�%��� �)�����"

��$$�� � �$ �%#����� ���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ������� �%��� �)�����" � &�" �%#����� ���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ������� �%��� �)�����" !�#$ � �%#����� ���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ������� #$��"��� �����&��� $����" �"� �%#����� ���� � � � � � � � � � � � � � � � � � �

Page 11: Submarien Steering Gear

�������������� ��������

������ ����

���������������������������

�������� �&� �#��� ��%� !�# ��! �� !"�� ��� ��� ��$���� ���� � � � � � � ��������� !� $� $��$� �����������"&� ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��������� !#��� & �� �&����� !��� ����%���� ������� �"�!

���"� ��� ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �������� ������� ����� ��!"��� "� �#�!� ����� � � � � � � � � � � � � � � � � � � � � � � � � � � �������� "� �#��� �� �&����� ���� ��!"��� !� ����� � � � � � � � � � � � � � � � � � � � � ��������� "� �#� $��#�! ��� !����������� �#" �� " �#��� !� ����� � � � � ��������� �&� �#��� ����$����"� ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ������� !���" !"�����"� ��� �� �&����� ��!"�� ��������"

!���! ���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��������� "���� �� "� �#� $��#�! �� ��#������ ���� � � � � � � � � � � � � � � � � � � � � �������� ��! �� ����� ��" �����"� ! ��+/).,'/) �)/*-(� ��� � � � � � � � � � � � � � ���������� � �!!���� ��� ��#������!���!� ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���������� !"�� ��� �����$��� ��� ��� ���� ����!

!!�� ��� ���!! !"� � �����!� ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��������� �����!���! �� !"�� ��� �����$��� �&� �#���

�&����� ��"� ��� !���$���� ���� � � � � � � � � � � � � � � � � � � � � � � � � � � � ��������� �����!���! �� �&� �#��� �&����� ���� !���$���� ��� � � � � � ��������� �����!���! �� ��� ���!! �&� �#��� �&�����

���� �#!����� ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��������� �����!���! �� � � ��� ���!! �&� �#���

�&����� ���� �#!����� ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��������� �����!���! �� !"�� ��� �����$��� �&� �#���

�&����� ��""�� ���" �#!����!� ��� � � � � � � � � � � � � � � � � � � � � � � � � ��������� �����!���! �� !"�� ��� ��� ��$��� �#���

�&����� ��$� �#!����� ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��������� �����!���! �� �#��� �&����� ��!"�� �#!����� ��� � � � � � � � � � � ��������� �����!���! �� !"�� ��� �����$��� "���� � � �#!����

!"� ���� � ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Page 12: Submarien Steering Gear

!�����!��!"��������� ��

����"� � !#��� ��� !"�� ��� ��� ��$���!&!"��!

!��"��� � ��" ��#�"���

��� "&��! �� �&� �#��� !&!"��!

��� �1�)�.&*" /0"".&*$ �*! !&2&*$ +*0.+( /1.7#� "/ �.1!!". �*! !&2&*$ ,(�*"/� �." ,+/&0&+*"! �5)"�*/ +# )" %�*& �( (&*'�$" +*0.+(("! �5 � %5!.�17(& .�)� �%" %5!.�1(& /5/0")/ 1/"! 0+ +,".�0" 0%".�) 2�.5 /&$*&#& �*0(5 �)+*$ 0%" !&##"."*0 (�//"/ +#/1�)�.&*"/� �,".�0&+*�( )+!"/ %�2" �""* /+)"3%�0/0�*!�.!&6"!� �10 0%" +,".�0&*$ ,."//1."/� +*0.+(05,"/� �*! ,+3". /+1. "/ %�2" 1*!".$+*" +*/&!".7��(" %�*$" �*! !"2"(+,)"*0� �1�)�.&*" /0"".&*$�*! !&2&*$ %5!.�1(& /5/0")/ )�5 �" (�//&#&"! �/ 2�.&7��(" +. +*/0�*0 ,."//1." /5/0")/�

������$� ����� � �!!# � !&!"�� �� �!6

!# � �������� � 2�.&��(" ,."//1." /5/0") &/ "/7/"*0&�((5 � 05," +# ,1), /5/0") 0%�0 ."-1&."/ � /",�7.�0" ,1),&*$ ,(�*0 #+. "� % +*0.+( /1.#� "� �" �1/"0%" (+�! !"0".)&*"/ 0%" +,".�0&*$ ,."//1."� 0%&/ /5/70") &/ +))+*(5 ."#".."! 0+ �)+*$ /1�)�.&*" ,".7/+**"( �/ 0%" ,."//1."�!")�*! /5/0")� �%" ,."//1."!"2"(+,"! �5 0%" ,1), &/ +*(5 0%�0 ."-1&."! �5 0%"(+�! &0/"(# �*! �*5 ,."//1." (+// &* 0%" /5/0")� �%"."7#+."� 3&0% 0%&/ 05," +# /5/0")� 0%" +,".�0&*$ ,."//1."2�.&"/ �/ � #1* 0&+* +# /%&, /,""! �*! +*0.+( /1.#� ",+/&0&+*� �+0% 2�.&��("�2+(1)" �*! +*/0�*0�2+7(1)" ,1),/ %�2" �""* 1/"! #+. 0%" &*!","*!"*0 ,+37". ,(�*0/ 0%�0 )1/0 �" 1/"! &* � ,."//1."�!")�*!/5/0")� �(0%+1$% 0%" 1/" +# ."2"./&�("� 2�.&��("�2+7(1)" ,1),/ %�/ )�*5 �!2�*0�$"/� 0%" +*/0�*0�2+7(1)" / ."3 ,1), &/ 1/1�((5 /"(" 0"! +* 0%" ��/&/ +# &0/-1&"0". +,".�0&+*�

���������!"��"�� �!!# � !&!"��� �* � +*/0�*0�,."//1." /5/0")� �* � 1)1(�0+. &/ 1/1�((5"),(+5"! 0+ "/0��(&/% /5/0") ,."//1."� �%" /5/0"),."//1." &/ !&." 0(5 !"0".)&*"! �5 0%" �&. %�.$",(� "! +* 0%" � 1)1(�0+.� �%" ,1), !&/ %�.$"/ 0+0%" /5/0") �0 0%&/ ,."//1." ."$�.!("// +# 0%" ,."//1."."-1&."! 0+ )+2" 0%" (+�!� �."//1." &* "4 "// +# 0%�0."-1&."! 0+ )+2" 0%" .�) &/ !&//&,�0"! �5 0%.+00(&*$0%" +&( #(+3 0%.+1$% !&." 0&+*�( �*! #(+3� +*0.+(2�(2"/� �* 1*(+�!&*$ 2�(2" &/ 1/1�((5 ,.+2&!"! 0+ �57,�// ,1), !&/ %�.$" 0+ 0%" 0�*' �0 (+3 ,."//1." !1.7&*$ ,".&+!/ 3%"* *+ .�) )+2")"*0 &/ ."-1&."!� �1.7&*$ 0%"/" ,".&+!/� 0%" � 1)1(�0+. )�&*0�&*/ 0%" /5/70") �0 %&$% ,."//1."� �&0% 0%" +*/0�*0�,."//1."

05," +# %5!.�1(& /5/0")� 0%" ,+3". /+1. " )�5 �" "&70%". �* &*!","*!"*0 ,+3". ,(�*0 +. +*" +# 0%" /%&,�/%5!.�1(& /5/0")/�

��� ����%� !�# ��! �������! �� ��6� �"���

���� �(( /0"".&*$ �*! !&2&*$ /5/0")/ %�2" )+."0%�* +*" ,+3". /+1. " /+ 0%�0 &* 0%" "2"*0 +# � #�&(1."�* �(0".*�0&2" )"�*/ +# +*0.+( &/ �2�&(��("� �%" ,+37". /+1. " #+. �(( +,".�0&+*�( )+!"/ &/ $&2"* �5 /%&, (�// &* ���(" ����� �+ 0.�*/#". #.+) +*" ,+3"./+1. " 0+ �*+0%". $"*".�((5 ."-1&."/ 0.�*/#"..&*$#.+) +*" )+!" +# +,".�0&+* 0+ �*+0%". )+!"� �((/1�)�.&*"/ %�2" �0 ("�/0 0%."" )+!"/ +# +,".�0&+*�$"*".�((5 !"/&$*�0"! �12/'.� �/*2+*0(5� �*! �'0)�+. �1('.�� �+/0 ." "*0(5 +*/0.1 0"! /%&,/ �(/+ %�2"�* '431/'3-( +*0.+( )+!" 3%& % &/ !&/ 1//"! &* ,�.�7$.�,%/ ����� 0%.+1$% ������ �,".�0&+*�( %�.� 0".&/0& / �." �/ #+((+3/�

���� �%" 1/1�( +,".�0&*$ )+!" &/ 012/'. )+!"��%" )+!" +# +,".�0&+* 1/"! 3%"* *+.)�( )+!" #�&(/&/ */*2+*0(5�

���� �* 0%" ,'0) +. .1('.)+!" +# +,".�0&+*� 0%"%5!.�1(& ,+3". /+1. " &/ 1/1�((5 � )�*1�((5 ,+3"."!,1),� �* 0%" #(""0 /1�)�.&*"� 0%" %�*! )+!" +# +,7".�0&+* 3�/ 1/"! 0+ ,.+2&!" /&("*0 +,".�0&+* �/ 3"(( �/�* �(0".*�0&2" )"�*/ +# +*0.+( &* 0%" "2"*0 0%�0 �+0%*+.)�( �*! ")".$"* 5 )+!"/ 3"." &*+,".�0&2"��0�.0&*$ 3&0% �� �� �(�//� %�*! +,".�0&+* %�/ �""*&*/0�(("! +*(5 �/ � )"�*/ +# ,+/&0&+*&*$ 0%" +*0.+(/1.#� "/ �#0". 0%" #�&(1." +# �+0% *+.)�( �*! ")".7$"* 5 )+!"/ +# +,".�0&+*� �%" %�*! ,1),/ �." &*7/0�(("! *"�. 0%" .�)/ .�0%". 0%�* &* 0%" +*0.+( .++)��+/&0&+*&*$ +# 0%" +*0.+( /1.#� "/ +* 0%"/" /%&,/ &//(+3 �!1" 0+ (�.$" �,� &05 .�)/�� �*! &/ *+.)�((51/"! +*(5 0+ "*0". �6".+ �*$("� 0%" +*0.+( /1.#� "��+ +*0.+( 0%" /%&, 3&0% %�*! +,".�0&+* &/ )+/0 !&##&7 1(0 "2"* 3&0% � /1�/0�*0&�( ."!1 0&+* &* /%&, /,""!��* 0%" ��� �� � ��� ��� �*! ���� �� �(�//"/� (+7 �( ! �,+3"."! 2�*" ,1),/ �." &*/0�(("! &* (&"1 +#%�*! ,1),/� �%"/" ��00".5�,+3"."! ,1),/ �." �7,��(" +# )+2&*$ 0%" +*0.+( /1.#� "/ �0 �� 0+ �� !"7$."" ,". /" +*! �0 #+.3�.! /%&, /,""!/ +# �,,.+4&7)�0"(5 � '*+0/�

Page 13: Submarien Steering Gear

�����������������������

���

�'(- �)!// �,.*!)� �*%.&%+#1�� �!+$ ,. �,#!) �,+0.,)

""� ��� �/()1)/()/4 2)3352)

�).%/( 07)2 -%/43

$,4%- �9( "93 ��8')14

�84)2/%- �9( "93 *02 �07

�,6,/+�

�0/420-�"4%4,0/ �%/(15.1

"" ���� ""� ��� �-%33 �%,/ �9( "93 $,4%- �9( "93 �0/420-�"4%4,0/

�%/(15.1"" �� �-%33 �%,/ �9( "93 $,4%- �9( "93 �0'%- �%/(15.1

""� ���

""� ������ �-%33

""� ��� �-%33

�%,/ �9( "93 $,4%- �9( "93 �0'%- �%/(15.1 �%,/ �9(

"93 �02 "4))2,/+ � "4)2/

�,6,/+

""� ��� �-%33 ""�

�� �-%33 ""��

��� �-%33

�%,/ �9( "93 $,4%- �9( "93 �0'%- ���� �0402��2,6)/

5.1

""� � ���� �-%33

""�� �� �-%33

""� ���

�%,/ �9( "93 $,4%- �9( "93 �0'%- �0/420- � �%,/ �9(

"93 � �%/(15.1

""� ��� �%,/ �9( "93 ���$,4%- �9( "93

��� "402)( �/)2+9 �''5.�

��%,/ �9( "93�

�0'%- �0/420-� $,4%- �9(

"93 � �%/(15.1

""� ��� �-%33

�%,27%4)2 �,6,/+

"4&( �9( "93 024 �9( "93 "4&( �9( "93

""� ��� �-%33

"4))2,/+

�0.&,/)( "4))2,/+ �

"4)2/ �,6,/+ 07)2 -%/4

024 �9( "93 "4&( �9( "93

""� ��� "4)2/ �,6,/+ ��� "4&( �9( "93

��� "402)( �/)2+9 �''5.

� 024 �9( "93�

024 �9( "93

#!����#

�%,27%4)2 �,6,/+

"4))2,/+

"4)2/ �,6,/+

"4&( �9( "93

024 �9( "93

�/()1)/()/4 �9(

07)2 -%/4

024 �9( "93

"4&( �9( "93

��� 024 �9( "93

��� "402)( �/)2+9 �''5.

�"4&( �9( "93�

"4&( �9( "93

024 �9( "93

"4&( �9( "93

� 03,4,0/ �0/420- ��8')14 "" ���� �� ���!%4) �0/420- ��8')14 ""� ��� �-%33 %/( #!����#�

�!")% ������ � �� ���� ����� ������� ��� �������� �� ������

"" ��� �/()1)/()/4 07)2 -%/43

� 2)3352) �).%/(�

�%,/ �9( "93 �%/(15.1 �1)2%4,0/ 0*

�%,/ �9( "93

"" ��� �/()1)/()/4 2)3352)

�).%/( "934).

�%,/ �9( "93 �0/420-�"4%4,0/

�%/(15.1

Page 14: Submarien Steering Gear

��� ���������������������

���

������ +- ".-)4-"3(.- 6(3' +." + ".-31.+� , -8 24!:, 1(-$2 +2. ' 5$ 3'$ " / !(+(38 3. +(-$ 3'$ '8#1 4+("2823$, (- 24"' , --$1 3' 3 3'$ ".-31.+ 241% "$2 " -!$ /.6$1$# !8 3'$ , (- .1 5(3 + '8#1 4+(" 2823$,3'1.4&' 3'$ &("!& '8#1 4+(" ".-31.+ 5 +5$� �3 13(-&6(3' 3'$ ��� � �+ 22� 3'$ ' -#/4,/2 6$1$ #$+$3$# -# +." + ".-31.+ ".-2(23$# .% +." + '8#1 4+(" ".-31.+5 +5$� 6(3' 3'$ 2'(/�2 2$15("$ '8#1 4+(" 2823$, 2 3'$/.6$1 2.41"$�

������� �+.-& 6(3' 3'$ ".-5$-3(.- + $,$1&$-"8".-31.+ ,.#$� ��� � �� ��� � �+ 22� -# ���:���� 1$ /1.5(#$# 6(3' *+()$#�$'$)%, 2823$, %.13'$ 23$1- #(5(-& /+ -$2� �'$ 2823$, ".-2(232 .% ""4:,4+ 3.12 #$#(" 3$# 3. 3'$ 3 2* .% /.6$1(-& 3'$ /+ -$2�� "8"+$2 (- 3'$ $5$-3 .% % (+41$ .% !.3' -.1, + -#$,$1&$-"8 /.6$1 2.41"$2� �3$1- /+ -$ ,.5$,$-3�6'$- 42(-& 23.1$# $-$1&8� (2 ".-31.++$# !8 ,$ -2 .%3'$ $,$1&$-"8 ".-31.+ 5 +5$�

���������� ��� �� ������ �������

������������� �������� �- 23$$1(-& -# #(5(-&2823$,2 3' 3 $,/+.8 1 3$ ".-31.+� 3'$ #(1$"3(.- .% 3'$".-31.+ 241% "$ ,.5$,$-3 (2 #$3$1,(-$# !8 3'$ #(1$":3(.- (- 6'("' 3'$ ".-31.+ 6'$$+ .1 23("* (2 1$,.5$#%1., 3'$ -$431 + /.2(3(.-� �'$ 1 3$ 3 6'("' 3'$ ".-:31.+ 241% "$ ,.5$2 (2 #$3$1,(-$# !8 3'$ ,.4-3 3'$".-31.+ 6'$$+ .1 23("* (2 #(2/+ "$# %1., 3'$ -$431 +/.2(3(.-� �. 23./ ".-31.+ 241% "$ ,.3(.-� 3'$ ".-31.+6'$$+ .1 23("* ,423 !$ 1$341-$# 3. 3'$ -$431 + /.2(:3(.-� �'$ ".-31.+ 23("* (2 -.1, ++8 2/1(-&�"$-3$1$# 3.3'$ -$431 + /.2(3(.- 2. 3' 3 3'$ ./$1 3.1 -$$# .-+8 1$:+$ 2$ 3'$ ".-31.+ 3. 23./ 3'$ ".-31.+ 241% "$ ,.5$:,$-3�

����������������� �������� �(3' /.2(3(.-".-31.+� 3'$ /.2(3(.- 3. 6'("' 3'$ ./$1 3.1 ,.5$2 3'$".-31.+ 6'$$+ .1 23("* #$3$1,(-$2 3'$ -&+$ .1#$1$# -# 31 -2,(32 - (-/43 2(&- + 3. 24,,(-& 4-(3 .% 2$15. 2823$,� �'$ "34 + /.2(3(.- .% 3'$ ".-31.+ 241:% "$ #$3$1,(-$2 %$$#! "* 2(&- + 3' 3 (2 +2. 31 -2:,(33$# 3. 3'$ 24,,(-& 4-(3� �- 3'$ 24,,(-& 4-(3 3'$%$$#! "* 2(&- + (2 24!31 "3$# %1., 3'$ (-/43 2(&- +��'$ #(%%$1$-"$ (2 3'$ $11.1 2(&- +� 6'("' "34 3$2 3'$2$15. ".-31.+ 5 +5$ %.1 3'$ 2823$,� �'$- 3'$ ".-31.+241% "$ 1$ "'$2 3'$ .1#$1$# /.2(3(.-� 3'$ %$$#! "*2(&- + $04 +2 3'$ (-/43 2(&- +� �'$ $11.1 2(&- + (2 3'$-9$1. -# ,.5$,$-3 .% 3'$ ".-31.+ 241% "$ (2 23.//$#�

������ �1(.1 3. ��� � �+ 22� /.2(3(.- ".-31.+ -# 1 3$ ".-31.+ &$-$1 ++8 6$1$ 42$# %.1 -.1, + -#$,$1&$-"8,.#$2 .% ./$1 3(.-� 1$2/$"3(5$+8� ��� � �+ 22 -# ������� �+ 22 42$ /.2(3(.- ".-31.+ %.1!.3' -.1, + -# $,$1&$-"8 ,.#$2 .% ./$1 3(.-��.1, + ".-31.+ ! 2(" ++8 ".-2(232 .% - $+$"31.�'8:

#1 4+(" 2$15. ".-31.+ 2823$,� 6'$1$ 2� $,$1&$-"8".-31.+ (2 ,$"' -(" +�'8#1 4+(" $04(5 +$-3 .% 3'$-.1, + ,.#$ 2823$,�

����������������� ����� �� �������

������� �$-$1 ++8� ++ -4"+$ 1 24!, 1(-$2 ' 5$ ' # - ##(3(.- + ./$1 3(-& ,.#$ 1$%$11$# 3. 2 43., 3:("� � -8 5 1( 3(.-2 .% 3'(2 ! 2(" ".-"$/3 ' 5$ !$$- (-:23 ++$#� �- $ "'� 3'$ '8#1 4+(" 1 ,2 1$ ".-31.++$# !8,$ -2 .% 3'$ -.1, +�,.#$ '8#1 4+(" 2$15. 5 +5$ -#3'$ -.1, + /.6$1 2.41"$� '.6$5$1� 3'$ (-/43 3. 3'$2$15. 5 +5$ #.$2 -.3 .1(&(- 3$ 3 3'$ ".-31.+ 23("*� � :2(" 43., 3(" ".-31.+ 2823$,2 1$ #(2"422$# '$1$(-�!43 , -8 .% 3'$ (-(3( + (-23 ++ 3(.-2 ' 5$ !$$- 1$:,.5$# -# 1$/+ "$# 2 1$24+3 .% .!2.+$2"$-"$ -#'(&' , (-3$- -"$ ".232�

������������������ �������� ��������

�- 43., 3(" �.412$ �$$/(-& �.-31.+ ����� 2823$,6 2 (-23 ++$# .- ,.23 $ 1+8 -4"+$ 1 24!, 1(-$2� �.1!.3' 241% "$ -# 24!,$1&$# ./$1 3(.-2� $,/' 2(26 2 /+ "$# .- ""41 3$+8 '.+#(-& ".412$ 4-#$1 5 18:(-& 2/$$# -# 6$ 3'$1 ".-#(3(.-2� �- 3'$ ��� ,.#$.% ./$1 3(.-� (% 3'$ 24!, 1(-$ #$5( 3$# %1., - .1:#$1$# ".412$ !$" 42$ .% 4-".-31.++ !+$ $73$1- +%.1"$2� 2(&- + 6 2 (-#4"$# !8 ,.5$,$-3 .% 28-"'1.2 22."( 3$# 6(3' 3'$ ".,/ 22 -# '$ #(-& �".412$ .1:#$1 31 -2,(33$1�� �'(2 $11.1 2(&- +� ,/+(%($# !8 , &:-$3(" .1 2.+(# 23 3$ ,/+(%($12� ".-31.++$# 3'$ 14##$12$15. 5 +5$ 3' 3 /.2(3(.-$# 3'$ 14##$1 2. 2 3. 1$341-3'$ 2'(/ 3. 3'$ .1#$1$# '$ #(-&� �'(2 2823$, ".-3(-:4$# 3. ./$1 3$ -# '.+# %(7$# '$ #(-& 4-3(+ 3'$ ".-:31.+ 23 3(.- " ++$# %.1 -$6 ".412$� �- , -8 .% 3'$,.1$ 1$"$-3+8 ".-2314"3$# 2'(/2� - �43., 3("�.412$ �.-31.+ ����� 2823$, (2 (-23 ++$#� �'(2 282:3$,� (- ##(3(.- 3. , (-3 (-(-& '$ #(-&� (2 " / !+$.% , *(-& ".412$ "' -&$2 43., 3(" ++8 6'$- 3'$".412$ .1#$1 31 -2,(33$1 (2 , -4 ++8 "' -&$#�

������ ����������� ����� �������� �- 43., 3(" �$/3' �$$/(-& �.-31.+ ����� 2823$, 6 2(-23 ++$# .- ,.23 $ 1+8 -4"+$ 1 24!, 1(-$2� �3 (2 2(,(:+ 1� 6(3' 1$2/$"3 3. !.3' ".,/.-$-32 -# ./$1 3(.-�3. 3'$ ��� 2823$,� $7"$/3 3' 3 3'$ $11.1 2(&- + 1$24+32%1., 3'$ 5 1( -"$ !$36$$- 3'$ #$/3' 1$&(23$1$# !8 3'$2'(/�2 #$/3' #$3$"3.1 2823$, -# 3'$ .1#$1$# #$/3'��(&- + %$$#! "* %.1 ".-31.+ "3(.- (2 %1., 23$1- #(5(-& -# % (16 3$1 /+ -$2� �2 3'$ $04(/,$-3 +(,(32 3'$#$/3' $11.1 2(&- +� .-+8 2, ++ #$/3' +3$1 3(.-2 " - !$, #$� $- !+(-& #$/3' *$$/(-& !43 -.3 2(&-(%(" -3#$/3' "' -&$� �.1$ 1$"$-3 2'(/2 ' 5$ - �43., 3("�$/3' �.-31.+ ����� 2823$,3' 3� (- ##(3(.- 3. , (-3 (-(-& ".-:

Page 15: Submarien Steering Gear

� ����� �����������������

��

,!)-3!)-)-' #.-23!-3 $%/3(� /%1,)32 !43.,!3)# #.,:/+)!-#% 6)3( !-8 ,!'-)34$% .& $%/3( #(!-'% .1$%1%$�

������ ���������� ��������� ��������

��� ������� �.-31.++%12 #.,")-)-' 3(% &%!341%2 .&��� !-$ ��� !1% )-23!++%$ .- 3(% +!3%23 24",!1)-%2�

����������)(-+)''#+ �*#+!-&)(� �(% #.-31.++%12� 1%:&%11%$ 3. !2 �43.,!3)#�!-%45%1)-' �.-31.+ �������43.,!3)# �4",!1)-% �.-31.+ ������ !-$ ���:����� /1.5)$% !43.,!3)# #.-31.+ .& 3(% 2()/� �%:2)1%$ $%/3( !-$ #.412% $!3! !1% ,!-4!++8 $)!+%$ )-3.3(% #.-31.++%1� 6()#( /1.5)$%2 #.-31.+ 2)'-!+2 �2),)+!13. ��� !-$ ��� 4-)32� 3. "1)-' 3(% 2()/ 3. 3(% .1:$%1%$ #.412% !-$ $%/3(� �(% ������� 2823%, !+2./1.5)$%2 ! $)2/+!8 3(!3� )- ,!-4!+ ,.$% .& ./%1!3).-�%-!"+%2 3(% (%+,2,!- 3. "1)-' 3(% 2()/ 3. 3(% .1$%1%$#.412% !-$ $%/3( "8 /)#3.1)!+ .1 3),%�04)#*%-%$ $)2:/+!8�

���������������� �&"-)+&!' �&,*'!/�� /)#341% .&3(% 2()/�2 23!342 )2 28-3(%2)9%$ !3 3(% 2()/�2 #.-31.+/!-%+ .- 3(% $)2/+!8 4-)3 #!3(.$% 1!8 34"% "%&.1% 3(%.43".!1$ 23!3).-� �(% 5)%6 )2 .-% 3(!3 (%+,2,%-,)'(3 (!5% )& 3(%8 6%1% 24//+)%$ 6)3( ! 6)-$.6 &!#)-'.43 .& 3(% ".6 .& ! 24",!1)-%� �(% .#%!- 241&!#% !-$".33., !1% 1%/1%2%-3%$ "8 '1)$ /!33%1-2 3(!3 ,.5% 3.:6!1$ 3(% 5)%6%1 !2 3(% 24",!1)-% 31!5%+2 &.16!1$� �(%'1)$ 204!1%2 !1% #.,/!22�.1)%-3%$ 3. )$%-3)&8 -.13(�3(% 204!1%2 5!18 )- 2)9% 3. #1%!3% !- )++42).- .& $)2:3!-#%� %13)#!+ !-$ #)1#4+!1 /)#341% ,.3).-2 )-$)#!3%2()/ 31), !-$ 1.++� 6()+% ! #%-3%1 #1.22 .- 3(% 2#1%%-

2%15%2 !2 3(% 9%1. 31), !-$ (%!$)-' 1%&%1%-#%� �.,:,!-$ )-&.1,!3).- )2 $%/)#3%$ !2 ! 1.!$6!8 3(!3 3(%24",!1)-% ,423 &.++.6� 3(% 1.!$6!8 #415%2 3. 3(%/.13 .1 23!1".!1$ 3. )-$)#!3% #.412% %11.12� !-$#(!-'%2 (%)'(3 3. )-$)#!3% $%/3( %11.12� �.1)9.-3!+"!12 .- 3(% 1.!$6!8 ,.5% 3.6!1$ 3(% ."2%15%1 3. )-:$)#!3% 1%+!3)5% 2()/ 2/%%$�

���������� ���� ��������� ��������

������� �2 3(% 2)9% !-$ 2/%%$ .& 24",!1)-%2 (!5%)-#1%!2%$� 3(% ./%1!3)-' /1%2241%2 .& 3(% 23%%1)-' !-$$)5)-' 2823%,2 (!5% )-#1%!2%$ #.11%2/.-$)-'+8� �-&+%%3 24",!1)-%2� 2823%,2 (!5% 5!1)%$ &1., � 3.�� /.4-$2 /%1 204!1% )-#( �+"�)-� �� �(% )-$%/%-:$%-3 23%%1)-' !-$ $)5)-' 2823%,2 .- +!3%1 24",!1)-%2./%1!3% !3 /1%2241%2 .& �� 3. �� +"�)-� � �23.104% +.!$2 (!5% )-#1%!2%$ 6)3( +!1'%1 2()/2 !-$()'(%1 2/%%$2� ���+"�)-� 2823%,2 (!5% "%%- 42%$!+,.23 %7#+42)5%+8�

��������� ����� ������ ������� � ����

������ � 38/)#!+ 23%1- /+!-% (8$1!4+)# #.-31.+ 282:3%, &.1 ��� ��� !-$ ���� � �+!22 24",!1)-%2 )22(.6- )- �)'41% ����� �(% &)'41% )-#.1/.1!3%2 !2),/+)&)%$ %+%#31)#!+ "+.#* $)!'1!, 3. 2(.6 3(% 1%+!:3).-2()/ .& #.,/.-%-32� �(% "+.#* +!"%+%$ $.("-&)(%#(#+!-)+ /1),!1)+8 1%/1%2%-32 3(% %+%#31)#!+ %04)/:,%-3 !22.#)!3%$ 6)3( 3(% !43.,!3)# 2()/ #.-31.+ &%!:341%� �!)16!3%1 $)5)-' !-$ 23%%1)-' #)1#4)32 !1% 2),):+!1�

Page 16: Submarien Steering Gear

���� ���������������� ���

���

�" +(� � ������ �-'"��# �*�(% �","% �&%*(&# �-)*�$ �&( ��� � �%� ���� �� �#�))

��!��* � &� �

Page 17: Submarien Steering Gear

�������� ��������������

���

���%"�������������'!������$�"����&����� �$" ���'#$���� "������ ����������������##�����$��� ����

Page 18: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–1

SECTION 2. COMPONENTS: FUNCTION AND MAINTENANCE

561–2.1 CONTROL STATION COMPONENTS

561–2.2 Most submarine steering and diving control sta-tions consist of an inboard and outboard operating stationfacing the ship control panel. Principal controls and indi-cators that are mounted on the ship control panel at a typ-ical steering and diving control station are illustrated inFigure 561–2–1. Each operating station has an aircraft–type control column. Each wheel/column assembly con-sists of a control column, a wheel mounted on the controlcolumn, positioning devices, and three synchro resolv-ers.

561–2.3 WHEEL/COLUMN ASSEMBLIES. Sterndiving planes and fairwater diving planes are controlledin both normal and emergency modes by fore–and–aftmovement of the control columns. Pushing the controlcolumns forward moves the planes in the dive direction.Pulling the controls aft moves the planes in the rise direc-tion. Control column movement is limited to approxi-mately 6 inches of travel forward (hard dive) or aft (hardrise) from its center position. Adjustable hard stops areprovided at the full throw positions. These stops are usedfor initial system alinement by setting the maximum riseand dive angles for diving planes in the normal controlmode.

561–2.4 Each control column is spring–loaded to pro-vide a reactive force against movement by its operator.When the controls are released, spring action returns thecontrol column to its center position. The force requiredto move a control forward or aft is nominally 10 poundsat center position, increasing to 20 pounds at full throw,and is adjustable.

561–2.5 Movement of the control column, which is piv-oted at the base of the assembly, operates a gear train thatrotates two synchro resolvers. Each synchro resolver,when energized, provides an electrical input signal to aservo translator amplifier. By switching arrangement,either the stern plane or fairwater plane translator servoamplifier, or both, may be connected to the synchro re-solvers of either the inboard or outboard control column.

561–2.6 Each control column can be immobilized in oneposition by a pin–type lock. When secured with the lock,the control column is positioned for slight rise angle.This angle is determined for each ship during sea trials.To attain minimum drag on the hull during surface opera-tion, the stern planes must be in the position that resultsfrom this ship–specific rise angle.

561–2.7 Emergency control–mode operation of sterndiving planes and fairwater diving planes is controlledfrom the outboard and inboard wheel/column assem-blies, respectively. Emergency control of the divingplanes cannot be switched from one wheel/column as-sembly to the other. The outboard wheel/column assem-bly is mechanically linked to the emergency controlvalve for the stern diving planes. The inboard wheel/col-umn assembly is mechanically linked to the emergencycontrol valve for the fairwater diving planes.

561–2.8 Rudder surfaces are normally controlled byrotation of the wheel on either one or the other (but notboth) of the column assemblies. For each 3–1/2 degreesof wheel rotation, the rudder moves 1 degree. Clockwisewheel rotation results in a right rudder movement; coun-terclockwise rotation produces a left rudder movement.

561–2.9 When rotated by the operator, the wheel posi-tions a synchro resolver, which in turn generates an inputsignal for the rudder translator servo amplifier. Byswitching arrangement, the rudder translator servo am-plifier may be selectively connected to the synchro re-solver of either the inboard or outboard wheel. Thewheel can be locked in its neutral position by a pin–typelock. Also, a drag force may be set on the wheel in anyposition from zero to lock. The drag force is adjusted bythe rotation of a plate below the wheel; counterclockwiserotation increases the drag. Rotation of the drag platesets a disc–type brake. The braking force is provided bya belleville washer. On the wheel shaft is a rack–oper-ated stop and neutral detent device. The rack is spring–loaded to return the wheel to its neutral position (zerorudder angle), indicated by a spring–actuated detent.The force required to rotate the wheel, as measured tan-gentially at the rim, is nominally 1 pound at the centerposition, increasing to 5 pounds at maximum range ofrotation. Also, adjustable hard stops are provided to lim-it movement of the rack, which in turn limits rotation ofthe wheel. These stops are used to aline the system ini-tially by setting the maximum right and left rudder anglein the normal control mode.

561–2.10 In the normal control mode, the diving planesand the rudder can be operated from eitherthe inboard or outboard wheel/column assem

Page 19: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–2

Figure 561–2–1. Typical Steering and Diving Control Station

bly, as selected by the position of a selector switch (orswitches) located on the ship’s control panel.

561–2.11 EMERGENCY STEERING STICK. Emergency rudder operation is accomplished by manu-ally positioning the rudder emergency control value us-ing the emergency steering stick located at the ship con-

trol station. The stick is spring–loaded so that, if re-leased, it will return to the neutral, rudder–amidshipposition.

561–2.12 CONTROL COLUMN MAINTENANCE. When maintenance action is required on the control col-umn assembly, the utmost care must

Page 20: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–3

be taken to ensure proper reassembly in accordance withapplicable drawings. For example, with the original de-sign on the SSN 571, SSN 578 Class, SSN 585/588Class, SSN 586, SSN 597, SSN 598 Class, SSN 608Class, SSBN 616 Class, and the SSBN 640 Class, it waspossible to incorrectly assemble the pinion cam in an up-side–down position. As a result of incorrect assembly,the stick could jam affecting both normal and emergencymodes of operation for that stick. A pinion cam alter-ation to prevent incorrect assembly was authorized (SHI-PALTs SSN 1579 and SSBN 1287). This example illus-trates the necessity of verifying correct assembly. Aftercontrol stick maintenance, the final action to completethe job should be an inspection of the stick and connect-ing linkages for ruggedness, for security of connectingpins, and for the presence of any interference that couldjam the component.

561–2.13 SYNCHRO RESOLVERS

561–2.14 Basically, a synchro resolver (or control trans-former) consists of a concentrically–alined wound rotorand stator that convert a mechanical position (angularrotation of the rotor shaft) into an output electrical signalby producing a variable magnetic coupling with the sta-tor windings. The output voltage varies sinusoidallywith the rotor position when the stator is excited. Ship-board use of synchro resolvers is described in paragraphs561–2.15 and 561–2.16.

561–2.15 The steering and diving system generally usesnine synchro resolvers (transformers) that generate elec-trical signals for processing by the normal control modecircuitry. Six of the synchro resolvers are used to gener-ate ordered rudder, stern plane, and fairwater plane anglesignals; the remaining three are used to generate actualrudder, stern plane, and fairwater plane feedback signals.A limited number of ships have systems in which a com-mon synchro resolver is used to generate ordered signalsfor the fairwater and stern planes. The total number ofsynchros on these ships is seven; four are for orderingsignals and three are for feedback signals.

561–2.16 Synchro resolvers used in the steering and div-ing systems are not considered repairable by ship’s forceand should be replaced if they malfunction. The onlytests that can be performed to troubleshoot a synchro re-solver suspected to be a problem component are resis-tance–to–ground and continuity tests of the stator wind-ings. Additional information on synchro resolvers ispresented in chapter 430, Interior CommunicationInstallations.

561–2.17 TRANSLATOR SERVO AMPLIFIERS

561–2.18 The command signal for each servo controlvalve torque motor is supplied by a translator servo am-plifier. Each amplifier processes signals both from acontrol stick command synchro resolver at the controlstation and from a feedback synchro resolver located inthe vicinity of the control surface operating cylinder. Inaddition, each amplifier produces an output signal thatoperates the torque motor in a servo control valve. Op-erational characteristics are described in paragraphs561–2.19 through 561–2.24.

561–2.19 Translator servo amplifiers have changed ex-tensively since the beginning of nuclear submarineconstruction. In addition to the basic function of proces-sing signals to control the servo valve, most translatoramplifiers perform the second function of providing anautomatic means to shift to the emergency control modein the event of certain system failures. This second func-tion is performed by the fail–detect network.

561–2.20 On earlier classes, the fail–detect networkonly monitored the translator amplifier for proper opera-tion (internal failures). Through evolution, the functionof the fail–detect network has greatly expanded. On SSN688 and TRIDENT Class ships, the fail–detect networkwill automatically transfer from the normal controlmode to the emergency control mode upon detection ofany of the following failures:

a. Loss of electrical power to the ampli-fier

b. Loss of synchro excitation voltage

c. Failure in the amplifier network

d. Control surface movement in a wrongdirection

e. Control surface movement at an im-proper rate

f. Excessive steady–state error betweenthe ordered and actual control surface position

g. Control surface movement when noerror signal is present.

561–2.21 In the event of any of the aforementioned fail-ures, the fail–detect channel will interrupt

Page 21: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–4

power to the solenoid of the power transfer value pilotvalve, causing it to shift to its emergency mode position.

561–2.22 The basic construction of these amplifiers hasevolved from point–to–point wired magnetic amplifiersto solid–state amplifiers with plug–in modules.

561–2.23 Troubleshooting of all translator servo ampli-fiers, particularly older models, must be conducted cau-tiously. Improper technique can easily result in exces-sive damage. Damage to older amplifiers can be particu-larly expensive because of the high cost and scarcity ofoutdated components.

561–2.24 For detailed information and troubleshootingguidance, refer to applicable equipment technical manu-als.

561–2.25 SERVO CONTROL VALVES

561–2.26 Servo control valves installed in submarinesteering and diving systems can be classified into twogeneral types. The most common type is the electrohy-draulic servo valve that is used to control normal–modesteering and diving on most diesel submarines and on allnuclear submarines. The other type of servo valve, thehydraulic–mechanical servo valve, is used for emergen-cy steering and diving modes on SSN 688 and TRIDENTClass submarines and for fairwater diving on SS 581.

561–2.27 ELECTROHYDRAULIC SERVOVALVES. The electrohydraulic servo valves used forsteering and diving control are two–stage hydraulic con-trol valves. An electrical input signal (the difference be-tween command and feedback signals) results in a hy-draulic flow output proportionate to the input signal.

561–2.28 SV–438–10P and SV–438–15P ServoValves. SV–438–10–P and SV–438–15P valves wereoriginally designed and built by Sanders Associates butare now being overhauled and built by Sargent Indus-tries. The SV–438–10P valves are installed on most pre–SSN 678 Class submarines starting with the SSN585/588 Class. The similar SV–438–15P valve isinstalled in SSN 678 through SSN 687. Five differentconfiguration SV–438–10P valves were originally pro-cured to match five existing electrical control interfaces.Subsequently, minor technical problems resulted inchanges known as the viscous damper modification andthe open orifice modification. In addition, some ampli-fier design changes by Electric Boat Division have re-sulted in torque motor wiring changes and three moreconfigurations. Specifics regarding the possible valveconfigurations are addressed in the applicable servovalve technical manual (see paragraph 561–2.46).

561–2.29 The primary parts of the SV–438–10P andSV–438–15P low–noise electrohydraulic servo valvesare shown in Figure 561–2–2. An input signal is appliedto the servo valve torque motor adapter (now shown)from the translator servo amplifier. The torque motoradapter is required to match the amplifier to the servovalve torque motor (see paragraph 561–2.30). Thetorque motor produces an output torque that is propor-tional to the input signal current. The torque tube dis-places the flapper valve between the nozzles of the pilotstage. This displacement causes an unbalance in pres-sure between PV1 and PV2 that moves the main controlspool off center. Movement of the main spool continuesuntil the feedback spring (wand) between the main spooland the flapper produces a torque equal and opposite tothat produced by the torque motor. The spool displace-ment is therefore proportional to the input signal current.Accordingly, flow through the valve is proportional to in-put signal up to the point of maximum spool displace-ment. The maximum flow rate and, consequently, theram rate, can be controlled either by setting the flow lim-iter adjustments to limit main spool travel or by limitingservo amplifier voltage output as discussed in paragraph561–2.47.

CAUTION

Prior to the installation of a replacement servovalve, the valve shall be checked to ensurethat the correct torque motor adapter isinstalled. Failure to use correct torque motoradapter may result in system malfunction.

561–2.30 SV–438–10P Torque Motor Adapter. Wheninitially installed, each SV–438–10P valve was procuredwith a torque motor adapter configuration to suit theship’s control system amplifier. Any SV–438–10P valveconfiguration may be installed on any ship withSV–438–10P valves by rewiring the torque motor adapt-er to suit the ship’s control system. Torque motor adapterremoval, rewiring, and replacement procedures for eachship installation are provided in the servo valve technicalmanual (see paragraph 561–2.46).

Page 22: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–5

Page 23: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–6

561–2.31 Electrohydraulic Servo Valve Null Adjust-ment. Servo valves may be null adjusted on a test standor with the valve installed in the ship. Null adjustmentprocedures are provided in servo technical manuals (seeparagraph 561–2.46).

561–2.32 Bendix Valves. Functional drawings of theBendix Corporation electrohydraulic servo valves usedaboard the SSN 688 Class and TRIDENT Class ships areshown in Figures 561–2–3 and 561–2–4 respectively.

561–2.33 In the SSN 688 Class valves, hydraulic opera-tion of the first stage torque motor is achieved throughthe use of a flapper and two small nozzles. Hydraulic pi-lot pressure is applied to the two nozzle pressure cham-bers through a filter and two fixed orifices. When an in-put command signal is applied to the coils, the flappermoves from the null position, changing the gaps betweenthe output ends of the two nozzles and the adjacent sur-faces of the flapper. One gap is narrowed and the otheris widened, resulting in an imbalance in nozzle chamberpressure. These pressure changes are transmitted to thesecond stage valve where they actuate the second stagevalve spool. The drive piston receiving the higher pilotpressure begins to move the valve spool toward the oppo-site end and override the opposing centering–springforce, allowing spool movement. As the spool displacesfrom null system, hydraulic fluid is ported through thequieting elements in the sleeve. This allows system flowbetween the system hydraulic power source (ports P andR) and the associated ship’s equipment (ports C1 and C2)being operated by the servo valve. The direction of flowis dependent on the polarity of the input command signalto the first–stage torque motor. The amount of spooltravel, and hence the amount of fluid flow through theservo valve, is proportional to the amplitude of the inputsignal.

561–2.34 When the torque motor is at electrical null, thesecond–stage valve is at hydraulic null. All flow throughthe valve (ports P, R, C1, and C2) is blocked, except forallowable internal leakage. The second–stage valvespool is maintained at null (center position) by centeringsprings at each end and by balanced hydraulic pilot pres-sure applied to pressure chambers.

561–2.35 An adjustment nut and jamnut are installed ateach end of the second–stage valve and used to null thevalve spool with zero milliamperes of input current ap-plied to the first–stage torque motor. The adjustment nutis used to position the associated drive cylinder inwardor outward inside the bore of the end cap, increasing ordecreasing centering spring tension on that end of thespool. A bolt threaded into the outboard end of each

drive cylinder provides the means to adjust spool travelin each direction. A jamnut is installed on each bolt tolock the bolt at the selected position. By adjusting andlocking the bolts, the flow rate through the servo valveis adjustable.

561–2.36 In the TRIDENT valves (Figure 561–2–4), thefunctioning of the first stage is the same as for the SSN688 Class valves except that second stage spool position-ing control is different.

561–2.37 Linear Variable Differential Transformers(LVDTs) (hereinafter referred to as transducers )threaded into the outboard end of each drive cylinderprovide a means of sensing and controlling the valvespool position. Transducer output, resulting from valvespool motion in either direction, is fed to the ship systemelectronics where it is used to control the electrical com-mand to the torque motor. The second–stage valve is op-erated by internal pilot differential pressures created byoperation of the first–stage torque motor. When thetorque motor is at electrical null, the second–stage valveis at hydraulic null, and the transducers are at electricalnull, with all flow through the valve (ports P, R, C1, andC2) blocked. The second–stage valve spool is main-tained at null (center position) by transducer feedback,by centering springs at each end, and by balanced hy-draulic pilot pressure applied to pressure chambers indrive cylinders also located at each end.

561–2.38 When the first–stage torque motor receives aninput command signal, the nozzle chamber pressures inthe first stage become unbalanced. As a result, a pressuredifferential is created between the two drive–cylinderpressure chambers in the second–stage valve. The drivepiston receiving the higher pilot pressure will begin tomove the valve spool toward the opposite end where thepilot pressure is being ported to pilot pressure returnthrough the first–stage torque motor nozzle block. Theincreased pressure in the small pressure chamber of thedrive cylinder and drive piston also overrides the oppos-ing centering–spring force, allowing spool movement.Spool movement causes transducer output to the ship’ssystem in a feedback loop to control and maintain spoolposition to the commanded position. As the spool dis-places from null, system hydraulic fluid is portedthrough the quieting elementsin the sleeve. This allows system flow between thesystem hydraulic power source (ports P

Page 24: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–7

Page 25: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–8

Page 26: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–9

and R) and the associated ship’s equipment (ports C1 andC2) being operated by the servo valve. The direction offlow is dependent on the polarity of the input commandsignal to the first–stage torque motor. The amount ofspool travel is linearly proportional to the amplitude ofthe input signal, and flow through the valve is controlledelectronically instead of by spool stops as discussed inthe preceding description. An adjustment nut and jamnutare installed at each end of the second–stage valve andare used to null the valve spool with zero milliampere ofinput current applied to the first–stage torque motor. Theadjustment nut is used to position the associated drivecylinder inward or outward inside the bore of the end cap,increasing or decreasing centering spring tension on thatend of the spool. It must be clearly realized that this ad-justment is a null adjustment only and not a spool stop tolimit maximum flow through the servo valve.

561–2.39 MECHANICAL–HYDRAULIC SERVOVALVE. The mechanical–hydraulic servo valve re-ceives input through hydraulic lines. In SSN 688 Class,a master cylinder is moved by the control column orwheel proportional to the ordered control surface posi-tion. Fluid from the master cylinder, in turn, moves theslave cylinder at the servo valve commensurate with theordered control surface position. In the TRIDENT valve,the procedure is similar except that the slave cylinderdisplacement is dependent upon a pressure signal that isproportional to the displacement of a pilot valve at thecontrol station. In both SSN 688 and TRIDENT Classes,there is mechanical feedback input to the valve as thecontrol surface moves to its ordered position. The sum-ming linkage at the valve returns the emergency controlvalve spool to the blocked neutral position when the con-trol surface reaches the ordered angle.

561–2.40 SSN 688 Class – Bendix Mechanical–Hy-draulic Servo Valve. A schematic of the SSN 688 Classmechanical–hydraulic servo system is shown in Figure561–2–5. Movement of the control column or stick pro-duces a mechanical input signal by positioning the mas-ter cylinder piston. The position of the master cylinderpiston is always proportional to the ordered control sur-face position. The master cylinder piston displacementcauses a hydraulic fluid displacement that is transmittedvia piping to the slave cylinder in the emergency controlunit assembly. This displacement of the slave cylindercauses the pilot and main stage spools of the emergencycontrol valve to shift, porting pressure to the control sur-face operating cylinder. As the control surface moves,the emergency follow up and transmitter drive linkageattached to the operating rod coupling is driven. Thefeedback linkage transmits a mechanical signal to theemergency control unit assembly, which causes the

emergency control valve spool to return to the blockedcenter position when the control surface reaches the or-dered angle. As long as the control column is held at theordered position, the control surface will also hold its re-spective position. With this system, control surfacemovement rate is maintained by a pressure–compen-sated flow–control valve located in the return line fromthe emergency control valve.

561–2.41 TRIDENT Class – Sargent Mechanical–Hydraulic Servo Valve. A schematic of the TRIDENTClass mechanical–hydraulic servo system is shown inFigure 561–2–6.

561–2.42 Each control surface control system input sig-nal generator consists of two three–way, infinite posi-tioning, proportional control valves within a commonbody. The valves are operated in conjunction with eachother by the control column or emergency helm. Whena control column or the emergency helm is deflected, thespools of both valves in the input signal generator are dis-placed from the blocked center position. One of thespools is positioned to allow pressurized hydraulic fluidto be supplied to the slave cylinder of the emergency con-trol valve, while the other spool is positioned to ventfluid from the opposite end of the slave cylinder.

561–2.43 The spool of each valve in the input signal gen-erator is spring–loaded on one end and has a hydraulic pi-lot actuator on the opposite end. The interaction of thespring and the hydraulic pressure on the pilot actuatorcauses the valves to remain open only until the hydraulicpressure balances the spring pressure applied when thecontrol or emergency helm is deflected. This hydraulicfluid pressure is the control surface hydraulic positioncommand signal sent to the emergency control valve.

561–2.44 The emergency control valve assembly con-sists of a slave cylinder, two directional control valves,a boost cylinder with associated cross–port relief valve,and the interconnecting summing linkage. The hydrau-lic input signal to the emergency control valve is appliedto the slave cylinder. Displacement of the slave cylinderpiston causes the movement of the summing linkage in-put arm to shift the pilot valve spool.

Page 27: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–10

Figure 561–2–5. SSN 688 Class Mechanical–Hydraulic Servo System (Emergency Mode)

561–2.45 Hydraulic fluid is ported through the pilotvalve to the boost cylinder, causing movement of the pis-ton (which is pinned to both the input arm and the feed-back arm of the summing linkage). Movement of the pis-ton in the boost cylinder causes displacement of both theinput arm and the feedback arm. When the piston of theboost cylinder reaches a position corresponding to thedesired control surface angle, the pilot valve spool willbe at the blocked center position, thus holding the pistonof the boost cylinder at the desired position. At the sametime, displacement of the feedback arm (connected to theopposite end of the boost cylinder piston) causes themain stage spool to be positioned so as to allow pressur-ized hydraulic fluid to be supplied to the control surfaceram via the power transfer valve. As the control surfaceram moves, the feedback arm is displaced, thus returningthe main stage spool to the blocked center position.When the ram reaches the desired position, the main

stage spool is at the blocked position; and ram motionstops. With this system, control surface movement rateis controlled by adjustable mechanical stops on the mainstage spool extension.

561–2.46 REFERENCE MANUALS. Each modelservo valve installed in submarine steering and divingsystems has an individual technical manual. The servovalve model installed in each ship or ship class, alongwith its corresponding technical manual number, is iden-tified in Table 561–2–1. Applicability of manuals shouldalways be verified using the most current ships’ technicalmanual index.

561–2.47 FLOW RATE ADJUSTMENT. With mostservo valves, the maximum desired control

Page 28: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–11

Figure 561–2–6. TRIDENT Class Mechanical–Hydraulic Servo System (Emergency Mode)

surface rate is reached with less than maximum valvespool displacement. Therefore, one of the followingtechniques is used to limit the rate to some selected maxi-mum level. (See paragraphs 561–3.2 and 561–3.4 forspecific rates.)

1. Physical hardstops (within the valve) areused to limit the servo valve main spool displace-ment.

Page 29: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–12

Ship Number

Table 561–2–1. SERVO VALVE APPLICABILITY

Manufacturer and Manufacturer’s Part Number NAVSEA Technical Manual Number

AGSS 555 Arkwin 7A 038 0322–LP–037–5010

SS 567 Bendix Electrodynamics 3167240

LPSS 574 (Stern) Sperry 1675441–2 0905–LP–075–3020 Appendix B

LPSS 574 (Rudder) Sperry 1675441–4 0905–LP–075–3020LPSS 574 (Bow) Sperry 1675441–1 0905–LP–075–3020

SS 576, 580SSN 575, 578,583, 584

Sanders Associates SA–22 0348–LP–137–9000

SS 581 (Stern, Rudder) Bendix Corporation 3060254 0321–LP–005–8000

SS 581 (Fairwater) Sanders Associates(Mechanical–Hydraulic) SV–437

0905–LP–000–4420

SS 582, SSN 579 Bendix Electrodynamics 3060254 0321–LP–005–8000

SSN 585 Class Sargent Industries* SV–438–10P S9561–AQ–MMA–010/SV–438–10P

SSN 594 Class Sargent Industries* SV–438–10P S9561–AQ–MMA–010–SV–438–10P

SSN 597 Sargent Industries* SV–438–10P S9561–AQ–MMA–010/SV–438–10P

SSN 598 Class Sargent Industries* SV–438–10P S9561–AQ–MMA–010/SV–438–10PSSN 608 Class Sargent Industries* SV–438–10P S9561–AQ–MMA–010/SV–438–10P

SSN 616 Class Sargent Industries* SV–438–10P S9561–AQ–MMA–010/SV–438–10P

SSN 640 Class Sargent Industries* SV–438–10P S9561–AQ–MMA–010/SV–438–10P

SSN 637–677 Sargent Industries* SV–438–10P S9561–AQ–MMA–010/SV–438–10P

SSN 678–687 Sargent Industries* SV–438–15P 0922–LP–030–4010

SSN 688 ClassNormal Mode

Bendix Electrodynamics 3188615–1 0948–LP–035–9010

SSN 688 ClassEmergency Mode

Bendix Electrodynamics 3188610 0948–LP–113–4010

SSBN 726 ClassNormal Mode

Bendix Electrodynamics 3311731 S6435–AB–MMA–010/PN3311731

SSBN 726 ClassEmergency Mode

Sargent Industries **

*Originally manufactured by Sanders Associates**Identify using ship Technical Manual Index

2. The servo amplifier electrical output islimited to the value required to produce the desiredflow rate through the servo valve.

3. A flow control valve is installed in the hy-draulic piping to limit flow rate. Generally, the thirdmethod has been used in the past. However, whenthe low–noise servo valves were backfitted, thevalves were designed with flow limiters (adjustable

spool stops) and the flow control valves were re-moved from the hydraulic system because of theirpotential contribution to noise. Of those on the new-er ships, SSN 688 class emergency mode is the onlyservo system that uses a flow control valve.

561–2.48 Rate Adjustment Using Valve Flow Limit-ers. On some of the earlier submarine

Page 30: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–13

classes, the only adjustment by which the maximum ramrate is controlled is that to the servo valve main spool dis-placement hardstops. The procedure to be followed toadjust the rate is provided in the servo valve technicalmanual identified in Table 561–2–1. In most cases, theseships have the model SV–438–10P electrohydraulic ser-vo valve installed. An exception to the above is the TRI-DENT Class emergency control valve. This valve alsouses flow limiters and is to be adjusted in accordancewith its own technical manual.

561–2.49 Rate Adjustment Involving Servo Amplifi-ers. On most ships the maximum ram rate is adjusted byboth setting the servo amplifier output and using the ser-vo valve main spool displacement hardstops. This ad-justment procedure is provided in the applicable servovalve technical manual, which will reference the servoamplifier technical manual as required. The TRIDENTnormal mode electrohydraulic servo valve is a slight ex-ception in that the rate is set and controlled entirely bythe amplifier (or Position Control Unit). The servo valvetechnical manual need only be referred to if the valvenull requires adjustment.

561–2.50 SERVO VALVE REPAIR. Because servovalves are fairly complex devices, repair should not beattempted by untrained personnel. Many valves havebeen damaged by improper disassembly by forces afloat.Any maintenance or repair work should be accomplishedin accordance with, and only after careful study of, theapplicable technical manual.

561–2.51 Shipboard Repair. Because most ships areprovided with one or two spare servo valves, completereplacement of a malfunctioning servo valve with a sparevalve is generally the preferred maintenance action. Onsome ships, repair parts are carried as spares, makingpossible to replace a troublesome component or the pilotstage assembly. Under normal circumstances, onlytrained personnel should undertake replacement, follow-ing step–by–step the procedures and precautions in theapplicable technical manual.

561–2.52 Depot Level Repair. In that onboard repairof servo valves is generally limited to minor adjustments,servo valves will normally be repaired at tender or depotlevels where trained personnel and test stand facilitiesare available.

561–2.53 Test Stands and Equipment. The equipmentrequired to perform null adjustments, overhaul mainte-nance, and performance testing on a test stand is listed inservo valve technical manuals. This equipment is con-

sidered necessary for making a complete valve overhaul.However, for the most part, those tests required for valvemaintenance can be made with less test–stand capabilitythan that indicated in the technical manual. When servovalves are tested on a test stand with less than rated flowcapacity, the flow limiters on the main stage should beadjusted so that the maximum flow rate through thevalve will not exceed the test–stand capacity.

561–2.54 Servo Valve Filter Maintenance. Most ofthe steering and diving servo valve installations areequipped with filters to protect at least the pilot stage ofthe valve. Usually an external filter is installed in the pi-lot supply line and many of the servo valves are equippedwith an additional internal filter. One of the most com-mon causes for servo valve malfunction is a dirty filterthat is preventing adequate flow to the pilot stage. Be-cause this is the case, filter element maintenance shouldbe accomplished prior to other repair or maintenance ac-tions when servo valves are malfunctioning. Externalfilters should be checked prior to removal of internal fil-ters.

561–2.55 External Filters. Detailed guidance on themaintenance and cleaning (if applicable) of hydraulicfilter elements, including required stock numbers, is pro-vided in chapter 556, Hydraulic Equipment (PowerTransmission and Control). The following factorsoften result in contaminants passing through the elementand causing servo valve problems and should be fore-stalled by proper procedures and sound preventive main-tenance, as indicated:

1. Infrequent element replacement. Dif-ferential pressure indicators are provided to signalmaintenance need. Failure to respond to this signalcauses higher differential pressures across the ele-ment, which may force contaminated fluid past O–ring seals.

2. Failure to install filter element. Undercertain shipboard conditions such as lack of onboardspares and inadequate cleaning facilities, there is atemptation to assemble a filter housing which mayhave been improperly assembled without the ele-ment in spite of a re-

Page 31: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–14

quirement that filter elements must always be installed.

3. Installation of a damaged element. Re-peated usage or rough handling can easily damagefilter elements; this damaged condition, which maynot be readily apparent, will allow passage of largeparticles through the element. Cleanable elementsshould be bubble–point tested prior to reuse aftercleaning, as described in chapter 556, HydraulicEquipment (Power Transmission and Control).

4. Ultrasonic cleaning of noncleanable ele-ments. Noncleanable elements can physically re-semble cleanable elements and may be damaged as aresult of inadvertent ultrasonic cleaning. Nonclean-able elements conforming to MIL–P–8815 for theseapplications will be marked NONCLEANABLE;however, some interchangeable proprietary ele-ments may not carry such markings. Elements thatare cleanable should be marked CLEANA–BLE.Use of noncleanable elements is recommendedwhenever possible.

5. Inadequate cleaning of elements. Manyof the installed cleanable elements can be particular-ly difficult to clean, even by highly trained person-nel under ideal conditions. Furthermore, the dirt ca-pacity of these elements is generally small. Failureto restore elements to an as–new condition will re-sult in high differential pressures in a short operatingtime, requiring maintenance as frequently as daily.These elements should be discarded. Chapter 556,Hydraulic Equipment (Power Transmission andControl), provides filter element cleaning proce-dures.

6. Damaged or missing O–ring seals. Ex-cessive temperatures, rough handling, or repeateduse can lead to deterioration of the O–ring seals.Satisfactory O–rings are required to seal both theelement and an automatic cutoff diaphragm which isa special feature commonly incorporated in thesefilter housings. Defective O–rings allow leakageand pressure loss of the filter elements.

7. Improper filter housing installation. In-let and outlet ports are identical; therefore it is pos-sible to install the housing in reverse even though theports are generally stamped IN and OUT. The re-sulting reverse flow through the housing can ruin theelement, washing both trapped dirt and filter materi-al into downstream components.

8. Improper filter elements installation.Filter elements may have been installed upsidedown in a filter bowl, providing no filtration. Proper

installation requires that the closed end of the ele-ment be at the bottom of the filter bowl and that theopen end fit up into the mating area of the filter head.Furthermore, the bottom of these filter elements isusually provided with a bellville washer or similarspring assembly to keep the element seated wheninstalled. Removal of these spring assemblies al-lows fluid to bypass the element.

9. Improper maintenance procedures.Upon insertion of a new element into a filter bowlprior to reassembly, the bowl and element should befilled with oil to minimize air entrainments andassociated hazards upon repressurization. The pre-viously drained oil, or other contaminated oil, shallnot be poured into the element, since this oil and dirtwill reach downstream components. Only cleansystem fluid shall be used.

561–2.56 Internal Filters. Because all servo valves donot have internal filters and some filters cannot be readi-ly maintained, the appropriate servo valve technicalmanual should be consulted for filter maintenance proce-dures. Internal screens are installed in some configura-tions of the SV–438–10P and SV–438–15P servo valves,but maintenance and replacement must be accomplishedby trained personnel. Most Bendix servo valves havecleanable internal filters. These may be cleaned usingthe procedure in the servo valve technical manual ifmaintenance of the external filter does not correct servovalve operation.

561–2.57 POWER TRANSFER VALVES

561–2.58 Control systems for fairwater diving planes,stern diving planes, and the rudder each utilize a powertransfer valve.

561–2.59 FUNCTIONAL DESCRIPTION. Powertransfer valves are six–way, two–position spool–and–sleeve–designed directional control valves. Pilot pres-sure for actuating the valve spool is supplied to the cham-bers at each end of the spool. One end of the spool is sup-plied from the normal controlmode hydraulic system via a solenoid–oper-

Page 32: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–15

ated pilot valve; the other end is supplied by the emer-gency control mode hydraulic system.

561–2.60 An imbalance in the effective end areas of thespool normally causes the spool to be shifted to its nor-mal control mode position, allowing pressurized fluidfrom the normal mode hydraulic system to be ported tothe control surface hydraulic cylinder. When the pres-sure on the normal control mode (larger) end of the spoolis relieved, the spool shifts to the emergency controlmode position and allows fluid from the emergency con-trol mode hydraulic system to be ported to the controlsurface hydraulic cylinder.

561–2.61 A limit switch, an integral part of the valve, isactuated by the valve spool when the spool shifts to itsemergency mode position. The limit switch contactsthen energize the circuits to the emergency mode indica-tor light and the audible alarm buzzer, while deenergiz-ing the circuits to the power transfer valve pilot valve so-lenoid and the normal mode indicator light.

561–2.62 On SSN 688 Class ships, the stern diving planeand rudder power transfer valves are mounted directlyadjacent to their hydraulic cylinders, which have integralporting for the hydraulic fluid. The fairwater divingplane power transfer valve is located inside the pressurehull and is connected by appropriate piping to the fairwa-ter diving plane hydraulic cylinder in the bridge accesstrunk in the sail.

561–2.63 INSTALLATION AND ASSEMBLY. Me-chanical failure of the power transfer valve will result inloss of both normal and emergency control modes.Therefore, particular attention shall be given to verifica-tion of proper assembly and installation. When valves orattaching flanges are assembled, the proper torque mustbe applied evenly to all fasteners to prevent overloadingand resultant failure of one or more of the fasteners. Ofprime concern are the fasteners that function to secure:the end caps to the valve body; the pipe flanges to thesubplate or valve, depending upon the specific design;and the valve body to the subplate or cylinder, if so de-signed. During each reassembly, these fasteners must beuniformly torqued to the precise values given on applica-ble assembly drawings. If values are not listed on draw-ings, general torque values for fasteners can be obtainedfrom chapter 556, Hydraulic Equipment (PowerTransmission and Control).

561–2.64 POWER TRANSFER VALVE PILOTVALVES. The control systems for the rudder, stern div-ing planes, and fairwater diving planes each have their

own solenoid–operated power transfer valve pilot valvethat serves to position the power transfer valve spools.

561–2.65 The power transfer valve pilot valve for eachcontrol surface provides the means by which the opera-tor, or the electrical control system, can initiate a shift ofthe power transfer valve. The power transfer valve pilotvalve makes this shift by venting the power transfervalve normal supply pilot line in response to an interrup-tion of electrical power to its solenoid or in response toa manual override operation.

561–2.66 The power transfer valve pilot valve is gener-ally a three–way, two–position solenoid–controlled con-trol valve. It is of a spool–and–sleeve design, normallyelectrically controlled in one direction, but able to bemanually operated by an override. The valve is spring–loaded to shift to the other operating position wheneverthe solenoid is deenergized.

561–2.67 When the solenoid is energized, the valvespool shifts to permit hydraulic fluid from the normalcontrol mode supply to pressurize the large end of thepower transfer valve spool, keeping the power transfervalve in its normal mode position. When the solenoid isdeenergized, the pilot valve relieves the fluid pressure onthe large end of the power transfer valve spool by portingit to the normal control mode return, permitting the pow-er transfer valve to shift to its emergency mode position.The pilot valve can also be pin–locked in this latter posi-tion to hold the power transfer valve in its emergencymode position. The failure–detection circuit monitoringthe control surface action initiates the automatic shift toemergency by interrupting power to the applicable pow-er transfer pilot valve solenoid under any of the applica-ble fail–detect conditions previously discussed. Powerto the solenoid can be manually interrupted by shiftingthe associated mode selector switch to the emergencyposition.

561–2.68 CONTROL SURFACE ANGLE INDICA-TION SYSTEMS

561–2.69 In most submarine installations, the followingthree independent angle–indication systems are pro-vided:

1. Normal

Page 33: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–16

2. Auxiliary

3. Mechanical

561–2.70 NORMAL ANGLE INDICATION. Therudder, fairwater/bow plane, and stern plane angle indi-cator systems (IC circuits N, NB, and NS, respectively)generate control surface position signals to position rud-der and plane angle indicators on the ship control panel.Actual rudder angle is generally repeated on the portablebridge IC control unit, if provided. The indicators arepositioned as stated in paragraph 561–2.71.

561–2.71 IC circuits N, NB, and NS each contain a syn-chro transmitter that is mechanically linked to the hy-draulic ram of the associated control circuit. The magni-tude and phase of signals transmitted are determined bythe angular relationship of the rotor and stator of the syn-chro transmitter. The angle signals are converted by syn-chro receivers at the ship control station to angle indica-tion. Circuits N, NB, and NS generally utilize 120–volt60–Hz single–phase AC power.

561–2.72 AUXILIARY ANGLE INDICATION.Auxiliary circuits XN, XNB, and XNS provide supple-mentary indication of the approximate angle (within 5degrees) of the rudder, fairwater/bow planes, and thestern planes by lighting numerals on the perimeters of thecombined normal and auxiliary rudder and plane angleindicators on the ship control panel. If one of the normalcircuits becomes inoperative, the auxiliary circuit con-tinues to provide approximate angle indication. Bothnormal and auxiliary circuits are energized when the shipis underway. Operation is as follows:

561–2.73 IC circuits XN, XNB, and XNS each containa circuit–making transmitter that is mechanically linkedto the hydraulic ram of the associated control surface.Each transmitter consists of a contact arm and severalcontact buttons that are wired to the indicating lights onthe angle indicators at the ship control station.

561–2.74 Circuits XN, XNB, and XNS are generallypowered by 120–volt AC stepped down by a 120/6–volttransformer that supplies 6 volts AC to the transmitter.If the 6–volt AC supply fails, an automatic shift to a6–volt DC dry cell battery source occurs.

561–2.75 MECHANICAL ANGLE INDICATORS. Generally, the mechanical indicators for the rudder andstern diving planes each consist of a bar engraved in1–degree increments corresponding to the particularcontrol surface actual angular positions. The engravedbar is mounted parallel to the control surface operatingrod. An indicating pointer is attached to the control sur-

face operating rod. Movement of the operating rodcauses the pointer to move along the engraved bar, indi-cating the angular positions of the particular control sur-face. After all adjustments have been made to the sys-tem, the angular positions are scribed on the bar by set-ting the control surface to a specific angle and scribingthe indicator bar to match. Thus, the mechanical indica-tors can be used as a reference for the rudder and sterndiving plane actual angular position and can be used toaline the angle transmitters and auxiliary angle transmit-ters. The description in paragraphs 561–2.76 through561–2.79 is applicable as indicated.

561–2.76 Typically, the mechanical indicator for thefairwater diving planes is part of the fairwater divingplane feedback drive gear assembly. The input shaft tothe bevel gears of the feedback drive gear assembly is ex-tended, and a pointer is attached to the end of the ex-tended shaft. The pointer rotates to indicate the angularpositions of the fairwater diving planes. The indicatorplate is scribed in 1–degree increments corresponding tothe actual angular positions of the fairwater divingplanes. The scribing is done after final adjustments havebeen made to the system and, therefore, indicates the ex-act angular positions of the fairwater diving planes.

561–2.77 Each mechanical indicator is located withinsight of its respective local manual control valve, therebyaffording the operator an immediate control surfaceangle reference.

561–2.78 Inspection Procedures. The fairwater divingplane feedback drive gear installed aboard SSN 598, 608,and SSBN 616, and 640 Class ships requires specialattention because of the basic design. The mechanicalindicator and feedback transmitters are driven by a longrod (indicating linkage) that penetrates the pressure hullbetween the bridge access trunk and control room. Peri-odically, when other maintenance is performed in thegeneral area, inspect the linkage as follows:

1. Examine all linkage for straightness andconformance to applicable assembly drawings anddetail drawing listed thereon.

2. Examine linkage installation for any ob-struction that would interfere with, or contact, thelinkage during normal linkage motion.

Page 34: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–17

3. Check the linkage orientation. All linkagepins should be parallel to one another with their axesoriented as shown on the applicable assembly draw-ing.

4. Check the bearings at the ends of the indi-vidual links for corrosion or binding; lubricate, re-work, or replace as required.

5. Check the link passing through the pres-sure hull stuffing box for binding, chattering, ornoisy operation during movement of the fairwaterplanes. Observe inside the pressure hull and thebridge access trunk. Any of the aforementionedsymptoms may indicate a buildup of dried out,caked grease in the V–ring stuffing box or rod bush-ing.

561–2.79 Corrective Action. When discrepancies areuncovered during inspection, take corrective action asfollows:

CAUTION

During disassembly, the exact position of allpieces should be noted and the exact numberof turns to remove rod end bearings recordedbecause the feedback synchros are readilyrendered out of proper adjustment if not prop-erly reassembled.

1. Remove the link passing through the pres-sure hull stuffing box. Unbolt and remove the V–type packing gland. Unbolt and remove the stuffingbox bushing. Because this bushing does not unbolton the SSN 598 Class, do not attempt to remove it onthis class ship. Remove V–ring packing and anyhardened grease in the stuffing box. It is advisable toinstall new V–rings; however, under conditions re-quiring expediency, if the old rings appear adequate,they may be reinstalled. Lubricate the entire surfaceof each V–ring component with MIL–L–17331 fluid(MS 2190TEP) and install packing in accordancewith chapter 078, Gaskets, Packings, and Seals.

2. Reassemble gland and linkage. Usinggrease conforming to MIL–G–24139 grease thegland through the grease fitting. MIL–G–24139grease is available in the stock system in the follow-ing quantities:

a. 1–pound container (NSN 9150–00–180–6381)

b. 5–pound (NSN 9150–00–180–6382)

c. 35–pound (NSN 9150–00–180–6383)

3. Verify that the feedback synchros, planeangle transmitters, and mechanical angle indicatorare functioning properly by cycling the planes innormal mode and observing and comparing perfor-mance and electrical and mechanical angle indica-tion to the specific ship requirements. Hard stop,rise, and dive angle indication in emergency modeoperation should also be checked. The adjustmentprocedure, if required, is generally provided on ap-plicable fairwater diving gear follow–up and trans-mitter drive assembly drawings.

561–2.80 Inspection of Angle Indicator and Feed-back Transmitters. On all submarines, whenever workis accomplished in the vicinity of the rudder, stern div-ing, or fairwater/bow diving feedback transmitter link-ages, the activating linkages should be inspected forruggedness, proper clamps, presence of set screws, andsecurity of connecting pins. If bolts are used in these sys-tems for connecting linkages of securing vital compo-nents, they shall be installed in a position such that a lossof the nut will not permit the bolt to fall out as a result ofgravitational forces.

561–2.81 STEERING AND DIVING HYDRAULICCYLINDERS

561–2.82 Each control surface (fairwater/bow plane,stern plane, and rudder) is driven by a hydraulic cylinder.The hydraulic cylinder, with a set of operating linkagesand a yoke/stock assembly, functions to transform hy-draulic energy into linear motion and then into angularmotion to operate the control surface. For a typical cylin-der assembly see Figure 561–2–7. Specific design fea-tures, primary areas of hydraulic cylinder maintenance,and procedures to ensure proper reassembly are dis-cussed herein. For applicable repair procedures to com-ponents of the hydraulic cylinders see appendicies Athrough E.

561–2.83 PISTON ROD PACKING AND PISTONSEALS. Where the piston rod passes through the cylin-der head, V–type packing is generally used as a seal. Onsome later ships, two sets of packing are provided. Thisarrangement permits replacing

Page 35: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–18

Figure 561–2–7. Typical Steering and Diving Hydraulic Cylinder

the primary (outer) packing without having to isolate thehydraulic cylinder. During normal operation, the spacebetween the two sets of packing is open to normal inter-nal cylinder pressure. This situation results in a lack ofdifferential pressure across the inner packing set and,therefore, negligible wear. Should primary packingleakage become intolerable, the normally pressurizedspace between the packing sets, now isolated from inter-nal cylinder pressure, becomes depressurized and the in-ner packing begins to act as the primary seal. At thistime, the outer packing can be replaced at first availabil-ity and then the cylinder restored to normal operation.The quad–ring is used as a piston seal in most installa-tions, but in several early designs a leather U–cup sealwas used for this purpose.

561–2.84 DYNAMIC SEAL LEAKAGE. Steeringand diving system dynamic (reciprocating) seals are af-fected by extrusion, side loads, surface finish of the met-al, concentricity of mating metal parts, seal hardness,squeeze, stroke speed, lack of lubrication, use of back–up rings, and compatibility of the seal material with sys-tem fluid. A newly installed seal will allow little or noleakage. However, with continued use, the factors listedabove, in addition to system contamination, tend to re-duce the effectiveness of the seal and increase the likeli-hood of leakage. Improper installation and damage dur-ing installation can be important factors in limiting seallife.

561–2.85 External Seals. Leakage from external seals(i.e., leakage that is external to the component such asthat from the cylinder piston rod seal) is usually easilydetected by visual observation. Generally, the most seri-ous effect of this leakage is the oil accumulation and re-sultant housekeeping required. These seals are usuallyreplaced before leakage becomes bad enough to affectoperation of the cylinder or the ability to hold loads with-out drifting.

561–2.86 Internal Seals. Leakage from internal seals(i.e., leakage that is confined within the component suchas within the seal on a cylinder piston) is difficult to de-termine and measure without conducting a test. Becausethe leakage is internal, it is often undetected until it be-comes serious enough to significantly affect system op-eration. For example, on one nuclear submarine it wasfound that the stern planes were not functioning properly.Above 8 knots it became increasingly difficult to makethe stern planes move in the rise direction. Continuousoil flow to the ram indicated that the seals on the pistonof the stern diving cylinder had failed. At slow shipspeeds, sufficient differential pressure could be gener-ated across the piston to move the planes, but at highership speeds operation was very sluggish. This exampleindicates the importance of periodically testing the pis-ton seals of steering and diving cylinders.

Page 36: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–19

561–2.87 Criteria for External Seals. For externalseals such as piston rod seals and similar applications,the leakage criteria in paragraphs 561–2.88 and561–2.89 apply.

561–2.88 New Seals. For newly installed seals, a slightwetting of the tail rod is acceptable. Another acceptancecriterion that may be used is the formation and drippingof not more than one drop of fluid every 25 cycles foreach inch of rod diameter or fraction thereof. For exam-ple, a cylinder with a 2–1/4–inch tail rod would be al-lowed three drops of fluid per 25 cycles. A cycle for acylinder is defined as operation from a fully retractedposition to the fully extended position and back again tothe fully retracted position.

561–2.89 Replacement Seals. In many cases, house-keeping problems resulting from leakage may be the pri-mary factor in determining whether or not seal replace-ment is necessary. If, when the cylinder is not operating,leakage exceeds 4 milliliters per hour for each inch ofseal diameter or fraction thereof, the seal should be re-placed. If leakage occurs primarily during cycling of thecylinder, a leakage rate in excess of 1 milliliter per inchof rod (or seal) diameter or fraction thereof for every 10cycles may be used as a criterion for replacement.

561–2.90 Criteria for Internal Seals. In the case ofpiston seals and similar internal applications, minorleakage is not detrimental. However, an increase in leak-age is an early warning of seal deterioration. Leakagecriteria selected should be those which will result in sealreplacement before serious failure of the seal occurs.

561–2.91 Replacement Criteria. Because of cylinderdesign, measurement of piston seal leakage in moststeering and diving system cylinders is limited to a statictest. In general, internal piston seals should be replacedwhen leakage exceeds 5 milliliters per inch of seal diam-eter (or cylinder bore) per 5 minutes with the test pres-sure as close to operating pressure as practical.

561–2.92 Leakage After Seal Replacement. Follow-ing installation of new seals, there should be almost noleakage across the seal, particularly under static condi-tions. However, cylinders that are scored or otherwisedamaged may leak slightly. The recommended maxi-mum acceptable leakage is 1 milliliter per 10 minutes perinch of seal diameter.

561–2.93 Cylinder Seal Leakage Test. To determinehydraulic cylinder seal leakage rates, conduct the fol-lowing static test annually (as a minimum). For valvenumbers and relative direction of piston movement, seeFigure 561–2–8. For convenience in measuring pistonseal leakage use ShipAlt SSN 2647D or MIL–V–24695sampling components and guidance of chapter 556, sec-tion 556–8.12A.

1. In local or emergency mode, slowly oper-ate cylinder to the hard rise or hard left position untilthe hardstops are engaged.

2. After closing V–1, continue application ofpressure through V–2.

3. Very carefully and slowly open V–3; ifflow does not cease within a few seconds, a badlydeteriorated piston seal is indicated.

4. If flow stops, or is reduced to a steady leak-age, collect the leakage downstream of V–3 for a5–minute period.

5. Observe tail rod seal for leakage understatic and dynamic (operating) conditions.

NOTE: For the SSN 688 Class and SSBN 726 Class sternplanes and rudder rams, the power transfer valve (PTV)is located between the system isolation valves (V–1 andV–2 of Figure 561–2–8) and the hydraulic cylinder. Dueto this configuration, it is not possible to isolate the PTVleakage from the test. Although the above procedure isgenerally appropriate for shipboard testing, recognizethat the test actually measures both ram and PTV leak-age.

561–2.94 Summary of Dynamic Seal Leakage Re-quirements. Acceptable dynamic seal leakage rates forexternal and internal dynamic seals are summarized inTable 561–2–2. All leakage rates are based on a fluidtemperature of 37.8�C (100�F). If the fluid temperatureis lower than 37.8�C (100�F) during performance of thetests, a leakage correction factor should be applied. Forrelative leakage rates based on fluid viscosity, see chap-ter 556, Hydraulic Equipment (Power Transmission andControl). If excessive leakage is measured at tempera-tures over 37.8�C (100 �F), a retest with cooler fluid isrecommended in lieu of applying leakage correction fac-tors.

Page 37: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–20

Figure 561–2–8. Cylinder Seal Leakage Test

561–2.95 REPLACEMENT OF PISTON RODPACKING. Comprehensive guidance regarding instal-lation of V–ring packing is provided in chapter 078, Gas-kets, Packings, and Seals. The following is a general pro-cedure for installation of V–ring packing in steering anddiving hydraulic cylinders. It should be noted that somesubmarines have been provided with locking devicesthat, when installed between the guide cylinder and cou-pling and the hydraulic cylinder and coupling, lock thecoupling in the center position to prevent movement ofthe operating gear.

1. Install the aforementioned locking device,if available.

2. Isolate the hydraulic cylinder from the hy-draulic power source. Depressurize the cylinder us-ing vent fittings on cylinder; drain the cylinder usingdrain fittings. Leave vent fittings in open position topreclude any pressure buildup in the cylinder as a re-sult of component leakage. Unfasten packing glandand remove packing to be replaced.

3. Select packing components in accordancewith size and material requirements specified on theapplicable drawing.

4. Install V–ring packing in accordance withinstructions in chapter 078, Gaskets, Packings, andSeals.

5. Reinstall the packing gland. Lubricategland fasteners with molybdenum disulfide in ac-cordance with MIL–M–7866, and tighten the fasten-ers to the appropriate torque values listed in Table561–2–3. Ensure clearance exists between the ID ofthe gland and the OD of the shaft.

6. Observing standard shipboard precau-tions, slowly refill cylinder using low pressure fluid;vent off all air. Secure vents and bring cylinderslowly up to normal operating pressure, observingfor leaks. Realine system for normal operations.

561–2.96 PISTON/CYLINDER HEAD CLEAR-ANCE. Shipbuilding specifications require that thesteering and diving hydraulic cylinders be designed sothat the piston clears heads by at least 1/4 inch when thecontrol surface is in the hardover (mechanical hardstop)positions. Most installations have been designed to pro-vide 1/2 inch or more clearance. This additional clear-ance allows minor variationin the location of the cylinder, linkage

Page 38: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–21

PART A – EXTERNAL SEALS (PISTON ROD)

Table 561–2–2. SUMMARY OF DYNAMIC SEAL ALLOWABLE LEAKAGE RATES (NOTE 1)

Maximum Leakage forNew or ReplacementSeals

Recommended Maximum Acceptable LeakagePrior to Seal Replacement

Dynamic Test Static Test

1 drop/25 cycles for eachinch of rod diameter orfraction thereof

1 mL per 10 cycles per inchof rod diameter or fractionthereof

4 mL/hr per inch of roddiameter or fractionthereof

PART B – INTERNAL SEALS (PISTON)

Leakage Rate(Static test only)

Seal Condition Corrective Action

Less than 1 mL/10 minutesper inch of seal diameter(cylinder bore)or fraction thereof

New seal condition None

Less than 1 mL/5 minutes perinch of seal diameter (cylinderbore) or fraction thereof

Satisfactory None

1 mL to 5 mL per 5 minutesper inch of seal diameter(cylinder bore) or fractionthereof (NOTE 2)

Marginally satisfactory Seal replacement should bescheduled for first convenientopportunity. If correctiveaction is not initiated within 3months, the leakage testshould be repeated.

More than 5 mL/5 minutesper inch of seal diameter(cylinder bore) or fractionthereof (NOTE 2)

Unsatisfactory Replace piston seal.

Approximate Conversion Factors for Leakage Measurement

1 teaspoonful = 1/6 fluid ounce = 5 mL

1 tablespoonful = 1/2 fluid ounce = 15 mL

1 cubic inch = 16.4 mL

1 fluid ounce = 30 mL

1 cup = 8 fluid ounces = 236 mL

1 quart = 32 fluid ounces = 0.95 liters

1 gallon = 128 fluid ounces = 3.78 liters

NOTE 1: All leakage rates are based on normal system operating pressures and a temperature of 37.8�C (100�F)

NOTE 2: Add 180 mL/5 minutes (SSN 688 CL) and 1800 mL/5 minutes (SSBN 726 CL) for rudder and stern planes hydraulic cylinders.

Page 39: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–22

Class Applicability Fairwater/Bow

TABLE 561–2–3. PACKING GLAND FASTENER TORQUES [FT–LB]

Stern Diving Rudder

36 + 4

SSN 594 Class 36 + 4 36 + 4 N/A

SSN 608 Class 36 + 4 36 + 4 36 + 4

SSBN 616/627 Class 36 + 4 36 + 4 36 + 4

SSN 637 Class 36 + 4 36 + 4 70 + 5

SSBN 640 Class 36 + 4 36 + 4 36 + 4SSN 671 36 + 4 36 + 4SSN 688 Class

SSBN 726 Class

NOTE: For later ships, see the applicable NAVSEA steering and divinggear arrangement in ship or assembly drawings for torque values.

57 + 3340 + 10

62 + 3340 + 10

57 + 3

665 + 10

manufacturing tolerances, and coupling shim thickness.

561–2.97 Recommended Verification Procedure.The following piston/cylinder head clearance verifica-tion procedure is the most accurate. Follow this proce-dure whenever possible:

1. With the cylinder fully assembled, butprior to installation in the ship, bottom the piston atboth ends of the cylinder and measure and record di-mensions A and B as shown in Figure 561–2–9.

NOTE

Measurements are to be made to the shoulderwhere the threads end and the polished por-tion of the rod begins rather than to the end ofthe piston rod. This is necessary to allowadditional measurements when the couplingis installed. These dimensions should be mea-sured to the nearest sixteenth of an inch andengraved on the end of the cylinder in deci-mals as shown in Figure 561–2–9.

2. After installing the cylinder and couplingassembly, or any time thereafter when it is necessaryto determine the clearance, measure dimensions A�

and B� as shown in Figure 561–2–9.

NOTE

With the control surface in the two extremelimits of travel (mechanical hardstops) di-mensions A� and B� are measured between

the same two points used to determine dimen-sions A and B. The piston/cylinder headclearances are determined by subtraction asshown on Figure 561–2–9. The procedure de-scribed is not suitable for unmarked cylindersthat are already installed in the ship, becauseit is not possible to bottom the piston againstboth ends of the cylinder after installation. Anearlier procedure used by some activities re-quired that the dimension of the piston rod ex-tension at the mid–point position be etched onthe end of the hydraulic cylinder, whereas thecurrent procedure requires etching of the pis-ton rod extension dimensions when the pistonis at the bottomed positions.

561–2.98 Alternative Verification Procedure. Thesteering and diving system arrangement drawings formost ships give a dimension from the hydraulic cylinderto the center of the coupling that centers the piston in thecylinder. This is sometimes identified as the 0 or zero de-grees condition. If necessary, use the following proce-dure as an alternative for verifying correct clearances.

1. With the coupling at the distance listed onthe drawing for the 0 degree condition, measure thedistance the piston is required to travel to move thepiston rod into the hardstops in each direction.

2. Compare these travel distances with one–half the distance the cylinder travels (as determinedfrom the cylinder drawing) to determine if the mini-mum 1/4–inch end clearance exists. For example:

Page 40: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–23

Page 41: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–24

cylinder stroke(max)

piston movement(forward)

piston movement(aft)

one–halfcylinder stroke

forward head/piston clear-ance

aft head/piston clear-ance

= 26.0 inches

= 12.2 inches

= 12.9 inches

= 26.02

= 13.0 inches

= one–half cylinderstoke – pistonmovement (forward)

= 13.0 – 12.2 = 0.8inch (satisfactory)

= one–half cylinderstroke – pistonmovement (aft)

= 13.0 – 12.9 = 0.1inch (unsatisfactory)

NOTE

The foregoing procedure will not determineend clearance for variations in piston rodlength. Therefore, when a new piston rod is tobe installed, verification must be made thatthe piston rod is the length required by thedrawings. It should also be noted that the al-ternative procedure may be in error by asmuch as the shim thickness if a shim isinstalled in a coupling that was originallyinstalled without a shim.

3. On the following installations, if no shimwas originally installed, ensure that the minimumcalculated clearance with a shim installed is1/4–inch plus the shim thickness:

SSN 597 Fairwater PlanesSSN 585/588 Class Stern Planes and RudderSSN 598 Class Fairwater, Stern Planes, and SteeringSSN 608 Fairwater Planes

561–2.99 REMOVAL OF CYLINDER HEAD. If theforegoing checks reveal that a problem exists, investi-gate further as follows:

1. Move the control surface to the hardstopposition and remove the cylinder head nearest to thepiston.

NOTE

Removal of the cylinder head requires priordepressurization, venting, draining, andisolation of the cylinder in accordance withstandard shipboard procedures.

2. With the cylinder head removed, first mea-sure the distance between the piston and the end ofthe cylinder and then measure the distance that thecylinder head extends into the cylinder. The differ-ence between the two will equal the actual clear-ance.

3. Taking into account the clearance on thisone end and the total distance the piston travels(hardstop to hardstop), calculate the clearance onthe opposite end, using dimensions given on ship’sdrawings.

4. If it is concluded that a problem exists, in-spect all mechanical linkage to ensure conformanceto the drawing dimensions. If the cause of misaline-ment cannot be identified, request NAVSEA assis-tance or guidance to resolve the problem.

561–2.100 Torquing Of Cylinder Head Fasteners.Whenever the control surface operating cylinder headsare disturbed, it is important that the heads be reinstalledin the cylinder in a proper manner. Specifically, the fas-teners that secure the heads to the cylinder body must beproperly torqued. The fastener threads must be dry,clean, deburred, and lubricated with molybdenum disul-fide in accordance with MIL–M–7866 (NSN9150–00–943–6880; 203, tube). All nuts or capscrewsmust be evenly torqued to the appropriate values listedin Table 561–2–4.

561–2.101 Torquing of Hydraulic Cylinder Founda-tion Fasteners. Steering and diving hydraulic rams aresecured to their foundations by various methods. Thesemethods include: (1) fitted bolts (SSN 593, 637 and 688Classes), (2) combinations of fitted and tapered bolts(SSBN 616, 627 and 640 Classes), (3) tension bolts (SSN688 and SSBN 726 Classes fairwater planes ram), and (4)combinations of bolts and tapered stop blocks (SSBN726 Class steering and stern diving rams). The intent ofthese methods is to secure the cylinder to its foundationand reduce axial movement. All of these designs relyupon fasteners which are preloaded to a specified torque.Table 561–2–5 gives torque values which provide the op-timum preload. In some cases,the values given exceed the torque

Page 42: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–25

TABLE 561–2–4. TORQUING OF CYLINDER HEAD FASTENERS

Class Applicability

Cylinder Head FastenersTorque [Ft–lbs]

SternPlanes

Rudder Fairwater/Bow Planes

SSN 594 Class[Except 603, 604, & 612]

SSN 603, 604, & 612

SSN 608 Class

SSBN 616/627 Class

SSN 637 Class

SSN 671

SSN 640 Class

SSN 688 Class

125–150 125–150

150–275

250–275

250–275

175–200

200–225

325–350

200–225

400–425

400–425

300–325

325–350

N/A

100–125

40–50

250–275

350–375

140–150

550–575 325–350

315–330315–330200–210

585–615585–615585–615

630–660475–500630–660

(688–750)(751–later)(SSN 718)

SSBN 726 Class 855–900 1780–1850 1780–1850

NOTE: For later ships, see the applicable NAVSEA steering or diving gear arrangementin ship and assembly drawing for torque values.

values listed in the design drawings. Lubricate threadsand surface under nut with molybdenum disulfide. Useof self locking nut is permitted to avoid use of cotter pinor key. Add run–down torque of self–locking nut to tabu-lated values. Use hydraulic torque wrench whenever itis available or practical.

561–2.102 Inspection of Ram Axial Movement. Thefollowing provides information and guidance for inspec-tion of hydraulic ram axial movement:

1. Inspections of axial movement of the ramshould be kept to a minimum since this test appliesforces to the steering/stern diving linkage which ex-ceed the maximum hydrodynamic loads that are ap-plied in service. Inspections should be made afteroverhaul or refurbishment, to verify work, andwhenever URO MRC 015 is conducted to check formaterial degradation and wear. Inspections shouldbe scheduled in conjunction with any tests involvingapplication of ram load to the steering or diving

gear, such as: dockside testing of the coupling, mea-surement of dogbone freeplay, verification of cou-pling tightness, and measuring tiller contact area.

2. Inspection of ram axial movement is madeby mounting of dial indicator to the ram foundationand noting the movement of the ram after maximumhydraulic differential pressure is applied. Erroneousdata can be obtained if the following steps are notcarefully followed:

a. Mount the indicator base as close aspossible to the pointer. Locate the pointer shaft per-pendicular to the vertical surface of the ram feet orpads and as close as possible to the joint between theram feet and the foundation and the ram axial centerline. Figure 561–2–10 shows the correct orientationof the dial indicator for a steering ram. If the indica-tor is improperly mounted or skewed to the horizon-tal, then inaccurate readings will result. Make ap-

Page 43: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–26

TABLE 561–2–5. TABLE OF TORQUE VALUES AND SELF–LOCKING NUT PART NUMBERS–– For Ram Foundation Fasteners

Ship/ClassControlSurface

Dwg. No.Pc.No.

Torque[Ft–Lbs]

Self–LockingNut Part No.

SSN 594CL

SSBN 616CL/627CL

SSN 637CL

SSBN 640, 643, 645

SSBN 641, 642,644, 654, 655,656, 657, 659

SteeringSternFairwater

SSBN 640CL

SSN 688CL

SteeringSternFairwater

Steering

Stern

Fairwater

Steering

Steering

Steering

Fairwater

Steering

Stern (688–750) (718) (751–LTR)FairwaterBow Planes

1863775–D1863775–D1862352

1862352–C2006785–F2007152–J

2140776

2140779

2141299

2116253–F

2437921–A

2116257–D

2116257–E2116866–R

4457086–A

4457083–V5529815–B4457083–V4457128–S5794753–J

820–870820–870200–220

MS17829–24CMS17829–24CMS17829–14C

2222

336

15/2216/2314/2015/1925

2416222527

416

21418717

3336

1628162337

1180–1250890–940950–1000

420–4401470–15501140–1200390–4201280–1350

340–36070–801800–1900290–310430–4601140–1200

630–6602660–2800

230–240430–4501560–1650250–2701280–1350

1140–1200450–480

1180–1250610–6401180–1250720–7602300–2400

Note 1MS17829–22CMS17829–22C

MS17829–16CMS17829–24CMS17829–22CMS17829–16CMS17829–24C

MS17829–16CMS17829–14CNote 1MS17829–16CNote 1Note 1

Note 1Note 1

MS17829–14CMS17829–16CNote 1MS17829–14CMS17829–24C

MS17828–24CMS17828–18C

MS17829–24CMS17828–20CMS17829–24CMS17828–22CMS17829–28C

SSN 726CL Steering

Stern

Fairwater

4640783–F

4640786–F

4645234–K

565626

1900–20001255–13001900–20001255–13002370–2500

Note 2Note 2Note 2Note 2MS17829–28C

NOTES: 1. Not available in required size.2. Not applicable; bolt–tapped hole assembly.

Page 44: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–27

Page 45: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–28

propriate adjustments in this procedure for the SSN688 Class fairwater planes hydraulic cylinder, sinceit is vertically mounted at the lower cylinder head.

b. Using the local manual or emergencycontrol mode, move to one of the hard stop posi-tions, applying maximum hydraulic cylinder differ-ential pressure with the tiller against the hard stop.Control the rate of the tiller’s movement into thehard stop to avoid damaging any equipment.

c. Relax the applied ram pressure to thefoundation by moving the tiller a small distance (1/8inch maximum) away from the hard stop. Do not re-lax the ram pressure for the SSN 688 class fairwaterplanes hydraulic cylinder.

d. Zero the indicator.

e. Move the planes in the opposite direc-tion and repeat steps b. and c. above. Read the indi-cator to obtain the total axial movement of the ram.With the exception noted above for SSN 688 classfairwater planes, it is important that the dial indica-tor is read after the ram pressure is relaxed, other-wise the elastic spring or deflection of the founda-tion fasteners and equipment will influence the data.The purpose of the test is to measure only the actualram shift on its foundation, due to distorted bolts orbolt holes.

3. Inspection criteria for maximum allow-able axial movement of the hydraulic ram are givenby paragraph 561–103 below. Movement in excessof these amounts indicates the onset of rapidly in-creasing wear, insufficient torque or both. If propertorquing does not reduce axial movement to themaximum allowable value then restore cylindermounting fasteners and bolt holes to drawing re-quirements.

4. Documentation of ram axial movementshall be made using Maintenance RequirementCards (MRC) for SRA/ERP availabilities and Tech-nical Repair Standards (TRS) for regular overhaulsor depot availabilities.

5. It is important that the foundation fastenersare properly torqued to maintain the maximum pre-load of the fasteners and clamping force of thefoundation to the cylinder. See paragraph561–2.101. If the inspection of relative motionshows values in excess of the maximum allowed ofTable 561–2–6 then the torque of the fastenersshould be checked and the inspection redone. Thismay avoid the need for unnecessary repair action.

561–2.103 Hydraulic Ram Movement. Relative mo-tion between a hydraulic cylinder and its foundation mayoccur due to one or more of the following reasons:

a. Insufficient fastener preload.

b. Elastic bending and shear deflectionof the fitted bolts and/or tapered pins in way of shimpads.

561–2.104 Acceptable Ram Movement. Table561–2–6 lists the amount of relative motion in the direc-tion of ram travel that is acceptable on new installationsand on existing installations that have been refurbishedto design dimensions and tolerances. It also tabulates themaximum allowable cylinder to foundation relativemovement for in–service submarines.

561–2.105 CYLINDER PISTON LOCKING DOW-EL INSTALLATION. Except for the addi

NOTE: 1. Fairwater = 0.002” for both design and in–service.

NOTE: 2. Measurements are not required due to the design ofmountings and hard stop arrangement.

TABLE 561–2–6 HYDRAULIC RAM MOVEMENT

MAXIMUM ALLOWED MOVEMENT (IN)

CLASS DESIGN IN–SERVICE

Pre–688688 (NOTE 1)726

0.0050.005NOTE 2

0.0200.020NOTE 2

Page 46: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–29

tion of an alinement shim, the cylinder piston configura-tion used in steering and stern diving hydraulic cylinderswithout tailshafts for SSN 637 class and other ships withsimilar design cylinders is shown in figure 561–2–11(a).In this configuration, the piston and aft dashpot dasherare secured by the forward dasher, which is threaded ontothe piston rod at assembly. The forward dasher is lockedonto the piston rod by an axial locking dowel at the inter-face of the dasher and the piston rod ends. The lockingdowel is then held in place by a retaining plate securedto the end of the piston rod.

561–2.106 After rework, the locking dowel hole in thedasher sometimes goes past the portion of the lockingdowel hole in the piston rod when the dasher is torquedonto the piston rod. This misalinement can be the resultof previous improper assembly or can be caused by ma-chining the faces of the aft dasher, piston, or forwarddasher to obtain the surface finish identified in TechnicalRepair Standards (TRSs). To prevent misalinement, nomachining should be done on the faces of the piston ordashers unless required to ensure proper seating of thecomponents or to eliminate surface imperfections thatcould affect cylinder operation. If misalinement occurs,alinement shall be corrected by shimming or by relocat-ing the piston locking dowel as described in paragraphs561–2.107 through 561–2.110.

561–2.107 Shimming to Obtain Locking DowelAlinement. The more preferable method for correctingthe alinement of the holes for the locking dowel isthrough the use of a shim. Since the forward dasher hasadvanced too far under torque, the installation of a shimof proper thickness between the piston and forward dash-er will realine the dowel holes in the rod and forwarddasher. See Figure 561–2–11 (a).

561–2.108 The thickness of the shim shall be as requiredto produce proper dowel hole alinement. The properthickness can be determined by torquing the dasheragainst feeler gages or laminated shim stock inserted be-tween the dasher and the piston. The shim shall be madefrom nickel–copper sheet, QQ–N–281 Class A, or Corro-sion–Resistant Steel (CRES) sheet, Condition A, Class304, 304L, 316 or 316L per QQ–S–766. Shim materialof the required thickness is rarely available from the sup-ply system and laminated shim stock is not to be used forpermanent installation. The thicker standard sheetslisted in Table 561–2–7 can be used, however, by skim–cutting the face of the forward dasher. The face of thedasher to be cut should be the one next to the piston.

561–2.109 The inside diameter of the shim shall be.003/.005 inch larger than the diameter of the piston rod

land on which the shim is to be installed. The outside di-ameter of the shim shall be the same as the outside diam-eter of the forward dasher. After the shim is inserted, thedasher shall be torqued as indicated on the applicabledrawing. Shims in excess of the sheet thicknesses aslisted in Table 561–2–7 should not be used.

561–2.110 Piston Locking Dowel Relocation. A lesspreferable method for correcting misalinement of thedowel locking hole is shown in Figure 561–2–11. In thismethod, a new locking dowel hole is drilled at the dasherdrive hexagon point 120 degrees from the existing dowelhole after the dasher has been torqued onto the piston rod.The dowel hole may be redrilled (as shown in Figure561–2–11(b)) only twice. Subsequent misalinement willrequire correction by the method given in paragraph561–2.107 or by replacement of the piston rod. The dow-el hole shall be drilled in accordance with requirementsof the applicable drawing.

561–2.111 STERN DIVING GEAR DIVE LIMITSTOP MECHANISMS. The stern diving rams ofSSN585/SSN588 class, SSN688 class, and SSBN726class are equipped with hydraulically actuated dive stopmechanisms which prevent plane movement beyond apreset angle. The SSN585/SSN588 stop is a jaw type de-vice. The stop mechanisms on SSN688 and SSBN726consist of a cross–shaped stop keyed onto the ram tailrod,and a rotating striker plate, with a cross–shaped opening,which is mounted to a housing on the forward end of theram.

561–2.112 SSN585/SSN588 Class Ram Stop Opera-tion. During dive stop engagement the two halves of thejaw type stop mechanism are closed around the ram tail-rod by a single hydraulic cylinder acting through a com-mon toggle linkage. A collar, mounted on the ram tail-rod, comes to bear against the end of the closed jaws, thuslimiting travel of he planes in the dive direction. Whenthe stop is disengaged, the jaws swing clear of the tailrodand full ram travel can be achieved. The planes cannotbe trapped by engaging the stop mechanism at diveangles greater than the preset value since the jaws of thestop cannot be closed sufficiently to capture the tailrodcollar.

561–2.113 SSN688 Class and SSBN726 Class RamStop Operation. During dive stop engage-

Page 47: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–30

Figure 561–2–11. Hydraulic Cylinder Piston Alinement Shim and Locking Dowel Relocation

Page 48: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–31

.019

.025

.031

.038

.050

.063

9535–00–767–2064

––––––––––––––––

9535–00–232–2307

9535–00–234–2161

9535–00–232–2308

9535–00–234–2166

TABLE 561–2–7. SHEET STOCK MATERIAL FOR CYLINDER PISTON ALINEMENT SHIMS

CRESClass 304, Condition A

Thickness

9515–00–204–4536

9515–00–204–4558

9515–00–204–4556

9515–00–204–4533

9515–00–204–4528

9515–00–204–4529

Nickel CopperQQ–N–281 Class A

ment the striker plate is rotated 45� to interfere with tail-rod motion. During dive stop disengagement the strikerplate rotates to a position which allows passage of thetailrod stop with a clearance of 1/4 inch on each side ofthe four stop arms. Having passed into the striker plate,the tailrod stop prevents the striker plate from rotatinginto its closed position, which prevents the planes frombeing trapped at a dive angle greater than the preset limitvalue.

561–2.114 Correction of SSN688 Class Tailrod StopMisalinement. A significant difference exists betweenthe stop assemblies on SSN688 class and SSBN726class. The SSBN726 class tailrod stop is capturedthroughout its travel by a guide mounted on the strikerplate housing. If the striker plate on a SSBN726 class isproperly oriented when disengaged, the tailrod stop willbe guided into the striker plate with proper clearances.The SSN688 class stop assembly has no such guide priorto entry into the striker plate and relies on the axial keyin the tailrod to establish its orientation. If sufficient mis-alinement exists between a SSN688 class tailrod stop andits disengaged striker plate, interference with tailrod mo-tion and damage to the stop or striker plate can resultwhen the stop enters the striker plate. If a misalinementof the stop to the striker plate is noted which produces aclearance of less than 3/16 inch on either side of any ofthe four stop arms, the following corrective actions shallbe taken:

1. Verify that the striker plate is properly ori-ented in the disengaged position. This may be doneby verifying that the cross–shaped opening in thestriker plate is rotated to aline with the cross–shapedopening in the fixed housing to which it is secured.If the striker plate orientation is incorrect, investi-gate and correct the cause of this misalinement.

2. If the striker plate is in proper orientationto the fixed housing but the tailrod stop is out of ac-ceptable orientation to the striker plate, the axial keywhich holds the stop on the tailrod must be refittedor reworked in accordance with actions 3 through11.

3. Remove the stop from the tailrod and in-spect the key and mating key slots for proper fit. Re-fit the key if required.

4. If the key is found to have proper fit but isproducing an improperly oriented stop, manufactureand install a stepped key in accordance with actions5 through 10.

5. Reinstall the stop on the tailrod without theaxial key. Engagement of the stop on the tailrodshould leave a portion of the key slot in the tailrodvisible.

6. Aline the stop to produce 1/4 inch clear-ance between the sides of the striker plate apertureand each side of the four stop arms. Lock the stop inplace using the two set screws in the stop.

7. Scribe the circumferential location of thetailrod key slot on the hub of the stop to establish theoffset between the stop and tailrod key slots (Figure561–2–12, Detail A).

8. Using the offset obtained in subparagraph7 determine the width of new key slot required in thetailrod stop hub by the following formula:

W (slot width) = 1/4 + (2 xoffset dimension) + .010 inch

Page 49: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–32

Figure 561–2–12. Step Key Slot

Page 50: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–33

The depth of the new key slot shall be 9/64 inch (Figure561–2–12, Detail B).

9. Scribe the centerline of the new key slot onthe hub of the tailrod stop at an offset from the exist-ing key slot centerline equal to the offset obtained inactions 7 and machine a new key slot to the widthand depth in action 8.

10. Manufacture a new stepped key in accor-dance with Figure 561–2–12, Detail C. The key ma-terial shall be Nickel Copper, QQ–N–281, Class ACold Drawn and Stress relieved.

11. Reassemble the stop on the tailrod usingthe stepped key and verify proper stop to strikerplate alinement.

561–2.115 SSN637 CLASS FAIRWATER DIVINGGEAR DIVE STOP PLATE INSTALLATION. Al-though not in the class design, the fairwater diving gearhydraulic ram cylinders of some SSN637 class subma-rines have a special stop plate mounted on top of thepacking gland of the main cylinder upper head. The pur-pose of this plate is to provide a stop for the under–icelock ring to prevent a fairwater plane dive jam by limit-ing the travel in emergency mode to approximately20–1/2 degrees. The configuration of these stop platesare similar to that shown on drawing numberSSN637–518–2663781 Revision D, Detail 8–A in zone8–D. When encountered, this stop feature shall be re-tained.

561–2.116 STEERING AND DIVING MECHANI-CAL GEAR

561–2.117 TYPICAL STEERING AND DIVINGGEAR ARRANGEMENTS. For each control surface,the power developed by the hydraulic cylinder is trans-mitted through connecting rods to a tiller that, in turn,causes the control surface stock to rotate. A typical steer-ing and stern diving gear arrangement is shown in Figure561–2–13. On most submarines, the forward divingplanes are located in the fairwater (sail) and are knownas fairwater planes. If the planes are located on the hullforward of the fairwater, they are called bow planes. Atypical fairwater diving plane arrangement is shown inFigure 561–2–14. Some SS type submarines such as SS574 have a special stern plane mechanical arrangement.The stern plane stock and supporting bearings are ar-ranged in an outboard skeg appendage just forward of therudder and below the hull. The planes are all movableand cantilevered about a bearing support located at theskeg. The tiller assembly is located within the skeg andis linked by means of connecting rods to the actuating

cylinders that penetrate the pressure hull. Fairwater,bow, and stern plane stocks are supported by plain–sleeved bearings or spherical–sleeved bearings. Therudder stocks are retained by spherical–sleeved bear-ings, with the weight of the rudder being supported bythrust washers (carrier bearings).

561–2.118 STEERING AND DIVING LINKAGECOUPLING. In most installations, the steering and div-ing hydraulic cylinder piston rod is connected to theguide cylinder (or crosshead) connecting rod by an inter-nally threaded coupling secured in position by two lock-ing bolts as shown in Figure 561–2–15. Also, in most as-semblies, a shim is installed between the two rod ends.The purpose of the shim is to provide a variable dimen-sion which aids in the process of alining existing lockingbolt holes in the coupling and the rods. Discussions here-in are applicable to the following submarines havingcouplings similar to that shown in Figure 561–2–15:

All SSBNs SSN 637 Class

SSN 585/588 Class SSN 671

SSN 594 Class SSN 685

SSN 597 SSN 688 Class

SSN 598 Class

SSN 608 Class

561–2.119 Coupling Installation Requirements. Thisprocedure is followed whenever a coupling assembly isinstalled or reassembled. It varies from the proceduresgiven by steering and diving assembly drawings. Thesteps are listed as follows:

1. Verify coupling alinement and realine asnecessary. (See paragraph 561–2.136).

2. Torque coupling to the torque value givenby Table 561–2–8. Use a thread lubricant (molybde-num disulfide) to prevent galling. Thread couplingon one rod one complete thread before engaging theother rod to avoid cross–threading. Hold the rodsfixed and rotate the coupling to draw both rods intothe coupling simultaneously. This will prevent dam-age to any thread locking devices in the ram or guidecylinder piston. (SSBN 726 class ships

Page 51: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–34

Page 52: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–35

Figure 561–2–14. Fairwater Diving Arrangement

Figure 561–2–15. Coupling Arrangement

Page 53: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–36

SSBN 616/627CLSSBN 640 ClassSSN 688 ClassSSBN 726 ClassOther SSN’SOther Than Above

20002000200030001400

Drawing

TABLE 561–2–8. TABLE OF TORQUE VALUES FOR COUPLING

Coupling Torque Value in Ft–Lb(–0 ft–lb) (+200 ft–lb)

Ship Applicability

Stern Planes RudderFairwater/Bow Planes

20002000200030001400

Drawing

20002000200030001400

Drawing

have a unique coupling locking bolt configuration,with an adjustable alinement plug at the inboard endof the coupling but no adjustment at the outboardend of the coupling. When torquing an installationcontaining a through hull rod already having a lock-ing bolt hole, the advance of the coupling must stopwhen the bolt holes at the outboard end are in aline-ment; then the locking bolt must be installed. Afterthis bolt is installed, hold the coupling fixed and ro-tate the piston rod until specified torque isachieved.)

3. Exercise the coupling by applying themaximum force of the hydraulic cylinder to the cou-pling assembly. Move the tiller into contact witheach hard stop at least three times. After contactingthe hard stop, maintain hydraulic cylinder loadagainst the hard stop for a brief period of time (5–10sec). Use available 3000 psi hydraulic powersource.

CAUTION

Control the rate of the tiller’s movement intothe hard stops to avoid damaging any equip-ment.

NOTE

In some cases, these values exceed ship’sdrawing requirements.

4. Verify coupling has not loosened after step 3by attempting to retorque coupling to requiredtorque value.

5. If coupling rotates during step 4, repeatsteps 3 and 4 until step 4 can be performed without arotation of the coupling.

6. For a new coupling assembly (consisting ofeither a new coupling or rods or both), drill holes innew coupling/rods as necessary and install lockingbolts. For a used coupling assembly, resize shim andassemble coupling to maintain required torque val-ue. For SSBN 726 Class ships with locking boltplugs, manufacture and install new plugs to alinelocking bolts.

561–2.120 Coupling locking Bolts. Once installed, thelocking bolts should be lockwired in accordance withMS–33540 with lockwire conforming to MS–20995.Lockwire material can be either monel or CRES.

CAUTION

More than one tapped hole in the rod is pro-hibited without NAVSEA approval as thiscould significantly reduce the strength of therod. Proper coupling assembly as discussedherein as mandatory.

561–2.121 Coupling Disassembly. When the couplingmust be removed from the linkage in order to performmaintenance or repair of the hydraulic cylinder or me-chanical linkage, proceed as follows:

1. Prior to starting disassembly, position theaffected control surface to the neutral (zero degree)angle position and, if possible, block the control sur-face in that position to prevent further movement.When the diving planes cannotbe blocked in this manner, position

Page 54: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–37

these planes in the hard rise (fairwater) or hard dive(stern diving) position (mechanical hardstop) by us-ing either the local or emergency control mode. Thiswill prevent the diving planes from uncontrolledmovement when the coupling is disengaged.

2. Secure all hydraulic power to the operatingcylinder by shutting the isolation valves to the cylin-der.

3. Vent and drain both ends of the hydrauliccylinder. Disconnect all linkage such as feedbacktransmitter linkage, from the coupling.

4. Remove the two locking bolts from the cou-pling.

5. Prior to Further disassembly, scribe refer-ence lines (axially in line with the tapped holes forthe locking bolts as shown in figure 561–2–16) oneach rod and the vertical faces (ends) of the cou-pling. Sealing wax may be used as a base on whichto scribe the marks. The tapped holes on the rodends will be obscured from view within the couplingas they near their final positions during reassemblyand the reference lines will be of considerable valuein maintaining the orientation of the holes.

6. Prior to further disassembly, determine theproper shim thickness (paragraph 561–2.125) and

make this information available for use during reas-sembly.

7. Mark the hydraulic cylinder end of the cou-pling so it can be easily identified for certain shimfitting procedures and reassembly.

WARNING

Upon coupling removal, all personnel shallstay clear of the space vacated by the cou-pling. Wave action and currents can exertforces sufficient to move the control surfacesand such movement can result in the guidecylinder rod impacting against the piston rod.Forces are severe enough to cause loss of lifeor dismemberment. The general area shall beposted as a danger area.

CAUTION

Cylinder piston rod rotation during mainte-nance of couplings may subject equipment toundue strain and shall be avoided unlessotherwise specified.

8. Remove the coupling from the linkage.

Figure 561–2–16. Location of Alinement Marks

Page 55: Submarien Steering Gear

��� ���������������������

���

���)&� �������� �*�&�)!�� �*!�#��& ��'($# ��(��#�&

�����������$� �$(�(�$#. When installing, disassem-bling, or reassembling coupling, do not allow the guidecylinder rod to rotate as this places undue stress on theyoke pin and the crosshead pin.

�������� When installing, disassembling, or reassem-bling coupling, do not allow the hydraulic cylinder pis-ton rod to rotate as this may place undue stress on pistonto piston rod fastening screws.

������������" ��((�#�. Shim fitting becomes neces-sary when it is impossible to aline the coupling clearanceholes and the tapped holes in the piston and guide cylin-der rods following torquing of the coupling. In this case,alinement is achieved by changing the thickness of theshim. Under no circumstances should additional holesbe added to either the coupling or the rods. If great diffi-culty is encountered in obtaining the shim thickness nec-essary in order to aline the holes, the coupling hole maybe slightly elongated in the direction of the couplingaxis, to allow accommodation of the bolt. An elongationof up to 1/8 inch is permissible if the elongation blendssmoothly with the original hole and has no corner ridgesor cusps. Shims should be machined from the same ma-

terial as the piston rods. The diameter of the shim shouldbe 1/8 inch less than the ID of the coupling.

�����������(�&"�#�#� (�� ���� #�'' $� � ��%!���+

"�#( ���". If a coupling assembly, complete with anexisting shim and locking bolts, requires reshimming,the thickness of the new shim will be equal to the thick-ness of the old shim plus the required increase in thick-ness as determined by the following procedure:

�� ��"� "�� � ������ !��� !"��� �� "�� ��#&������ ����� "�� "����� ����! �� "�� ��! %�"� "������ ���� ����! �� "�� ��#����� �"�� �!!�����������"��� %�"� "�� ������� ���"! ���$����

�� �""��� � ���� ������"� "� ��� �� "�� ��!%�"� "�� ������"� ��#��� �� ���"��" %�"� "�� ����� "�� ��#������

�� �� �#� "�� ��#����� "� � $��#� �� ����������� ������ �� "��� "��" ���"�� �� �&"�"�!�

� �#��� "�� ��$����" ���!# �� �� "������ ������"� �����#!� ��"� ��! ��$� ��"� "��

Page 56: Submarien Steering Gear

��� ���������������������

����

�$*%!�#�� �#� ��� )��( +�!*� )$ )�� "��(*'��)��� #�(( $� )�� �-�()�#� (��" )$ ��!�*!�)� )��)��� #�(( '�&*�'�� �$' )�� #�, (��"�

����������� - +'$($(" -# �#$�%( ,, )! � � /

�#$'. A coupling that was initially installed with thepiston rod and guide cylinder rod in direct contact (noshim installed) is a special case. Although only few innumber, such installations do exist. If clearance holesand tapped holes in these installations are in alinementafter the coupling is torqued to a value per Table 561–2–5, a shim does not have to be installed. However, sincethe original installations did not specify a torque value,it is quite likely that the currently specified torque willnecessitate use of a shim. If so, determine the thicknessof the required shim a follows:

�� !�#� )�� )�%%�� �$!�( �# )�� '$�( ,�)�)�� �!��'�#�� �$!�( �# )�� �$*%!�#� �)�� �(/(�"�!�� �$#��)�$# ,�)� )�� !$� �#� �$!)( '�/"$+����

�� ))��� � ���! �#����)$' )$ $#� $� )�� '$�(�,�)� )�� �#����)$' %!*#��' �# �$#)��) ,�)� )�� �#�$� )�� �$*%!�#��

�� �$'&*� )�� �$*%!�#� )$ � +�!*� %�' ���!�������� "� �#� ��')��# #��)��' '$� '$)�)�(�

� ���$'� )�� "$+�"�#) "��(*'�� $# )�����! �#����)$'�

� ��#�� � +�'. )��# (��" �( ������*!) )$ "�#/*���)*'�� �) �( (*���()�� )��) )�� (��" �#()�!!����+� � )��� #�(( $� ��� �#���( %!*( ),��� )�� "��/(*'�"�#) $�)��#�� �# ()�% � �� '�%'�(�#)( )��)�'���( %�' �#�� �# )�� �$*%!�#� �#� ��� �( )��"$+�"�#) $� )�� '$� '�!�)�+� )$ )�� �$*%!�#� $#$#� �$"%!�)� '$)�)�$#��

�� �!$#��)� )�� �$!� $# )�� %�()$# '$� �#�$� )�� �$*%!�#� ��� �#���( )$,�'� )�� #��'�()���� $� )�� �$*%!�#�� �!$#��)�$# "*() �� ���$"/%!�(��� %'�$' )$ '��((�"�!.�

����

�*'�#� �#()�!!�)�$#� )�� �$*%!�#� �( ��'()()�')�� $# )�� �*��� �.!�#��' '$� $#� )*'#%'�$' )$ )�'����#� $# )$ )�� %�()$# '$�����( %'$+���( '$$" �$' )�� (��" �#� '�(*!)(�# %'$%�' !$� �#���$!) �$!� �!�#�"�#)����( %'$���*'� �( �!($ �%%!����!� �*'�#��$*%!�#� '��((�"�!.�

������������0$'.' �&&)/��& �#$' �#$�%( ,,

�#�(" ,. Addition/deletion of a shim or installation ofa thinner/thicker shim in the coupling assembly changesthe total length of the mechanical linkage between thecontrol surface stock (yoke assembly) and the hydrauliccylinder piston. The primary concern regarding thischange is that the clearance between the piston and thehydraulic cylinder head (when the control surface is inthe hard over, mechanical hard stop, position) is affected.Shipbuilding specifications require that the cylinder pis-ton clear the ends of the cylinder by at least 1/4 inch whenthe control surfaces are against the hardstops. Most cyl-inders have been designed to provide clearance of 1/2inch or more. Therefore, it is recommended that if thethickness of the shim to be installed approaches 1/4 inchmore, or 1/4 inch less, than the shim thickness originallyspecified on the applicable class drawings, the piston/head clearance be verified as outlines in paragraph561–2.97.

������� ��� �,, '�&1 )! �).*&$(",. When reas-sembling the coupling, observe the same precautionarymeasure cited for coupling disassembly (paragraph561–2.121). To prevent the shim from falling out of itsintended position once the coupling is started on bothrods, secure the shim to one of the rods, using a smallpatch of lightly applied contact cement. In some installa-tions, a flat head machine screw is used to hold the shimto one of the rods. In these installations be sure that thescrew is tightened in place before proceeding. The pro-cedure for assembling a coupling will differ according tothe initial coupling installation and the maintenance per-formed. procedures for five specific cases are as follows:

�������

�.!�#��' %�()$# '$)�)�$# �*'�#� �((�"�!. $��$*%!�#�( "�. (*����) �&*�%"�#) )$ *#�*�()'��# �#� (��!! �� �+$���� *#!�(( $)��',�(�(%��������

�� ��, � ��+$"$(�& $(,-�&&�-$)( �$� ()- $(2

�&.� ,#$'� ��� ��"�#(�$#( $� )�� #�, (��"(�$*!� �� )�$(� ��)�'"�#�� �# ���$'��#�� ,�)�)�� �#()'*�)�$#( �# %�'��'�%� �������� �# )��(%�')��*!�' �#()�!!�)�$#� )�� %�()$# '$� (�$*!� ���#����� �# )�� �$*%!�#� $#� �*!! )*'# !�(( )��# �()�� �*��� �.!�#��' '$�� ���*'� )�� (��" )$ $#�'$�� �( ��(�*((�� ��$+�� �#� �#���� )�� �*��� �.!/�#��' '$� �# )�� �$*%!�#� $#� �*!! )*'#�

Page 57: Submarien Steering Gear

� ����� �����������������

���

�'!�!� -"� �(.)%#'! -( -"� )#,-(' +(� �2 +(-�-#'!('%2 -"� �(.)%#'!� ��+# 2 )+()�+ (+#�'-�-#(' ( -"� -�))�� "(%�, #' -"� -0( +(�,� .,#'! -"� ,�+#���%#'�, �)�+�!+�)" �������� �(%�#'! �(-" +(�, +(& +(-�-#'!� -(+*.� -"� �(.)%#'! -( � /�%.� )�+���%� ���� � ,-())#'! 0"�' -"� %(�$#'! �(%-�%��+�'�� "(%�, �%#'� 0#-" -"� -�))�� "(%�, #' -"�+(�,� � �%#'�&�'- ��''(- �� ��"#�/�� 0#-"-(+*.� 0#-"#' -"� ,)��# #�� +�'!�� +���-�+&#'�-"� )+()�+ ,"#& -"#�$'�,, �'� +�)��- -"� ��(/�)+(��,, .'-#% �%#'�&�'- #, (�-�#'��� ���� )�+�3!+�)" ������ (+ +�*.#+�&�'-,�� �',-�%% %(�$3#'! �(%-, #' ���(+��'�� 0#-" )�+�!+�)"�������

�� ��&� � � �%���"� �"&'� �'�#" �"� (���

&��!� �"� �#&�',#(', ( -"� '�0 ,"#& ,"(.%� ��-"(,� ��-�+&#'�� #' ���(+��'�� 0#-" -"� #',-+.�3-#(', #' )�+�!+�)" ������ ���.+� -"� ,"#& -(('� +(� �, �#,�.,,�� )+�/#(.,%2� �'� ,-�+- �(-"+(�, #'-( -"� �(.)%#'! �- -"� ,�&� -#&� �2 +(-�-3#'! ('%2 -"� �(.)%#'!� ��+# 2 )+()�+ (+#�'-�-#('( -"� -�))�� "(%�, #' -"� -0( +(�,� .,#'! -"�,�+#��� %#'�, �)�+�!+�)" �������� �(%�#'!�(-" +(�, +(& +(-�-#'!� -(+*.� -"� �(.)%#'! -( �/�%.� )�+ ���%� ���� � ,-())#'! 0"�' -"�%(�$#'! �(%- �%��+�'�� "(%�, �%#'� 0#-" -"� -�))��"(%�, #' -"� +(�,� � �%#'�&�'- ��''(- ����"#�/�� 0#-" -(+*.� 0#-" -"� ,)��# #�� +�'!�� +�3��-�+&#'� -"� )+()�+ ,"#& -"#�$'�,, �'� +�)��--"� ��(/� )+(��,, .'-#% �%#'�&�'- #, (�-�#'������� )�+�!+�)" ������ (+ +�*.#+�&�'-,���',-�%% %(�$#'! �(%-, #' ���(+��'�� 0#-" )�+�!+�)"�������

�� ��&� � � ��&'#" %#� %�$ ����� �',-�%% )#,3-(' +(�, #'���(+��'�� 0#-" )�+�!+�)"������ �

� ��&� � �(��� �) �"��% %#� %�$ ����� �'3,-�%% �2%#'��+ +(�, #' ���(+��'�� 0#-" )�+�!+�)"������ �

� ��&� � �#($ �"� %�$ ����� � � '�0�(.)%#'! #, -( �� #',-�%%��� #- ,"�%% �� .+'#,"��0#-" %(�$#'! �(%- �%��+�'�� "(%�, '(- �+#%%�� ,#'��-"�,� "(%�, &.,- �� �%#'�� -( -"� �1#,-#'! %(�$#'!�(%- "(%�, #' -"� )#,-(' +(� �'� -"� -"+(.!"�".%%�(''��-#'! +(�� �,#'! &#�+(&�-�+,� &��,.+� -"��1#�% �#,-�'�� +(& -"� ��'-�+%#'� ( -"� %(�$#'!�(%- "(%� #' ���" +(� -( ,(&� )+(&#'�'- )(#'- ('-"� +(� 0"#�" 0#%% +�&�#' ����,,#�%� 0"�' -"��(.)%#'! #, #',-�%%��� ���.+� -"� (+#!#'�% �(.)%#'!,"#& -( -"� �'� ( ('� +(� �'� ,-�+- �(-" +(�, #'-(-"� �(.)%#'! �- -"� ,�&� -#&� �2 +(-�-#'! ('%2 -"�

�(.)%#'!� �"#%� "(%�#'! �(-" +(�, +(& +(-�-#'!�-(+*.� -"� �(.)%#'! -( � /�%.� )�+ ���%����� � ,-())#'! 0"�' -"� ,�+#�� %#'�, ����)�+�!+�)" ������� ,.�)�+�!+�)" � (' -"�-0( +(�, �+� #' �1#�% �%#'�&�'-� ���,"#& # '���,3,�+2� �',.+� -"�- -"� ,"#& .,�� 0#%% )+(/#�� )+()3�+ )#,-(' -( "2�+�.%#� �2%#'��+ "��� �%��+�'�����,-��%#," ,�+#�� %#'�, (' -"� �'� ���, ( -"� �(.3)%#'! .,#'! -"� ,�+#�� %#'�, (' -"� +(�,� �,-��%#,"�1#�% ��'-�+%#'� %(��-#(', (+ -"� %(�$#'! �(%-�%��+�'�� "(%�, (' ���" �'� ( -"� �(.)%#'!� �,3#'! -"� &#�+(&�-�+ �#&�',#(', (�-�#'�� ��+%#�+��,-��%#," -"� 0��� - %(��-#(' ( -"� %(�$#'! �(%-�%��+�'�� "(%�, (' ���" �'� ( -"� �(.)%#'!� �#,3�,,�&�%� -"� �(.)%#'! �'� �+#%% -"� %(�$#'! �(%-�%��+�'�� "(%�,� ���,,�&�%� -"� �(.)%#'! #' ��3�(+��'�� 0#-" )�+�!+�)" ����� � ,.�)�+�3!+�)" ��,� �'� )�+�!+�)" ������ �

������� ������'�#"� �#!!�"'& �$$ ���� � '#

���&&�!� ). Cases 3 and 4 in paragraph 561–2.128specify torquing the piston rod. Precautionary informa-tion relative to rotating the piston rod on a number of shipclasses is given in paragraph 561–2.123. On ships whereassembly conditions necessitate piston rod rotation, thecylinder head should be removed following coupling as-sembly and the piston locking fasteners should be in-spected for integrity. All assembly procedures in para-graph 561–2.128 are based on the assumption that duringthe initial coupling installation (ship construction), bothrods were started on the coupling at the same time. If,during reassembly procedures, both locking bolt holesare out of alinement an equal amount proceed as follows:

�� �-�+- -"� �(.)%#'! (' ('� +(� �� (+�,-�+-#'! #- (' -"� (-"�+�

�� � -�+ �,,�&�%#'! -"� �(.)%#'!� /�+# 2 -"��1#,-�'�� ( )+()�+ �%��+�'�� ��-0��' -"� )#,-('�'� -"� �2%#'��+ "���, �, ,)��# #�� #' )�+�!+�)"�������

�� ��)%��� �'� +��%#'� �%% ������$ -+�',3&#--�+ %#'$�!� �'� &��"�'#��% �'!%� #'�#��-(+,�

� �',)��- �%% &��"�'#,&, (+ +.!!��'�,,�)+()�+ �%�&),� )+�,�'�� ( �%% ,�- ,�+�0,� �'� ,�3�.+#-2 ( �%% )#', �'� �,-�'�+,�

� �('�.�- �' ()�+�-#('�% -�,- ( -"� �(&3)%�-� ,2,-�& -( /�+# 2 )+()�+ .'�-#('#'!�

Page 58: Submarien Steering Gear

� ����� �����������������

���

������������������ ��� ������ �������3

��� ����. Two connecting rods are used in most in-stallations. One, the guide cylinder rod, is connected tothe hydraulic cylinder by the coupling and to the cross-head piston with a threaded connection. This rod pene-trates the pressure hull and transmits the linear force gen-erated at the hydraulic cylinder to the crosshead piston.Alinement of this rod with the hydraulic cylinder pistonrod is very important, because wear of bearing surfacesand packing rings in the guide cylinder cover and hy-draulic cylinder head will accelerate with misalinement.For further information on the subject refer to paragraph561–2.134. The other connecting rod usually found insteering and diving gear is commonly referred to as thedogbone because of its shape. This rod is located out-board of the pressure hull. It is connected to the cross-head piston and tiller by means of pins. This arrange-ment allows for rotary motion at the crosshead piston andtiller, as the tiller swings through an arc while turning thecontrol surfaces. For a typical arrangement of these tworods refer to Figures 561–2–13 and 561–2–14.

�����������,,/$ �,1-)(+&. Couplings connectingthe hydraulic piston rod to the through–hull connectingrod occasionally loosen. This loosening may cause noiseor undesirable mechanical working of the joint. If aloose coupling is detected, retorque the coupling follow-ing the procedures provided in paragraph 561–2.119.

�����������$*,2 ) ,% ��� ��� �) // �'.,1&' �1))

�,++$"0(+& �,#/. Removal of the steering and sterndiving through hull connecting rods through the engineroom access is impractical because of the long length ofthe rod. NAVSEA Dwg. 100–5789854 provides guid-ance and details for removal of these rods using accesscuts in the ship’s stern section.

�������������������� ��� �����������.Since rotary motion exists at the tiller and crosshead (pis-ton or slide) pins, bushings are installed in the outboard(dogbone) connecting rod. Various SHIPALTS installbushings in tiller arms where the original design does notprovide this feature. Some submarine TRSs provide forinstalling bushings in guide pistons as a method of restor-ing piston wrist pin bores that are enlarged due to wearor repair machining. Thrust washers are installed be-tween the bearing faces of the connecting rod and the ad-joining surfaces on tillers and pistons. On most subma-rine classes, each end of the connecting rod receives lu-brication via either local grease fittings or a centralizedsystem using manifolds or distribution valves locatedwithin the pressure hull. On older submarine classeswhere only local fittings are installed, the ship must besurfaced or, for the stern planes and rudder, drydocked in

order to lubricate the connecting rods. Until such timethat non–metallic bushings and washers that require nolubrication are installed, periodic greasing in accordancewith PMS and SMMS MRCs is required. The SUBMA-RINE GREASING HANDBOOK, NAVSEAT6350–AA–HBK–010, provides general informationabout greasing components, greasing requirements, andgreasing methods.

����������,# �)(+$*$+0 �.,!)$*/. If the connect-ing rods for the guide cylinders and their associated hy-draulic cylinder piston rods are not properly alined priorto coupling installation, the following problems may beexperienced:

�� �������� ��� ������� � ��� �����

�� ��������� ������ ���� ��� ��������

�� ������� � � ����

������� The most common alinement problem hasbeen the scoring and galling of the stern diving guide cyl-inder connecting rod, primarily on the lower side, as itcomes into contact with the guide cylinder packing glandretainer. Even though misalinement may not result inrubbing contact when the ship is surfaced, there may bea problem when the ship submerges. Pressure hull de-flection resulting from submergence pressure can resultin significant relative motion between the guide cylinderand the hydraulic ram. To minimize potential problems,the hydraulic cylinder piston rod must be carefully alinedwith the guide cylinder connecting rod. The alinementprocedure in paragraph 561–2.136 should be used fol-lowing removal and reinstallation of a hydraulic ram orguide cylinder connecting rod. Whenever damage to aguide cylinder connecting rod or hydraulic cylinder pis-ton rod resulting from misalinement is suspected, thealinement verification procedure in paragraph561–2.139 should be conducted.

�����������,# �)(+$*$+0 �.,"$#1.$� ��� ��� ���

��������� ��������� ��� ������� ���� � �������

��� ��� ���� ������ � �� � ��� ��� � �� ��������

����� �� �������� ��� ������ ��� �� �� ���������

Page 59: Submarien Steering Gear

��� ���������������������

���

�������

�'2 &(/�&�'- (� �('-+(% ,.+����, 0!"%��(.)%"' ", +�&(/�� ��' +�,.%- "' -!� ."���2%"'��+ +(��, "&)��-"' � �"',- -!� !25�+�.%"� �2%"'��+ )",-(' +(� 0"-! ,.��"�"�'-�(+�� -( ��.,� %(,, (� %"�� (+ �",&�&��+5&�'-� �!� �('-+(% ,.+����, &.,- �� +�5,-+�"'�� -( )+�/�'- &(/�&�'- �'� -!� �'5�+�% �+�� (� -!� �(''��-"' +(�, &.,- ��)(,-�� �, � ��' �+ �+���

�������� The alinement procedure is as follows:

�� �+"(+ -( +�&(/�% (� -!� �(.)%"' � +��(+�-!� +��"�% �%��+�'�� ��-0��' -!� -!+(. ! !.%%�(''��-"' +(� �'� "-, )��$"' +�-�"'�+ �'� -!�!2�+�.%"� �2%"'��+ )",-(' +(� �'� "-, )��$"' +�5-�"'�+ "' ���(+��'�� 0"-! -!� )+(���.+� )+(/"���"' )�+� +�)! � �����

�� ��&(/� -!� �(.)%"' �'� )(,"-"(' -!�-!+(. ! !.%% �(''��-"' +(� �'� -!� !2�+�.%"��2%"'��+ )",-(' +(� "' � )(,"-"(' �(++�,)('�"' -(-!� 3�+( �� +�� )(,"-"(' (� -!� �('-+(% ,.+������%��� � ,-+�" !- �� � )�+�%%�% -( -!� +(�, �, ,!(0'"' �" .+� � ���� �!� ,-+�" !- �� � ,!�%% ��,-+�" !- -( 4 ���� "'�! (/�+ "-, -(-�% %�' -!� 0"-!-!� -(-�% %�' -! (� -!� ,-+�" !- �� � ,.�! -!�- -!��'�, (� -!� ,-+�" !- �� � ��%% 0"-!"' ('� �� "'�!(� -!� !.%% )��$"' %�'� �'� -!� !2�+�.%"� �2%"'5��+ )��$"' %�'�� ��$�&��,.+�&�'-, � �'��0"-!"' ('� �� "'�! (� -!� �'� (� -!� ,-+�" !- �� ��'� � �'� � 0"-!"' ('� �� "'�! (� -!� �'� (� -!�+(� -!+��� +�%"��,�

����

�- &�2 �� '���,,�+2 -( )%��� )%�,-"� ,!"&,��-0��' -!� +(�, �'� -!�"+ )��$"' +�-�"'5�+, "' (+��+ -( $��) -!� +(�, ��'-�+�� ��-�+-!� �(.)%"' ", +�&(/��� �1�+�",� ��+�0!�' "',-�%%"' ,!"&, -( �/("� ��&� "' -!� ��#���'- )��$"' �

�� �!�' �%"'"' +(�, (� -!� ,�&� �"�&�-�+�-�$� &��,.+�&�'-, (� �� �� �� �'� � �"&�'5,"(', �- -!� �'� � (��%(�$ )(,"-"(', -( �!��$�%"'�&�'- "' -!� /�+-"��% �'� !(+"3('-�% )%�'�,+�,)��-"/�%2� �� �%% &��,.+�&�'-, �+� 3�+(� �%"'�5&�'- ", )�+���-� �� �'2 �"&�',"(' ", +��-�+ -!�'���� "'�!� -�$� �(++��-"/� ��-"('�

� �!�' -!� +(�, �+� (� �"���+�'- �"�&�-�+�&(.'- -!� ,-+�" !- �� � (' -!� %�+ �+ �"�&�-�++(� �"��� )("'-, � �'�� (' -!� +(� (� %�+ �+ �"�&5�-�+� �'� -�$� &��,.+�&�'-, ��-0��' -!�,-+�" !- �� � �'� -!� ,&�%%�+ �"�&�-�+ +(� �"���)("'-,� �'� � (' -!� +(� (� ,&�%%�+ �"�&�-�+����$� &��,.+�&�'-, �- -!� �'� (��%(�$ )(,"5-"(', -( �!��$ �%"'�&�'- "' -!� /�+-"��% )%�'� �'��- -!� � �'� � (��%(�$ )(,"-"(', -( �!��$ �%"'�5&�'- "' -!� !(+"3('-�% )%�'�� �� �%% � �'� �&��,.+�&�'-, �+� �*.�%� �%" '&�'- ", )�+���-� ��-!� �"���+�'�� ��-0��' � �'� � "' � ,"' %�)%�'� ", +��-�+ -!�' ���� "'�!� -�$� �(++��-"/� ��5-"('� ��1�&)%�� �� � �- � (��%(�$ ", ��� "'�! �'�� �- � (��%(�$ ", �� "'�!� -!� �"���+�'�� (� -!�,�+���"' , -�$�' "' -!�!(+"3('-�% )%�'� ", +��-�+ -!�' ����

�" +)� ������ � �'� �$"&�%�&* �!��# �"*! �'+($"& ��%',��

Page 60: Submarien Steering Gear

���� ���������������� ���

��

05*/ (5+ *699,*;0=, (*;065 0: 5,*,::(9@� �- ;/, +0-B-,9,5*, ),;>,,5 �� (5+ �� ��� +,.9,,: 6776:0;,05 ( :05.3, 73(5, 69 �� (5+ �� ��� +,.9,,: 6776B:0;, 05 ( :05.3, 73(5, 0: .9,(;,9 ;/(5 ��� 05*/� ;(2,*699,*;0=, (*;065 ��?(473,� �- �� (; � 6�*36*2 0: �� 05*/ (5+ �� (; � 6�*36*2 0: �� 05*/� ;/, +0-B-,9,5*, 6- ;/,:, 9,(+05.: ;(2,5 05 ;/, /690A65;(373(5, 0: .9,(;,9 ;/(5 ��� 05*/ (5+ *699,*;0=, (*B;065 0: 5,*,::(9@�

��3;,95(;, �,;/6+� �#,, $()3, ���� ���

'/,5 ;/, 96+: (9, +0--,9,5; +0(4,;,9� 46<5; ;/,:;9(0./; ,+., 7(9(33,3 ;6 ;/, *,5;,9 305, 6- ;/, 3(9.,9+0(4,;,9 96+� +0(4,;,9 �� �0, 7605;: � (5+ � 65 ;/,96+ 6- 3(9.,9 +0(4,;,9� (5+ ;(2, 4,(:<9,4,5;: ),B;>,,5 ;/, :;9(0./; ,+., (5+ ;/, :4(33,9 +0(4,;,9 96+�+0(4,;,9 ��� �0, 7605;: �� (5+ �� 65 ;/, 96+ 6-:4(33,9 +0(4,;,9� $(2, (5+ 9,*69+ 4,(:<9,4,5;: (;;/, � 69 � 6�*36*2 76:0;065: ;6 */,*2 (30.54,5; 05 ;/,=,9;0*(3 73(5, (5+ (; � 69 � 6�*36*2 76:0;065: ;6 */,*2(30.54,5; 05 ;/, /690A65;(3 73(5, �- (33 �� (5+ �� +0B4,5:065: (9, ,8<(3� (30.54,5; 0: 7,9-,*; �- ;/, +0--,9B,5*, ),;>,,5 �� (5+ �� 05 ( :05.3, 73(5, 0: .9,(;,9;/(5 ��� 05*/� ;(2, *699,*;0=, (*;065 (: (30.54,5; 0:<5:(;0:-(*;69@ �- ;/, +0--,9,5*, ),;>,,5 � (5+ ���69 � (5+ ���� >/,5 (+1<:;,+ -69 +0--,9,5; 96+ +04,5B:065:� 0: .9,(;,9 ;/(5 ��� 05*/� (30.54,5; 0: <5:(;0:B-(*;69@

�� �- ;/, ;/0*25,:: 6- ;/, /@+9(<30* *@305+,9-6<5+(;065 :/04: 4<:; ), (+1<:;,+ 05 69+,9 ;6

(305, ;/, 96+:� ;/, ,?0:;05. *6;;,9 705 /63,: 05 ;/,46<5;05. )63;:;<+: 4(@ 56 365.,9 (305, >0;/ ;/,/63,: 05 ;/, 690.05(3 5<;: �5 ;/0: *(:,� ;/, <:, 6-,3(:;0* :;67 5<;: 0: 79,-,99,+ ;6 +903305. 5,> /63,:�),*(<:, ;/, :;<+ >033 ), >,(2,5,+ )@ ;/, +903305.$()3, ���� �� 796=0+,: :;(5+(9+ 7(9; 5<4),9:-69 :,3-�36*205. 5<;:

� ���������� � �( -- � ',1 .$, �'0'*% �2#, /3

('" �2('*#$, �('*$)$*. �,+"$#/,$.

����

�69 ## ��� *3(:: -(09>(;,9 73(5,:� 796)B3,4: /(=, ),,5 9,769;,+ 05 (::,4)305. ;/,70:;65 96+ ;6 ;/, ;/96<./ /<33 *655,*;05.96+ �<, 7904(903@ ;6 ;0./; ;/9,(+ -0; (5+:*9,>05. 05;6 ( )305+ /63,� (09 (5+ ,?*,:: 3<B)90*(5; /(=, 56 ,(:@ >(@ ;6 ,:*(7,� *65:,B8<,5;3@� (::,4)3@ *(5 9,:<3; 05 :<--0*0,5;:;9,:: 65 ;/, ;/9,(+: ;6 *(<:, .(3305. �5(**,7;()3, :63<;065 ;6 79,=,5; ;/0: 0: ;6 *<;( ���� >0+, .966=, ;/, 3,5.;/ 6- ;/, ;/9,(+;6 ;/, +,7;/ 6- ;/, ;/9,(+ 966; +0(4,;,9 05;/, 4(3, ;/9,(+ %:, 6- ;/0: 796*,+<9, 05(7730*(;065: 6;/,9 ;/(5 +,-05,+ ()6=, 9,B8<09,: #!������ (7796=(3 -964 �&B#�� $/0: (305,4,5; 796*,+<9, :/6<3+ ),(**64730:/,+ >0;/ ;/, ;/96<./ /<33 *65B5,*;05. 96+ (5+ /@+9(<30* *@305+,9 70:;6596+ 05 76:0;065: *699,:765+05. ;6 ;/, A,96+,.9,, 76:0;065 6- ;/, *65;963 :<9-(*, $/,(305,4,5; 796*,+<9, 0: (: -6336>:�

� !($ � ����� ���� �� ��������� �������� ��(.$,* .$ �$.&+#�

�,(:<9,4,5; �*;<(3 �04,5:065:

!6:0;065: �#,,�0. ���� ���

� � �� ��",8<09,+

&,9;0*(3 !3(5,�� 69 � 6�*36*2�

�690A65;(3 !3(5,�� 69 � 6�*36*2�

"6+ �0(4,;,9 � � � � " �

"6+ �0(4,;,9 �� � �� � "� �

&,9;0*(33@� ������� �����"�� � ���"� �����"�� � ���"� �

�690A65;(33@� ������� �����"�� � ���"� �����"�� � ���"� �

����� $/, 40:(30.54,5; *(3*<3(;,+ <:05. ;/, ()6=, ,8<(;065: >033 9,:<3; 05 ( 76:0;0=, 69 5,.(;0=, 5<4),9$/, ():63<;, =(3<, 6- ;/0: 5<4),9 0: ;/, 4(.50;<+, 6- 40:(30.54,5; $/, 76:0;0=, 69 5,.(;0=, :0.5 >03305+0*(;, ;/, +09,*;065 6- 40:(30.54,5;

'/,5 96+: (9, +0--,9,5; +0(4,;,9:� ��� 0-;/, +0--,9,5*, ),;>,,5 �� (5+ �� 05 (:05.3, 73(5, 0: .9,(;,9 ;/(5 ���� 05*/,:�(30.54,5; 0: <5:(;0:-(*;69@ � � 0- ;/, +0-B-,9,5*, ),;>,,5 ����"�� (5+ ���"� 69),;>,,5 ����"�� (5+ ���"� 05 ( :05.3,73(5, 0: .9,(;,9 ;/(5 ���� 05*/,:� (30.5B4,5; 0: <5:(;0:-(*;69@

Page 61: Submarien Steering Gear

� ����� �����������������

��

�� �,*-)#1#)6 "'0�00#* )# 1&# $�'/4�1#/"'3'+% &6"/�2)'! !6)'+"#/� �'1& �)) '+1#/+�) !,*9-,+#+10 /#*,3#"� /#'+01�)) 1&# ,"6 ,$ 1&# #51#/9+�) !6)'+"#/ '+ 1&# /'"%# 1/2+(�

����

�&# ,+)6 $�'/4�1#/ "'3'+% %#�/ 1&�1 0&,2)" # '+ 1&# 1/2+( �1 1&'0 1'*# '0 1&# ,"6 ,$ 1&##51#/+�) !6)'+"#/ �+" 1&# 1&/,2%& &2)) !,+9+#!1'+% /,"� �#/$,/* �+6 /#.2'/#" /#-�'/0,$ 1&# �� ,$ 1&# &6"/�2)'! !6)'+"#/ -/',/ 1,�!!,*-)'0&'+% 1&'0 -/,!#"2/#� �&# �)'+#9*#+1 !&#!( *201 # �!!,*-)'0&#" 4'1& 1&#&6"/�2)'! !6)'+"#/ �� /#4,/( !,*-)#1#�

�� ��+2$�!12/# � 8"2**6� '++#/ -'01,+ /,"$/,* �)2*'+2* 01,!( �0 0&,4+ '+ �'%2/#�������� �&# /," 4')) &�3# 1&# 0�*# "'*#+90',+0 �0 1&# �!12�) '++#/ -'01,+ /,"� �&/#�" 1&#8"2**6� -'01,+ /," '+1, 1&# 1&/,2%& &2)) !,+9+#!1'+% /,"�

����

��'/4�1#/ -)�+# !,*-,+#+10 1&�1 �/# '+ 1&# /'"%# 1/2+( $,)),4'+% 1&# � ,3# 0&,2)"!,+0'01 ,$ 1&# ,"6 ,$ 1&# ,21#/ &6"/�2)'!!6)'+"#/� 1&# 1&/,2%& &2)) !,++#!1'+% /,"�+" 1&# "2**6 '++#/ -'01,+ /,"� �## �'%92/# ���������

�� �#+1#/ 1&# 1&/,2%& &2)) !,++#!1'+% /,"4'1&'+ '10 -�!('+% %)�+" 6 /'%%'+% �/,2+" 1&#),4#/ $)�+%#" #+" ,$ 1&# /,"� �&# 1&/,2%& &2))!,++#!1'+% /," '0 !,+0'"#/#" !#+1#/#" 4&#+ 2+'9$,/* $##)#/ %�2%# *#�02/#*#+10 �/# , 1�'+#" �0"'0!200#" '+ -�/�%/�-& ������� �� �$ �!!#00' )#��)0, 3#/'$6 1&�1 1&# 1&/,2%& &2)) !,++#!1'+% /," '0!#+1#/#" 4'1&'+ 1&# 20&'+%� ��/# 0&,2)" # 1�(9#+ 1, #+02/# 1&#/# '0 +, *,3#*#+1 ,$ 1&# 1&/,2%&&2)) !,++#!1'+% /,"8"2**6� /," �00#* )6 �$1#/!#+1#/'+%� �&'*0 ,$ 2+'$,/* 1&'!(+#00 *�6 # '+90#/1#" #14##+ 1&# 1&/,2%& &2)) !,++#!1'+% /,"�+" -�!('+% %)�+" �1 $,2/ ),!�1',+0 1, �'" '+ 0#9!2/'+% 1&# 1&/,2%& &2)) !,++#!1'+% /,"� �&# 0&'*1&'!(+#00 0&,2)" # 1&# 0�*# �0 1&# $##)#/ %�2%#*#�02/#*#+10� �&'**'+% #14##+ 1&# 1&/,2%&&2)) !,++#!1'+% /," �+" 20&'+% *�6 # ",+# �04#))�

� �'1& 1&# ,-#/�1'+% /,"0 !#+1#/#"� *#�902/# 1&# /�"'�) !)#�/�+!# #14##+ 1&# �� ,$ 1&#8"2**6� '++#/ -'01,+ /," �+" 1&# �� ,$ 1&# &69

"/�2)'! !6)'+"#/� ��(# *#�02/#*#+10 �1 $,2/ ),9!�1',+0 � "#%/##0 �-�/1 $/,* 1&# 2--#/� *'"")#��+" ),4#/ -,/1',+0 ,$ 1&# &6"/�2)'! !6)'+"#/ �1,1�),$ �� *#�02/#*#+10�� �#�02/#*#+10 0&,2)" #1�(#+ '+ 1&# ������ �+" �������� -,0'91',+0� �)'+#*#+1 '0 !,+0'"#/#" 0�1'0$�!1,/6 4&#+#�!& ),!�1',+0 *#�02/#*#+10 �/# 4'1&'+ ��'+!& ,$ #�!& ,1&#/�

����

�&')# /#!,/"'+% *#�02/#*#+10� !,+1'+2�)9)6 3#/'$6 1&�1 1&# 1&/,2%& &2)) !,++#!1'+%/," /#*�'+0 !#+1#/#" 4'1&'+ 1&# -�!('+%%)�+"� �$ �+6 *,3#*#+1 &�0 ,!!2//#"� 01�/1�%�'+ 4'1& 01#- �

� �&'0 -/,!#"2/# '0 1, # �!!,*-)'0&#" �$91#/ �)) ,1&#/ /#4,/( ,$ 1&# $�'/4�1#/ "'3'+% %#�/ '0!,*-)#1#" �+" -/',/ 1, $'+�) /#�00#* )6�

������� ���$� �! #�"�#& ��% � ��& $#. Verifiedalinement should be as follows: After every couplingreassembly and whenever through hull rod or hydraulicpiston rod wear or damage resulting from misalinementis suspected.

�������

�&21 '0,)�1',+ 3�)3#0 �+" 1�% !,+1/,) 3�)3#0�0 +#!#00�/6 1, -/#3#+1 /�**,3#*#+1 "2/9'+% �)'+#*#+1 3#/'$'!�1',+�

�� �'1& 1&# !,+1/,) 02/$�!# $'/01 �1 7#/, "#9%/##0 �+" 1&#+ �1 #�!& *#!&�+'!�) &�/"01,- -,0'91',+� *#�02/# �+" /#!,/" 1&# /�"'�) !)#�/�+!# #914##+ 1&# 1&/,2%& &2)) !,++#!1'+% /," �+" '10-�!('+% /#1�'+#/�

�� ��(# *#�02/#*#+10 �1 $,2/ ),!�1',+0 � ��� � �+" �� ,�!),!(� �/,2+" 1&# /,"0�

�� �#-#�1 01#-0 � �+" � 1,*#�02/# 1&# !)#�/9�+!#0 $,/ 1&# &6"/�2)'! !6)'+"#/ -'01,+ /," �+" '10-�!('+% /#1�'+#/�

� �+'$,/* /�"'�) !)#�/�+!# #14##+ 1&#1&/,2%& &2)) !,++#!1'+% /," �+" '10 -�!('+% /#91�'+#/� �+" 1&# &6"/�2)'! -'01,+ /," �+" '10 -�!(9'+% /#1�'+#/ '0 #3'"#+!# 1&�1 1&# /#1�'+#/0 �/# !#+91#/#" �/,2+" 1&# /,"0 �+" 1&�1 1&# /,"0 �/#�)'+#"� � /�"'�) !)#�/�+!# )#00 1&�+ �� '+!& '*9-)'#0 -,00' )# *'0�)'+#*#+1 ,$ 1&# /,"0 �+" 1&#+##" $,/ !,//#!1'3# �!1',+�

Page 62: Submarien Steering Gear

� ����� �����������������

��

����������������� ��� ������ ����� � �4

����� ����������. The following discussion isgeneral in nature and not descriptive of a particular shipclass. For details applicable to a particular ship refer toselected record data such as Ship’s Information Book orto assembly and detail drawings. For a typical guide cyl-inder assembly see to Figure 561–2–19.

����������0)$% �3*)+$%- �,+./-0#/),+. Severalcomponents are combined to form the guide cylinder as-sembly (see Figure 561–2–19). There are some assem-bly variations among classes, but the basic designs aresimilar. The main purpose of the guide cylinder is to pro-vide a means for the crosshead piston to be supportedwhile transmitting hydraulic cylinder forces. Guide cyl-inder assemblies are comprised of one of the followingcylinders in addition to various other components dis-cussed in paragraphs 561–2.142 through 561–2.144:

�� �(% ./%%-)+' !+$ ./%-+ $)1)+' #3*)+$%-�

�&%*+),�+�� &� � +��) *+��# &) �&%�#� +� * +,�� *.�#��� +& +�� ')�**,)� �,## �+ +�� +,���* �&).�)��%� �%� +& +�� ��+ ��##�*+ +�%" �,#"���� �+ +��+,��* &+��) �%��

�� �(% &!)-2!/%- $)1)+' #3*)+$%-� �� * �0# %2��) * ,*,�##0 � *+��# +,�� .�#��� &) �&#+�� +& +���) ��� ����** +),%" �+ +* �&++&$ �%�� . +� +�� ,'2'�) �%� *,''&)+�� �0 *� '�* *+),�+,)� . +� % +���� ).�+�) +*�#��

�� �,2$)1)+' '0)$% #3*)+$%-� ��%�)�##0 �&%2*+),�+�� &� *+��#� +� * �0# %��) * #&��+�� % +���)�� �#&&� �)�� �&).�)� &� +�� ')�**,)� �,##�

������� Most of the steering and diving cylinderspenetrating the pressure hull or bridge access trunk havea cast copper–alloy cover bolted onto the inboard end.This cover contains both a bearing surface for the con-necting rod to ride on and, at its inboard end, a counter-bore for packing around the connecting rod. The packingis held in place with a separate cast retainer that is in turnbolted to the cover. When installed correctly, the chev-ron or V packing will prevent seawater from entering theship. For packing installation guidance refer to chapter078, Gaskets, Packings, and Seals. External seal leak-age criteria for hydraulic cylinders per Table 561–2–2may be used for guide cylinder cover V–ring or chevronseals.

������� Several ship classes do not have a boltedcover on the fairwater diving guide cylinder. These shipshave the inboard end of the guide cylinder cast with thecylinder, forming a closed end. The only opening is

where the rod penetrates. A packing counterbore andpacking retainer, as noted above, are provided.

������ Steel guide cylinders use a gun metal or oth-er copper–based alloy liner that provides a bearing sur-face for the crosshead piston to ride on. The interface be-tween the steel guide cylinder and this liner has the po-tential to cause corrosion of the steel guide cylinder, i.e.,galvanic corrosion in a seawater environment. To pre-clude this action, one of two methods is used. The mostcommon is to apply a synthetic rubber sealant to the areaof the interface. The other method is to weld the twopieces together at this joint. If the liner is cut back to re-move corrosion, and, as a result, leaves insufficient bear-ing area for the guide piston (i.e., if any portion of theguide piston grease groove or 10% of the piston bearingarea overhangs the guide cylinder liner), the bearing areamust be restored. If for this or other reason the liner isremoved, replace a gun metal liner with a monel (NI–CU) liner per QQ–N–281. Seal the joint between monelliner and steel cylinder by welding.

���������0)$% �3*)+$%- �)+%- �0""%- �%!*!+/. To prevent the entrance of seawater, a rubber sealantmust be applied to the joint between the guide cylinderand the liner. This joint must be prepared for the sealantas follows:

�� �#��% +& ��)� $�+�# � ���� ,%+ # �)�� �)&$�## �&)� �% *,�*+�%��* *,�� �* *��#�� �&))&* &%��%� '� %+� �&+� +�� !& %+ +& �� *��#�� �%� ���� %�� �)�� &% ���� * �� &� +�� !& %+�

�� ��+�) % + �# ')�'�)�+ &% * �&$'#�+���. '� �&.% +�� �)�� +& �� *��#�� . +� �% & #��)��*&#-�%+ *,�� �* +) ��#&)&�+) �#,&)&�+��%� �&%2�&)$ %� +& ���������� �& *,)���� ') $�) *)�(, )�� ') &) +& *��#�%+ �''# ��+ &%�

�� �''#0 *��#�%+ . +� �% �/+),* &% �,% &)*'�+,#�� �� �% �/+),* &% �,% * ,*��� ,*� � ��� +&�� � %�� � �$�+�) %&11#� ��#� *& +��+ + * '�)2'�%� �,#�) +& +�� !& %+ &) *��$� �/�)� *� ��)�. +� � +��) $�+�&� +& ')�-�%+ �&)$�+ &% &� � )'&�"�+* &) -& �*�

����������0)$% �3*)+$%- �)+%-. �%*$%$ )+ �*!#%.The guide cylinders that have the liner welded in placeat the interface joint do not require the weld to be re-moved unless dye penetrant or magnetic particle inspec-tion shows that a defect in thewelded joint may exist. If cracks or other de-

Page 63: Submarien Steering Gear

���������������� ������

���

��� �� ������� � ��� !������ ��� ��������� ���

Page 64: Submarien Steering Gear

��� ���������������������

���

���# � �������� %�#��$� ���� ��!"�� ���

Page 65: Submarien Steering Gear

�����������������������

����

��� �� ������� ����!���� ������ ��� ��������

Page 66: Submarien Steering Gear

� ���� ����������������

���

fects exist, the defective area is to be excavated to soundmetal and repaired as necessary.

����������0'"# �2)'*"#- �+1#-. *" � !('*% �#3

/ '*#-.. Covers and retainers are normally a cast copperalloy such as nickel aluminum bronze. These two piecesform a nonredundant pressure hull boundary; thereforeit is imperative that they be maintained in good condi-tion. Maintenance Requirement Card URO–MRC–015addresses required inspections for these items (see para-graph 561–4.8). The packing gland retainer fits veryclosely with the connecting rod; misalinement of the rodmay reduce this clearance to the extent that the rod willrub on the retainer and both will be damaged. If athrough hull connecting rod is rubbing the packing re-tainer, corrective action short of realinement of the rodsper paragraph 561–2.138 shall consist of either (1) in-creasing the diametrical clearance between rod andpacking retainer to a maximum of 0.030 inch by increas-ing the ID of the packing gland, or (2) performing Shi-pAlts SSN 2830 or SSBN 1963 for applicable ships to ob-tain a larger diametrical clearance. Larger clearances areacceptable (if shown on applicable drawings) for instal-lation in which V–ring adapters of duck and syntheticrubber with an approximate hardness of 70 durometer (Dscale) are used to reduce extrusion. (Refer to SHIPALTSSSN 2830 and SSBN 1963). If the clearance between theguide cylinder cover and connecting rod becomes exces-sive, Appendix F may be used to repair the guide cylindercover in lieu of replacement.

����������0'"# �2)'*"#- �'./+*� �'/&'* /&# %0'"#

!2)'*"#- '. !)+.#)2�$'//#" ,'./+*. This piston, a cast-ing made of a copper alloy such as nickel aluminumbronze, provides for the transition of liner motion fromthe hydraulic cylinder to the rotary motion required tooperate the tiller. With the exception of the SSN 637Class fairwater diving gear, which uses tracks instead ofa piston, all other control surface gear uses a crossheadpiston. The guide cylinder connecting rod is threadedinto the forward end of the piston and fixed in place witheither a jamnut, pin or both. When reassembling thethrough hull connecting rod with the guide piston, insurethat the threads on the rod are properly coated with sea-lant PR–380–M or equal. The tiller to crosshead rod(dogbone) is connected to the crosshead piston with athrough pin that allows for rotation of this rod. Appropri-ate bushings are installed in the rod and crosshead to pro-vide a bearing surface that in some classes is lubricatedfrom a grease fitting located outboard and in others is lu-bricated through an internal grease manifold. The cross-head piston is grease–lubricated from within the ship,with the crosshead piston in the zero plane angle posi-

tion. This piston is to be inspected periodically to deter-mine the extent of corrosion and dealuminization. Be-cause of the work involved, this inspection is usuallydone only during ship overhaul, unless abnormal opera-tion or noise indicates the existence of a problem. A slap-ping noise may indicate excessive diametral clearancebetween the piston and guide cylinder, whereas lost mo-tion between the hydraulic cylinder and control surfacesmay indicate that either the connecting rod threaded con-nection is loose or the pin bushings are worn. Table561–2–11 provides maximum operating cycle freeplaycriteria for stern planes, fairwater planes, and rudder til-ler and guide piston (or wrist) pin connections. For thoseguide pistons that do not have pin bushings installed, Ap-pendix G may be used as a guide for installing bushingsin lieu of piston replacement if bores are worn excessive-ly.

������ ��������� ��� �����. Generally, thetiller used for steering and stern diving gear is cast inte-grally with its respective yoke. The integral tiller andyoke assembly used for steering and stern diving ismounted on the ship’s axial centerline with a stock fittedbetween each control surface and the yoke. Taper fit anddraw keys are usually used on each end of the stocks tohold them fast to corresponding tapered holes in theyokes and control surfaces. On some ships, the stocks arewelded to the control surface hub, with tapers and keysused only at the yoke connection. Again, keys are in-stalled at the interface of the stocks, yoke, and controlsurfaces to transmit torque (see Figures 561–2–25 and561–2–26). The tiller and yoke are preserved externallywith a protective coating of glass, reinforced plastic orpaint. Internal yoke areas, where the stocks are fitted, arefilled with a preservative compound such as per MIL–C–11796 Class 1A for hot application, or per MIL–C–16173 Grade 1 for cold application; however the hotapplication is preferred. Maintenance is limited to veri-fying that the protective compounds are in good condi-tion and that pitting has not exceeded allowable limitsand weakened the component. Internal yoke surfacesmust be checked periodically to ensure that seawater hasnot leaked in, displacing the protective compound or cor-roding the metal of either the yoke or stocks. Fairwaterplanes tillers for most classes of SSNs and SSBN 726class are forged directly ontothe stock. On SSBN 616/627 and 640

Page 67: Submarien Steering Gear

� ����� ����������������

��

Class submarines and a few earlier classes, the “tiller” isa bolt–on/clamp–on assembly comprised of a forwardhalf, or tiller, and an after half, called the tiller cap.These are bolted together on the one–piece stock andprovided with keys to transmit torque to the planes (seeFigure 561–2–14). Maintenance problems associatedwith bolt–on fairwater tiller–stock–bearing assembliesare often identified following a report of bearing noise.If stock bearing clearances and the quality of lubricationindicate that bearings are not the problem, then tiller–thrust sleeve–stock assembly loosening is the likelycause. The factors, usually in combination, which causetiller– thrust sleeve–stock assembly loosening are (1)loose thrust sleeve assembly fasteners, (2) loose tillernuts, (3) excess radial clearance between tiller and stock,and (4) loose tiller keys. This may be confirmed by per-forming a dial indicator inspection of the stock bearingclearance and the tiller/bearing housing relative motionas follows:

�� �*&796* 8-* 783(/ '*&6.2, (0*&6&2(*797.2, ).&0 .2).(&8367 &2) 7-.4�7 -=)6&90.(7� !-.4�7-=)6&90.(7 &6* 97*) 83 13:* 8-* 40&2*7 .2 &2) 3983+ 8-* 6.7* -&6)7834� �3928 ).&0 .2).(&8367 324368 &2) 78&6'3&6) '*&6.2, -397.2,7 ;.8- 8-* .2?).(&836 4092,*67 6*&).2, 8-* 13:*1*28 3+ 8-* .2?'3&6) *2)7 3+ 8-* 398*6 70**:*7 �46*03&) ).&0 .2).?(&836 83 &4463< ���� !** 03(&8.32 3+ 398'3&6).2).(&836 .2 �.,96* ��������� %.8- 8-* 40&2*7.2 8-* 6.7* -&6)7834� >*63 8-* ).&0 .2).(&836� !03;?0= 13:* 8-* 40&2*7 83;&6) ).:* �979&00= &'398 )*,6**7 .7 79++.(.*28�� "-* ).&0 .2).(&836 2**)0*;.00 13:* 6&4.)0= +36 & 131*28� 6*1&.2 78*&)='6.*+0=� 8-*2 13:* *66&8.(&00= &7 8-* 40&2* 638&8*7�"-* (0*&6&2(* 6*&).2, 1978 '* 8&/*2 &+8*6 8-*.2.8.&0 6&4.) 13:*1*28 ;-.0* 8-* 2**)0* .7 78*&)=�

����

�36 7-.47 ;.8- !�����" !!�� ����� 783(/'*&6.2, ).&1*86&0 (0*&6&2(*7 1&= '* 8&/*2'= 13928.2, 8-* ).&0 .2).(&836 32 8-* .2?'3&6) 7.)* 3+ 8-* '*&6.2, -397.2, 6*&).2,).6*(80= 83 8-* 783(/ �;.8- 8-* /**4*6 6.2,6*13:*)�� !** �.,96* ������� �

�� �*&796* 8-* 6*0&8.:* 13:*1*28 '*?8;**2 8-* 8.00*6 &2) 8-* '*&6.2, -397.2,� �3928).&0 .2).(&8367 32 4368 &2) 78&6'3&6) '*&6.2,-397.2,7 ;.8- .2).(&8367 32 4368 &2) 78&6'3&6)'*&6.2, -397.2,7 ;.8- .2).(&836 4092,*67 6*&).2,8-* 13:*1*28 3+ 8-* 398'3&6) *2)7 3+ 8-* 8-6978

70**:* &77*1'0.*7� !** 03(&8.32 3+ .2'3&6) .2).?(&836 .2 �.,96* ��������� #7* 7-.4�7 -=)6&90.(783 13:* 8-* 40&2*7 .2 &2) 398 3+ 8-* -&6)78347 &7.2 78*4 &�� &'3:*�

�� !9'86&(8 8-* '*&6.2, (0*&6&2(* 6*&).2,73'8&.2*) .2 78*4 &� +631 8-* 6*0&8.:* 13:*1*286*&).2,7 3'8&.2*) .2 78*4 '� �+ 8-* ).++*6*2(*7 32'38- 7.)*7 &6* �� .2(- 36 0*77� 8-* 8.00*6 .7 (32?7.)*6*) 83 '* 7&8.7+&(836.0= 8.,-8 +36 34*6&8.2,(=(0* (327.)*6&8.327�

�� �+ 8-* ).++*6*2(* '*8;**2 8-* .2'3&6)).&0 .2).(&836 &2) 8-* 398'3&6) ).&0 .2).(&836 *<?(**)7 �� .2(-� 8-* 8.00*68-6978 70**:*783(/ &7?7*1'0= .7 0337*� *4&.6 &2) 8639'0*7-338 8-* (&9?7*(&97*7 &7 +3003;7�

��� �337* 8-6978 70**:* &77*1'0= +&7?8*2*67� �2* &8 & 8.1*� 6*13:*� (0*&2� .274*(8�6*&77*1'0* &2) 8.,-8*2 8-* +&78*2*67 8-&8-30) 8-* 8-6978 70**:* -&0:*7 83,*8-*6 &2)8-&8 -30) 8-* &77*1'0= 83 8-* 8.00*68.00*6 (&4�#7* 83659* :&09*7 463:.)*) '= ��$!������������� �44*2).< �� *4*&878*47 '� &2) (�� &'3:*� �+ 8-* ).++*6*2(* 32 *.?8-*6 7.)* .7 78.00 ,6*&8*6 8-&2 �� .2(-� 0337*?2*77 .2 8-* 8.00*6 .7 4377.'0*� �63(**) 83 4&6&?,6&4- ���������)����� '*03;� 83 )*8*61.2*.+ 0337*2*77 .7 & 6*7908 3+ 0337* 8.00*6 2987�

�� �337* 8.00*6 2987� �278&00 !�����"����� .+ .8 .7 238 &06*&)= .278&00*)� !** 4&6&?,6&4- ������� ��� '*03;� �+ !�����"���� .7 &06*&)= .278&00*)� 6*13:*� (0*&2� .2?74*(8� 6*&77*1'0* &2) 8.,-8*2 8-* 2987 32* &8& 8.1*� �� ��" ���$� "�� ���"��0*&2 &2) .274*(8 8-* 8-6*&)7 32 '38- 298&2) '308� "-3639,-0= 09'6.(&8* 8-* 298 &2)'308 8-6*&)7 &2) 8-* '*&6.2, +&(* 3+ 8-* 298�"3659* 8-* 298 83 � +8� 0'7� �*&796* 8-*6*0&8.:* 13:*1*28 '*8;**2 8-* 8.00*6 &2) 8.0?0*6 (&4 .2 '38- 8-* -36.>328&0 &2) :*68.(&0&<*7 '= 13:.2, 8-* 40&2*7 .2 &2) 398 3+ 8-*-&6)78347 97.2, 7-.4�7 -=)6&90.(7 &7 )*?7(6.'*) .2 78*4 &� &'3:* &2) '= 03(&8.2, ).&0.2).(&8367� &7 7-3;2 .2 �.,96* ����������3 13:*1*28 .7 &003;*)� �2= 13:*1*28 .2?).(&8*7 .2&)*59&8* 46*03&) 3+ 8-* 8.00*6 +&7?8*2*67 &2) 8-.7 78*4 7-390) '* 6*)32*� �+ 236*0&8.:* 13:*1*28 3((967'*8;**2 8-* 8.00*6 &2) 8.00*6

Page 68: Submarien Steering Gear

�������� ��������������

����

Page 69: Submarien Steering Gear

�����������������������

���

���'$� ������� �&"�� ���$�!� � ��$�!�� �!%#��&�"! �"$ ���#% (�&� ���# & ���� ���

Page 70: Submarien Steering Gear

� ����� �����������������

���

���# � ������� ��� $�"� �����! ����� ��!���"���

Page 71: Submarien Steering Gear

���� ���������������� ���

���

�,� /%" /&(("- (++."*".. &. �0."! �4 "3 "..-�!&�( ("�-�* " �"/2""* /&(("- �*! ./+ ' +-(++." /&(("- '"4.� �+*/� / ������ #+- -"6,�&- -" +))"*!�/&+*.�

�� �3 ".. -�!&�( ("�-�* " �"/2""* /&(6("- �*! ./+ ' +- (++." /&(("- '"4.� �","�/./",. &* .0�,�-�$-�,%. �� �*! �� ��+1"� �#/%" !&##"-"* " +* "&/%"- .&!" &. ./&(( $-"�/"-/%�* ���� &* %� /%"-" &. "3 ".. -�!&�( ("�-6�* " �"/2""* /&(("- �*! ./+ ' +- (++." /&(("-'"4.� �"" ,�-�$-�,%. ��� /%-+0$% ��� �� �"(+2 /+ &*.," / �*! -",�&-�

� ������������� ������ � ��. On SSBN616/627 and 640 Class ships, two tiller bolts are fittedand two are nonfitted. All are K–monel. Due to the dif-ferences in the size and material of the nuts, as detailedin NAVSEA Dwg. 616–518–2005259 and NAVSEADwg. 640–518–2118743, the torque required for 616 and627 classes nuts is 1200 ft. lbs., and for 640 Class nutsis 2000 ft. lbs. Because of the tight clearance betweenthe sides of the nut/bolt heads and the adjacent face of thetiller, it is impractical to fit a standard size socket on ei-ther the nut or bolt. Grinding the wall of the socket gen-erally causes the socket to split when torque is applied.Consequently, an open–end wrench, fitted with a dyna-mometer and attached to a chain fall or a hydraulic jack,is sometimes used to achieve the required torque. It is anacceptable method, but is cumbersome and, when per-formed by untrained personnel, inadequate and inaccu-rate. In order to overcome this deficiency, SHIPALTSSBN 2012D replaces the existing tiller nuts with longnuts to permit socket engagement. If not already accom-plished, SHIPALT 2012D should be accomplished if til-ler/tiller cap movement is found. To insure that properclamping force is applied, the two upper tiller nutsshould be torqued while ship’s hydraulics forces the tillercap into the rise hard stop. The two lower tiller nutsshould be tightened while ship’s hydraulics forces the til-ler cap into the dive hard stop. Blocking or a small hy-draulic jack may concurrently be used between the hardstop and the tiller cap arm to keep the nuts at a workableangle. The cotter pins for the nuts, piece 18 in both NAV-SEA dwg 616–518–2005259 and NAVSEA dwg640–518– 2118743, are incorrectly specified as 3 1/2 in-ches long. Five inch long cotter pins should be used in-stead. The stock number for five inch long by 3/8 inchdiameter cotter pins is NSN 5315– 00–187–9521.

� ���������!���� ������ ������������

���������. This clearance may cause wear and cor-rosion of the tiller/stock interface and motion–generated

noise. Wear and deformation of these surfaces are great-ly accelerated by any looseness, and once begun, thisdegradation is self–sustaining. A common, yet undesir-able, repair procedure to remove excess radial clearanceis to machine the inner faces of the tiller bolt face flanges.This draws the tiller/tiller cap closer together in the fore–and–aft axis, but it doesn’t restore sufficient surface con-tact area and leaves a cavity for seawater intrusion andsubsequent corrosion. This procedure may be used as atemporary repair, yet it must be followed by the preferredor permanent repair to restore design fit at the next ship-yard availability. The preferred repair action is to ac-company the machining of the inner flange faces with amachining of the tiller/tiller cap assembly inside diame-ter and keyways to restore design fit up with the stock andkeys. Following any repairs there must be a check forrelative movement between the assembled componentsin the horizontal and vertical axis.

� ���������������� �� ��� �������

����������� � ������. This is caused by sea-water intrusion, and can be reduced or prevented by thefollowing practices:

"� �*.0-" /%�/ #�&-2�/"- /%-0./ .(""1". �-"

,-+,"-(4 �..")�("! 2&/% /%" #(�*$". &* /%" 1"-/&6

�( �3&. .+ /%�/ -0./ ,-"1"*/&1" +),+0*! �����

#&(( %+(". 2&(( �" *"�- /%" /+, +# /%" .(""1".� ���6

����2$� ��� ����� +*/�&*. � *+/" &*

5+*" � 2%& % &* +--" /(4 &*!& �/". /%�/ /%"

/%-0./ .(""1". �,&" " �� .%+0(! �" &*./�(("! 2&/%

/%" #(�*$". +-&"*/"! #+-" �*! �#/� �%" +-&"*/�/&+*

+# ,&" " � �. !-�2* &. +--" /� �%"* #&((&*$ /%"

�1&/4 #+-)"! �4 /%" /%-0./ .(""1". �,&" " ��

.%+0(! �" &*./�(("! 2&/% /%" #(�*$". +-&"*/"! #+-"

�*! �#/� �%" +-&"*/�/&+* +# ,&" " � �. !-�2* &.

+--" /� �%"* #&((&*$ /%" �1&/4 #+-)"! �4 /%"

/%-0./ .(""1". 2&/% ���� &*.0-" /%�/ /%" #&(( %+(".

�-" �/ /+, !"�! "*/"- �4 -+/�/&*$ /%" #�&-2�/"-

,(�*". �. *" "..�-4�

#� �+�/ �(( )�/&*$ .0-#� ". +# /%" /&(("-�/&(6

("- �,�'"4.�./+ '�/%-0./ .(""1". 2&/% �*/&�

Page 72: Submarien Steering Gear

��� ������ ��������������

��

��� �� ��� �������������� ���� � ������������������� ����� �� �� ������� ����������� ������ �� ��� ���������

�������������� ����� ��"�. This is causedby normal working of the tiller and stock, and is acceler-ated by loose tiller nuts and corrosion. Design specifica-tions permit a maximum side clearance of 0.001 inch onSSBN 616 and 627 Classes and 0.003 inch on SSBN 640class. Operational ships may allow key to keyway clear-ance up to 25% greater than the maximum allowed by de-tail design drawings. Beyond this limit, keys must be re-placed and/or keyways restored.

�������� ����� ��� �!������. For thoseships that do not have bushings installed in the tiller armsand it would be desirable in order to correct defects in thepin bores, see Appendix H for applicability and details.

������������� ���. Steering and diving hard-stops are formed by protrusions cast onto the tillers andcorrespondingly built–up portions of the ship’s structure.Stops are required in order to limit control–surface travelto approximately 2 degrees beyond normal operationalangles whenever overhauling hydrodynamic forces fromsea are experienced or in event of a hydraulic casualty.Strength and shape of stops must be maintained so thatthe stops will not fail with subsequent damage to the me-chanical gear, hydraulic cylinder, or ship structure.

�����������������. There are four basic types ofbearings used in submarine steering and diving gear:journal, spherical, bushing, and thrust. In order to obtainoptimum service life and operation from these bearings,a lubrication system is installed and periodic greasing in-accordance with applicable PMS–MRCs is required.

����������&#.)+' �1$.)%#0),+. In order to obtainoptimum service life and operation from steering anddiving system bearings, a lubrication system is installed.Periodic greasing in accordance with PMS and SMMSMRC’s is required. The SUBMARINE GREASINGHANDBOOK, NAVSEA T6350–AA–HBK–010, pro-vides general information about greasing components,requirements, and methods.

������ ���,1.+#* �&#.)+'/. Journal bearings arecomprised of two concentric cylinders. One cylinder, thesleeve, is shrink–fitted onto the stock; the other cylinder,the bushing, is shrink–fitted into a housing that is eitherwelded or bolted to the ship’s structure. These pieces are

most often made from centrifugally–cast cobalt–basedalloy. Journal bearings are usually used for the main sup-port (inboard) and pintle bearings on all control surfaces.(see Figures 561–2–25 and 561–2–26). Bearing mainte-nance is limited to periodic greasing, usually from an in-board grease manifold, and to periodic measurements ofthe diametral clearance in order to determine when re-placement is necessary. The lubrication system pipingand fittings should be inspected and tested periodicallyto ensure that the grease is flowing freely from bearingand that all components are in good condition. Table561–2–10 provides operating cycle criteria for sternplanes, rudder, and fairwater stock bearing clearances.

����������-(&.)%#* �&#.)+'/. Spherical, or self–al-ining bearings generally consist of: (1) a sleeve, similarto that of a journal bearing, that is interference–fitted ona stock or pin, (2) a bushing, that is interference–fittedinto a housing, and (3) a spherical shaped member, orring, that is located between the sleeve and bushing. Theinside surface of the bushing is formed to fit the sphericalfree–moving ring. The inner cylinder surface of the ringand the outside surface of the sleeve provide the rotatingbearing surface, while the spherical surfaces of the ringand bushing permit a degree of axial rotation for self–al-inement (see Figures 561–2–27 and 561–2–28). Themaintenance requirements for these bearings are thesame as for the journal bearings. Inadequate lubricationof the bearing frequently causes the spherical bearingand sleeve to seize. This forces radial rotation to occurat the bushing–spherical bearing interface and causes ac-celerated wear of the bushing.

���������� (.1/0 �&#.)+'/. Thrust bearings essen-tially are thin bearing rings used to absorb lateral thrustcaused either by athwartship movement of the stern andfairwater diving planes or by the vertical load of the rud-der (see Figures 561–2–25 and 561–2–28). These unitsare made from cobalt–based alloy, copper alloy, or othermaterial. Maintenance for these bearings is the same asfor journal bearings.

�����������1/()+'/. Bushings are used at each end ofthe dogbone and in the tiller arms and guide cylinder pis-ton. Bushings, usually made of bronze

Page 73: Submarien Steering Gear

�������� ��������������

����

Page 74: Submarien Steering Gear

������������������������

���

������� ������ �������

Page 75: Submarien Steering Gear

� ���� ����������������

���

������� �(#��� �'&�"�$� ���$�!�

���� ����� ������������������ ���������

�������������

��� �

���� ���� �

� ��� �

�����

������

� �

��������� ����

alloy, are pressed into their respective bores. Sleeves arenot usually used (except on SSBN 726 Class where thebushing and pin sleeve are made of stellite) as the pinsprovide a suitable bearing surface (see Figure561–2–19). When excessive wear or clearance indicatesthat bushing replacement is required, all associated com-ponents of that connection (the bore into which the bush-ing is pressed, the pin, the internal diameter of the otherbushings through which the pin passes, and/or the tillerarm bores when no bushings are installed therein) mustalso be inspected and repaired or replaced as necessary.Only by inspection of all related components in the con-nection can you insure that the entire cause of any exces-sive clearance is corrected. When it has been determinedthat bushing replacement is required, care must be takento restore the design fit with the bore and the designclearance with the pin. Particularly on older ships, abushing of design dimensions may not restore either de-sign fit or design clearance due to wear or corrosion ofother components. When replacing components, the in-ternal diameter of the bushing and the external diameterof the pin may vary from plan dimensions by no morethan 0.010 inch, provided that the clearance betweenmating parts conforms to plan clearance. All exceptionsto this provision require NAVSEA approval. Mainte-nance is the same as for journal bearings.

���������$"%%���� ��! � '�%. Crosshead pin plugsare used on each end of crosshead pins to prevent the pinsfrom moving laterally and scoring the guide cylinder lin-er. Crosshead pin plugs made of DELRIN or UHMWPEshould be installed at the outer ends of all guide pistonpins when the pistons are removed from their cylindersfor any reason. The applicable dimensions for SSBN616, SSBN 627, SSN 637 (except fairwater crosshead,where a guide cylinder is not used), and SSBN 640classes are specified in Table 561–2–10. SSN 688 classpins are fastened in place. Since the fasteners wouldhave to fail before the pin could move laterally, plugs areunnecessary. SSBN 726 class has plugs specified in thedesign drawings. It may be necessary to trim plug endsto ease installation. In some instances, two plug sizes arelisted for one pin; this is due to the difference in cross-head pin diameters at the ends of the pin.

����������$'%& ��%��$%. Thrust washers are usu-ally made of bronze alloy. These washers are located be-tween the dogbone and tiller arms and between the dog-bone and crosshead piston to pro-

Page 76: Submarien Steering Gear

#����#��#$���������"�

����

$'(/+ �������� �" ##���� !�� !�%� �����#� �#

�%0/+33 14-+26.3+ 3-160� 41/+2'0)+ � � ����

���## �����#� � �&$" ����� ������

����

����������

���������

��������

���������

��������

���������

�� � � �� ��

�� �

�� �

�� �

��� �

�����

��������

���������

���

���

����

��

����

���

���

���

����� � ����

�����

����� � ����

�����

����� � ����

�����

�� � � �� ��

�����

����� � ����

� �� ����� ��

�����

����� � ����

� �� ����� ��

�����

����� � ����

� �� ����� ��

�����

�� � � �� ��

�� �� ����� ��

�����

� $� �� �1+ ,(0% .'2#. -# ('./#" $+- +*# ,'* 1&#* /&#-# '. "'$$#-#*!# '* !-+..&# " ,'* "' )#/#-. / /&# #*". +$ /&#

,'*�

vide a bearing surface for any side loading that may de-velop as the control surfaces are moved. (See Figure561–2–19). Maintenance is the same as for journal bear-ings, i.e., limited to greasing and periodic measurementas with journal bearings.

�������� ��"5**+2 �'22.+2 �+'2.0,3. Rudder carrierbearings transmit the vertical loads imposed by the rud-der and its accessories to the hull. There are three poten-tial rotational interfaces for the carrier bearing: betweenthe collar and lower ring; between the lower and upperrings; and between the upper ring and the split spacer.The interface intended for rotational movement is the in-terface between the upper and lower rings. The lowerring is generally grooved for grease distribution on bothits top and bottom surfaces. Inadequate lubrication of thecarrier bearing may cause accelerated wear at any of thebearing interfaces. Sufficient wear on either or both ofthe lower ring’s surfaces can completely eliminate thegrease grooves. This will make further lubrication im-possible and continue to accelerate carrier bearing wear.Rudder thrust clearance measurements and split spacerclearance measurements are intended to indicate the po-tential decrease in carrier bearing grease groove depth.

When either of these clearances indicates that about twothirds of the depth of the grease groove has worn away(usually about 0.020 inch), the rudder should be jackedand blocked in place, the split spacer removed, and all in-terfaces inspected for wear. If grease grooves are wornto the above limit or other abnormal wear has occurred,repairs should be accomplished immediately.

������������+'2.0, �/+'2'0)+3. Most bearings willrequire replacement due to noise generation when theirclearance approaches or exceeds the value listed in theREPAIR REQUIRED column of Table 561–2–11. TheREPAIR REQUIRED column is for use during a ship’s

operating cycle between scheduled repair availabili-ties with the intent of providing a margin ofwear beyond that amount of wear allowed by TRS,MRC, etc. invoked by scheduled availabilities. As such,Repair Required criteria do not supercede appropriatecriteria for scheduled repair availabilities (i.e. TRS foroverhauls). When the maximum allowable clearance (REPAIR REQUIRED ) for a bearingis reached, repair or replacement is mandatory.

Page 77: Submarien Steering Gear

������������������������

���

�������� �*% ��" �)���& �%��& ��" ���& $�

Noise generation, drydock availability, operating sched-ule, overhaul schedule, and common sense will inevit-ably dictate some variation to these criteria. Criteria pro-vided in Submarine Technical Repair Standards forsteering and diving components shall only be used dur-ing regular and refueling shipyard overhauls. TRS crite-ria do not apply during ERPs, SRAs, DMPs, upkeeps andrefits, or at any point during the ship’s operating cycle.Feeler gauge readings are the preferred method of mea-suring the clearance of an assembled bearing. Steeringand diving planes stock bearings generally exhibit thegreatest wear at approximately 200 degrees to 210 de-grees and 330 degrees to 340 degrees (with 090 degreesbeing forward). When possible, clearance measure-ments using feeler gauges should be taken every 30 de-grees. As a minimum, clearance readings should be tak-en at each end of the 150 degrees – 330 degrees axis (andadded together for the diametral clearance) and at eachend of the 030 degrees – 210 degrees axis (and also addedtogether). This will provide a view of the worst probablewear locations. On three piece bearings (see paragraph561–2.159, above) feeler gauge readings must be takenbetween the sleeve and the spherical bearing and be-tween the spherical bearing and the bushing. All fourmeasurements on an axis are then added to obtain the to-tal diametral clearance. Although wear may only be tak-ing place on one bearing surface, the total clearance isthe distance through which the bearing will move toachieve impact loading. Jacking the bearing while mea-

suring the movement with a dial indicator is an accept-able alternative when the bearing is not easily accessible.Both fore and aft and up and down (left and right for therudder bearings) jacking measurements should be taken.When repairing or replacing bearing components, al-ways restore design clearances. Adherence to designminimum will extend life of bearing.

�����������& $� �"��&�$�� ���"�'. Bearing clear-ances for several submarine classes for use during the op-erating cycle are provided in Table 561–2–11 for easyreference. Starred (*) values are minimum clearances;all other values are maximum clearances.

���������(�&$ �"�$�' � $("� ���& $� �&��!�('

�$� ''�#�" �'. NAVSEA S6420–AB–PRO–010,SSN/SSBN STERN DIVING PLANE PINTLE BEAR-ING CLEARANCE INSPECTION AND STERN DIV-ING GEAR OUTBOARD BEARING BRACKET AS-SEMBLY INSPECTION, provides detailed inspectionand installation guidance for all classes of submarines.

���������� �������. Fasteners for steering anddiving equipment should be installed using

Page 78: Submarien Steering Gear

������������������������

���

� ��� �������� �������� �� ������ �� ���� ��� � ����

���� � �� �� ����� �� ���

�� ���� ������

� !

��� ��

��������

!����� ��� �������$ ��� ���� �����

#�� ! ��� �������$ ��� ���� �����

���� ����!����� !��" ! �� ��� � ��� �

��� ������ !�� !��" ! ���� �����

!��� ��������� ������� ���� ��� �

!��� !��" ! ��� � ��� �

���!�� ��"!������ ������� ����� �����

�"��� �� !����$������ ����� ��� �����

�� ���� ������

� !

��� ��

��������

���� � �� �� � �� ��� �� ���

!����� ��� �������$ ��� ����� �����

#�� ! ��� �������$ ��� ���� �����

���� ����!����� !��" ! ���� �����

���� ������ !�� !��" ! ���� �����

!��� ������� ���� ��� �

!��� !��" ! ��� � ��� �

�"��� �� !����$������ ����� ��� �����

!����� ��� �������$ ��� ���� �����

#�� ! ��� �������$ ��� ���� �����

���� ����!����� !��" ! ���� �����

���� ������ !�� !��" ! ����� �����

"���� !��� ������� ��� �����

��#�� !��� ������� ��� �����

!��� !��" ! ����� ��� �

������� ���! ����� ������ ������

�"��� �� !����$������ ����� ��� �����

�� ���� ������

� !

��� ��

��������

���� � �� �� ������

�� ���� ������

� !

��� ��

��������

���� � �� �� ����� �� ���

!����� ��� �������$ ��� ���� �����

#�� ! ��� �������$ ��� ���� �����

���� ����!����� !��" ! �� ��� � ��� �

���� ������ !�� !��" ! ���� �����

!��� ��������� ������� ���� ��� �

!��� !��" ! ��� � ��� �

���!�� ��"!������ ������� ����� �����

�"��� �� !����$������ ����� ��� �����

Page 79: Submarien Steering Gear

���������� ��������������

��

���� �������� � ������ ��� ��"��� ������� ���������� ��'&(%��

������� ������

��$

������

���!����

���� � ����� �!����

�������

����� ��� �������# ��� ���� �����

"��� ��� �������# ��� ���� �����

���� ���� ����� ��!� ���� �����

���� ������� �� ��!� ���� �����

!���� � ��� ������� ��� �����

��"�� � ��� ������� ��� �����

� ��� ��!� ����� ��� �

������� ���� ������ ������ ������

�!��� ��� ����#������ ����� ��� �����

������

��$

������

���!����

���� � ����� ����#� �� ������

����� ��� �������# ��� ����� �����

"��� ��� �������# ��� ���� �����

���� ���� ����� ��!� ���� �����

���� ������� �� ��!� ���� �����

� ��� ������� ���� ��� �

� ��� ��!� ��� � ��� �

�!��� ��� ����#������ ����� ��� �����

������� ������

��$

������

���!����

���� �� ����� � ��� ������

����� ��� �������# ��� ���� ��� �

"��� ��� �������# ��� ���� �����

���� ���� ����� ��!� �� ��� � ��� �

���� ������� �� ��!� ���� �����

� ��� ��������� ������� ����� ��� �

� ��� ��!� ��� � ��� �

�!��� ��� ����#������ ����� ��� �����

������� ������

��$

������

���!����

���� �� ����� ����#� �� ������

����� ��� �������# ��� ���� �����

"��� ��� �������# ��� ���� �����

���� ���� ����� ��!� ���� �����

���� ������� �� ��!� ���� �����

� ��� ������� ���� ��� �

� ��� ��!� ��� � ��� �

�!��� ��� ����#������ ����� ��� �����

Page 80: Submarien Steering Gear

��� � �� !���������� ���

������� �� ���

��%

������

���"����

�� � ��� !��� �����

!���� � ������ !������ ��� ��#��� ������� ��������� ��(')&��

������� �� ���

��%

������

���"����

�� �� ��� �"����

!����� ��� �������$ ��� ���� �����

#�� ! ��� �������$ ��� ���� �����

���� ����!����� !��" ! ���� �����

���� ������ !�� !��" ! ���� �����

"���� !��� ������� ��� �����

��#�� !��� ������� ��� �����

!��� !��" ! ����� ����

������� ���! ����� ������ ������

�"��� �� !����$������ ����� ��� �����

!����� ��� �������$ ��� ���� �����

#�� ! ��� �������$ ��� ����� �����

���� ����!����� !��" ! ����� ��� �

���� ������ !�� !��" ! ����� ��� �

!��� ��������� ������� ����� ��� �

!��� !��" ! ����� ��� �

���!�� ��"!������ ������� ���� ��� �

�"��� �� !����$������ ����� ���� �����

������� �� ���

��%

������

���"����

�� � ��� ����$�!�� �����

!����� ��� �������$ ��� ���� �����

#�� ! ��� �������$ ��� ���� ��� �

���� ����!����� !��" ! ���� ���

���� ������ !�� !��" ! ��� � �����

!��� ������� ����� �����

!��� !��" ! ����� ����

���!�� ��"!������ ������� ���� �����

�"��� �� !����$������ ����� ���� ��� �

�������

!����� ��� �������$ ��� ���� ��� �

#�� ! ��� �������$ ��� ���� �����

���� ����!����� !��" ! ����� ����

���� ������ !�� !��" ! ����� ����

"���� !��� ������� ���� �����

��#�� !��� ������� ���� �����

!��� !��" ! ����� �����

������� ���! ����� �� ��� ���

�"��� �� !����$������ ����� ���� �����

�� ���

��%

������

���"����

�� � ��� �"����

Page 81: Submarien Steering Gear

��� � �� !���������� ���

� �

������� �� ���

��%

������

���"����

�� � ��� ����$�!�� �����

!���� � ������ !������ ��� ��#��� ������� ��������� ��(')&��

������� �� ���

��%

������

���"����

�� � ��� !��� �����

!����� ��� �������$ ��� ��� �����

#�� ! ��� �������$ ��� ��� �����

���� ����!����� !��" ! �� ��� � ����

���� ������ !�� !��" ! ���� �����

!��� ��������� ������� ����� ��� �

!��� !��" ! ��� � ����

���!�� ��"!������ ������� ���� �����

�"��� �� !����$������ ����� ��� �����

!����� ��� �������$ ��� ����� �����

#�� ! ��� �������$ ��� ����� �����

���� ����!����� !��" ! �� ���� �����

���� ������ !�� !��" ! ���� �����

!��� ������� ����� ��� �

!��� !��" ! ��� � ����

�"��� �������� ���� ��� �����

������� �� ���

��%

������

���"����

�� �� !��� �����

������� �� ���

��%

������

���"����

�� � ��� �"����

!����� ��� �������$ ��� ��� �����

#�� ! ��� �������$ ��� ��� �����

���� ����!����� !��" ! ���� �����

���� ������ !�� !��" ! ���� �����

"���� !��� ������� ��� �����

��#�� !��� ������� ��� �����

!��� !��" ! ����� ����

������� ���! ����� ������ ������

�"��� �� !����$������ ����� ��� �����

!����� ��� �������$ ��� ��� �����

#�� ! ��� �������$ ��� ��� �����

���� ����!����� !��" ! �� ��� � ����

���� ������ !�� !��" ! ���� �����

!��� ��������� ������� ����� ��� �

!��� !��" ! ��� � ����

���!�� ��"!������ ������� ���� �����

�"��� �� !����$������ ����� ��� �����

Page 82: Submarien Steering Gear

��� ��������������������

��

����� ������� �������� ��� ��!��� ������� ���������� ��&%'$��

������� ������

��#

������

��� ����

���� ��� ����"���� ������

�������

!����� ��� �������$ ��� ���� �����

#�� ! ��� �������$ ��� ���� �����

���� ����!����� !��" ! ���� �����

���� ������ !�� !��" ! ���� �����

!��� ������� ���� ��� �

!��� !��" ! ��� � ����

�"��� �������� ���� ���� �����

������

��#

������

��� ����

���� ��� � ����

!����� ��� �������$ ��� ���� �����

#�� ! ��� �������$ ��� ��� �����

���� ����!����� !��" ! ���� �����

���� ������ !�� !��" ! ���� �����

"���� !��� ������� ��� �����

��#�� !��� ������� ��� �����

!��� !��" ! ����� ����

������� ���! ����� ������ ������

�"��� �� !����$������ ����� ��� �����

������� ������

��#

������

��� ����

���� � ����� ����� ������

!����� ��� �������$ ��� ���� �����

#�� ! ��� �������$ ��� ���� �����

���� ����!����� !��" ! ����� ��� �

���� ������ !�� !��" ! ���� �����

!��� ��������� ������� ����� ��� �

!��� !��" ! ��� � ��� �

���!�� ��"!������ ������� ����� �����

�"��� �� !����$������ ����� ��� �����

������� ������

��#

������

��� ����

���� � ����"���� ������

!����� ��� �������$ ��� ����� �����

#�� ! ��� �������$ ��� ����� �����

���� ����!����� !��" ! ���� �����

���� ������ !�� !��" ! ���� �����

!��� �������� ��� �����

!��� !��" !#�� �� �� ��� ��� � ����

!��� !��" !#�!� �� �� ��� ����� �����

�"��� �� !����$������ ����� ���� �����

Page 83: Submarien Steering Gear

%�����%��%&��������� ��$

���

���$� � ��%��

��)

$�"��$

$�#'�$��

%%� ��� ���%% $'���$

&���� ���� %&��$� � � � ��(� � ���$� � ����$� ��% ��215,��

!����� ��� �������$ �� ���� �����

#�� ! ��� �������$ �� ���� �����

���� ����!����� !��" ! ���� ����

���� ������ !�� !��" ! ��� ����

"���� !��� ������� ����� ����

��#�� !��� !��" ! ����� ����

!��� !��" ! ���� ����

������� ���! ����� ����� �����

�"��� �� !����$����� ����� ���� ��� �

%5*33-, ��� 7*/6-4 *3- 0.1.060 +/-*3*1+-4� %// 26,)4 8%/7)5 %4) 0%:-070 '/)%4%1')5�

25-4�

�� !,-5 8%/7) ,%5 % (27&/) 0)%1-1+� #,)1 %1 %55)0&/)( *4))3/%; �(27&/) '/)%4%1')� -5 0)%574)(� 6,) 8%/7) -56,) 0%:-070 %//29%&/) *4))3/%; *24 6,) '211)'6-21� #,)1 6,) '211)'6-21 -5 (-5%55)0&/)( %1( 6,) &)%4-1+ '20<321)165 %4) 0)%574)( &; 0-'420)6)4� 6,-5 8%/7) -5 &26, 6,) 0%:-070 %//29%&/) *4))3/%; *24 6,) '211)'6-21 %1(6,) 0%:-070 %//29%&/) -1(-8-(7%/ '/)%4%1') &)69))1 6,) 94-56 24 6-//)4 3-1 %1( %1; 0%6-1+ &24)�

�� �1 24()4 62 34)8)16 ):')55-8) 9)%4 24 &)1(-1+ 2* 6,) '211)'6-1+ 42( '%75)( &; %6,9%465,-3 028)0)16 2* 6,);2.)� 6,-5 '/)%4%1') 0756 &) 4)5624)( 62 6,) 8%/7) -1(-'%6)( -156)%( 2* 6,) 3)4 3/%1 ()5-+1 '/)%4%1')�

��� �/)%4%1') -5 )56%&/-5,)( %6 *-1%/ %55)0&/; &)69))1 53/-6 53%')4 %1( /29)4 47(()4 3256� %1( 56%03)( 21 %*6 5-()2* /29)4 47(()4 3256� �//29)( 4)(7'6-21 *420 6,-5 -1-6-%/ 0)%574)0)16 -5 ���� �

��� �)%(-1+5 6%.)1 *249%4( %1( %*6 &)69))1 .))3)4 4-1+ %1( &75,-1+ */%1+)�

torques derived from NAVSEA 0900–LP–091–6010,Appendix E. The exceptions to this requirement arethose instances when torques are specified for variouscomponents in this chapter. When a conflict exists be-tween design drawings and NAVSEA0900–LP–091–6010, Appendix E, the latter shall takeprecedence. Subsequent to being torqued, fasteners re-lax and lose their preload. They must therefore be retor-qued, usually two to twenty four hours after initial tight-ening. Due to this relaxation, LOCKTITE must not beused on bolts and studs under dynamic cyclic loading,since, once the LOCKTITE sets, usually within an hour,the bolt or stud cannot be properly retorqued. The ob-vious exception to this requirement is at the blind end ofa set stud, since the clamping force will be applied usingthe nut at the open end of the stud.

�������%&!��%. The stocks are forged alloy steelusually with tapers at each end to provide a close fit withboth the yoke and plane hub. The tapered ends are ma-chined to provide a metal–to–metal contact of 60 percent

minimum for in–service units and 75 percent for unitsoverhauled at a shipyard. Torque keys, usually two, arefitted along the mating surfaces of the stock taper, on theaxis of the stock taper. As the name implies these keystransmit or absorb torque that is applied by the hydrauliccylinder to move the control surfaces, by hydrodynamicloading from the sea, or by shock loading. Tapered keep-er keys are fitted crosswise through the stocks and intothe yoke and plane hubs to pull the tapered stock endsfirmly into place. Rather than tapered keeper keys, theSSN 594 Class uses a nut at the outboard end of the stocksto pull the stock into the plane hub.

��������!���'��$ ��&�� �!�&� � �!$

$�%'$���� � !� �!�"! � &%

�������""������� �!�"! � &%. The useof Belzona Molecular Super Metal Coating

Page 84: Submarien Steering Gear

��� ���������������������

����

(Belzona Molecular Inc., Garden City, NY) is authorizedfor repair of corroded or damaged components in staticand nonloadbearing areas of the following steering gear;stern diving gear, and fairwater diving gear components:

�� ��!&�#�! ��%��� ���! �(�!�$��� !�� ����"#�#�� ��!��� �! $���!��� �!��%�"�

�� �!�"" �����#��#����! ������#��� !�� ��)��$���� !�� ��� #�!$"# ����" &��!� ������ ���"��# �'���� ��� ���� ���#� �� ������!��� "$!����"�! ��� ���� �� #�!$"# ����"�

�� �$��� �(�����! �$#"��� �����#�! &��!������� ���" ��# �'���� �� ���� ���#��

� �$��� �(�����! �$�� ��##��� �'#�!��� �����#�!��� "$!����"� �'��$���� "������ "$!���� ��!�$��� �(�����! ��%�! ��!���" �! "������ "���%� ��!���"� &��!� ������ ���" ��# �'���� �� �������#��

� ���� ��#�!��� ��� �'#�!��� "$!����"&��!� ������ ���" ��# �'���� ��� ���� ���#�����#��� "���� ��# �� $"�� �� ��( "��#"� �� �!��"&��!� ��%�!" �! ���" �!� #� �� &������ �� #����!�!�" #� ���#�" �!��#�! #��� ��� ����� �! �� #���!��!�" &��!� ���#��� ���"#�#$#�" �!��#�! #��� ���!���# ���#��$�$" ��%�!����

�� ���#!�� "$!���� "#���" &��!� ���������" ��# �'���� ��� ���� ���#�� �� ��# $"� ���#)��� �� "#��� #���!" &��!� ���#��� ���"#�#$#�"�!��#�! #��� � ��!���# ���#��$�$" ��%�!���� �! ����( "��#"�

�� ���#!�� "$!���� �$� ��#�!��� ��� �'#�!���"$!����" &��!� ������ ���" ��# �'���� ��� �������#�� �� ��# $"� ���#��� �� �!��" &��!� ��%�!"�! ���" �!� #� �� &������ �� #���! ��!�" &��!����#��� ���"#�#$#�" �!��#�! #��� � ��!���# ���#��)$�$" ��%�!���� �� ��( "��#" �'���# ��! ���!&�#�!��%��� ���! �'��� ��("�

� ���#!�� "$!���� "#��� "��� !���"� #�!$"#!���"� ��� "���# "����!"�

����������� ����#���. Depths stated in paragraph561–2.171 include clean–up and excavation required inpreparation of surface for coating application. Coatingshall be considered to have no strength value with respectto the structural integrity of the components on which itis applied. Before surface preparation required by thecoating manufacturer, bake all components previously

subjected to oil or grease at 375�F for a minimum ofeight hours to remove petroleum residue.

������������"#!��#���" ��� �� �!#���. Althoughuse of Molecular Metal repair is encouraged for thoseapplications stated in paragraph 561–2.170, specificNAVSEA approval is required before use in all otherareas. Document and report use to NAVSEA so that in-spection of repairs may be made during subsequent avai-labilities to determine in–service durability and accept-ability. Report documents shall include ship number,date of application, drawing number and part number ofcomponent on which repair was used, and a descriptionof the area and extent of repair.

������������#!�� �$!����". Control surfaces areusually fabricated of hull–type steel plating placed overa structural framework. Control surfaces, which are wa-tertight, are internally supported against sea pressure byeither plastic (syntactic–foam) filler or end–grainedwood and vegetable pitch. Control surfaces should bechecked periodically for leakage. If the control surfaceis to be removed, leakage can then be detected by weigh-ing the control surface and comparing the current weightto the as–manufactured weight. If leakage is to bechecked with the plane in place a small inspection holemay have to be cut in the plane. Filler material shouldbe inspected and maintained in accordance with the ap-propriate TRSs.

������� Because parts of the steering and diving gearare located in freeflood areas, they are almost continual-ly submerged in seawater even when the submarine is onthe surface (only the fairwater diving gear is not sub-merged when the submarine is surfaced).

�������� The stabilizer and stern plane surface platesshould be visually inspected for dents, cracks, and pits.Dents up to 3/4 inches below the molded line are per-mitted aft of the 10 percent chord line, measured from theleading edge. Dents forward of the 10 percent chord lineshould not exceed 1/2 inch in depth below the moldedline. Not more than 2 percent of the total surface area for-ward of the 10 percent chord line and not more than 10percent of the total surface area aft of the 10 percentchord line is allowed to be dented, subject to the abovecriteria. Pitting of the control surface should be in-spected and repaired in accordance with chapter 074 vol-ume 1, Welding and Allied Processes, and the appropri-ate Technical Repair Standards. Rudders and planesshould be operated to check performance, ease of move-ment, and the absence of any unusual noise. This checkshould be conducted at dockside.

Page 85: Submarien Steering Gear

S9086–S9–STM–000/CH–561 R2

2–68

Page 86: Submarien Steering Gear

���� ���������������� ���

��

������� � ��������� �����������

� ������������� � ����� �����

� ��� �-0 +-12 "* 11$1 -% 13!+ 0(,$1� 2'$ -0(&(, *1'(.!3(*#(,& 1.$"(%(" 2(-,1 (#$,2(%7 2'$ 0 ,&$ -% "9"$.2 !*$ "-,20-* 130% "$ 0 2$1� �-0 +-12 * 2$0 "* 11$1-% 13!+ 0(,$1� 2'$ 0 2$ 0 ,&$1 0$ %0-+ � 2- � #$&0$$1.$0 1$"-,# %-0 2'$ #(4(,& .* ,$1 ,# %0-+ 2- � #$9&0$$1 .$0 1$"-,# %-0 2'$ 03##$0� �, + ,7 " 1$1� 2'$'7#0 3*(" .-5$0 .* ,2 13..*7(,& .-5$0 2- 2'$ "-,20-*130% "$1 (1 ,-2 #$1(&,$# 2- .0-4(#$ 1(+3*2 ,$-31 -.9$0 2(-, -% 2'$ "-,20-* 130% "$1 2 2'$ + 6(+3+ 0 2$��'$0$%-0$� (% 2'$ "-,20-* 130% "$ 0 2$1 0$ 1$2 2 2'$+ 6(+3+ **-5 !*$ *(+(2� 2'$ "' ,"$1 -% 1 230 2(,&2'$ .-5$0 .* ,2 (,"0$ 1$� 2' 2 (1� (2 !$"-+$1 +-0$.0-! !*$ 2' 2 $+.27(,& 2'$ ""3+3* 2-01 5(** 0$13*2 (,2$+.-0 07 0$#3"2(-, -0 *-11 -% '7#0 3*(" 1712$+ .0$19130$�

� ������������ � ����� ���� �����&

����

� ���� �, 1-+$ "* 11$1 -% 13!+ 0(,$1� 2'$ #$1(&,0 2$1 1$*$"2$# !7 2'$ #$1(&, "2(4(27 0$ (#$,2(%($# -,12$$0(,& ,# #(4(,& 1712$+ #0 5(,&1� �'$, 2'$ 0 2$1 0$ ,-2 1.$"(%(" **7 (#$,2(%($# -, 1712$+ #( &0 +1� 2'$%-**-5(,& #-"3+$,2 2(-, 1'-3*# !$ 31$# %-0 &3(# ,"$(, 1$*$"2(,& 2'$ 0 2$ 2- 13..-02 2'$ �,0$120("2$#��.9$0 2(-,1 ����� .0-&0 +�

�� ������� �� �. 0 &0 .' � �����%-0 !-5 #(4(,& ,# 12$0, #(4(,& 1712$+1�

� �0(&(, * 1'(.!3(*#(,& 1.$"(%(" 2(-,1� �'$"-,20-* 130% "$ 0 2$ 1'-3*# !$ 1$2 2 2'$ +(#.-(,2-% 2'$ **-5 !*$ 0 ,&$ #30(,& #-")1(#$ 1712$+&0--+(,&� � 1*(&'2*7 0$#3"$# 0 2$ 5(** $6(12 #309(,& 2�1$ -.$0 2(-, 1 0$13*2 -% ##(2(-, * '79#0-#7, +(" *- #(,& -% 2'$ "-,20-* 130% "$1��'$0$%-0$� 2'$ 0 2$ 1'-3*# !$ "'$")$# #30(,&,-0+ * 2�1$ -.$0 2(-, ,# 4$0(%($# 2- !$ !-4$ 2'$ +(,(+3+ **-5 !*$� �, %$5 1712$+1

(2 + 7 ,-2 !$ .-11(!*$ 2- -!2 (, 2'$ 1.$"(%($# 0 2$1 2 + 6(+3+ 1'(. 1.$$#� !$" 31$ -% + 0&(, * #$91(&,1�

� ������������ ����� ����������� ���

� ����� ��������� �� ��� � ����

� ��� �3!+ 0(,$ 12$$0(,& 1712$+1 0$ 1(8$# %-0 '$ # -.$0 2(-,� ,# 2'$(0 *(+(2 2(-,1 -, 130% "$#-.$0 2(-, 12$0, 0$ #$*(!$0 2$*7 ""$.2$#� �3** 12$0, .0-.$**$0 1.$$# (1 **-5$# %-0 12-..(,& -0 1*-59(,& 2'$ 1'(.� �-5$4$0� -,"$ 2'$ 1'(. 12 021 +-4(,& 12$0,� 2'$ 12$$0(,& &$ 0 .0-4(#$1 03##$0 "-,20-* -,*7%-0 *-5 12$0, 1.$$#1� �-,20-* 2 '(&'$0 1.$$#1 5-3*#313 **7 0$/3(0$ +3"' * 0&$0 '7#0 3*(" "7*(,#$0 ,#-%2$, , (,"0$ 1$# -32.32 " . "(27 -% 2'$ '7#0 3*(".-5$0 .* ,2� �'$ **-5 !*$ 1312 (,$# 130% "$ 1.$$# 12$0, (1 ""-0#(,&*7 #$%(,$# 1 2'$ ,3+!$0 -% .0-.$*9*$0 0$4-*32(-,1 .$0 +(,32$ �0�+(,� 2' 2 " , !$ **-5$#"-,2(,3-31*7 (% 2'$ 03##$0 -0#$01 0$ 12(** 2- !$ %-*9*-5$#� �'(1 ,3+!$0 -% 0�+(, (1 #$2$0+(,$# %0-+ "923 * 1$ 20( *1 5(2' '7#0 3*(" "7*(,#$0 .0$1130$1 -!91$04$# 5'(*$ 12$0, .0-.$**$0 1.$$# (1 1712$+ 2(" **7(,"0$ 1$#� �,"$ #$%(,$#� 2'$ + 6(+3+ **-5 !*$1312 (,$# 130% "$ 1.$$# 12$0, (1 .$0+ ,$,2*7 (#$,2(9%($# -, 5 0,(,& .* 2$ (,12 **$# !- 0# 1'(.� �'(11312 (,$# 1.$$# +312 ,-2 !$ $6"$$#$# %-0 2'$ %-**-59(,& 0$ 1-,1�

�� �#$/3 2$ 1'(. "-,20-* " ,,-2 !$ + (,92 (,$# 5(2' 1+ **$0 03##$0 ,&*$1�

� � 0&$0 03##$0 ,&*$1 5(** 0$13*2 (, -4$09.0$1130(8 2(-, -% 2'$ -.$0 2(,& "7*(,#$0 ,# .(.9(,&� 5(2' .-11(!*$ # + &$ 2- 2'$ 1712$+� �, 1'(.15(2' 0$*($% 4 *4$1 (,12 **$#� 2'$ 0$*($% 4 *4$1 5(***(%2 ,# 2'$ 03##$0 5(** !$ #0(4$, (,2- 2'$ ' 0#912-.1� �$" 31$ (2 5(** !$ (+.-11(!*$ 2- +-4$ 2'$03##$0 -%% 2'$ ' 0#12-. .-1(2(-, 3,2(* 12$0,1.$$# (1 0$#3"$#� *-11 -% "-,20-* 5(** -""30�

������"$!%#�

Page 87: Submarien Steering Gear

�����������������������

���

SECTION 4. OVERALL MATERIAL AND MAINTENANCEREQUIREMENTS

561–4.1 STEERING AND DIVING HYDRAULICSYSTEM MATERIAL IDENTIFICATION ANDCONTROL (LEVEL I)

561–4.2 Portions of the steering and diving hydraulicsystems require Level I material identification in accor-dance with NAVSEA 0948–LP–045–7010, MaterialIdentification and Control (MIC) for Piping Systems.In general, hydraulic systems, including componentssuch as valves and piping, for any steering or diving con-trol surface, failure of which would cause loss of both thenormal and emergency modes of control surface opera-tion, are designated Level I. Refer to applicable shipsdrawings for identification of Level I components and re-quired material.

561–4.3 �������� �� �� ��� � ���� �

�������� ���� ������������ ��� ���

���� ���� � ���! ����� �

561–4.4 NAVSEA 0924–LP–062–0010, SubmarineMaterial Certification Requirements Manual, for theSubmarine Safety Program specifies the minimum ac-tions required to provide a satisfactory level of confi-dence in both the integrity of submarine systems and theadequacy of certain damage control capabilities. Thefollowing elements of the diving system are consideredto be within the submarine material certification bound-ary:

1. Bow diving gear linkage from the hydrauliccylinder up to and including the bow diving planes.

2. Hydraulic piping and components that arenecessary for both the normal and emergency opera-tional modes of both the bow and stern diving sys-tem (fairwater diving is excepted), including anynormally shut isolation valves that form a boundaryfor that portion of the system that is common to bothnormal and emergency modes.

3. The diving control sticks and their stern div-ing gear linkage from the hydraulic cylinder up toand including the stern diving planes. Associatedlinkages up to but not including any hydraulic con-trol valve operated by the control stick and linkage.

4. All bow and stern diving control and feed-back linkages and all linkage associated with nor-

mal, auxiliary, or mechanical indication of bow orstern plane angles.

561–4.5 Material certification is jeopardized every timework is done, for any reason, within the established sub-marine material certification boundary. This includeswork done: during the operating period; during an over-haul or availability period; for incorporation of alter-ations, modifications, or changes; for corrective mainte-nance; or as part of the preventive maintenance program.

561–4.6 To ensure that steering and diving system mate-rial conditions remain satisfactory to support continuedcertification, the requirements of NAVSEA0924–LP–062–0010 shall be complied with wheneverwork involving SUBSAFE elements of the diving systemis performed.

561–4.7 STEERING AND DIVING SYSTEM URO–MRCs

561–4.8 NAVSEA 0924–LP–062–0010 specifies themaintenance requirements and identifies the responsibi-lities and actions necessary to support continued unre-stricted submarine operations to design test depth.

1. The maintenance requirements under this

2. Unrestricted–Operations (URO) programare issued in Maintenance Requirement Cards(MRCs) format. The intent of the URO–MRCs is toensure early identification of any degradation of thematerial condition within the hull integrity bound-ary and those systems affecting ship recoverability.

3. The URO–MRCs concerning steering anddiving are as follows:

"� MRC–015–Inspect Bow and SternDiving Gear.

#� MRC–016–Inspect Internal ControlLinkage in Bow and Stern Diving Gear.MRC–019–Conduct Operational Test of Bow andStern Diving Systems. MRC–020–Inspect InternalSurfaces of 2014/2017 Series Aluminum AlloyComponent Bodies Installed in the Bow and SternDiving Hydraulic System. MRC–021–Inspect Sur-faces of 2024 Series Aluminum Alloy ComponentBodies Installed in the Bow and Stern Diving Hy-draulic System.

4–1/(4–2 blank)

Page 88: Submarien Steering Gear

�����������������������

��

����������

������� �������� �� ������ ���� ���� ��������

������ � ��� ��

�#-%*" �� �&'&$43 *. #/2&3 /' )9%2"5,*$ $9,*.;%&23� 7)*$) "2& $)2/-& 0,"4&%� -"9 #& 2&0"*2&%#9 )/.*.( /54 �/6&2#/2*.(� 4)& %&'&$43 ".% 2&;34/2*.( 4)& *.3*%& %*"-&4&23 /' 4)& )9%2"5,*$ $9,;*.%&2 4/ %2"7*.( %*-&.3*/.3 #9 &*4)&2 ����3,&&6*.( /2 $)2/-& 0,"4*.(� �3 2&15*2&% #9 3&$;4*/. ����$ /' 4)& �&.&2", �6&2)"5, �0&$*'*;$"4*/. '/2 �&&0 �*6*.( �������� �5#-"2*.&3���!��� �������������� $)2/-& 0,"4;*.( *3 53&% 4/ 2&34/2& %&'&$43 50 4/ ���� *.� %&&0".% ���� 3,&&6*.(� ". &80&.3*6& ".% %*''*$5,402/$&33� *3 53&% 4/ 2&34/2& %&'&$43 %&&0&2 4)".���� *.$)� �&& "#,& � ��� ".% �*(52&� ��� '/2 3,&&6*.( %&4"*,3�

�#-%*" �� �&'&$43 *. #/2&3 /' )9%2"5,*$ $9,*.%&23-"9 #& 2&0"*2&% #9 /6&2#/2*.( 4)& )9%2"5,*$ $9,;*.%&2 *.3*%& %*"-&4&2 " -"8*-5- /' ����� *.� #&;9/.% 4)& %2"7*.( %*"-&4&2 �/. ��� �� ".%����� $,"33&3 /6&2#/2*.( *3 /.,9 ",,/7&% /.4)& *.3*%& %*"-&4&2 *. 7"9 /' 4)& 0*34/. 42"6&,��

�&& �00&.%*8 �� )9%2"5,*$ $9,*.%&2 )&"% 2&0"*2'/2 /6&23*:&% $9,*.%&23� 4/ -"*.4"*. %2"7*.($,&"2".$&3 ".% 3&", $/-02&33*/.� )& *.$2&"3& *.0*34/. ".% )&"% %*"-&4&23 �'/2 ��� �� ".%����� $,"33&3 /.,9 4)& 0*34/. 2&15*2&3 " $/22&;30/.%*.( *.$2&"3& 4/ -"*.4"*. %2"7*.( $,&"2;".$&�� -534 ./4 #& "$$/-0,*3)&% #9 $)2/-& 0,"4;*.(�

�. "%%*4*/.� 4)& '*.", *.3*%& %*"-&4&2 ".% 0,"4*.(4)*$+.&33 /' /6&2#/2&% $9,*.%&23 -534 #& %/$5-&.4&%'/2 4)& .&84 /6&2)"5,*.( "$4*6*49 /. 4)& 3)*0�3 �&,&$4&%�&$/2% �2"7*.( ����� 4*4,&%� 1�-##+&)$ �)" �&/&)$

�0"+�.'&! ,0,-#( �� '#,�� � ,"#&, 0,"4& 3)",, #& "';'*8&% 4/ 4)& /6&2#/2&% $9,*.%&2 *.%*$"4*.( 4)& %*-&.;3*/.3 /' 4)& '*.", *.3*%& %*"-&4&2 ".% 0,"4*.( 4)*$+;.&33�

�*-#� �&4)/% *3 -/2& &$/./-*$", 4)".�&4)/% ".% *3 4)& 02&'&22&% 2&0"*2�

Page 89: Submarien Steering Gear

�����������������������

���

�� �� ������� ���������� ��� �������� ��� ������ ��������� ��������

�������� �������� ����� �������� ��������� � ���������

����� �������� ��������� � ���������

���

���

� ��

���

���

�����

������

� ��

�����

��

��

��

��

��

��

���

���

������

� ��

�����

������

� ��

�����

������

�� ����

���� � ����

� � ����

�� � ����

�� � ����

��� � ����

� � ����

���� � ����

����� � ����

��� � ����

��� � ����

���� � ����

������

�������

�������

��������

������

��������

���� �

���� �

���� ��

�����

�� � �

����

�����

�����

������

�($$1$� �� � !. '#'$*/'%'$# '* �'&0-$ ����� /+ ���� ���� ��� �������� �� ��� ��� ,(!/$�

�.$ -$%$-$*"$# #-2!'*&. %+- #')$*.'+*. !*# #$/!'(. *+/ .,$"'%'"!((3 )$*/'+*$# '* �'&0-$ �����

Page 90: Submarien Steering Gear

���� ���������������� ���

��

� �&$� � ������ �%��$ #� �#� � ' #� �(�$�&" � �(" #��$ �#%�$#�" �"��' #�

���������"�#!�

Page 91: Submarien Steering Gear

��������������� �������

���

Page 92: Submarien Steering Gear

��� ���������������������

���

�������! �

�������� ��� �� ��� �"������� �"������ ���� ���� ��� ���������

�6 43/= 70 5+6=0+-<=:361 + 6/? -A436./: 2/+. <7 5//<+--/8<+6-/ -:3</:3+ 30 <2/ 2A.:+=43- -A436./: 3; 7>/:E,7:/. <7 :/;<7:/ <2/ 0363;2� <2/ 07447?361 :/8+3: 8:7-/E.=:/ 5+A ,/ =;/.� '2/ 8:7-/.=:/ :/9=3:/; <2+< <2//@3;<361 -A436./: 2/+. 3; 5+-236/. +6. + 6/? ;4//>/ 3;5+6=0+-<=:/. ;7 <2+< 3< -+6 ,/ <2:/+./. 76<7 <2/ -A4E36./: 2/+.; <7 5+36<+36 .:+?361 -4/+:+6-/; +6. ;/+4-758:/;;376� '2/ ;4//>/ 5+</:3+4 3; <7 ,/ !������%*� $$��� ��� +447A ����� (;/ �31=:/������ '+,4/ ����� +6. :/0/:/6-/. .:+?361;07: ./<+34; +6. .35/6;376;� '23; 8:7-/.=:/ 3; 764A +8E8:7>/. 07: <27;/ -A436./:; ?23-2 +:/ 43;</. 36 '+,4/������

�$&$(#% �'*$)

�� '2/ 07447?361 031=:/; ?/:/ ./>/478/. <78:7>3./ 36;<:=-<376 07: ;4//>361 =6./:;3B/. 2AE.:+=43- -A436./: 2/+.; ?2/6 7>/:,7:361 70 <2/ 2AE.:+=43- -A436./: 3; +--75843;2/. ,A �88/6.3@ ��

�� �36+4 .35/6;376; ;27=4. ,/ 5+-236/. +0E</: 36;<+44+<376 70 <2/ ;4//>/ <7 <2/ 2/+. /@-/8<07: 5+<361 ;=:0+-/; ?23-2 5=;< ,/ 0363;2 5+E-236/. 8:37: <7 +;;/5,4A�

�� '2:/+.; ,/<?//6 -A436./: 2/+. +6.;4//>/ 5=;< ,/ ;/+4/. ?3<2 +6+/:7,3- -7587=6.8/: ���&��� ��� ��"��'�'� �%��� 7:/9=3>+4/6< +; 07447?;� )3<2 � <7 ����� 70;4//>/ 36</:6+4 <2:/+. 8:7<:=.361� +884A +6+/:7E,3- -7587=6. <7 :/5+36361 36</:6+4 <2:/+.; ,/E07:/ -7584/<361 36;<+44+<376�

� +-236/ ;4//>/ 04=;2 ?3<2 -A436./: 2/+.?3<236 �� +0</: +;;/5,4A�

� #:7>3./ + ���� ?3./ =6./:-=< <7 :77< .3E+5/</:� %+.3=; -7:6/:; <7 ���

�� �36+4 .35/6;376; <7 8:7>3./ ��� <7��� .3+5/<:+4 -4/+:+6-/ ?3<2 2A.:+=43- -A436E./:�

�� '2:/+.; <7 ,/ �(!��� 07: ;4//>/ +6.�(!��� 07: -A436./: 2/+.�

� +<361 ;/+4361 ;=:0+-/ ,/<?//6 ;4//>/+6. -A436./: 2/+.5=;< ,/ %2: �� 7: ;577<2/: 76,7<2 ;4//>/ +6. -A436./: 2/+.�

�� �=;< 8:37: <7 36;<+44361 ;4//>/ 76 -A436./:2/+.� <7 8:/>/6< 836-2361 <2/ 7�:361� +884A -4/+6�� '�# 734 <7 7�:361� 7�:361 1:77>/ +6. 5+<E361 ;/+4361 ;=:0+-/ 76 -A436./: 2/+.�

��� '312</6 ;4//>/ 76 -A436./: 2/+. <7 8:7E>3./ + 5/<+4�<7�5/<+4 -76<+-< 03< ?3<2 -A436./:2/+.�

��� '2/ +8843-+,4/ -A436./: 2/+. .:+?361�:/0/:/6-/. 36 '+,4/ ������ 5=;< ,/ =;/. <78:7>3./ .35/6;376; 67< ;8/-303-+44A 13>/6 36 <2/031=:/;�

��� '2/ 2A.:+=43- -A436./: 2/+. 5=;< ;+<3;E0+-<7:34A 8+;; + 2A.:7;<+<3-�<312<6/;; </;<�

��� &4//>361 70 2A.:+=43- -A436./: 2/+.; 5=;<,/ .7-=5/6</. 76 <2/ ;238; ;/4/-</. :/-7:..:+?361 �&%�� <3<4/.� C&<//:361 +6. �3>361 �AE.:+=43- &A;</5 '+,4/;��

�� '74/:+6-/;5=;< ,/ +; 07447?;� =64/;; 36.3E-+</. 36 �31=:/ ������

�:+-<376;� D �� �

�/-35+4;� D ��

Page 93: Submarien Steering Gear

�����������������������

��

����� �� ������� ���� �� ��� �� ������ ��� �����

���"!� ��� ��� �$ ���� �$�!�"��� �$�����! ���� ����#���

Page 94: Submarien Steering Gear

���� ���������������� ���

��

����� � ������ ���������� ��� �#��� ��� �#������ ���� ����!���

� � ��"�� �#���!��� �#������ ���� ���#� �� ����������� ��� !���� �#������ �����

����� ��� � ��� � ��� � ��� � ���������

����� ��� � ��� � ��� � ��� � ���������

����� ��!��� �#��� ��� �#������ ����

����� ��� � ��� � ��� � ��� � ���������

�������� �#��� ��� �#������ ����

����"���� ��!��� �#��� ��� �#������ ����

� ������ ������� ������ ������

�����

������ �

�� ������ ������� ������� ������ � ��������

� ������� ����� ������� ����� �������

�� ������� ������ ������ ����� ����������

��

��

������

������

������

������

������

������

�������

�������

������

������

������

�������

�����

������

���� �

������

������ ��

��������

���������

���������

��

��

��

�������

������

������

������

�������

������

�������

�������

�������

������

������

������

������

�����

�����

������

���������

���������

������� �

����������

��������%'$(&�

Page 95: Submarien Steering Gear

��� ���������������������

���

�������" �

�������� ��� ��!��� �#��� ��� �#������ ���� � �����

��� ��� � ����� � ��������

$0- .6336>15/ 9-7)19 796+-,<9- 4)@ *- <:-, ;6 9-B:;69- ;0- 0@,9)<31+ +@315,-9 0-), ;6 ,-:1/5 67-9);15/+3-)9)5+-: >1;0 ;0- 67-9);15/ 96, 69 71:;65 96,� �)B+015- ;0- -?1:;15/ 0-), )5, 4)5<.)+;<9- ) *<:015/;0); +)5 *- 73)+-, 15 ;0- +@315,-9 <:15/ �1/<9-������� )5, $)*3- ������� .69 ,-;)13: )5, ,1B4-5:165:� $01: 9-7)19 796+-,<9- 1: 56; )7731+)*3- ;6.69>)9, +@315,-9 0-),: 65 ;0- :;--915/ /-)9� ;0- .69B>)9, +@315,-9 0-),: 65 ##� ��� :;-95 ,1=15/ 69 ;0-36>-9 0-),: 65 ;0- .)19>);-9 ,1=15/ +@315,-9 0-),:�

�%'%)$& �(+%*

�� $09-),: *-;>--5 *<:015/ )5, +@315,-90-), :0)33 *- :-; >1;0 )5)-96*1+ +6476<5,�9),- �& 69 �&& 7-9 ����#����� �� ��B$�$� �"���� 69 -8<1=)3-5;�

� �.;-9 .15)3 4)+01515/� ,9133 )5, ;)7����%��� �' � ,--7 � 73)+-: �� ,-/9--:)7)9;� .69 0-? :6+2-; :-; :+9->� 65 �14-5:165

A��� #-; >1;0 )5)-96*1+ +6476<5, <:-, 15 �6;-�� #;)2- 15 73)+-� �33 :<9.)+-: ;6 *- .3<:0 69 9-B+-::-,�

� �)+015- ;01: .)+- .3<:0 >1;0 +@315,-90-), 4);15/ :<9.)+- >1;015 ����

�� �)+015- )7796?14);-3@ � �� 365/-9;0)5 9-+-:: 1; 1: ;6 *- :+9->-, 15;6�

�� �<:015/ 4);-91)3 ;6 *- �������"(�!!������� )336@ �� � 69 -8<1=)3-5;�

� #-; :+9-> 4);-91)3 ;6 *- ����%�!!������� ����%��� � ' � 365/�

�� %:- 9-.-9-5+-, ,9)>15/: .69 ,-;)13: )5,,14-5:165: 56; :7-+1.1+)33@ 4-5;165-, 15 .1/<9-:�

���$63-9)5+-: :0)33 *- ): .6336>:�

�9)+;165:� � �����5/3-:� � ,-/9--: 415<;-:�-+14)3:� �: #06>5

Page 96: Submarien Steering Gear

�����������������������

���

������� �!����� ����� �!��� ��� �!������ ���� �����

Page 97: Submarien Steering Gear

"�����"��"#��������� ��!

���

��� ��� � ��� � ��� � !���!����

��� ����� ��

���

�� ����� �� � � �����������

���

��� ����

���

#���� ����� �����"���" ��! ��� ���"" �'�!�$��� �'�����! ���� �$"����

"#��!��� ���! ��# �'�����! ����

��� ��� � ��� � ��� � !���!����

��� �� ���

��

�� ����� �� � � �����������

��

��� ����

���

��� ��� � ��� � ��� � !���!����

����� � ������ ���� � � ����� ���������

���

���!&�#�! ��%��� ���! $ �! �'�����! ����

"#�!� ��%��� ���! ��!&�!� ��# �'�����! ����

"#�!� ��%��� ���! ��# �'�����! ���� �""� ���

��� ��� � ��� � ��� � !���!����

����� � ���

��

�� ������ � � � ��������

���

��� ����

���

� � �$+!� , -) �! ������ )( �.,$%(# �( ������ )( �1&%( !+ $!� �

�� � �**&%���&! -) +!"!+!(�! +�0%(#� +!/%,%)( * �( &�-!+�

��� � �**&%���&! -) +!"!+!(�! +�0%(#� +!/%,%)( / �( &�-!+�

�+.*/1+0/1�

��� � �!"!+!(�! �%'!(,%)(

��� � � �$+!� �%�'!-!+

��� � � �)'%(�& %(,% ! %�'!-!+ )" .("%(%,$! �.,$%(#

��� � �%(�& %(,% ! %�'!-!+ )" �.,$%(#

��� � � �)'%(�& 0% -$ )" .("%(%,$! �.,$%(#

���������)-(/,�

Page 98: Submarien Steering Gear

� ���� ����������������

���

�������! � �������� ��� �� ��� �"������� �"������ ����

�������

��� ��� ��� �� ����� ����������

$0- .6336>15/ 9-7)19 796+-,<9- 4)@ *- <:-, ;6 9-B:;69- ;0- 0@,9)<31+ +@315,-9 0-), ;6 ,-:1/5 67-9);15/+3-)9)5+-: >1;0 ;0- 67-9);15/ 96, 69 71:;65 96,� �)B+015- ;0- -?1:;15/ 0-), )5, 4)5<.)+;<9- ) *<:015/;0); +)5 *- 73)+-, 15 ;0- +@315,-9 0-), <:15/ �1/<9-������� )5, $)*3- ������� .69 ,-;)13: )5, ,1B4-5:165:� $01: 9-7)19 796+-,<9- 1: 56; )7731+)*3- ;6.69>)9,36>-9 +@315,-9 0-),: <53-:: 6;0-9>1:- 15,1B+);-, 15 $)*3- ��������

�$&$(#% �')$:

�� $09-),: ;6 *- ��%�� � 65 �<:015/ )5,��%�� � 15 +@315,-9 0-),�

� $09-),: *-;>--5 *<:015/ )5, +@315,-90-), :0)33 *- :-; >1;0 )5)-96*1+ +6476<5,�9),- �& 69 �&& 7-9 ����#����� �� ��B$�$� �"���� 69 -8<1=)3-5;�

� �.;-9 .15)3 4)+01515/� ,9133 )5, ;)7����%��� �' � ,--7 � 73)+-: �� ,-/9--:)7)9;� .69 0-? :6+2-; :-; :+9->� 65 �14-5:165A��� #-; >1;0 )5)-96*1+ +6476<5, <:-, 15 �6;- ��

#;)2- 15 73)+-� �33 :<9.)+-: ;6 *- .3<:0 69 9-B+-::-,�

�� #-; :+9-> 4);-91)3 ;6 *- ����%�!!������� ����%��� � ' � 365/�

�� �)+015- *<:015/ +)=1;@ 15 ;0- +@315,-90-), ;6 ) ,-7;0 ;0); 1: .3<:0 >1;0 ;0- *6;;64 6.;0- -?1:;15/ 7)+215/ +)=1;@ ��14-5:165 ��� #<9B.)+- .151:0 ;6 *- 7-9 9-.-9-5+-, ,9)>15/�

� �<:015/ 4);-91)3 ;6 *- �������"(�!!������� )336@ �� � 69 -8<1=)3-5;�

����)+015- ;01: .)+- .3<:0 >1;0 +@315,-90-), 4);15/ :<9.)+- >1;015 ����

���%:- 9-.-9-5+-, ,9)>15/: .69 ,-;)13: )5,,14-5:165: 56; :7-+1.1+)33@ 4-5;165-, 15 .1/<9-:�

���$63-9)5+-: :0)33 *- ): .6336>:�

�9)+;165:� � �����5/3-:� � ,-/9--:

415<;-:�-+14)3:� �: #06>5

Page 99: Submarien Steering Gear

��������������� �������

���

���" � ������� �#����� � � ��!! �#� �"��� #����� ���� �"!����

Page 100: Submarien Steering Gear

���� ����� ���������� ���

��

���� � ������ ���������� ��� ��� �� ����� �$���!���

�$������ ���� �!�����

����� ��� � ��� � ��� � ��� � ���������

���

���

����

���

��

�����

��

���� � ���� ������

������

�����

���� ������

���� ��� ��

���� ������

�� ��� ���!��� ��� ������������ ��

��� �� ����� ���� ������

���� � ����

���� � ����

���� � ����

�� � ����

��� � ����

� � � ��� �

� � � ��� �

��� �

�����

�����

������

������

� ������ ����

� ��� ��"��� ����

����� ��� � ��� � ��� � ��� � ���������

���

���

����

���

��

��� �

��

���� � ���� �����

������

�����

���� �����

���� ��� ��

���� ���� �

�� ��� ���!��� ��� ������������ ��

���� � ����

���� � ����

�� � ����

���� � ����

� � � ��� �

��� �

������

�����

�����

����� ��� � ��� � ��� � ��� � ���������

�����

����

���

��� �

��

��

���� � ���� ��� �

�����

�����

���� ������

���� ��� ��

���� ������

� �� � ����

���� � ����

��� � ����

��� � ����

� � � ��� �

��� �

������

�������

�������

����#� �� ��"��� ����

� � �--*)$"#*& ',. #,0( ',.3".% "+% "'0 �1--&. � *,3&.� $4*)+%&. (&"%/

�� � �()/ -.,$&%1.& )/ +,0 "--.,2&% )' $4*)+%&. (&"% ("/ #&&+ /*&&2&%

�0 )/ +,0 "--*)$"#*& ',. ��� ��� $*"// '").3"0&. $4*)+%&./

��������&(%)'�

Page 101: Submarien Steering Gear

� ����� �����������������

���

�������" � �������� ��� ��!��� �#��� ��� �#������

������ ���� � �����

�# !*''*2$)" ( /#*�. (�3 � 0. � /* - +�$- #3�-�05'$� �3'$)� - -�(. $) /# 2�3 *! /# !$// � �*'/ #*' .�

�&-'*% �� � '� - +�$- /# #3�-�0'$� -�(. �)�- �(��#$) /# �*- . /* +-*1$� *-$"$)�' �-�25$)" /*' -�)� . 2$/# /# !$// � �*'/.� �#$. +-*� 5�0- (�3 ��0. 2�-+�" �)� .#*0'� � �*) 2$/#��0/$*)�

�&-'*% �� �.$)" �$"0- ������� �)� ���' ������� �. "0$� .� *1 -�*- /# !$// � �*'/#*' . �)� (�)0!��/0- �0.#$)". /* � $)./�'' � $)/# #3�-�0'$� -�( �*'/ #*' .� ���#$) �0.#$)"./* +-*1$� *-$"$)�' �-�2$)" /*' -�)� 2$/# !$// ��*'/.�

�&)&+$( �*-&,

�����)0!��/0- �0.#$)". !-*( ��� � ��-5./*�&� ����������

������& 2 '� ��# �0.#$)" $) +'�� *) /#

.+*/!�� .$� *! /# (*0)/$)" 0.$)" �($)$(0(*!

��� '*)" �� � "-**1 2 '�. *) ��# �0.#$)"�

���*0�#�0+ .+*/!�� .� - (*1$)" /# ($)$5

(0( �(*0)/ *! (�/ -$�' ) � ..�-3 /* .(**/# *!!

/��& 2 '�. �)� - ./*- .,0�- ) .. *! .+*/!�� . /*

/# +- ��-$'' � �0.#$)" �*- .�

�� �$4 �0.#$)" �� /* +-*1$� ������ /*

����� $)/ -! - )� !$/ 2$/# /# +- +�- � �*'/

#*' .�

������#$)" �. �0$'/ �$�( /-�' �' �-�)� %0./

+-$*- /* $)./�''$)" !$// � �*'/. /* ).0- *! ��#$ 15

$)" +'�) !$/�

Page 102: Submarien Steering Gear

�����������������������

���

���$!� ������� �#��!��� ��� ��%��� �&�!�$��� �&�����!

��##�� �# $"����

Page 103: Submarien Steering Gear

���� ����� ���������� ���

��

���������

���������

���������

������

����

���������

���������

��� ����� �

����� ������

��� ����� �����

��� ����� �����

�� �� ������

��� ����� �

��� ����� ����

����� ��� �

����� � ����

��� � � �

����� �� ����

� ��� �� �����

���������

���������

���������

���

���

���

���

���

�����

�����

�����

�����

� ��� �

�����

�����

�����

��� � ��

�������

������

�����

�����

��� �

�����

������

���

���

���

���

���

�����

�����

��

����� �

�����

������ �

�����

��

�������

�������

���� � ������ ���������� ��� � ������ ��� ��"��� �$���!���

�$������ �� �� ��� �!������

� ������ ���� � ��� ��"��� ����

����#� �� ��"��� ����� � �"" ���� � $! ������

��� � ���

�� � �"" ���� � $! ���� ���$�#!%�� ���� ���

� � �"" ���� � $! ��� ���

�� � �"" ���� � $! ������ ���� ���

� � �"" ���� � $! ���� ���

��������&(%)'�

Page 104: Submarien Steering Gear

��� ���������������������

���

�������" � �������� ��� ��!��� � ��� �#������ ��!��

� �����

$0- .6336>15/ 9-7)19 796+-,<9- 4)@ *- <:-, ;6 9-B:;69- ;0- /<1,- +@315,-9 +6=-9 ;6 ,-:1/5 67-9);15/+3-)9)5+-: >1;0 ;0- 67-9);15/ 96,� �)+015- ;0- -?1:;B15/ +6=-9 )5, 4)5<.)+;<9- ) *<:015/ ;0); +)5 *-73)+-, 15 ;0- +6=-9 <:15/ �1/<9- ������� )5, $)*3-������� .69 ,-;)13: )5, ,14-5:165:�

�%'%)$& �(+%*

���$09-), .1; 6. A�� 65�<:015/ )5, *69- A��15 +@315,-9 0-),�

��$09-),: *-;>--5 *<:015/ )5, /<1,- +@3B15,-9 +6=-9 :0)33 *- :-; >1;0 )5)-96*1+ +6476<5,�9),- �& 69 �&& 7-9 ����#����� �� ��B$�$� �"���� 69 -8<1=)3-5;�

���.;-9 .15)3 4)+01515/� ,9133 )5, ;)7����%��� �' � ,--7 � 73)+-: �� ,-/9--:)7)9;� .69 0-? :6+2-; :-; :+9->� 65�14-5:165 A���#-; >1;0 )5)-96*1+ +6476<5, <:-, 15 �6;- ��#;)2- 15 73)+-� �33 :<9.)+-: ;6 *- .3<:0 69 9-B+-::-,�

��� #-; :+9-> 4);-91)3 ;6 *- ����%�!!������� ����%��� � ' � 365/�

����)+015- ;01: .)+- .3<:0 >1;0 /<1,- +@315B,-9 +6=-9 4);15/ :<9.)+- >1;015 ����

� ��<:015/ 4);-91)3 ;6 *- �������"(�!!������� )336@ �� � 69 -8<1=)3-5;�

��� #<9.)+- .151:0 ;6 *- 7-9 9-.-9-5+-, ,9)>B15/�

���%:- 9-.-9-5+-, ,9)>15/: .69 ,-;)13: )5,,14-5:165: 56; :7-+1.1+)33@ 4-5;165-, 15 ;0- .1/B<9-:�

���$63-9)5+-: :0)33 *- ): .6336>:�

�9)+;165:� � ����5/3-:� � ,-/9--:

415<;-:�-+14)3:� �: #06>5

Page 105: Submarien Steering Gear

��������������� �������

���

������� ����� !������ � �� �������

Page 106: Submarien Steering Gear

���������� ��������� ���

���

�������� �

���� � ��� � ��� � ���������

���

��

���

���� ������

�����

���� ��

�����

���� ����� ���������� ��� � ������ ��� ��"��� �!���

�$������ ��"�� �!�����

����

�� � � ����

��� � ����

���� � ����

��� � �����

�������� �

���� � ��� � ��� � ���������

���

��

���

���� ������

�����

���� ��

���������

���� � ����

�� � � ����

���� � ����

���� � ����

�������� �

���� � ��� � ��� � ���������

��

���

��� ������

� ���

���� ��

����������

�� � � �����

�� �� � ����

� ������ ����

� ��� ��"��� ����

����#� �� ��"��� ����

� � �#$ %(#&% !&' ���� )"' ��(�

��� ������� �� ���� �� ��������� �����

��� ������� �� ���� �� ��������� �����

���� � ����

��� � �����

���������&(%)'�

Page 107: Submarien Steering Gear

�������������� ��������

���

�������� �

�������� ��� ������ ����� ������� ������ �������

�%" #*''*2&)$ -"+�&- +-* "!0-" (�4 �" 0."! /* -"6

./*-" /%" '"�-�) ". �"/2"") /%" $0&!" 4'&)!"- +&.6

/*) �)! /%" $0&!" 4'&)!"- +&)� �� %&)" /%" "3&./&)$

$0&!" 4'&)!"- +&./*) �)! (�)0#� /0-" )"2 �0.%&)$.

2%& % 2*0'! �" &)./�''"! &)/* /%" $0&!" 4'&)!"- +&.6

/*)� �0.%&)$ (�/"-&�' /* �" ����������

������ �� �''*4 � �� *- ",0&1�'")/� 0." �&$0-"

� ������ ���'" � ������ �)! -"#"-") "! !-�26

&)$. #*- !"/�&'. �)! !&(").&*).�

�*'"-�) ". .%�'' �" �. #*''*2.�

�-� /&*).� 5 �� ���)$'".� 5 � !"$-"".

� (&)0/".�" &(�'.� �. �%*2)

Page 108: Submarien Steering Gear

��������������� �������

���

������� � ��� !������ ������ � �����

Page 109: Submarien Steering Gear

��� � �� !���������� ���

��

!���� � ������ ����� ��� ��� �"��� �%������ �� !�� �" ����

!������ ����

!��� ��#��� ����

����$�!�� ��#��� ����

�� ��� � ��� � ��� � ���

��� � ��� � ��� � ���������

���� � ���� ����� ��������� ����

��� �

����� ��� � ���� ��� ���� ������

��

���

��

���

������

������

�� ���

������

������

�� ���

������

�����

� �� � ����

� � � ����

�� � ����

�� � ����

����

����

����

����

�����

�����

����

�����

� � � ����

� � � �����

�� � �����

���

���

���

���

��

�����

�����

� ���

�������

���� ����

���� �

�����

�� ��� � ��� � ��� � ���

��� � ��� � ��� � ���������

���� � ���� ����� ��������� ����

��� �

����� ���� � ����� ��� ��� �������

��

���

��

��

�����

� ���

����

������

�� ���

����

���� � ����

��� � ����

�� � ����

����

����

����

�����

���

������

���� � �����

��� � �����

�� � �����

���

���

���

���

�����

����

������ �

���� ����

�� ����

��

���

������

������

��

������

�� � ����

�� � � �����

����

����

�����

�����

�� � �����

�� � �����

���

���

�����

����

���� ��

�����

�� ��� � ��� � ��� � ���

��� � ��� � ��� � ���������

���� � ���� ������ �������� ����

��� �

������ ����� � ����� ��� � ��� ��������

�� �� ��� ������ ���� ���� �� � � ����� ��� ����� ���� ��

� � �## ���� � %" ��� �� �"� �&��� ��$%"!��� � �## ���� � %" ��� �� �"� �&��� ��$%"! �����

��

���

�� � � ����

������

��

����

�� ���

�� � ����

�� �� � �����

���

����

�����

� ���

��� � �����

�� � � �����

����

����

����

� ���

���� �

������

�� � �����

��������')&*(�

Page 110: Submarien Steering Gear

�������������� ��������

���

�������� �

�������� ��� ������ ������ ��� �������

��� �!��!)� � $�"��$ "$!���'$� ��* �� '%�� &! $�,%&!$� &�� "�� ����$� ��% ��&)�� &�� &����$ �$� � �&����$ "� � ���% "$!���'$� ���!)% &�� !(�$�!$� � !� &��&����$ �$�% &! ���!) � �'%�� � &! �� � %&����� &! $�%&!$�&�� "� ����$� ��� �!$ &�!%� ���%%�% !� %'���$� �%&��& �! !& ��(� �'%�� �% � %&����� �'$� � �) �! ,%&$'�&�! � �! !& ��(� �) �! %&$'�&�! �$�)� �% &��&

�!'�� �� '&���+�� !$ �! !& ��(� %��"��&% &��& )!'�� ��,�!�"��%� &�� �'%�� �� '%� ���'$� ������� � ������ ������� �!$ ��&���% � � ���� %�! % �!$ ���,� � �'%�� �% &! &�� &����$ �$�%� ���% !� &�� �'%�� �% � ����� ���������* !& �� � �$��%��� '%�� ���&�,$��� &! �� ������� ���!* ����� !$ �#'�(��� &�

Page 111: Submarien Steering Gear

�����������������������

���

������� � ������ ��� ��"��� ������ ��� !�����

Page 112: Submarien Steering Gear

���� ����� ���������� ���

��

���� � ������ ���������� ��� � ������ ��� ��"��� ����� ��� �!�����

� ��� ����

����

�����

���

���

���������

��

�������

������� ������� ������� ������������������ �

������� ����������

��������$&#'%�

Page 113: Submarien Steering Gear

��# ����" ����!������������"������������$��#��"�!���������!��!�����

�������������� �����

��

���������� �������� ��������� �������

����������������$(�')��"�((!�!��)!%$��)�)%&��$���%))%#�%��&�����������) ���%""%+!$�����%'���%#&"�)!$��) !(

���!�)&���!"��

���%�)����'��"%�' ����

���)"�� ��'�'���

���&,&'� �$(�# �!' ������!'�����'�"!!" �!���'(%��� � "��!�

���(&�%�&��)��(�'�"!�"�� �!(�� ��10/3��6675672.90��45/38�

�����!�%����" �!'&�

���%��" �!�������!��&�'"�#(�����'�"!

%��" �!�������!��&��!��%��&"!&#���!"�

#�%���%�#�

��!�!"�

����!"�

'����

���"%���!�'"%��!��*"%����!'�%��#%�!'� ����"%���!�'"%-&�%�!���%�'��"%��%������!��'�'�� ������'��&��!��

� ��&��!�'(%��"��*"%����!'�%����� �����('")"!�" �

����&��#��(���!"���!�"%�&'�'�"!����%�&&���"�!"'����%�)��'��

����'��&�&#����"!�,��"%�!&�&�

����"!'%"��!"� ����"���&�� �����'� ���#%�"%�', ���'%�!& �''���'"

%����)�� �"%*�%��� �(�

������!"�����&��!�'(%��"����#�%' �!'�"�����%

��# ������ ������#� ����� ���� ��������� ���� ��� �����!������������ ���������!��������# ���� ������� !��$� !����

�� �� �� ����

��

����+������!'

����""� ����!�" �#��'�

����" �#��'�

������% ���#""%

��'�

#�%'

���# ��� ���������$�����!��������# ���� !�� ���

��$(�')��"�((!���%���� ������'���$��)��%)%#�%������� ��� �����!����

�%'#����%$)!$*��%$�� � � , ����&�&�'�!�����!)!%$�"�(&����!(�$������

���(&��'��&�%�#"%'�'"��!����'���������!���&��(&�%�%� �%�&���!��%��" �!��'�"!&�%���'�!��'"�#(�����'�"!�

�����"��&� �%����*�'� �%��'"������������!��,�'����"!'%��'"%����"%��#%�!'�!��

���"%�(!���&&������' ��%&��������!�,"(�%�'(%!����%�&&��!�&#����#%")�����"!�'����������"����!��'�#��*��%���!����'���

�����!�� ������&���"#!�)�!&'���������"%� ����!�����&&������' ��%&���

����"%�����'�"!����!�"% �'�"!��������('")"!� ���������"%��" �%�������������������

� �

� ��

� �

Page 114: Submarien Steering Gear

������� �����������

����������������������

�������������� ������������������������������������������������

�������������� �����������

���������

������������������������ �������� " !�����

�������������!���������������������������������"��

���������

�''*$*#+��31*-&11�&-#+25�'.0��0*4#2&��1&����

�.12#(&�#-%��&&1��#*%�&/#02,&-2�.'�2)&��#45�����

�� ������ �����&4���� ���������