Svolosl Nonlinear

  • Upload
    vivian

  • View
    220

  • Download
    0

Embed Size (px)

DESCRIPTION

svolos

Citation preview

  • Duffing Van der Pol

    : ...

    2014

  • ... ,

    .

    , , .

    ,

    .

    ,

    . ,

    .

    ,

    .

  • .

    ,

    .

    .

    ,

    Duffing

    Van der Pol.

    ,

    . ,

    . ,

    ,

    .

    ,

    .

    ( ).

    , .

  • Abstract

    The seismic isolation is part of the broader scientific area of passive control of

    seismic response of structures. After the use of seismic isolation for buildings and

    bridges, it is applied to protect invaluable objects as museum artifacts. In this

    diploma thesis a seismic isolator, which was designed for the previously mentioned

    purpose and has nonlinear behavior due to mechanical and geometrical

    characteristics, is examined. Formulating the equation of motion for the Single

    Degree Of Freedom (SDOF) oscillator isolator, we observe that the non-linearity is

    mainly due to Duffings type of stiffness and Van der Pols type of damping. In order

    to solve the aforementioned nonlinear problems, the multiple time scales method

    and the averaging method, which are analytical techniques for approximating

    solutions, were presented. The latter methods were used in order to highlight the

    effects of nonlinear systems which were ignored in the linear theory of vibrations

    and were concealed by the use of numerical methods. An example of these

    phenomena is the secondary resonances which are critical in design procedure. Their

    criticality based on existing of jump phenomena in amplitude of response of

    isolator. In this thesis, the region of frequencies where resonances may be

    developed is examined using the frequency - response curves. The study reveals the

    influence of the mechanical characteristics of isolator on the response to the

    resonances (primary and secondary). As a result of all observations, we came to

    useful conclusions concerning the design of the isolator in order for it to operate

    both economically and safely.

  • 1

    1. ...................................................................................................... 1

    1.1. ...................................................................................... 1

    1.2. & ................................................... 2

    1.3. ...................................................................... 3

    1.3.1. ( ) ....................................................... 3

    1.3.2. ................................................................. 5

    1.4. .................................................. 6

    1.4.1. ....................................................................... 6

    1.4.2. ................................................. 6

    1.4.3. () ......................................................... 9

    1.4.4. ............................................................. 10

    2

    2. ......................... 11

    2.1. ....................................................... 11

    2.2. Duffing................................................................................... 12

    2.2.1. & ........................................ 12

    2.2.2. ........................................... 13

    2.2.3. ......................................................................... 15

    2.2.4. ............................................................ 17

    2.2.5. ..................................................................... 18

  • 2.3. Van der Pol ............................................................................ 21

    2.3.1. & ........................................ 21

    2.3.2. ........................................... 22

    2.3.3. ......................................................................... 24

    2.3.4. ............................................................ 26

    2.3.5. ..................................................................... 27

    3

    3. ............................ 29

    3.1. .......................................................................................... 29

    3.2. ...................................................... 30

    3.3. ........................................................................... 32

    3.4. (The Straightforward Expansion) ......................... 34

    3.5. (Multiple Time Scales Method) ...... 39

    3.6. & (Averaging Method) ...... 50

    4

    4. ........................................................................................ 61

    4.1. ............................................................................................. 61

    4.1.1. ................... 61

    4.1.2. ............................ 62

    4.2. .................................................... 65

    4.2.1. ................................................................... 65

    4.2.2. ......................................... 69

    4.3. .................................................... 72

    4.3.1. ................................................ 72

    4.3.2. ................................................................. 73

    4.3.3. ................................................................. 76

    4.3.4. .................................... 77

    4.4. ......................................................... 78

  • 5

    5. ........................................... 87

    5.1. ............................................................................................. 87

    5.2. ............................. 88

    5.2.1. ..................................... 88

    5.2.2. ....................................................... 90

    5.3. ..................................................... 93

    5.3.1. ............................................................ 93

    5.3.2. Duffing ............................................................................ 95

    5.3.3. Duffing & Van der Pol ................................................................. 119

    5.3.4. ....................................................... 141

    5.3.5. ........................................ 146

    6

    6. ......................................................................................... 149

    6.1. .......................................................... 149

    6.2. ............................................................ 149

    6.3. .................................... 150

    6.3.1. .................................................................... 151

    6.3.2. ....................................................... 153

    6.4. ...................................... 158

    6.5. ...................................................... 161

    .................................................................................................. 163

    ..................................................................................................... 165

  • 1

    1.

    1.1.

    , ,

    .

    . , ,

    , .

    .

    ,

    ,

    .

    . ,

    ,

    .

    (. 1.1).

    . 1.1 :

  • 1

    2

    (t)u

    (t) . .

    (t)u

    (t) . m

    ,

    ( )u t ().

    1.2. &

    ,

    ,

    .

    .

    .

    .

    ,

    , .

    ,

    , .

    () .

    . :

    ,

    ()

    ,

    () (,

    , ),

    ,

    ,

    .

  • 1

    3

    (. 1.2) .

    . 1.2 :

    1.3.

    1.3.1. ( )

    . (. 1.3)

    , , .

    ,

    ( ) .

    . 1.3 :

    ( )u t t

    ,

    :

    1. ( )p t

    2. Sf

    3. Df

    4. If

  • 1

    4

    Sf u

    ( )S Sf f u .

    () Sf

    , Hooke :

    Sf ku (1.1)

    k .

    Sf ,

    .

    Df , .

    .

    , :

    Df cu (1.2)

    c .

    .

    , .

    .

    If . m

    u . :

    If mu (1.3)

    ,

    () .

    D Alembert.

    : D Alembert

    ,

    .

  • 1

    5

    ( )

    :

    ( ) ( ) ( ) ( )I D Sf t f t f t p t (1.4)

    1.3.2.

    , (1.1) , (1.2) (1.3),

    () :

    ( )mu cu ku p t (1.5)

    . 1.4 :

    (1.5)

    . ,

    .

    .

    . 1

    ( ) 0p t

    0mu ku (1.6)

    0

    k

    m

    0mu cu ku (1.7)

    - : 02crc m

    - : crc c

    - : crc c

    cr

    c

    c

    0( ) sin( )p t p t

    0 sin( )mu ku p t (1.8)

    0

    1

    D

    1 : D

    t

    0 sin( )mu cu ku p t (1.9)

    D

    max2

    1

    2 1D

    21 2

  • 1

    6

    1.4.

    1.4.1.

    ,

    . ,

    (1.6) , (1.7) , (1.8) (1.9)

    .

    ( ) ,

    , .

    , :

    (-) .

    .

    ,

    , .

    . ,

    .

    ,

    .

    , .

    ,

    . ,

    , .

    1.4.2.

    ,

    .

    ,

    .

    () .

    .

  • 1

    7

    . ,

    . ,

    (1 cm) ;

    .

    .

    . ,

    .

    .

    1 : ( (1.7) )

    2

    20

    d u dum c kudt dt

    (1.10)

    0u

    :

    00

    (0) , (0) 0t

    duu u u

    dt (1.11)

    , u

    t .

    ( ,U T ).

    U

    T , u

    uU

    tt

    T , u t

    . t :

    1d d dt d

    dt dt dt T dt (1.12)

    2

    2 2 2

    1 1 1d d d d d d d dt d

    dt dt dt dt T dt dt T dt dt T dt

    (1.13)

    (1.10) :

    2 2

    2 2 2 2

    1 10 0

    d Uu d Uu mU d u cU dum c k Uu kU uT dt T dt T dt T dt

  • 1

    8

    2

    2

    20

    d u c du kT T u

    dt m dt m

    (1.14)

    2

    2 2

    020

    d u c duT T u

    dt m dt

    (1.15)

    T U 2 20 1T 0U u

    (1.15) :

    2

    2

    0

    2 0 2 cr

    d u du c cu

    dt dt m c

    (1.16)

    :

    0

    0

    (0) 1 , (0) 0t

    u duu u

    U dt (1.17)

    2 : ( (1.9) )

    2

    02sin( )

    d u dum c ku p tdt dt

    (1.18)

    , ,

    :

    u t

    u tU T

    (1.19)

    U T .

    (1.12) (1.13), (1.18) :

    2

    02 2sin( )

    U d u U dum c kU u p TtT dt T dt

    (1.20)

    2

    2 2 2 002

    sin( )pd u c du

    T T u T Ttdt m dt mU

    (1.21)

    ,

    0 . , ,

    1 secT ,

    .

  • 1

    9

    (1.21) :

    2

    2 002

    2 sin( ) 2

    pd u du cu F t F

    dt dt m mU (1.22)

    , u t ( (1.17)).

    u t

    ( (1.16) (1.22) ). u t

    u t , .

    :

    u t

    u tU T

    (1.23)

    2

    2 2 2

    1 1

    d d d d

    dt T dt dt T dt (1.24)

    . 2

    . (

    ) ( 1 2 ).

    :

    T

    0

    1T

    (1.25)

    1 secT (1.26)

    2

    20

    d uu

    dt (1.27)

    22

    02sin( )

    d uu F t

    dt (1.28)

    .

    0 u u (1.29)

    2

    0 sin( )u u F t (1.30)

    . 3

    1.4.3. ()

    .

    (1.29) (1.30)

    .

    .

  • 1

    10

    ,

    ( )

    .

    ,

    (, , )

    c crc (. 1).

    ( )p t ,

    Duhamel

    Laplace. :

    (t )0

    (0) (0)( ) sin (0)cos

    1 ( ) e sin

    t

    D D

    D

    t

    D

    D

    u uu t t u t e

    p t dm

    (1.31)

    (1.31) Duhamel

    .

    ,

    1.

    1.4.4.

    .

    ( )p t Duhamel

    (1.31). .

    ,

    .

    . :

    (Newmark)

    (Runge-Kutta)

    -

  • 2

    2.

    2.1.

    ,

    D Alembert,

    (1.4).

    , ,I D Sf f f

    (1.1) , (1.2) (1.3). :

    ( )If m t u (2.1)

    ( , , )D Df f u u t (2.2)

    ( , , )S Sf f u u t (2.3)

    ( , , ) , ( , , )D Sf u u t f u u t

    u u .

    :

    ( ) ( , , ) ( , , ) ( )D Sm t u f u u t f u u t p t (2.4)

    .

    (2.4) , .

    (. )

    .

    Df Sf u , u t ,

    .

    , ,

    , ,

    .

    :

    : , :

    , : g g

    x u x u

    x x x x

  • 2

    12

    2.2. Duffing

    2.2.1. &

    Georg Duffing (1861-1944) ,

    .

    , ,

    .

    ( Hooke), Duffing

    [5]

    .

    .

    Duffing.

    Duffing :

    3 cosx x x x t (2.5)

    ( )x x t

    t , , ,

    . , :

    (2.5) .

    .

    :

    3( , , )S Sf f x x t x x (2.6)

    / .

    , (

    ) (2.6)

    . ,

    .

  • 2

    13

    2.2.2.

    Duffing (2.5),

    () .

    , . 2.1, m

    k .

    .

    .

    d M

    0d 0d d

    k (Hooke)

    . 4

    F F t u u t

    .

    ( sF ) (F ).

    . 2.1 : &

    : F ma (2.7)

    x (. 2.1):

    2x sxF F F 2

    2x

    d uma m mu

    dt (2.8)

    sxF sF x .

  • 2

    14

    : 2 2u d (2.9)

    , sF ( Hooke)

    : sF k 0d

    0( )sF k d (2.10)

    , (. 2.1) :

    00sin ( d ) 1

    sxsx s

    s

    F du u uF F k ku

    F

    02 2

    1sxd

    F kuu d

    (2.11)

    (2.11)

    02 2

    2 2 1S sxd

    f F kuu d

    (2.12)

    ,

    (2.6). ,

    (2.12)

    Duffing.

    Maclaurin [] :

    22

    1 11

    21x

    x

    (2.13)

    2

    20 0 0

    32 2 2 2

    1 1 1

    2 2

    d d du d ux u

    d d d du d u d

    (2.14)

    (2.11) (2.14) sxF :

    30 0

    31

    2sx

    d dF k u k u

    d d

    (2.15)

    (2.15) (2.11) 0, 4u d .

    (2.8):

    30 0

    32 2 1x sx x

    d dF F F F k u k u ma mu

    d d

  • 2

    15

    :

    3

    1 2 ( )mu k u k u F t (2.16)

    01 2 1d

    k kd

    02 3

    dk k

    d 0 u 0 0u

    , Duffing (2.16)

    .

    0F t

    (2.16) :

    2

    3

    1 220

    d um k u k udt

    (2.17)

    ( )

    0( 0)u t u 0u( 0)t v .

    (2.16) .

    Duffing

    .

    2.2.3.

    (. 1.4.2)

    Duffing.

    1:

    23

    1 220

    d u dum c k u k udt dt

    (2.18)

    0( 0)u t u (2.19) 0u( 0)t v (2.20)

    . 5

    (2.18) (1.23) ,

    (1.24) :

    23

    1 22 2

    1 10

    d Uu d Uum c k Uu k UuT dt T dt

  • 2

    16

    2 2 22

    31 2

    20

    T k T k Ud u Tc duu u

    dt m dt m m

    (2.21)

    2

    2 2 2 2 2 2 320 0 02

    1 1

    0kd u c du

    T T u U udt k dt k

    (2.22)

    (1.25) :

    2

    3

    22 0

    d u duu u

    dt dt (2.23)

    22

    1

    kU

    k 10 2

    1 0 2 0

    12

    2 2

    kc c c

    k m k U m

    (2.19) (2.20)

    ,u t (1.23) :

    0( 0)

    ( 0)uu t

    u tU U

    (2.24)

    0( )

    ( 0) ( 0)Tvdu dt d Uu T du T T

    u u t u tdt dt dt U dt U U U

    (2.25)

    0U u . :

    0

    0 0

    ( 0) 1 ( 0)v

    u t u tu

    (2.26)

    2:

    23

    1 22cos

    d u dum c k u k u P tdt dt

    (2.27)

    0( 0)u t u (2.28) 0u( 0)t v (2.29)

    . 6

    (2.27) (1.23) ,

    (1.24) :

    23

    1 22 2

    1 1cos

    d Uu d Uum c k Uu k Uu P TtT dt T dt

    2 2 22 2

    31 2

    2cos

    T k T k Ud u Tc du T Pu u Tt

    dt m dt m m mU

    (2.30)

  • 2

    17

    2 2

    2 2 2 2 2 2 320 0 02

    1 1

    coskd u c du T P

    T T u U u Ttdt k dt k mU

    (2.31)

    (1.26) :

    2

    2 3

    022 cos

    d u duu u F t

    dt dt (2.32)

    2 2201

    kU

    k 20 2

    1 2

    22 2

    c c c

    k m k U

    PF

    mU

    (2.28) (2.29)

    ,u t (1.23). (2.24) (2.25) :

    0( 0)u

    u tU

    (2.33) 0 0( 0)Tv v

    u tU U

    (2.34)

    2.2.4.

    Duffing , .

    23

    20

    d uu u

    dt (2.35)

    23

    22 0

    d u duu u

    dt dt (2.36)

    ( )

    2

    2 3

    02cos

    d uu u F t

    dt

    (2.37)

    2

    2 3

    022 cos

    d u duu u F t

    dt dt

    (2.38)

    P(t) :

    2

    3

    22

    d u duu u P t

    dt dt (2.39)

    . 7

    : ,

    .

    . :

    0( 0)u

    u tU

    (2.40) 0( 0)Tv

    u tU

    (2.41)

  • 2

    18

    2.2.5.

    Duffing,

    . Runge-Kutta 4

    (2.36).

    :

    32 0u u u u (2.42)

    (2.42) , u v (2.43)

    32

    u v

    v v u u

    (2.44)

    ( ), ( )u t v t . ( )u t

    ( )v t .

    ( )u t ( ), ( )u t v t .

    uv

    (2.44)

    . ,

    uv. ,

    , .

    .

    .

    . 0

    . ,

    .

    . . 2.2

    ( )u t .

    0 , 0.1 , 2 0 .

  • 2

    19

    0 , 0 0 00.2 , 0u v

    0.1 , 0 0 3

    2 , 0 0.2 , 1/ 3U T

    . 2.2 : 1 Duffing

    0

    uv :

    0 0cos( )u A t (2.45) 0 0 0sin( )v A t (2.46)

    2 2

    2 2 2

    0

    1u v

    A A (2.47)

    ,

    .

    . 2.3 .

    2 (2.36),

    (. 2.4)

    2 . ,

    ( )

    .

  • 2

    20

    0.1 , 0.1 0 00.2 , 0u v

    0.1 , 1.0 0 3

    0.2 , 1/ 3U T

    . 2.3 : 2 Duffing

    2 , 0.05 0 00.2 , 0u v

    0.1 , 1.0 0 3

    2 0.2 0.2 , 1/ 3U T

    . 2.4 : 3 Duffing

  • 2

    21

    2.3. Van der Pol

    2.3.1. &

    Balthasar van der Pol (1889-1959),

    ,

    . ,

    ,

    ( )

    ( Hooke).

    , , -

    . Van der Pol,

    .

    Van der Pol :

    2(1 ) 0x x x x (2.48)

    ( )x x t

    t

    .

    (2.48)

    .

    . :

    2( , , ) ( 1)D Df f x x t x x (2.49)

    / .

    (2.49) 1x

    1x . ,

    ( )

    ( ).

    - ,

    . .

    ,

    .

  • 2

    22

    (2.48) .

    ,

    .

    2.3.2.

    Van der Pol (2.48)

    ,

    .

    , . 2.5, m

    k .

    0x

    . 1c

    .

    s 2( )z x x . . 2.5 .

    .

    k (Hooke)

    1c

    ( )z x

    . 8

    . 2.5 :

  • 2

    23

    F F t cx

    x x t .

    ( sF ) ,

    (F ) ( cF )

    : F ma (2.50)

    x (. 2.1):

    x s cF F F F 2

    2x

    d xma m mx

    dt (2.51)

    cF dF z .

    1c dF :

    1 1 1 1( ) ( ) 2d dd d dx

    F c z x c z x c z x F c x xdt dx dt

    (2.52)

    o dF cF (. 2.5) :

    2 21 1tan 2 2 4c

    c d c

    d

    Fz F z F x c x x F c x x

    F (2.53)

    . sF

    ( Hooke) :

    sF kx (2.54)

    F c x

    van der Pol (2.48)

    .

    (2.51):

    2 2

    14x s c xF F F F c x kx c x x ma mx

    :

    22 0mx c x c x kx (2.55) 22 14c c 0 0 0x x

  • 2

    24

    , Van der Pol (2.55)

    .

    F .

    :

    22 ( )mx c x c x kx F t (2.56)

    ( )F t F .

    1. 0F t

    (2.56) :

    2

    2

    220

    d x dxm c x c kxdt dt

    (2.57)

    2. 0F t

    (2.56) :

    2

    2

    22( )

    d x dxm c x c kx F tdt dt

    (2.58)

    ( )

    0( 0)x t x 0( 0)x t v .

    (2.56) .

    Van der Pol

    .

    2.3.3.

    (. 1.4.2.)

    Van der Pol.

    1:

    22

    220

    d u dum c u c kudt dt

    (2.59)

    0( 0)u t u (2.60) 0u( 0)t v (2.61)

    . 9

  • 2

    25

    (2.59) (1.23) ,

    (1.24) :

    2

    2

    22 2

    1 1( ) 0

    d Uu d Uum c Uu c k UuT dt T dt

    22 2

    22

    20

    Tc Ud u Tc du T ku u

    dt m m dt m

    (2.62)

    2

    2 2 2 2 2 220 0 02

    0cd u c du

    T U u T T udt k k dt

    (2.63)

    (1.25) :

    2

    2

    21 0

    d u duu u

    dt dt (2.64)

    0 1c

    k (2.65) 22c c U (2.66).

    (2.60) (2.61)

    ,u t (1.23) :

    0( 0)

    ( 0)uu t

    u tU U

    (2.67)

    0( )

    ( 0) ( 0)Tvdu dt d Uu T du T T

    u u t u tdt dt dt U dt U U U

    (2.68)

    0U u . :

    0

    0 0

    ( 0) 1 ( 0)v

    u t u tu

    (2.69)

    2:

    22

    22cos

    d u dum c u c ku P tdt dt

    (2.70)

    0( 0)u t u (2.71) 0u( 0)t v (2.72)

    . 10

    (2.70) (1.23) ,

    (1.24) :

    2

    2

    22 2

    1 1( ) cos

    d Uu d Uum c Uu c k Uu P TtT dt T dt

  • 2

    26

    22 2 2

    22

    2cos

    Tc Ud u Tc du T k T Pu u Tt

    dt m m dt m mU

    (2.73)

    2 2

    2 2 2 2 2 220 0 02

    coscd u c du T P

    T U u T T u Ttdt k k dt mU

    (2.74)

    (1.26) :

    2

    2 2

    021 cos

    d u duu u F t

    dt dt (2.75)

    20 1c

    k (2.76) 22c c U (2.77)

    PF

    mU (2.78)

    (2.71) (2.72)

    ,u t (1.23). (2.67) (2.68) :

    0( 0)u

    u tU

    (2.79) 0 0( 0)Tv v

    u tU U

    (2.80)

    2.3.4.

    Van der Pol , .

    ( )

    2

    2

    21 0

    d u duu u

    dt dt (2.81)

    22 2

    021 cos

    d u duu u F t

    dt dt (2.82)

    P(t) :

    2

    2

    21 0

    d u duu u P t

    dt dt (2.83)

    . 11

    :

    .

    . :

    0( 0)u

    u tU

    (2.84) 0( 0)Tv

    u tU

    (2.85)

  • 2

    27

    2.3.5.

    Van der Pol,

    . Runge-Kutta 4

    .

    :

    2 1 0u u u u (2.86)

    (2.42) , u v (2.87)

    2(1 )

    u v

    v u v u

    (2.88)

    ( ), ( )u t v t . ( )u t

    ( )v t .

    ( )u t ( ), ( )u t v t .

    .

    .

    . 0

    . ,

    .

    . . 2.2

    ( )u t .

    0 , 0.1 2 .

    , .

    , ( 0 0.05 mu 0 0.6 mu )

    . 2.7.

    .

  • 2

    28

    0 0 00.2 , 0u v

    0.1 0 3

    2 0.2 , 1/ 3U T

    . 2.6 : 1 Van der Pol

    0.4

    0 00.05 , 0u v 0 3

    0 00.6 , 0u v 0.2 , 1/ 3U T

    . 2.7 : 2 Van der Pol

  • 3

    3.

    3.1.

    .

    ,

    , .

    . ,

    .

    ,

    .

    (

    ) .

    ,

    ( ).

    (. )

    (. )

    .

  • 3

    30

    3.2.

    ,

    . .

    Landaus Notations

    ( )f ( )g 0 .

    1. : ( ) ( )f g 0

    0

    ( )lim 0

    ( )

    f

    g

    f g 0

    2. : ( ) ( )f g 0

    M

    ( ) g( )f M

    0 .

    f g 0

    1. .

    , ( )g

    g .

    2.

    . , ( )g

    g .

    3. g - (gauge function).

    ( ) , ng n .

    4. gf f

    g 0 .

    5. , 0

    0 0 , 0 .

    ,f g .

    6. n ( )f x

    1nx 1nx 1x .

  • 3

    31

    ,

    , ( , )f t

    .

    ( , )h t 0 t

    I . :

    0

    lim (t, ) 0h

    I

    0 0 0 t :

    ( , )h t t I 0

    ( , )h t ,

    , t I .

    Landau

    ( , )f t ( , )g t t I

    0 . ( , ) ( , )f t g t

    0 , I 0

    ( , )lim 0

    ( , )

    f t

    g t

    I . , ( , ) ( , )f t g t

    0 , I

    ( ) 0M t t I ( , ) ( ) ( , )f t M t g t t I

    0 .

    .

    ( , )au t

    ( , )u t I 0

    ( , ) ( , ) ( , )aE t u t u t 0 ,

    t I .

    ( , )E t n

    n n 0 ( ).

  • 3

    32

    -

    ( , )ng t (gauge functions)

    0 t I 1( , ) ( , )n ng t g t 0 n .

    ( , )u t 0 ,

    ( , )ng t , 0

    ( , )n nn

    g t

    :

    0

    ( , ) ( , ) ( , )N

    n n N

    n

    u t g t g t

    0 N .

    1. t I

    .

    2. : ( , ) ( ) ( ) ( ) nn n n ng t y t y t

    ( , )u t :

    0 0 0

    ( , ) ( ) ( )n nn n n n nn n n

    g t y t u t

    (3.1)

    3. : 0

    ( ) nnn

    u u t

    (3.2)

    4. (3.1)

    .

    , ,

    (

    Taylor ).

    5.

    (Straightforward Expansion , . 3.4.) :

    1

    0

    ( , ) ( ) ( )m

    n m

    n

    n

    u t u t

    , m (3.3)

    3.3.

    ( )

    .

  • 3

    33

    .

    .

    .

    ( )

    ( ).

    0 ,

    .

    ()

    (perturbation theory).

    Duffing Van der Pol.

    :

    , , , ; 0F t u u u (3.4)

    , 1

    ( , )au t (3.4)

    t I 0 :

    ( , ) , ( , ), ( , ), ( , ), 0a a ar t F t u t u t u t (3.5)

    I 0 .

    :

    1. (The Straightforward Expansion)

    2. (Multiple Time Scales Method)

    3. (Averaging Method)

    :

    1. Lindstedt-Poincar

    2. (Boundary Layers)

    3. (Matching)

  • 3

    34

    3.4. (The Straightforward Expansion)

    .

    ,

    .

    .

    (3.4) :

    20 1 2; ( ) ( ) ( ) ( )n

    nu t u t u t u t u t (3.6)

    ( ) 1n nu t n .

    .

    ( ; )u t (3.6)

    , (3.4), .

    (n ) .

    ,

    , .

    : 20 1 2( ) ( ) ( ) ( ) 0 ( ) 0 ,

    n

    i i i n i n if u f u f u f u f u n (3.7)

    n :

    iu : iu

    .

    n ( ) 0n if u , ( )iu t .

    .

    Duffing (2.35).

    0t 0A

    ( 0 0(0)u x A U ). ( )u t

    .

  • 3

    35

    ,

    t (3.6).

    .

    ( ) :

    2

    0 1( ; ) ( ) ( ) ( )u t u t u t (3.8)

    (3.8) (2.35) :

    32 2 2

    0 1 0 1 0 1( ) ( ) ( ) 0u u u u u u (3.9)

    :

    3 2 32 3 2 2 2 2

    0 1 0 0 1 0 1 1( ) 3 ( ) 3 ( ) ( )u u u u u u u u

    3 2 20 0 13 ( )u u u (3.10)

    (3.10) (3.9)

    , :

    3 20 0 1 1 0 ( ) 0u u u u u (3.11)

    2 .

    (3.7) :

    0 03 20 0 1 1 0 31 1 0

    0( ) 0

    0

    u uu u u u u

    u u u

    (3.12)

    0 0 0u u (3.13) 3

    1 1 0u u u (3.14)

    (3.13) 0 0 0cosu t (3.15)

    0 0, .

    0u (3.15) (3.14) :

    3 31 1 0 0cosu u t (3.16)

    - []:

    33 1

    cos ( ) cos( ) cos(3 )4 4

    (3.17)

    3 0 0 03 1

    cos ( ) cos(t ) cos(3 3 )4 4

    t t (3.18)

  • 3

    36

    (3.16) :

    3 31 1 0 0 0 03 1

    cos(t ) cos(3 3 )4 4

    u u t (3.19)

    - .

    1,0u

    - 1,pu , 1 1,0 1,pu u u (3.20).

    ( (3.13) ):

    1,0 1 1cosu t (3.21) , 1 1,

    : (3.19) , . .

    31 1 0 03

    cos(t )4

    u u (3.22)

    31 1 0 01

    cos(3 3 )4

    u u t (3.23)

    (3.22) : 31, 1 0 03

    sin( )8

    pu t t (3.24)

    (3.23) : 31, 2 0 01

    cos(3 3 )32

    pu t (3.25)

    H , , :

    3 31, 1, 1 1, 2 0 0 0 03 1

    sin( ) cos(3 3 )8 32

    p p pu u u t t t (3.26)

    (3.19) :

    3 31 1,0 1, 1 1 0 0 0 03 1

    cos sin( ) cos(3 3 )8 32

    pu u u t t t t (3.27)

    0 1,u u (3.15) (3.27)

    (3.8) :

    30 0 1 1 0 03

    ( ; ) cos cos sin( )8

    u t t t t t

    3 2

    0 0

    1cos(3 3 ) ( )

    32t

    (3.28)

    0 0 1 1, , , :

    30 0 0 0 1 1 0 01

    (0) cos( ) cos cos(3 )32

    u x x

  • 3

    37

    0 0 0

    3

    1 1 0 0

    cos( )

    1cos cos(3 ) 0

    32

    x

    (3.29)

    3 30 0 0 0 1 1 0 0 0 03 3

    (0) 0 sin( ) sin sin( ) sin(3 )8 32

    u x x

    0 0 0

    3 3

    1 1 0 0 0 0

    sin( ) 0

    3 3sin sin( ) sin(3 ) 0

    8 32

    x

    (3.30)

    (3.29) (3.30) :

    3

    00 0 0 1 1 , 0 ,

    32

    xx (3.31)

    :

    3

    200( ; ) cos cos 12 sin( ) cos(3 ) ( )

    32

    xu t x t t t t t (3.32)

    Duffing

    (2.17) . 2000k kN m

    00,4 m , 0,36 md d (2.16)

    01 2 1 400 d

    k k kN md

    302 3 11250

    dk k kN m

    d .

    0 0,05 mA .

    0,05 mU

    00 1

    Ax

    U 22

    1

    0,07 1kU

    k (3.32) :

    7

    ( ) cos cos 12 sin( ) cos(3 )3200

    u t t t t t t (3.33)

  • 3

    38

    0 (t)u

    1(t)u .

    0 (t)u 0 1(t) ( )u u t .

    t ,

    . 0 (t)u ,

    . ,

    sin( )t t t .

    sin( )t t (mixed-secular terms)

    .

    . ,

    ,

    t . .

    .

    .

    .

    .

    Duffing 0(0)u x :

    203

    2 18

    T x

    (3.34)

    ( ) ,

    .

    (secular terms)

    I .

    ,

    , Lindstedt-Poincare.

    ( ) .

  • 3

    39

    3.5. (Multiple Time Scales Method)

    (3.6)

    .

    .

    iu . , , u t

    (3.6) u 2 3 , t , , , , t t t . , :

    2 3( ; ) ( , , , , ; )u t u t t t t (3.35)

    0 1 2 3( ; ) (T ,T ,T , , ; )u t u T (3.36)

    , nnT t n (3.37)

    nT

    . 0T t

    , 1T

    0T .

    1T ,

    . , 1T

    0T .

    nT . ,

    .

    u t

    . u

    , u 0 1 2 3T ,T ,T , ,T

    (3.36).

    :

    20 1 2

    0 1 2 0 1 2

    dT dT dTd

    dt T dt T dt T dt T T T

    (3.38)

    2 2 2 2 2

    2

    2 2 2

    0 0 1 0 2 1

    2 2d

    dt T T T T T T

    (3.39)

    : i

    i

    DT

    (3.38) (3.39) :

  • 3

    40

    20 1 2d

    D D Ddt

    (3.40)

    2

    2 2 2

    0 0 1 0 2 122 2

    dD D D D D D

    dt (3.41)

    (3.40) (3.41) ,

    u

    0 1 2 3T ,T ,T , ,T .

    ,

    .

    .

    ,

    .

    :

    0 0 1 2 1 0 1 2 (T ,T ,T , ) (T ,T ,T , )u u u (3.42)

    u (3.42)

    (3.7)

    .

    0u 1u .

    ()

    ( secular terms).

    .

    :

    2

    3

    20

    d uu u

    dt (3.43)

    Duffing (2.35).

    0t 0A

    ( 0 0(0)u x A U ). ( )u t

    (Multiple Scales).

  • 3

    41

    ,

    0T 1T (3.42).

    .

    ( ) :

    2

    0 0 1 1 0 1( , ) ( , ) ( )u u T T u T T (3.44)

    (3.40) (3.41) :

    0 1d

    D Ddt

    (3.45) 2

    2

    0 0 122

    dD D D

    dt (3.46)

    (3.44),(3.45) (3.46) (3.43) :

    2 2

    0 0 1 0 1

    32 2

    0 1 0 1

    2 ( )

    ( ) ( ) 0

    D D D u u

    u u u u

    (3.47)

    (3.10) :

    2 2 2 3 20 0 0 1 0 1 0 0 1 02 ( ) ( ) 0D u D u D Du u u u (3.48)

    2 2 3 20 0 0 0 1 1 0 0 1 02 ( ) 0D u u D u u u D Du (3.49)

    (3.7) :

    20 0 0 0D u u (3.50) 2 3

    0 1 1 0 0 1 02D u u u D Du (3.51)

    2

    002

    0

    0u

    uT

    (3.52)

    223 01

    1 02

    0 0 1

    2uu

    u uT T T

    (3.53)

    (3.50) (3.52) :

    0 1 0 1( ) cos ( )u T T T (3.54)

    1 :

    0u (3.54) (3.51) (3.53) :

    2 2

    311 0 02

    0 0 1

    cos( ) 2 cos( )u

    u T TT T T

    (3.55)

    1T .

    2 3, ,T T

  • 3

    42

    231

    1 0 02

    0 1 1

    3

    0

    32 sin( ) 2 cos( )

    4

    1 cos(3 3 )

    4

    u d du T T

    T dT dT

    T

    (3.56)

    1

    d

    dT

    1T

    2 3, ,T T .

    0sin( )T 0cos( )T (3.56),

    , (secular terms).

    t . :

    1

    0d

    dT

    (3.57) 3

    1

    32 0

    4

    d

    dT

    (3.58)

    0 (3.59) 2

    0 1 0

    3

    8T (3.60)

    (3.56) (3.57) (3.58) :

    2

    311 02

    0

    1cos(3 3 )

    4

    uu T

    T

    (3.61)

    : 31 01

    cos(3 3 )32

    u T (3.62)

    (3.43) :

    2 3 20 0 0 1 0 0 0 0 1 03 1 9

    cos cos(3 )8 32 8

    u T T T T

    (3.63)

    2 3 20 0 0 0 0 03 1 9

    (t) cos cos(3 )8 32 8

    u t t t t

    (3.64)

    0 0 .

    (3.64) :

    20 0 03

    (t) cos8

    u t t

    (3.65)

  • 3

    43

    2 :

    . (3.54) :

    :

    1

    cos2

    i ie e (3.66)

    : 0 0 0 0( ) ( )

    0

    1 1 1( )

    2 2 2

    i T i T iT iTi iu e e e e e e (3.67)

    : 1 1 11

    ( ) ( )exp ( )2

    A A T T i T 0 0exp( )e iT (3.68)

    (3.54) :

    0 0 0u Ae Ae (3.69)

    cc - complex conjugate

    z : z z z cc (3.70)

    z , .

    0u (3.69) (3.51) (3.53) :

    2 2

    31

    1 0 0 0 02

    0 0 1

    2u

    u Ae Ae Ae AeT T T

    (3.71)

    2

    2 3 311 0 02

    0 1

    2 3u A

    u i A A e A e ccT T

    (3.72)

    (3.44)

    A 1T , (3.72)

    1

    dA

    dT .

    .

    0e 0e , (3.72),

    .

    t ,

    , . , , :

    2

    1

    2 3 0A

    i A AT

    (3.73)

  • 3

    44

    A (3.68) :

    2

    2

    1 1

    1 12 3 0

    2 2 4 2

    i i i ii e ie e eT T

    (3.74)

    3

    1 1

    30

    8iT T

    (3.75)

    , (3.75) :

    1

    0T

    (3.76) 3

    1

    30

    8 T

    (3.77)

    0

    2 3, ,T T :

    2 3 0( , , )T T (3.78) 2 2

    1 2 3 0 1 0

    3 3( , , )

    8 8T T T T (3.79)

    (3.59) (3.60).

    , (3.65).

    ( ) cc

    .

    , :

    ( )

    .

    - Duffing

    (3.65) Duffing (3.43)

    (Multiple Scales).

    . :

    20 0 03

    (t) cos8

    u t t

    (3.80)

  • 3

    45

    (1.23) (1.25) :

    20 0 0 0 03

    (t) cos8

    u U t t

    (3.81)

    0 0u 0 0v 0 0 :

    00u

    U (3.82) 0 0 (3.83)

    (3.81) , , :

    2

    0 00 0 2

    3(t) cos

    8

    uu u t t

    U

    (3.84)

    (3.84) Duffing. ,

    Runge-Kutta

    (3.84) (3.43).

    0.2 , 1/ 3U T .

    0 00.2 , 0u v

    Runge-Kutta 0.1

    Multiple Scales 0 3

    . 3.1 : Duffing 1

  • 3

    46

    0 00.2 , 0u v

    Runge-Kutta 0.4

    Multiple Scales 0 3

    . 3.2 : Duffing 2

    0 00.2 , 0u v

    Runge-Kutta 2

    Multiple Scales 0 3

    . 3.3 : Duffing 3

  • 3

    47

    Duffing (2.36) [ ] :

    32 0u u u u (3.85)

    .

    (3.51) :

    2 30 1 1 0 0 1 0 0 02 2D u u u D Du D u (3.86)

    0u (3.69),

    (3.73) :

    22 3 2 0iA A A i A (3.87)

    A (3.68)

    :

    1

    d

    dT

    (3.88) 2

    1

    3

    8

    d

    dT

    (3.89)

    u (3.54) :

    11

    Tc e (3.90)

    1221 23

    216

    Tc c e

    (3.91)

    1 1221 0 1 23

    cos 216

    T Tu c e T c c e

    (3.92)

    u , t 1.4.2 :

    0 0221 0 1 23

    ( ) cos 216

    t tu t Uc e t c c e

    (3.93)

    0 0u 0 0v :

    0 02

    200 0 2

    3(t) cos 1

    16

    t tuu u e t e

    U

    (3.94)

    (3.94)

    . : 0 3 , 0.2 , 1/ 3U T .

  • 3

    48

    0 00.2 , 0u v

    Runge-Kutta , 0.1 , 0.5

    Multiple Scales 2 0.1

    . 3.4 : Duffing 1

    0 00.2 , 0u v

    Runge-Kutta , 0.1 , 2

    Multiple Scales 2 0.4

    . 3.5 : Duffing 2

  • 3

    49

    0 00.2 , 0u v

    Runge-Kutta , 0.3 , 0.5

    Multiple Scales 2 0.3

    . 3.6 : Duffing 3

    . 3.1 . 3.2 (3.84)

    0.1

    0.4 2 .

    (3.94) Duffing

    (. 3.5)

    2 0.4 . ( 0.1 )

    (. 3.4).

  • 3

    50

    3.6. & (Averaging Method)

    .

    ,

    (Multiple Time Scales)

    ( ).

    ( ).

    Verhulst [9].

    ,

    ,

    .

    (Variation of Parameters)

    Duffing:

    3 0u u u (3.95)

    0 . :

    cos( )u t (3.96) sin( )u t (3.97)

    (3.96) (3.97) .

    0 (3.95) :

    ( ) cos ( )u t t t (3.98) ( ) sin ( )u t t t (3.99)

    ( )u t (t) (t) .

    (3.98), (t) (t) , :

    ( ) cos ( ) cos( ) (1 ) sin( )d

    u t t t t tdt

    (3.100)

    (3.98) (3.99) :

    cos( ) (1 ) sin( ) sin( )t t t (3.101)

    cos( ) sin( ) 0t t (3.102)

  • 3

    51

    (3.95) ( )u t :

    3 0

    ( ) cos ( )

    cos( ) sin( ) 0

    u u u

    u t t t

    t t

    (3.103)

    ( )u t , (t) (t) .

    0

    (3.95) . ,

    (3.95).

    .

    ( )u t (3.103),

    (3.95) u u (3.98) (3.99) :

    33 0 sin(t ) cos(t ) cos(t ) 0

    du u u

    dt (3.104)

    3 3sin( ) cos( ) cos (t )t t (3.105)

    (3.102) (3.105) , , (3.103) :

    3 3

    2 4

    cos ( ) sin( )

    cos ( )

    t t

    t

    (3.106)

    (3.106) (Standard Form)

    - (3.98)

    . ,

    .

    (3.106) (3.95)

    . ,

    t u ( t ).

    ( Averaging

    Method) ( Runge-Kutta).

    (3.106) , ,

    (. 3.7).

    t

    ( ).

  • 3

    52

    . 3.7 : (t) , (t) ( )u t

    - Averaged Equations

    , ,

    .

    (3.106) :

    ( , t)x f x (3.107)

    T

    x (3.108) & 3 3 2 4( , ) cos ( ) sin( ) cos ( )T

    f x t t t t (3.109)

    (. 3.7)

    , ( , )

    (3.107).

    (3.107) t T

    . :

    ( )z f z (3.110)

    0 0

    1 1T Tdx d d

    z ds xdsT dt dt T dt

    (3.111)

    0

    1( ) ( , )

    T

    f z f z s dsT

    (3.112)

    T : ( , )f x t x .

    (3.110)

    (3.107)

    .

    (Averaging Method) .

    (3.95) .

  • 3

    53

    (3.107)

    (3.108) (3.109).

    (3.110) .

    3 3 2 4

    0

    1( ) cos ( ) sin( ) cos ( )

    TT

    f z s s s dsT

    (3.113)

    T (3.113) :

    23

    ( ) 08

    T

    f z

    (3.114)

    ( )f z (3.110) :

    2 2

    0 0

    ( ) 3 3

    8 8

    z f z

    (3.115)

    :

    0

    2

    0 0

    (t)

    3( )

    8t t

    (3.116)

    (t) (t) :

    0(t) (3.117) 2

    0 0

    3( )

    8t t (3.118)

    Duffing (3.95) (3.98) :

    20 0 03

    ( ) cos8

    u t t t

    (3.119)

    (Averaging Method)

    (Multiple Scales) (3.65).

  • 3

    54

    Van der Pol

    (Averaging Method)

    Van der Pol.

    2(1 )u u u u (3.120)

    - (3.98) :

    2(1 ) 0

    ( ) cos ( )

    cos( ) sin( ) 0

    u u u u

    u t t t

    t t

    (3.121)

    ( )u t :

    2 2sin( ) cos( ) 1 cos ( ) sin( )

    cos( ) sin( ) 0

    t t t t

    t t

    (3.122)

    :

    2 3 2 2

    2 3

    sin ( ) sin ( )cos ( )

    sin( )cos(t ) cos ( )sin( )

    t t t

    t t t

    (3.123)

    (3.107) : ( , t)x f x T

    x

    2 3 2 2

    2 3

    sin ( ) sin ( )cos ( )( , )

    sin( )cos(t ) cos ( )sin( )

    t t tf x t

    t t t

    (3.124)

    (Averaged Equations),

    (3.110): ( )z f z T

    z (3.125) 0

    1( ) ( , )

    T

    f z f z s dsT

    (3.126)

    T : ( , )f x t x .

    (3.126) .

    31 1

    ( ) 02 8

    T

    f z

    (3.127)

    :

    21 112 4

    0

    (3.128)

  • 3

    55

    Van

    der Pol. 0 2 (3.128).

    .

    2 :

    0( ) 2 cos( )u t t (3.129)

    0 .

    (3.128) :

    1

    20

    2

    0

    11 ( 1)

    4

    t

    t

    e

    e

    (3.130) 0 (3.131)

    (3.120) :

    1

    20

    0

    2

    0

    ( ) cos( )1

    1 ( 1)4

    t

    t

    eu t t

    e

    (3.132)

    (3.129) .

    .

    Van der Pol

    (3.132) Van der Pol (3.120)

    (Averaging Method).

    .

    :

    1

    20

    0

    2

    0

    ( ) cos( )1

    1 ( 1)4

    t

    t

    eu t t

    e

    (3.133)

    (1.23) (1.25) :

    0

    0

    1

    20

    0 0

    2

    0

    ( ) cos( )1

    1 ( 1)4

    t

    t

    U eu t t

    e

    (3.134)

  • 3

    56

    0 0u 0 0v 0 0 :

    00u

    U (3.135) 0 0 (3.136)

    (3.81) , , :

    0

    0

    1

    20

    02

    0

    2

    ( ) cos( )

    1 ( 1)4

    t

    t

    u eu t t

    ue

    U

    (3.137)

    (3.137) Van der Pol.

    ,

    Runge-Kutta (3.137)

    (3.120).

    0.2 , 1/ 3U T .

    0 00.2 , 0u v

    Runge-Kutta 0.1

    Averaging 0 3

    . 3.8 : Van der Pol 1

  • 3

    57

    0 00.2 , 0u v

    Runge-Kutta 0.4

    Averaging 0 3

    . 3.9 : Van der Pol 2

    0 00.2 , 0u v

    Runge-Kutta 2

    Averaging 0 3

    . 3.10 : Van der Pol 3

  • 3

    58

    0 00.05 , 0u v

    Runge-Kutta 0.2

    Averaging 0 3

    . 3.11 : Van der Pol 4

    0 00.6 , 0u v

    Runge-Kutta 0.2

    Averaging 0 3

    . 3.12 : Van der Pol 5

  • 3

    59

    Van der Pol

    . 3.8, . 3.9 . 3.10.

    . 3.8 (3.137)

    .

    . 3.9 2

    (. 3.10). , ,

    0 . (3.137)

    (. 3.10) .

    , Van der Pol

    .

    . 3.11 . 3.12

    (3.137)

    .

    .

  • 60

  • 4

    4.

    4.1.

    4.1.1.

    , ,

    .

    ,

    .

    .

    . ,

    . ,

    .,

    .

    .

    .

    .

    () ,

    .

    .

    , ,

    .

  • 4

    62

    4.1.2.

    ,

    .

    .

    ,

    .

    :

    . 4.1 :

    . ,

    , x

    gx . 4.1.

    x

    .

    ,

    g gx x x x gx x .

    gmx mx .

  • 4

    63

    ,

    x

    .

    . 4.1, x m

    gx

    gx x . ,

    ( 0g g gx x x x x )

    ( gx ).

    0mx .

    (. 4.2)

    .

    . 4.2 :

    . 4.3 :

    ,

    . ,

    ( )

    .

    .

  • 4

    64

    ,

    ,

    .

    :

    S R (4.1)

    .

    (4.1).

    .

    ,

    , .

    ,

    .

    .

    . 4.4 : () ()

  • 4

    65

    :

    1. ,

    2. ,

    3. ,

    .

    4.2.

    .

    .

    4.2.1.

    .

    1.

    ,

    (. 4.4).

    :

    .

    .

    ,

    , () .

  • 4

    66

    2.

    .

    .

    :

    .

    .

    ( )

    , ,

    .

    . ,

    .

    ,

    .

    .

    , ,

    ,

    .

  • 4

    67

    3.

    .

    . ,

    ( )

    .

    ,

    , ,

    ,

    , .

    .

    . 4.5 :

    .

    .

    , ,

    .

  • 4

    68

    J.Paul Getty Malibu California. ,

    .

    .

    .

    (). :

    &

  • 4

    69

    4.2.2.

    , , .

    :

    .

    .

    :

    1. ,

    ().

    2. , (PTFE)

    .

    .

    .

    1. (Rubber Bearings)

    (ELB)

    ( 1-2 cm) (Steel Shims).

    .

    ( Bulging).

    .

    , (LRB).

  • 4

    70

    2. (Sliding Systems)

    i.

    ,

    .

    , .

    ( W )

    .

    .

    .

    ii. (Friction Pendulum System , FPS)

    (FPS)

    .

    . , ,

    .

    . 4.6 : FPS ( )

    :

    1.

    , , .

    2.

    .

    3.

    .

  • 4

    71

    .

    .

    (Lead Rubber Bearing , LRB)

    ELB

    . , LRB

    ,

    .

    .

    . ,

    ( ).

    . 4.7 : LRB

    ( )

    .

    .

    .

    ( LRB) .

  • 4

    72

    4.3.

    4.3.1.

    ,

    , .

    ( )

    ()

    ( ).

    ,

    o ,

    .

    (. 4.8)

    ( ).

    . 4.8 : (Shimizu Isolator)

    ,

    .

    , (sliding

    bearings)

    ( ) ,

    .

  • 4

    73

    .

    . ,

    ,

    .

    . 4.9 :

    .

    4.3.2.

    . ,

    ,

    ( ).

  • 4

    74

    .

    . 4.10 : -

    (. 4.9) ,

    ,

    .

    ( ).

    :

    i.

    ii. -

    iii.

    -.

    - ( )

    ().

    -

    .

    .

    -

    .

  • 4

    75

    -

    . ,

    - ,

    .

    . :

    2z x x x (4.2)

    ,

    . 4.11 :

    , ,

    , ( )

    . x,

    x

    z(x) .

    ()

    -

    z(x).

    () .

    . 4.11 : - Fr

  • 4

    76

    4.3.3.

    .

    ,

    .

    .

    .

    . 4.12 : Fc

  • 4

    77

    4.3.4.

    ( , , ) .

    (. 4.9 . 4.10)

    0.364 0 .

    .

    ,

    0,625m (24,625 inches)

    0,122m

    (4,8 inches) (. 4.9) .

    ( )

    0,235m (9,25 inches) .

    ( ) ,

    ,

    .

    33,57kg (74lbs),

    74,84kg (165lbs), o 7,71kg (17lbs).

    116,12kg (256lbs)

    180,08kg (397lbs) .

    ,

    .

    .

    .

    ,

    .

    , ,

    .

    ,

    .

    ( , , ) (. 4.11).

  • 4

    78

    4.4.

    , . ,

    , xx yy.

    ( )

    .

    ,

    ( x) .

    ,

    x,

    .

    ,

    ( )p t , ( )If t , ( )Df t

    ( )Sf t .

    :

    ( ) ( ) ( ) ( )I D Sf t f t f t p t (4.3)

    , , I D Sf f f .

    ,

    x :

    1. If

    ( )x t

    D Alembert If mx .

    2. p

    ( )

    gx

    .

  • 4

    79

    , . 2.2,

    ( ) gp t mx , gx .

    x ,

    : gx x x .

    ,

    x ,

    If mx .

    ( ) ( ) (t) mI gf t mx p t p x (4.4)

    3. Sf

    . 4.13 :

    xx

    x

    .

    x

    ( )z x

    . (4.2)

    .

    ( ) ( )z x

    (. 4.13).

  • 4

    80

    xx ( ).

    ( )z x :

    tan ( )dz

    z xdx

    (4.5)

    RF ,

    (. 4.14).

    . 4.14 :

    tanR spF F (4.6)

    :

    ( )sp spF K z x (4.7)

    spK : ( )z x : .

    spF (4.7) (4.6) RF :

    (x) tanR spF K z (4.8)

    , (4.5), RF :

    ( ) ( )R spF K z x z x (4.9)

    (4.2) RF :

  • 4

    81

    2(x) z (x) K 2 ( )R sp spF K z x x ax sign x (4.10)

    2 3 2 2( ) 2 3 ( ) ( 2 ) ( )R S spF f t K x a x sign x x sign x (4.11)

    ( )sign x : ( )x

    sign xx

    (0) 0sign .

    :

    3 23 2 1 0( ) ( )RF k x k x sign x k x k sign x (4.12)

    :

    23 2 spk K (4.13) 2 3 spk K (4.14)

    21 2spk K (4.15) 0 spk K (4.16)

    RF

    ( x ).

    (4.12).

    0 .

    ,

    , x

    .

    , ,

    ( (4.3)) :

    3 23 2 1 0( ) ( ) gmx k x k x sign x k x k sign x mx (4.17)

    :

    21

    2 22sp

    W WT

    g k gK

    (4.18)

    g , W ,

    ,

    sp .

  • 4

    82

    0 (4.17)

    Duffing.

    33 1 gmx k x k x mx (4.19)

    ,

    . ,

    . ,

    ,

    (4.20).

    .

    1 1 1 1 2

    1 2 1 2 1 2

    Fsp Fsp Fsp K KK

    K K K K K K K K

    (4.20)

    4. Df

    . 4.15 :

    xx

    x

    .

    1 2 d dC C . 4.15. , , x

    2cF

    . :

    2 2c dF C x (4.21)

  • 4

    83

    ,

    1dC .

    spK , ,

    .

    (. 4.14)

    N

    .

    1dC 1cF ,

    ,

    ( . 4.14).

    1 tanc cpF F (4.22)

    cpF

    1dC . (

    ) , .

    1 1( ) ( )cp d dF C z x C z x x (4.23)

    ( )z x : ( )z x ()

    (4.23) (4.22)

    (x)z (4.5) :

    2

    1 1 1( ) ( ) C 2 ( )c d dF C z x z x x x sign x x (4.24)

    2 2 21 1 4 4 ( )c dF C x x sign x x (4.25)

    0cF .

    , ,

    . (

    ) 0cF :

    0 ( )cF mg sign x (4.26)

    : m g :

    . ( )sign x

    x .

  • 4

    84

    ,

    0 1 2C c c cF F F F ,

    .

    ,

    ( )Df t (4.3)

    .

    (4.2) cF :

    2 2 21 2( ) 4 4 ( ) ( )C D d dF f t C x x sign x x C x mg sign x (4.27)

    2 2 21 1 1 2( ) 4 4 ( ) ( )C D d d d dF f t C x C x sign x C C x mg sign x (4.28)

    ( )

    (4.28) :

    22 1 0( ) ( )CF c x c x sign x c x c sign x (4.29)

    2 1 0, , c c c c :

    22 14 dc C (4.30) 1 14 dc C (4.31)

    20 1 2d dc C C (4.32) c mg (4.33)

    .

    .

    ,

    x x .

    (4.3).

    , (

    x ) , :

    22 1 0( ) ( ) gmx c x c x sign x c x c sign x kx mx (4.34)

    :

    2W

    Tg k

    (4.35)

  • 4

    85

    g : , W :

    k : .

    0 0 (4.17)

    Van der Pol.

    22 0 gmx c x c x kx mx (4.36)

    : ( ) ( )I C R gF F F P t m x t

    :

    IF mx

    2 2 21 24 4C d dF C x x sign x x C x mg sign x

    2 2 2 32 3 2R sp sp sp spF K x K sign x K x sign x K x

    :

    2

    2 1 0 1 0

    2 3

    2 3 ( )g

    mx c x c x sign x c x k x k sign x c sign x

    k x sign x k x m x t

    :

    22 14 dc C 1 14 dc C

    2

    0 1 2d dc C C

    21 2spk K 0 spk K c mg

    2 3 spk K

    2

    3 2 spk K

  • 86

  • 5

    5.

    5.1.

    .

    Duffing Van der Pol

    .

    .

    .

    .

    -

    -

    .

    3.

    .

    (

    ) ( ).

    .

  • 5

    88

    5.2.

    5.2.1.

    , 4

    , :

    2

    2 1 0 1 0

    2 3

    2 3 cos( )

    mx c x c x sign x c x k x k sign x c sign x

    k x sign x k x F t

    (5.1)

    , ,

    1 2, , ,sp d dK C C

    (5.1) .

    m

    . w .

    (5.1)

    F :

    ( )x f x (5.2)

    :

    v x (5.3) T

    x x v (5.4)

    (5.2) Runge-Kutta

    gF w u , gu

    ( 0.2 ggu ).

    (5.2)

    D - / .

    ( )x t (5.2)

    max_time Runge-Kutta.

    (Steady State), I

    0 .

    :

    0 max ( ) , x t t I (5.5)

  • 5

    89

    .

    0 0 ( ) . ,

    -

    ().

    0 0 ( )

    D -

    / .

    x . 0x :

    3 23 2 1 0k x k x k x k F (5.6)

    (5.6) x .

    D :

    0( )

    Dx

    (5.7)

    : ( / )D D .

    .

    ,

    [3, 111].

    1.8 kNw

    0 0.364

    0

    8.08spK

    1 0dC

    2 0.088dC

    ( 10%)

    0

    2.601T

    0.36F

    kN m s

  • 5

    90

    ( / 1 ).

    0 0 ( ) ( / )D D .

    . 5.1 : -

    . 5.2 : ( / )D

    , / 1

    .

    .

    5.2.2.

    D

    / .

    .

    .

    .

    o

    :

    1.

    .

    2.

    .

    3. ,

    .

  • 5

    91

    1.8 kNw

    0.8 0

    0.04

    16.72spK

    1 0dC

    2 0.176 dC

    ( 20%)

    0

    2.602T

    0.36F

    . 5.3

    1.8 kNw

    0.8 0.3

    0

    11.89spK

    1 0dC

    2 0.176dC

    ( 20%)

    0

    2.602T

    0.36F

    . 5.4

    1.8 kNw

    0.8 0.2

    0.02

    14.86spK

    1 0dC

    2 0.176dC

    ( 20%)

    0.02

    2.602T

    0.36F

    . 5.5

  • 5

    92

    1.8 kNw

    0.8 0

    0.04

    16.72spK

    1 1.5dC

    2 0.176dC

    ( 20%)

    0

    2.602T

    0.36F

    . 5.6

    1.8 kNw

    0.8 0.3

    0

    11.89spK

    1 1.5dC

    2 0.176dC

    ( 20%)

    0

    2.602T

    0.36F

    . 5.7

    1.8 kNw

    0.8 0.2

    0.02

    14.86spK

    1 1.5dC

    2 0.176dC

    ( 20%)

    0

    2.602T

    0.36F

    . 5.8

  • 5

    93

    5.3.

    5.3.1.

    :

    2

    2 1 0 1 0

    2 3

    2 3 ( )g

    mx c x c x sign x c x k x k sign x c sign x

    k x sign x k x m x t

    (5.8)

    ,

    .

    ( )P t .

    ( ) cos( )gP t mx P t (5.9)

    , :

    2

    2 1 0 1 0

    2 3

    2 3 cos( )

    mx c x c x sign x c x k x k sign x c sign x

    k x sign x k x P t

    (5.10)

    :

    .

    .

    , ,

    0 0 ( )sign .

    :

    2 32 0 1 3 ( )gmx c x c x k x k x m x t (5.11)

    3.

    ( (1.26))

    0 .

  • 5

    94

    (5.11), (5.9),

    1 :

    2 2 30 2 0 cos( )x x c x c x kx F t (5.12)

    :

    2 102 spKk

    m m

    (5.13)

    2 22 1 02

    2 0

    4 dC xcc xm m

    (5.14)

    0 20dc Cc

    m m (5.15)

    2 2

    0230

    2 spK xkk x

    m m

    (5.16)

    0

    PF

    mx (5.17)

    0x : ( )

    (5.12)

    ,

    .

    1 : Duffing 2 0 0c k

    2 30 0 cos( )x x c x kx F t (5.18)

    2 : Duffing & Van der Pol 2 0 0c k

    2 2 30 2 0 cos( )x x c x c x kx F t (5.19)

    2 c k

    . :

    2 2c (5.20)

    k k (5.21)

    0c

    0 02c (5.22) .

  • 5

    95

    5.3.2. Duffing

    , (5.18) :

    2 30 02 cos( )x x x kx F t (5.23)

    0 .

    0 .

    0 ,

    .

    ,

    ,

    .

    ,

    ( 0 ). :

    0 (5.24)

    ,

    0 .

    ,

    ,

    . , 0 0 ( 0k

    ) ,

    .

    ,

    . ,

    . :

    F f (5.25)

  • 5

    96

    (5.23) :

    2 30 02 cos( )x x x kx f t (5.26)

    (5.26)

    .

    .

    :

    0 0 1 1 0 1( ; ) ( , ) ( , )x t u T T u T T (5.27)

    0T t 1T t

    . ,

    .

    :

    0 1 0 1 0 0 0 1 1 0x D D u u D u D u Du (5.28)

    2 2 20 0 1 0 1 0 0 0 1 0 0 12 2x D D D u u D u D Du D u (5.29)

    (5.28) (5.29) (5.26)

    :

    2 20 0 0 0 0D u u (5.30)

    2 2 30 1 0 1 0 1 0 0 0 0 0 02 2 cos( )D u u D Du D u ku f T (5.31)

    ,

    (5.31)

    .

    (5.24) :

    0 0 0 0 0 0 1cos( ) cos( ) cos( )T T T T T (5.32)

    (5.30) (5.31) :

    2 20 0 0 0 0D u u (5.33)

    2 2 30 1 0 1 0 1 0 0 0 0 0 0 0 12 2 cos( )D u u D Du D u ku f T T (5.34)

  • 5

    97

    (5.33) :

    0 0 1 1 0 0 1( , ) ( )cos ( )u T T a T T T (5.35)

    (5.34), 0u

    . , (7.9) , :

    0 1 0( )u A T e cc (5.36)

    0 00 :i T

    e e (5.37)

    1 1 11

    ( ) ( ) exp ( )2

    A T a T i T (5.38)

    (5.34) , (7.9), :

    2 2 3

    0 1 0 1 0 1 0 0 0 0 0

    0 0 1 0 0 1

    2 2

    0.5 exp( ) exp( )

    D u u D Du D u ku

    f i T i T i T i T

    (5.39)

    MAPLE

    0u (5.36) (5.39).

    (RH ) (5.39) 1u .

    2 3 30 0 0 1 0 02 2 3 0.5 exp(i )RH iA i A kA A f T e kA e cc (5.40)

    (5.39)

    0e , :

    20 0 0 12 2 3 0.5 exp(i ) 0iA i A kA A f T (5.41)

    A (5.38) :

    30 10.5 cos 0.375 0a f T ka (5.42)

    0 1 0 00.5 sina f T a (5.43)

    , 1T :

    30 0 0.5 cos 0.375 0a a f ka (5.44)

    0 0 00.5 sina f a (5.45)

    (Steady State) ,

    ( 0 0,a ), 0 0 0a

  • 5

    98

    30 0 0 00.5 cos 0.375 0a f ka (5.46)

    0 0 0 00.5 sin 0f a (5.47)

    - 0 :

    2 4 2 2 2 2 2 2 20 0 0 0 0 0 00.5625 3 4 4a a k a k f (5.48)

    0 :

    0 00 20 0

    8tan

    3 8a k

    (5.49)

    (5.26) :

    1 0 0 1( ) ( )cos ( ) ( ) cos t ( )x t a T T T a (5.50)

    1( )T 1( )T

    (5.44) (5.45).

    (5.50) 0 0,a (5.48) (5.49) :

    0 0( ) cos t ( )x t a (5.51)

    MATLAB 0 ( )a

    (5.48).

    0 3

    20k

    0 1

    f

    2

    max 14f

    . 5.9 : - - Duffing

  • 5

    99

    - :

    . 5.10 : -

    -

    .

    (. )

    f .

    1 (. 5.10).

    ,

    2 3.

    3 4

    .

    .

    5 ,

    6.

    .

    6 2

    (). .

    3 6

    .

    f .

    .

    . 5.11 : f -

    0a

  • 5

    100

    , 0

    Duffing ,

    0 . 0 0 ( ) (5.48)

    (5.49). 20

    . MAPLE :

    3 2 2 30 0 0 0 0 010.667 ( cos sin ) sinkf (5.52)

    . 5.12

    0 3

    20k

    0 1

    f

    2

    max 14f

    0 ( ) 0 ( )

    . ,

    .

    .

    .

  • 5

    101

    . :

    0 0

    0 0

    (5.53)

    (5.48),

    :

    3 2 2 2 2 2 2 20 0 0 0 0 0 0 0( , ) 0.5625 3 4 4 0x x k x k x f (5.54)

    20 0:x a (5.55)

    , (5.53) :

    00 0

    0 0xx x

    (5.56)

    (5.54) :

    2 2 2 2 2 20 0 0 0 0 01.6875 6 4 4 0x k x k (5.57)

    (5.54)

    - .

    MATLAB

    0 ( ) ( 0 020, 1, 3,maxf 14k ).

    . 5.13 :

    .

    ,

    (Backbone Curve). .

  • 5

    102

    Backbone Curve

    (5.48) , :

    2 2 2 4 6 2 2 2 2 20 0 0 0 0 0 0 0(4 ) ( 3 ) (0.5625 4 ) 0a a k a k a f (5.58)

    :

    4 2 2 2 2 2

    0 0 0 0 0 0 0 2 2

    0 02 2 2 2

    0 0 0 0 0

    3 4 4 3

    8 8 4

    a k a f a k fa

    a a

    (5.59)

    0a . :

    2

    2

    0 02 2

    0 0 0 0

    0 max4 2

    f fa

    a

    (5.60)

    (Backbone Curve) :

    2

    0 3 2

    0 0 0 0

    3, ,

    32 2

    kf fa

    (5.61)

    . 5.14

    0 3

    20k

    0 1

    f

    0.2

    max 14f

    (5.60)

    . , ,

    (5.24). (5.61)

    , . 5.14 .

  • 5

    103

    . 5.15 :

    (Backbone Curve)

    .

    f (. 5.15).

    (. 5.16)

    f

    .

    . 5.16

    0 3

    20k

    0 3

    f

    5

    max 40f

  • 5

    104

    , ,

    (.. 0, ,k )

    . (5.48)

    (5.49)

    ( 1 2, , , , K ,C ,sp d dm C ) 0, .

    (5.13) (5.17).

    ,

    0A .

    (5.48) :

    2 4 2 2 2 2 2 2 20 0 0 0 0 0 00.5625 3 4 4a a k a k f (5.62)

    (5.21) (5.25) :

    k

    k

    (5.63) F

    f

    (5.64) 002

    c

    (5.65)

    0 , Fc k (5.15) , (5.16) (5.17) .

    0a :

    0

    (5.66) 00

    0

    Aa

    x (5.67)

    (5.62)

    , - :

    2 4 2 4 2 2 2 2 2 2 2 20 0 0 0 0 0 0 2 02.25 6 ( ) 4 ( )sp sp dA A K mA K m C P (5.68)

    0 :

    2 00 2 20 0 0

    4tan

    6 8 ( )

    d

    sp

    C

    A K m

    (5.69)

    (5.68) (5.69) 0x ,

    .

  • 5

    105

    (5.68)

    , - :

    . 5.17 :

    1.

    .

    2. , ,

    .

    3.

    (.. 0 0.35 A m )

    4. k , 0

    (1) 1

    1. (5.63) (5.66)

    (5.68).

  • 5

    106

    , .

    2 30 02 cos( )x x x kx F t (5.70)

    ,

    :

    2 20 0 0 0 0cos( )D u u F T (5.71)

    2 2 30 1 0 1 0 1 0 0 0 0 02 2D u u D Du D u ku (5.72)

    (5.71) :

    0 1 0( )u A T e e cc (5.73)

    2 2

    02( )

    F

    (5.74) 0: exp(i )e T (5.75)

    (5.73) (5.72)

    (

    ).

    .

    (5.72)

    :

    0 00 , , 33

    (5.76)

    ,

    . ,

    . ,

    ,

    .

    . , ,

    .

    -

    .

    . 5.10 .

  • 5

    107

    0 , :

    03 (5.77)

    (5.72) .

    (5.73)

    , MAPLE:

    (5.72) , MAPLE :

    3 2 21 0 0 0 0exp( ) 2 6 3 2RH k i T i A k A kAA iA e cc NST (5.78)

    NST ,

    (Non Secular Terms).

    0e :

    3 2 21 0 0 0exp( ) 2 6 3 2 0k i T i A k A kAA iA (5.79)

    A (5.38)

    ( ,a )

    (5.79) .

    1( )A T

    (5.70) :

    0 1 0( )x u A T e e cc (5.80)

    0( ) ( ) cos ( ) 2 cos( )x t a t t t t (5.81)

    1( ) ( )a T a t 1( ) ( )T t

    . 0a

    ( 0cos( )a t )

    .

  • 5

    108

    .

    ,a . :

    1T (5.82)

    ( 0 0,a ) ( )x t .

    ( 0 0,a ) :

    0 ,

    0a .

    4 2 2 2 2 4 2 2 2 6

    0 0 0 0 0

    4 2 2 2 2 2 2 6 2

    0 0 0 0 0 0 0

    9 2.25 6 0.1406

    0.75

    k k k k

    k k

    (5.83)

    0sin 0cos :

    0 00 2 20 0

    8tan

    24 3 8k ka

    (5.84)

    ( 0 0,a )

    :

    0 0 2 20

    ( ) cos 3 cos ( )F

    x t a t t

    (5.85)

    3 .

    ,

    ( ).

    (5.85),

    .

  • 5

    109

    (5.85)

    .

    () () () ()

    . 5.18

    (5.83) 0a

    . (1)

    03

    (5.77) 0a

    . 5.18 ().

    ,

    0a

    .

    .

    0 3

    4k

    0 1

    F

    5

    max 25F

    . 5.19 :

  • 5

    110

    . 5.19

    (. 5.9).

    . , .

    (Backbone Curve) :

    32 2 4

    0 2 2

    0 0 0 0 0

    3( , ) (1 ),

    8

    kk ka

    (5.86)

    (5.83)

    0a

    ,k 0 (Envelope Curve).

    0 3

    19F

    0 1

    k

    2

    max 8k

    . 5.20 : k

    k . k 0

    ( 0 , )

    . .

    . 5.21 k

  • 5

    111

    0 3

    4k

    0 1

    0.25

    max 1.50

    . 5.22 :

    0 3

    15F

    4k

    0

    0.5

    0max 1.5

    . 5.23 : 0

  • 5

    112

    ,

    .

    0 3

    4k

    0 1

    15

    max 45

    . 5.24 :

    [8]

    (. 5.11).

    . 5.25 :

    .

  • 5

    113

    , F ( ),

    0a ().

    . 5.25. ,

    . . 5.11

    .

    10

    - (. 5.26).

    k

    .

    , . 5.20,

    0max a .

    0 / 3 ,

    .

    . 5.26

    0 3

    10

    0 1

    k

    5

    max 20k

  • 5

    114

    0 , :

    03 (5.87)

    (5.87)

    -. 0e

    ( ). :

    2 2 21 0 0 03 exp( ) 2 6 3 2 0k A iT i A Ak AA k iA (5.88)

    .

    ,a

    . :

    0 0a (5.89)

    -.

    0 .

    4 2 2 2 2 2 4 2

    0 0 0

    2 2 2 2 2

    0 0 0 0 0

    16 3 3.5556 0.25

    0.4444 0.1975 1.7778 0

    k a k k a k

    a k

    (5.90)

    0 00 2 20 0

    24tan

    72 9 8k a k

    (5.91)

    ( 0 0,a )

    ( ):