96
Vysoká škola báňská – Technická univerzita Ostrava Fakulta metalurgie a materiálového inženýrství TEORIE PROCESŮ PŘI VÝROBĚ ŽELEZA A OCELI Část II – Teorie ocelářských pochodů (studijní opory) prof. Ing. Zdeněk Adolf, CSc. Ostrava, 2013

TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

  • Upload
    others

  • View
    6

  • Download
    1

Embed Size (px)

Citation preview

Page 1: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Vysoká škola báňská – Technická univerzita Ostrava

Fakulta metalurgie a materiálového inženýrství

TEORIE PROCESŮ PŘI VÝROBĚ ŽELEZA

A OCELI

Část II – Teorie ocelářských pochodů

(studijní opory)

prof. Ing. Zdeněk Adolf, CSc.

Ostrava, 2013

Page 2: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Recenzent: prof. Ing. Jiří Bažan, CSc. Název: TEORIE PROCESŮ PŘI VÝROBĚ ŽELEZA A OCELI

Část II - Teorie ocelářských pochodů Autor: prof. Ing. Zdeněk Adolf, CSc. Vydání: první, 2013 Počet stran: 92 Studijní materiály pro studijní obor Moderní metalurgické technologie (studijní program Metalurgické inženýrství) navazujícího magisterského studia Fakulty metalurgie a materiálového inženýrství. Jazyková korektura: nebyla provedena. Určeno pro projekt:

Operační program Vzděláváním pro konkurenceschopnost Název: ModIn - Modulární inovace bakalářských a navazujících magisterských programů na Fakultě metalurgie a materiálového inženýrství VŠB - TU Ostrava Číslo: CZ.1.07/2.2.00/28.0304 Realizace: VŠB – Technická univerzita Ostrava Projekt je spolufinancován z prostředků ESF a státního rozpočtu ČR © prof. Ing. Zdeněk Adolf, CSc. © VŠB – Technická univerzita Ostrava

Page 3: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Pokyny ke studiu

1

POKYNY KE STUDIU

Název předmětu

TEORIE PROCESŮ PŘI VÝROBĚ ŽELEZA A OCELI

Pro předmět Teorie procesů při výrobě železa a oceli 1. semestru studijního oboru Moderní

metalurgické technologie jste obdrželi studijní balík obsahující integrované skriptum

„Část II – Teorie ocelářských pochodů“ pro studium obsahující i pokyny ke studiu.

1. Prerekvizity

Pro studium tohoto předmětu se předpokládá absolvování předmětu Teorie technologických

procesů a Základy teorie a technologie výroby železa a oceli.

2. Cíle předmětu a výstupy z učení

Cílem předmětu je seznámení se s teoretickou podstatou procesů probíhajících při výrobě a

rafinaci oceli.

Po prostudování předmětu by měl student být schopen:

Řešit procesy probíhající při výrobě a rafinaci oceli v souladu s jejich teoretickou podstatou.

Komplexně posuzovat metalurgický proces a variantní možnosti jeho průběhu.

Získané znalosti:

termodynamické funkce popisující energii soustavy a jejich použití

problematika chemických rovnováh a rovnovážných konstant reakcí

význam parciálních molárních veličin a aktivit složek v roztocích

problematika ocelářských tavenin a procesů probíhajících mezi ocelí a struskou

reakce probíhající při výroby a rafinaci oceli, jejich význam a vliv na čistotu oceli

Získané dovednosti:

Student by měl umět aplikovat teoretické znalosti na konkrétní ocelářské procesy při výrobě a rafinaci oceli.

Page 4: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Pokyny ke studiu

2

Pro koho je předmět určen:

Předmět je zařazen do magisterského studia oboru Moderní metalurgické technologie

studijního programu Metalurgické inženýrství, ale může jej studovat i zájemce z kteréhokoliv

jiného oboru, pokud splňuje požadované prerekvizity.

Studijní opora se dělí na části, kapitoly, které odpovídají logickému dělení studované látky,

ale nejsou stejně obsáhlé. Předpokládaná doba ke studiu kapitoly se může výrazně lišit, proto

jsou velké kapitoly děleny dále na číslované podkapitoly a těm odpovídá níže popsaná

struktura.

Při studiu každé kapitoly doporučujeme následující postup:

Přečíst členění kapitoly.

Prostudovat obsah kapitoly pro pochopení příslušné teoretické závislosti.

Způsob komunikace s vyučujícími

Komunikace s vyučujícím je možná pomocí e-mailu: [email protected] nebo telefonicky

na čísle: +420 597 325 135.

Page 5: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Obsah

3

OBSAH

POKYNY KE STUDIU ............................................................................................................ 1

1 TERMODYNAMICKÉ ZÁKLADY METALURGICKÝCH POCHODŮ ............ 5

1.1 Základní energetické funkce (H, U, G, F) a jejich význam. ........................................... 6

1.1.1 Afinita chemické reakce. ........................................................................................................ 8 1.2 Podmínky rovnováhy izotermických dějů. ................................................................... 11

1.3 Chemické rovnováhy .................................................................................................... 12

1.3.1 Homogenní chemické rovnováhy ........................................................................................ 12 1.3.2 Heterogenní chemické rovnováhy ....................................................................................... 14 1.3.3 Princip akce a reakce (Le Chatelier-Braunův) ................................................................... 15 1.4 Reakční izoterma .......................................................................................................... 16

1.5 Reakční izobara ............................................................................................................ 17

2 ROZTOKY .................................................................................................................. 19

2.1 Složení roztoků ............................................................................................................. 20

2.2 Parciální molární veličiny............................................................................................. 21

2.3 Ideální roztok ................................................................................................................ 23

2.4 Způsoby vyjadřování neideality roztoku ...................................................................... 25

2.4.1 Negativní odchylka od Raoultova zákona ( - ) .................................................................. 26 2.4.2 Pozitivní odchylka od Raoultova zákona ( + ) ................................................................... 26 2.4.3 Regulární roztok ..................................................................................................................... 27 2.4.4 Reálný roztok ......................................................................................................................... 28 2.5 Zředěný roztok.............................................................................................................. 28

2.6 Termodynamická aktivita složky v roztoku. Způsoby vyjadřování aktivity složky v roztoku. .......................................................... 30

2.7 Vzájemný přepočet aktivit vzhledem k Raoultovu zákonu a Henryho zákonu. ........... 31

2.8 Výpočet aktivity složky v polykomponentních soustavách. ........................................ 32

3 ROZTAVENÉ OCELÁŘSKÉ STRUSKY ............................................................... 34

3.1 Rozdělení strusek a jejich tvorba .................................................................................. 35

3.2 Struktura strusek ........................................................................................................... 35

3.2.1 Molekulární teorie.................................................................................................................. 35 3.2.2 Iontová teorie strusek ............................................................................................................ 37 3.2.2.1 Struktura křemičitanových aniontů .............................................................................. 38

4 ROZDĚLOVACÍ ROVNOVÁHA ............................................................................ 40

4.1 Rozdělení složek mezi dvěma stýkajícími se fázemi ................................................... 40

4.2 Rozdělení kyslíku mezi struskou a kovem ................................................................... 41

4.2.1 Rozdělení kyslíku mezi struskou a kovem z hlediska molekulární teorie strusek ....... 41 4.2.2 Rozdělení kyslíku mezi kovem a struskou z hlediska iontové teorie ........................... 43

5 REAKCE PROBÍHAJÍCÍ PŘI VÝROBĚ A RAFINACI OCELI ........................ 45

5.1 Způsoby oxidace prvků obsažených v surovém železe ................................................ 46 5.1.1 Pořadí oxidace doprovodných prvků v surovém železe ............................................... 47 5.2 Odfosfoření oceli .......................................................................................................... 49

5.2.1 Termodynamika procesu odfosfoření ........................................................................... 49 5.2.1.1 Oxidace fosforu oxidem železnatým ze strusky ........................................................... 49 5.2.1.2 Oxidace fosforu adsorbovaným kyslíkem .................................................................... 50

Page 6: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Obsah

4

5.2.2 Odfosfoření z hlediska iontové teorie strusek .............................................................. 51 5.3 Odsíření oceli................................................................................................................ 52

5.3.1 Temodynamika procesu odsíření .................................................................................. 53 5.3.1.1 Odsíření oceli struskou ................................................................................................. 53 5.3.1.2 Odsíření dezoxidované oceli struskou .......................................................................... 54 5.3.2 Parametry odsíření oceli ............................................................................................... 55 5.3.3 Odsíření oceli z hlediska iontové teorie ....................................................................... 57 5.3.4 Možnost odsíření oceli oxidací síry kyslíkem .............................................................. 58

6 ROZPOUŠTĚNÍ VODÍKU A DUSÍKU V ŽELEZE A OCELI ............................ 59

6.1 Závislost obsahu plynu v tavenině oceli na tlaku ......................................................... 60 6.2 Teplotní závislost obsahu atomárně rozpuštěného plynu v roztaveném kovu ............. 60 6.3 Závislost rozpustnosti vodíku a dusíku na chemickém složení oceli ........................... 62 6.4 Vliv vodíku na vlastnosti oceli ..................................................................................... 63 6.5 Vliv dusíku na vlastnosti v oceli .................................................................................. 64

7 KYSLÍK V ŽELEZE A OCELI ................................................................................ 66

7.1 Mechanismus rozpouštění kyslíku v oceli a formy existence kyslíku v utuhlé oceli.................................................................................................... 66

8 UHLÍKOVÁ REAKCE A JEJÍ VÝZNAM P5I VÝROBĚ A RAFINACI

OCELI ......................................................................................................................... 68

8.1 Význam uhlíkové reakce při výrobě a rafinaci oceli .................................................... 68 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g)....................................................... 71 8.2.1 Hmotnostní bilance uhlíku a kyslíku v průběhu uhlíkové reakce ................................ 72

9 DEZOXIDACE OCELI ............................................................................................. 75

9.1 Srážecí dezoxidace oceli ............................................................................................... 76 9.1.1 Dezoxidace manganem ................................................................................................. 78 9.1.2 Dezoxidace křemíkem .................................................................................................. 79 9.1.3 Dezoxidace hliníkem .................................................................................................... 80 9.1.4 Dezoxidace komplexními dezoxidovadly .................................................................... 81 9.2 Difúzní dezoxidace ....................................................................................................... 81 9.3 Dezoxidace oceli syntetickými struskami .................................................................... 82 9.4 Vakuová uhlíková dezoxidace (VCD – Vacuum Carbon Degasing) ........................... 83

10 VMĚSTKY V OCELI ................................................................................................ 84

10.1 Rozdělení nekovových vměstků ................................................................................... 85 10.2 Termodynamika procesu vzniku endogenních vměstků .............................................. 86 10.3 Termodynamické podmínky nukleace zárodků vměstků v oceli ................................. 87 10.4 Modifikace vměstků vápníkem .................................................................................... 91 10.5 Vliv vápníku na vlastnosti oceli ................................................................................... 93

11 LITERATURA ........................................................................................................... 94

Page 7: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Termodynamické základy metalurgických pochodů

5

1 TERMODYNAMICKÉ ZÁKLADY METALURGICKÝCH

POCHODŮ

Členění kapitoly

Základní energetické funkce (H, U, G, F) a jejich význam

o Afinita chemické reakce.

Podmínky rovnováhy izotermických dějů.

Chemické rovnováhy

o Homogenní chemické rovnováhy

o Heterogenní chemické rovnováhy

o Princip akce a reakce (Le Chatelier-Braunův)

Reakční izoterma

Reakční izobara

Čas ke studiu: individuální

Cíl Po prostudování této kapitoly budete umět

formulovat základní pojmy

vysvětlit význam základních pojmů a jejich vzájemné souvislosti

aplikovat použití základních pojmů v procesech výroby a rafinace oceli

Základní pojmy jsou obsahem části „Členění kapitoly“

Výklad

Obor, který pojednává o vzájemných přeměnách různých druhů energie, o směru průběhu dějů a o podmínkách dosažení rovnováhy, je termodynamika.

Termodynamika umožňuje určit hybnou sílu pochodu, tzn., umožňuje stanovit jeho směr a předvídat, zda a do jaké míry může pochod probíhat. Neříká však nic o reakční rychlosti, tudíž o době, za kterou soustava do rovnováhy dospěje. Všechny metalurgické procesy jsou doprovázeny uvolněním nebo spotřebováním energie.

Termodynamika je založena na dvou principech: prvním a druhém zákonu termodynamiky. K nim se připojuje Nernstův tepelný teorém (třetí zákon termodynamiky). Z těchto tří zákonů termodynamiky lze logicky odvodit zákonitosti platné pro systémy, které zkoumáme.

Page 8: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Termodynamické základy metalurgických pochodů

6

Výhodou termodynamiky je, že její předpoklady a poučky nezávisejí na správnosti našich poznatků o struktuře molekul a atomů a mechanismu chemických procesů. Termodynamice stačí znalost počátečního a konečného stavu, a znalost vnějších podmínek, za kterých děj probíhá.

1.1 Základní energetické funkce (H, U, G, F) a jejich význam.

Mezi funkce, které popisují energii soustavy, patří:

1. Entalpie (H) – energie, kterou soustava vymění s okolím při dějích probíhajících za konstantního tlaku (p = konst.).

2. Vnitřní energie (U) – energie, kterou soustava vymění s okolím při dějích probíhajících za konstantního objemu (V = konst.). Je to kinetická a potenciální energie částic, ze kterých se soustava skládá.

3. Volná energie (Helmholtzova energie) (F) – energie, kterou soustava vymění s okolím při dějích probíhajících při konstantním objemu a teplotě (V; T = konst.).

4. Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění s okolím při dějích probíhajících za konstantního tlaku a teploty (p; T = konst.).

Z obr. 1 vyplývají vztahy mezi energetickými funkcemi.

H = U + pV (1)

G = H – TS (2)

F = U – TS (3)

G = F + pV (4)

kde: pV … objemová práce, J

TS …. vázaná energie, J

S … entropie, J.K-1

p … tlak, Pa

V … objem, m3

Obr. 1 Schematické znázornění vztahů mezi energetickými funkcemi

Page 9: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Termodynamické základy metalurgických pochodů

7

Volná energie, volná entalpie – význam

Význam volné energie a volné entalpie plyne z následující úvahy.

Volná energie je definována vztahem (viz obr. 1)

F = U – TS (3)

dF= dU – TdS – SdT (5)

pro izotermický děj platí (T = konst., dT = 0)

dF = dU – TdS (6)

Z 1. zákona termodynamiky plyne, že teplo dodané soustavě se mění jednak na přírůstek vnitřní energie a jednak na vykonanou práci (teplo a práce nejsou stavové veličiny a závisí na počátečním, konečném stavu soustavy i na cestě přechodu z výchozího do konečného stavu).

Q= dU + A´ (7)

Pak

dU = Q – A´ (8)

Z 2. zákona termodynamiky vyplývá, že entropie souvisí s dodaným teplem vztahem

(9)

TdS Q (10)

Znaménko rovnosti platí pro vratný (rovnovážný) děj, znaménko nerovnosti pro samovolný děj.

Tudíž za rovnováhy (viz rovnice (8) a (10))

(11)

Vykonanou práci při izotermickém ději lze rozdělit na práci objemovou a ostatní druhy neobjemové práce (elektrickou apod.), které nazýváme prací užitečnou

A´ = pdV + A* (12)

Spojením rovnice (11), (12) a (6) dostáváme

dU = TdS – A* – pdV (13)

dF = TdS – A* – pdV – TdS (14)

dF = – A* – pdV (15)

Pro izochorický děj platí (V = konst., dV = 0) pak

dF = – A* (16)

resp.

A* = – dF (17)

Page 10: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Termodynamické základy metalurgických pochodů

8

A* = – F (18)

Z rovnic (17) a (18) plyne, že úbytek volné energie je roven maximální užitečné práci vratného izotermicko – izochorického procesu.

Volná entalpie souvisí s volnou energií vztahem (viz obr. 1)

G = F + pV (4)

dG = dF + pdV + Vdp (19)

Pro izotermický děj platí (6) dF = dU – TdS, resp. dF = – A* – pdV (15), pak

dG = – A* – pdV + pdV + Vdp (20)

dG = – A* + Vdp (21)

Pro izobarický děj platí (p = konst., dp = 0)

dG = – A* (22)

pak

A* = – dG (23)

A* = – G (24)

Z rovnic (23) a (24) plyne, že úbytek volné entalpie je roven maximální užitečné práci vratného izotermicko-izobarického procesu.

V kondenzovaných soustavách, ve kterých se změna objemu soustavy při změně T a p blíží nule, se i součin p. V 0 a tudíž G ̇ F.

Maximální užitečná práce chemické reakce se také nazývá afinitou chemické reakce a vyjadřuje schopnost látek spolu reagovat.

(afinita)p,T = – G = A* p,T (25)

(afinita)V,T = – F = A* V,T (26)

1.1.1 Afinita chemické reakce.

Podmínkou samovolného průběhu libovolné metalurgické reakce v uvažovaném směru je kladná hodnota chemické afinity reagujících složek. Ze vztahu mezi volnou entalpií, reakčním teplem a změnou entropie v průběhu reakce (G = H – TS) vyplývá pro afinitu ragujících složek vztah

TΔΔH (afinita) Tp, S (27)

kde : H = H2 – H1 … tepelný efekt reakce při konstantním tlaku, J

S = S2 – S1 … změna entropie chemické reakce, J.K-1 H1 ; S1 … entalpie a entropie složek vstupujících do reakce, J; J.K-1

Page 11: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Termodynamické základy metalurgických pochodů

9

H2 ; S2 … entalpie a entropie reakčních produktů, J; J.K-1

T … teplota, K

Z rovnice (27) je zřejmé, že při nízkých teplotách má na hodnotu afinity větší vliv reakční teplo H, zatímco při vysokých teplotách roste vliv entropického členu TS. O tom, zda afinita reagujících složek (schopnost složek spolu reagovat) s rostoucí teplotou narůstá, nebo klesá, rozhoduje znaménko u reakční entropie S. Vzhledem k tomu, že entropie složky vyjadřuje stav její neuspořádanosti, platí S(g) >> S(l) > S(s), kde entropie S(g), S(l), S(s) jsou absolutní entropie složky v plynné, kapalné a tuhé fázi. Pak u reakcí doprovázených růstem počtu molů plynných složek (n(g) > 0) afinita reagujících složek se zvyšující teplotou roste.

Příklad:

C + O = CO(g) n(g) = + 1;

S = SCO – (SC + SO) SCO > SC + SO

S > 0

T.S > 0

Afinita uhlíku ke kyslíku s rostoucí teplotou narůstá.

Příklad:

Naopak u reakcí, kde dochází k poklesu počtu molů plynných složek (n(g) < 0), afinita složek s rostoucí teplotou klesá.

CO(g) + 1/2O2(g) = CO2(g) n(g) = 1 – (1 + ½) = – ½

S = 2COS – (SCO +1/2 2OS )

S < 0

T.S < 0

Příklad:

Protože při oxidaci dalších prvků (Mn, Si, Al apod.) nevzniká plynná fáze, reakční entropie klesá, a tudíž afinita těchto prvků ke kyslíku s teplotou klesá).

Mn + O = (MnO)

S = S(MnO) – (SMn + SO) S(MnO) < SMn + SO

S < 0

T.S < 0

Z toho plyne, že za vysokých teplot může uhlík redukovat z oxidů prvky jako Mn, Si, Al apod.

Page 12: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Termodynamické základy metalurgických pochodů

10

Na obr. 2 jsou znázorněny teplotní závislosti afinity prvků ke kyslíku při vzniku příslušných oxidů. Z uvedených závislosti vyplývá, že u reakcí spojených se zmenšením počtu molů plynných složek, afinita prvků ke kyslíku s rostoucí teplotou klesá a to zvláště při přechodu výchozích prvků z kondenzované do plynné fáze (Ca, Mg). Pouze afinita uhlíku ke kyslíku při vzniku plynného oxidu uhelnatého s rostoucí teplotou a klesajícím tlakem CO narůstá.

Obr. 2 Závislost afinity prvků

ke kyslíku na teplotě

Závislosti afinity prvků ke kyslíku na teplotě byly vypočteny za předpokladu jednotkových aktivit výchozích látek i produktů reakce.

Afinitní řada prvků ke kyslíku

Seřadíme-li prvky podle klesající afinity ke kyslíku při teplotě 1600 °C za normálního tlaku P = 1, dostáváme následující afinitní řadu. Prvky napravo za železem mají nižší afinitu ke kyslíku než železo. S klesající afinitou prvků ke kyslíku klesá stabilita příslušných oxidů.

Ca, Ba, Mg, Be, La, Th, Y, Ce, Hf, Zr, U, Al, Ti, C, B, Ta, Si, V, Nb,

Cr, Mn, Fe, W, Mo, Cd, Co, Cu, Ni

Z toho plyne, že prvky s vyšší afinitou ke kyslíku než má železo, mohou být využity k dezoxidaci oceli, prvky s nižší afinitou vzhledem k železu mohou být naopak ze svých oxidů železem redukovány.hmot.%

Obdobně lze seřadit prvky podle jejich afinity k síře, dusíku či uhlíku, tzn. podle stability sulfidů, nitridů či karbidů. Obecně platí, že stabilita sloučenin klesá v řadě od nejstabilnějších oxidů, přes sulfidy, nitridy ke karbidům. Zatímco oxidy mohou vznikat již v tekuté oceli, sulfidy až při tuhnutí oceli a nitridy a karbidy až v utuhlé oceli při jejím chladnutí.

Page 13: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Termodynamické základy metalurgických pochodů

11

1.2 Podmínky rovnováhy izotermických dějů.

Jako energetické kritérium rovnováhy dějů jsou využitelné především funkce G a F. To vyplývá ze stavových veličin, na kterých jsou tyto funkce závislé.

Volná energie je funkce závislá na teplotě a objemu F = f(T, V). Tuto závislost lze dovodit z definiční rovnice F = U – TS (3).

dF = dU – TdS – SdT (5)

Když do této rovnice dosadíme z 1. a 2. zákona termodynamiky rovnici (8) a výraz (10) a uvažujeme pouze objemovou práci (A´ = pdV).

(28)

(29)

– – (30)

Pokud probíhají v mechanicky izolované soustavě - v uzavřené nádobě, kde V = konst. a dV = 0 – pouze izotermní děje (T = konst. a dT = 0), pak nabývá nerovnost (30) tvar (31)

(31)

Ze vztahu (31) plyne, že samovolný izotermě-izochorický děj je doprovázen poklesem volné energie (dF < 0). Po dosažení rovnováhy je hodnota F minimální a její změna dF = 0. Pokud se ve stejné soustavě za jiné teploty a při jiném objemu probíhá samovolný děj (chemická reakce) v opačném směru (), pak hodnota dF > 0, resp., pro konečnou změnu vypočtená hodnota F > 0.

Volná energie je tudíž kritériem rovnováhy dějů probíhajících při konstantní teplotě a konstantním objemu.

Volná energie je izotermicko – izochorický potenciál, charakterizující stav soustavy v závislosti na teplotě a objemu.

Volná entalpie je funkcí závislou na teplotě a tlaku G = f (T, p). Tuto závislost lze odvodit ze vztahu G = F + pV (4)

dG = dF + pdV + Vdp (19)

Po dosazení nerovnosti (30)

dG – pdV – SdT + pdV + Vdp (31)

dG Vdp – SdT (32)

Pokud probíhají v tepelně izolované soustavě (T = konst, dT = 0) děje za konstantního tlaku (p = konst, dp = 0), pak nabývá nerovnost (32) tvar

dG 0 (33)

Ze vztahu (33) plyne, že samovolný izotermicko – izobarický děj je doprovázen poklesem volné entalpie (dG < 0). Po dosažení rovnováhy je hodnota G minimální a její změna dG = 0.

Page 14: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Termodynamické základy metalurgických pochodů

12

V případě, že samovolný děj probíhá v opačném směru (), pak hodnota dG > 0. Volná entalpie je tudíž kritériem rovnováhy dějů probíhajících při konstantní teplotě a konstantního tlaku. Představuje izotermicko-izobarický potenciál charakterizující stav soustavy v závislosti na teplotě a tlaku.

1.3 Chemické rovnováhy

Studium chemických reakcí ukázalo, že všechny reakce směřují k rovnovážnému stavu, který je charakterizován přítomností reakčních produktů i výchozích látek. Vedle přímé reakce, při které reagují výchozí látky, probíhá současně i opačná reakce, při které reagují produkty reakce.

Rovnovážný stav můžeme formulovat jako termodynamický stav, kdy se soustava nemění s časem. Tudíž soustava se nachází v rovnováze, jestliže v ní neprobíhá jakýkoliv samovolný děj. V rovnovážné soustavě probíhají pouze děje vratné (rovnovážné). Ustavení chemické rovnováhy se vyznačuje stejnou rychlostí přímé i protisměrné reakce, kdy výsledné množství všech na reakci zúčastněných látek se již nemění.

Chemické rovnováhy lze rozdělit na:

homogenní – reakce probíhají v jedné fázi, např. reakce v plynné fázi jsou vždy homogenní

heterogenní – reakce probíhají na rozhraní fází (např. kapalina-plyn, kapalina-pevná fáze, atd.). Rychlost těchto reakcí je závislá na velikosti reakčního povrchu stýkajících se fází.

Chemickou rovnováhu z hlediska složení reakční směsi po dosažení rovnovážného stavu charakterizuje rovnovážná konstanta.

1.3.1 Homogenní chemické rovnováhy

Rovnovážnou konstantu homogenní chemické reakce lze nejobecněji vyjádřit pomocí aktivit reagujících složek; v plynné fázi při nízkém celkovém tlaku (P < 0,5 MPa) pomocí parciálních tlaků reagujících složek (ai = pi). Aktivitou složky rozumíme její efektivní koncentraci, tzn. tu část koncentrace složky, která se účastní chemické reakce.

Mějme vratnou homogenní chemickou reakci.

(34)

Okamžitou rychlost přímé a protisměrné reakce lze vyjádřit pomocí zákona o působení aktivní hmoty rovnicemi

(35)

(36)

kde ai … aktivita reagující složky, 1 k1, k2 … rychlostní konstanty přímé a protisměrné reakce, s-1

Page 15: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Termodynamické základy metalurgických pochodů

13

Výsledná rychlost uvažované reakce je

v = v1 – v2 (37)

Po dosažení rovnováhy jsou obě rychlosti sobě rovny v1 = v2 a tudíž v = 0.

Z rovnosti rychlostí přímé a protisměrné reakce lze dovodit vztah pro rovnovážnou konstantu

(38)

Protože rychlostní konstanty k1 a k2 jsou závislé pouze na teplotě, bude i rovnovážná konstanta funkcí pouze a jenom teploty Ka = f (T).

Rovnovážnou konstantu tudíž vyjadřujeme jako podíl rovnovážných součinů aktivit produktů reakce a výchozích látek. V tomto vyjádření je Ka závislá pouze na teplotě. Je-li vysoká, svědčí to o tom, že reakční produkty jsou za rovnováhy ve značném přebytku. Naopak nízké hodnoty Ka svědčí o převládání látek výchozích v rovnovážné směsi.

Způsoby vyjádření rovnovážné konstanty

Známe-li molární koncentrace reagujících složek, můžeme odvodit vztah mezi rovnovážnou konstantou Ka a molaritami složek v roztoku. Mezi aktivitou a molární koncentrací složky existuje vztah

ai = i . ci (39)

kde: i … aktivitní součinitel složky i v roztoku, (kmol.m-3)-1 ci … molarita složky v roztoku, kmol.m-3

Dosazením tohoto výrazu do rovnice (38) dostaneme

(40)

pak

(41)

Protože aktivitní součinitele složek jsou závislé na složení roztoku, je zřejmé, že parametr Kc je závislý nejen na teplotě, ale i na koncentraci složek v roztoku a tudíž není rovnovážnou konstantou. Parametr Kc se stává rovnovážnou konstantou pouze v ideálním roztoku, kde i = 1 a ai = ci.

Pokud reakce (34) probíhá v plynné fázi, je výhodné vyjádřit aktivity reagujících složek pomocí jejich parciálních tlaků (ai = pi). Pak rovnovážnou konstantu vyjadřuje vztah

(42)

Za nízkých tlaků (P < 0,5 MPa) je i tato rovnovážná konstanta závislá jenom na teplotě. Jestliže koncentrace složek v plynné fázi vyjádříme pomocí molárních zlomků, pak

pi = xi . P (43)

Page 16: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Termodynamické základy metalurgických pochodů

14

Tudíž

(44)

(45)

resp. (46)

kde: xi … molární zlomek složky, 1

P … celkový tlak plynné fáze, 1 n = nC + nD – (nA + nB) … změna molového čísla plynných složek, 1

Hodnota Kx je závislá na teplotě i na celkovém tlaku v soustavě. Proto se Kx stává rovnovážnou konstantou závislosti na teplotě pouze za jednotkového tlaku P = 1, (vyjádřeno v pascalech P = 101 kPa), resp. když n = 0.

1.3.2 Heterogenní chemické rovnováhy

Vyjadřují rovnováhy chemických reakcí probíhajících na fázovém rozhraní dvou fází. Typickou heterogenní reakcí je termický rozklad sloučenin (oxidů, sulfidů, nitridů, uhličitanů apod.).

Vyjádření rovnovážné konstanty heterogenních reakcí

Mějme heterogenní chemickou reakci ve tvaru

a A(s) + b B(g) = c C(l) + d D(g) (47)

Pokud netvoří látky přítomné v kondenzovaných fázích (s, l) spolu roztoky (reakce se účastní jako čisté složky), jejich aktivity jsou jednotkové ( ( )

=1; ( )=1) a rovnovážná

konstanta je určena pouze aktivitami plynných složek

(48)

Tuto rovnovážnou konstantu je za nízkých tlaků výhodné vyjádřit pomocí parciálních tlaků plynných složek (ai = pi)

(49)

Např. reakci termického rozkladu CaCO3 lze vyjádřit rovnicí

CaCO3(s) = CaO(s) + CO2(g) (50)

Rovnovážnou konstantu této heterogenní reakce, za předpokladu, že uhličitan a oxid vápenatý spolu netvoří tuhý roztok, lze psát

( )

(51)

Page 17: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Termodynamické základy metalurgických pochodů

15

kde je disociační napětí uhličitanu CaCO3. S rostoucí teplotou disociační napětí této

endotermní reakce roste, až dosáhne hodnotu vnějšího tlaku. Teplota, kdy = 1 (101 kPa)

se nazývá rozkladná teplota CaCO3. Z toho plyne, že disociační napětí i rozkladná teplota charakterizují stabilitu uhličitanu. Čím je při dané teplotě disociační napětí nižší, a tudíž čím je rozkladná teplota vyšší, tím je sloučenina stabilnější. To platí pro všechny sloučeniny, které při svém rozkladu uvolňují plynnou fázi.

Pro termickou disociaci oxidů prvků, které spolu tvoří více oxidů s různým mocenstvím, platí princip posloupnosti termického rozkladu od nejvyššího oxidu až po prvek. Například železo vytváří s kyslíkem tyto oxidy

a) nad 570 °C Fe2O3 Fe3O4 FeO Fe

b) pod 570 °C Fe2O3 Fe3O4 Fe V tomto pořadí probíhá postupná disociace od Fe2O3 až po Fe. Pod 570 °C není FeO

stabilní vzhledem k reakci: 4 FeO(s) = Fe3O4(s) + Fe(s).

1.3.3 Princip akce a reakce (Le Chatelier-Braunův)

Rovnovážný stav metalurgických reakcí lze měnit působením vnějších vlivů - teplotou, tlakem nebo přítomností inertního plynu. Podle tohoto principu porušení rovnováhy změnou

vnějšího vlivu vyvolá děj, který směřuje k rušení této změny.

Vliv teploty. V souladu s principem akce a reakce bude snížená teplota podporovat průběh exotermických reakcí a naopak zvýšená teplota průběh endotermických reakcí.

Exotermické reakce H < 0. Endotermické reakce H > 0.

Zvýšená teplota: směr průběhu reakcí Zvýšená teplota: směr průběhu reakcí

Snížená teplota: směr průběhu reakcí Snížená teplota: směr průběhu reakcí

Vliv tlaku. Tlak ovlivňuje rovnováhu pouze reakcí, ve kterých se vyskytuje plynná fáze a změna molového čísla plynných složek je různá od nuly: n(g) = ( )

( )

0.

Podle principu akce a reakce snížený tlak podporuje průběh reakcí spojených se zvětšením objemu, zatímco zvýšený tlak podporuje průběh reakcí spojených se zmenšením objemu.

např.

[C] + [O] = CO(g) (52)

n(g) = 1

Snížený tlak: směr průběhu reakce Zýšený tlak: směr průběhu reakce

Page 18: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Termodynamické základy metalurgických pochodů

16

Vliv inertního plynu. Zředíme-li rovnovážnou plynnou směs přidáním inertního plynu, posouvá se rovnováha ve směru zvětšení objemu, tzn. stejně jako při sníženém tlaku.

1.4 Reakční izoterma

Van´t Hoffova reakční izoterma vyjadřuje vztah mezi dvěma kritérií rovnováhy

reakční volnou entalpií G a

rovnovážnou konstantou chemické reakce K

Pro obecnou reakci

aA + bB = cC + dD (53)

můžeme reakční izotermu vyjádřit rovnicí

G = - RT (ln Ka – ln a´) (54)

kde

,

.

Zatímco aktivity ai jsou rovnovážné aktivity reagujících složek, aktivity ai´ jsou aktivity

stejných složek v nerovnovážném stavu, např. v počátečním stavu.

Jestliže jsou počáteční aktivity výchozích složek větší než rovnovážné aktivity stejných složek (a´A > aA ; a´B > aB) a počáteční aktivity produktů menší než jejich rovnovážné aktivity (a´C < aC ; a´D < aD) pak i ln a´ < lnKa a tudíž G < 0 a reakce bude probíhat zleva doprava.

Je-li tomu naopak ln a´ >lnKa a tudíž G > 0, reakce bude probíhat zprava doleva. Jestliže jsou nerovnovážné a rovnovážné aktivity všech složek sobě rovny (ai

´ = ai), pak i lnKa = ln a´; G = 0 a soustava se nachází v rovnováze.

Jsou-li reagující složky v plynném stavu, lze reakční izotermu vyjádřit pomocí jejich parciálních tlaků.

G = – RT (ln Kp – ln

) (55)

Jsou-li aktivity složek resp. parciální tlaky ve výchozím (nerovnovážném) stavu rovny jedné, pak rovnice reakční izotermy nabývá tvar

G° = – RT ln Ka (56)

G° = – RT ln Kp (57)

kde G° je standardní hodnota volné entalpie platná pro počáteční ai´ =1 resp. pro relativní

parciální tlaky složek na počátku reakce pi´ = 1

(pi)relativní = ( )

(58)

Pak lze rovnici reakční izotermy (54) psát ve tvaru

G = G° + RT ln a´ (59)

G = G° + RT ln p´ (60)

Page 19: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Termodynamické základy metalurgických pochodů

17

1.5 Reakční izobara

Vańt Hoffova reakční izobara vyjadřuje teplotní závislost rovnovážné konstanty. Lze ji odvodit z diferenciálního tvaru rovnice teplotní závislosti volné entalpie (61) a upravené rovnice reakční izotermy (62).

(

)

(61)

G0 = – RT lnKp (62)

= – R lnKp (63)

(

)

(64)

Z výše uvedených vztahů (61) a (64) vyplývá pro reakční izobaru tvar

(65)

(66)

Je-li v úzkém intervalu teplot T1 a T2 reakční entalpie H0 konstantní, pak integrací rovnice (66) v tomto rozmezí teplot dostaneme

(

) (67)

V širším teplotním intervalu je nutno do rovnice (66) dosadit teplotní závislost reakční entalpie např. ve tvaru

H0 = aT +

T2 –

+ Ho (68)

kde Ho … je integrační konstanta Rovnice (68) byla odvozena integrací závislosti reakčního tepla H0 na teplotě

(Kirhoffova rovnice 69) po dosazení teplotní závislosti molárního tepla za konstantního tlaku pro danou reakci (rovnice 70)

Cp (69)

Cp = a + bT + c´T-2 (70)

Potom

(71)

a po integraci

(72)

Page 20: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Termodynamické základy metalurgických pochodů

18

Pro určení integrační konstanty I je třeba znát hodnotu Kp při jedné teplotě, např. při T = 298 K. Obdobně k určení integrační konstanty Ho je třeba znát hodnotu reakčního tepla při jedné teplotě (např. T = 298 K).

Rovnice reakční izobary se např. v tabulkách používá ve zjednodušeném tvaru

(73)

Tato tzv. Augustova rovnice byla získána spojením reakční izotermy (G0= –RT ln Kp) a definiční rovnice pro reakční volnou entalpii: G0 = H0 – TS0

pak

(74)

kde

a

(75)

Využití Augustovy rovnice předpokládá, že reakční teplo H0 a reakční entropie S0 jsou konstantní, což často platí v intervalu ocelářských teplot.

Shrnutí pojmů kapitoly

Je uvedeno v části „Členění kapitoly“

Otázky k probranému učivu

Formulace otázek k učivu odpovídá názvům dílčích kapitol v části „Členění kapitoly“

Page 21: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Roztoky

19

2 ROZTOKY

Členění kapitoly

Složení roztoků

Parciální molární veličiny

Ideální roztok

Způsoby vyjadřování neideality roztoku

o Negativní odchylka od Raoultova zákona ( - )

o Pozitivní odchylka od Raoultova zákona ( + )

o Regulární roztok

o Reálný roztok

Zředěný roztok

Termodynamická aktivita složky v roztoku. Způsoby vyjadřování aktivity složky

v roztoku.

Vzájemný přepočet aktivit vzhledem k Raoultovu zákonu a Henryho zákonu.

Výpočet aktivity složky v polykomponentních soustavách.

Čas ke studiu: individuální

Cíl Po prostudování této kapitoly budete umět

formulovat základní pojmy

vysvětlit význam základních pojmů a jejich vzájemné souvislosti

aplikovat použití základních pojmů v procesech výroby a rafinace oceli

Základní pojmy jsou obsahem části „Členění kapitoly“

Výklad

Při výrobě oceli probíhá většina metalurgických reakcí v taveninách kovu nebo strusky, které představují polykomponentní roztoky skládající se z velkého počtu složek. Studium fyzikálně chemických vlastností roztoků má proto pro teorii ocelářského pochodu značný význam.

Page 22: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Roztoky

20

Na rozdíl od chemických sloučenin, jejichž složení je vymezeno zákony stálých a množných hmotnostních poměrů, může se složení roztoků v určitých mezích měnit nepřetržitě. Roztoky představují v širším slova smyslu tuhé nebo kapalné homogenní soustavy, které se skládají nejméně ze dvou složek. Libovolná makroskopická část roztoku nacházející se ve stavu termodynamické rovnováhy má stejné složení jako vlastní roztok. Tím se roztoky liší od mechanických směsí, které nejsou stejnorodé.

2.1 Složení roztoků

Základním znakem roztoků je jejich složení, které určuje roztoky jak kvalitativně (z jakých složek se roztok skládá), tak i kvantitativně (v jakých poměrných množstvích jsou jednotlivé složky v roztocích obsaženy).

Vyjadřování složení roztoku

Roztok je homogenní soustava minimálně dvou složek. Složení roztoku tj. koncentraci jednotlivých složek, můžeme vyjádřit pomocí následujících veličin.

a) Hmotnostní zlomek wi složky i v roztoku o j složkách

jjj

ii

jj

ii Mn

Mnm

mw ,1 (76)

,0,1w i 1wj

i (77)

Hmotnostní procento [%i] = 100 . wi (77a)

b) Molární zlomek xi složky i v roztoku o j složkách

j j

j

i

i

jj

ii

Mm

Mm

nnx , 1 (78)

,0,1x i 1xj

j (79)

kde: m … hmotnost složky, kg

M … molární hmotnost složky, kg.mol-1

n … počet molů složky, 1

Mezi hmotnostními a molárními zlomky platí jednoduchý vztah, který umožňuje jejich vzájemný přepočet.

jjj

iii /Mx

/Mwx , 1 (80)

Page 23: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Roztoky

21

jjj

iii M . x

M . xw , 1 (81)

c) Objemový zlomek i plynné složky i v roztoku o j složkách

jj

ii V

V

, 1 (82)

,0,1i 1j

i (83)

d) Látková koncentrace ci složky i v roztoku

Vnc i

i , mol.dm-3 (84)

2.2 Parciální molární veličiny

V termodynamice čistých látek se pro soustavy o jedné složce používají tzv. molární veličiny G°, H°, S°, V° apod., které jsou definovány jako veličiny odpovídající jednomu molu příslušné látky.

U roztoků, kde jejich jakákoli extenzivní vlastnost (např. objem, tepelná kapacita, entalpie, entropie atd.) závisí na složení, jsou poměry složitější.

Například objem, který zaujímá jeden mol složky i v čistém stavu a v binární tavenině se složkou j, je různý, přičemž molární objem složky i v tavenině i – j se mění s jeho koncentrací. Určit molární objem složky i a j v jejich binární tavenině je značně obtížné, i když lze poměrně jednoduchou experimentální cestou stanovit celkový objem této binární taveniny. Souvisí to s tím, že reálné roztoky mají na rozdíl od roztoků ideálních skutečný objem menší nebo větší, než odpovídá prostému součtu objemů jednotlivých složek.

V podstatě totéž, co bylo řečeno o objemu složek v čistém stavu a o jejich objemu v roztoku, platí i pro ostatní termodynamické stavové veličiny.

Jestliže vlastnosti jednosložkových soustav popisují molární veličiny, pak vlastnosti

vícesložkových roztoků vyjadřují parciální molární veličiny .

Tyto veličiny lze definovat různě. Například parciální molární objem složky lze definovat jako objem, který zaujímá jeden mol složky i v roztoku se složkou j.

Tato definice parciálního molárního objemu však není přesná, protože se při přidávání složky i k tavenině složky j složení tohoto roztoku mění. Tudíž parciální molární objem složky i v roztoku i – j je závislý na koncentraci složky i v tomto roztoku.

Máme-li tedy určit parciální molární objem složky i v roztoku se složkou j, musíme k tomuto roztoku přidat takové množství složky i, aby se složení roztoku neměnilo, nebo přesněji, aby se změnilo o nekonečně malou hodnotu.

To lze uskutečnit buď tak, že při konstantním p a T přidáme jeden mol složky i k velmi velkému množství roztoku i - j daného složení, nebo že při konstantním p a T přidáme

Page 24: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Roztoky

22

nekonečně malé množství složky i k roztoku složky i - j daného složení, a získanou změnu objemu přepočítáme na 1 mol přidané složky i.

Z uvedeného příkladu je zřejmé, že hodnota parciální molární veličiny určité složky i v roztoku ( iV , iH , iS , iG ) je obecně dána změnou příslušné veličiny roztoku (V´, H´, S´, G´) přidáme-li jeden mol uvažované látky k tak velkému množství roztoku, aby se jeho složení nezměnilo.

V soustavě, kde se jedna složka nachází v jedné fázi si termodynamickou veličinu V, H, S, G, F, U (označ. X) mohu vyjádřit jako funkci teploty a tlaku

dppXdT

TXdX

Tp

(85)

V soustavě o jedné fázi, dvou a více složkách, to znamená v roztoku, platí, že veličina X je funkcí kromě teploty a tlaku i složení roztoku.

.....dnnXdn

nXdp

pXdT

T∂XdX 2

nT,p,21

nT,p,1Tp12

(86)

kde n1, n2 udává počet molů složky v roztoku.

Při konstantním tlaku a teplotě pak

...dnnXdn

nXdX 2

nT,p,21

nT,p,112

(87)

1nT,p,1

XnX

2

…parciální molární veličina pro složku 1 v roztoku (88)

2nT,p,2

XnX

1

…parciální molární veličina pro složku 2 v roztoku (89)

čili

2211 dnXdnXdX (90)

Parciální molární veličiny jsou tudíž závislé na složení roztoku.

Rozdíl mezi parciální molární iX a molární veličinou 0iX představuje tzv. směšovací

hodnotu parciální molární veličiny iΔX

i0ii ΔXXX (91)

Tato směšovací hodnota může být logicky kladná nebo záporná.

Page 25: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Roztoky

23

2.3 Ideální roztok

Podobně jako ve fyzikální chemii byla vytvořena představa ideálního plynu, z níž pak vycházelo odvození vlastností reálných plynů, vychází teorie roztoků z představy ideálního roztoku.

Termodynamickým kritériem ideálních roztoků jsou znaky, které musí splňovat každá složka ideálního roztoku.

1) Ideální roztok představuje jednoduchou atomární nebo molekulární soustavu, v níž síly vzájemného působení mezi stejnojmennými částicemi jsou rovnocenné silám vzájemného působení mezi různorodými částicemi. Budeme-li uvažovat binární roztok s atomy i a j, lze si tuto podmínku znázornit schématem

εii = εjj = εij (92)

Rovnocennost vzájemného působení mezi stejnojmennými a různorodými částicemi vylučuje jakoukoli reakci, interakci, asociaci, disociaci nebo jakékoli jiné vzájemné ovlivňování částic v roztoku.

2) Všechny složky v ideálním roztoku přesně splňují Raoultův zákon, který lze interpretovat následovně.

Parciální tlak nasycené páry složky nad ideálním roztokem je úměrný molárnímu zlomku složky i v roztoku. Konstantou úměrnosti je tlak par nad čistou složkou

i0ii xpp (93)

kde pi … parciální tlak páry i–té složky nad roztokem; Pa

pi0 … tlak nasycené páry čisté i-té složky, Pa

xi … molární zlomek i-té složky v roztoku, 1

Grafické znázornění průběhu tenze páry v závislosti na složení roztoku i-j je na obr. 3a.

3) U ideálních roztoků se aktivity složek rovnají koncentracím, vyjádřeným molárními zlomky

ai = xi (94)

takže součinitele aktivity i jsou rovny 1.

4) Vznik ideálního roztoku z čistých složek není doprovázen vybavením, ani spotřebou tepla:

0ii HH 0H-HHΔ 0

iii (95)

Page 26: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Roztoky

24

kde: iH … parciální molární entalpie složky i v roztoku; J.mol-1

0iH … molární entalpie složky i v čistém stavu; J.mol-1

iHΔ … změna entalpie při rozpouštění složky i (směšovací teplo), J.mol-1

Entalpie např. binárního ideálního roztoku se pak rovná součtu entalpií složek v čistém stavu, protože směšovací teplo je nulové ( 0HΔ i ).

0jj

0iiji HnHnHHH (96)

kde: ni a nj … počet molů odpovídajících složek; mol

Hi0 a Hj

0 …. molární entalpie odpovídajících složek; J.mol-1

5) Objem ideálního roztoku se rovná součtu objemů složek, ze kterých se roztok skládá, což znamená, že molární objemy složek se při rozpouštění nemění:

ji0jj

0ii VVVnVnV (97)

kde: Vi0 a Vj

0 … molární objemy odpovídajících složek, m3.mol-1

Z toho vyplývá, že parciální molární objem složky roztoku i molární objem čisté složky se rovnají a směšovací objem je roven nule

0ii VV 0V-VVΔ 0

iii (98)

kde: iV … parciální molární objem složky i; m3.mol-1

0iV … molární objem složky i v čistém stavu; m3.mol-1

iVΔ … změna objemu při rozpouštění složky i (směšovací objem); m3.mol-1

6) Vznik ideálního roztoku je doprovázen vzrůstem entropie každé složky (roste neuspořádanost soustavy).

iRlnxS-SSΔ 0iii (99)

kde: iS ... parciální molární entropie složky i; J.K-1.mol-1

0iS … molární entropie složky i v čistém stavu; J.K-1.mol-1

iSΔ … změna entropie při rozpouštění složky i (směšovací entropie); J.K-1.mol-1

Entropii binárního ideálního roztoku bude určovat vztah

ji SS ji0jj

0ii nnSnSnS (100)

Page 27: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Roztoky

25

Směšovací entropie souvisí s růstem neuspořádanosti vzniklé soustavy v důsledku růstu počtu uspořádání. Ze dvou uspořádání u čistých složek i-i , j-j na tři uspořádání v binárním roztoku: i-i, j-j, i-j.

S ohledem na rovnice (99) a (100) směšovací entropií roztoku vyjadřujeme vztahem:

)lnxnlnxR(nnnSΔ jjiiji ji SS (101)

Uvedená rovnice v podstatě ukazuje, že růst entropie při smísení dvou kapalných složek je u ideálních roztoků způsoben jen růstem počtu přeskupení mezi atomy (molekulami), ke kterému dochází při vzniku roztoku.

7) Volná entalpie při vzniku ideálního roztoku se mění (klesá) z titulu růstu směšovací entropie každé složky

ji GG ji0jj

0ii nnGnGnG (102)

iRTlnxSTΔHΔGΔ iii (103)

)lnxnlnxRT(nGnGnG jjii0jj

0ii (104)

kde: G … volná entalpie 1 molu roztoku, J.mol-1

0j

0i G ,G … molární volná entalpie čistých složek, J.mol-1

iGΔ , jGΔ … směšovací volná entalpie složky, J.mol-1

Ve skutečnosti se ideální roztoky téměř nevyskytují. Roztoky se mohou svými vlastnostmi a chováním ideálním roztokům pouze přibližovat.

Z hlediska ocelářského nás zajímá, které kovy mohou s roztaveným železem tvořit taveniny, jež se svými vlastnostmi přibližují ideálním roztokům. Jsou to především kovy, které se svými vlastnostmi podobají železu. Mají přibližně stejnou atomovou hmotnost, malý rozdíl v rozměrech atomů, přibližně stejné postavení prvků v elektrochemické řadě napětí apod. Uvedené podmínky splňují mangan, chrom, nikl a kobalt, a proto můžeme jejich aktivitu v roztaveném železe vyjadřovat jejich molárním zlomkem.

Správnost tohoto předpokladu je potvrzena také tím, že uvedené prvky v širokém rozmezí koncentrací tvoří s železem tuhé roztoky bez intermetalických sloučenin. Méně již splňují výše uvedené předpoklady pro vznik ideálního roztoku molybden a wolfram, které se zřetelem k určité tendenci tvořit s železem intermetalické sloučeniny projevují slabě vyjádřenou negativní odchylku od Raoultova zákona.

2.4 Způsoby vyjadřování neideality roztoku

Kvantifikací odchylek od výše uvedených znaků ideálního roztoku můžeme popisovat chování reálných roztoků.

Page 28: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Roztoky

26

2.4.1 Negativní odchylka od Raoultova zákona ( - )

Taveniny s negativní odchylkou od Raoultova zákona jsou v metalurgii nejrozšířenější (např. binární taveniny Fe-Si; Fe-Al).

Při vzniku těchto roztoků dochází:

1) k uvolnění tepla 0HΔ i (105)

2) ke kontrakci objemu roztoku 0VΔ i ; 0V-V 0ii ; 0

ii VV (106)

3) Aktivity prvků jsou v těchto roztocích menší než jejich koncentrace a tudíž součinitele aktivit jsou menší než 1. Se vzrůstající teplotou se negativní odchylka zmenšuje a blíží se 1.

1 iii xa (107)

Projevuje se u nich tendence tvořit chemické sloučeniny mezi atomy rozpouštědla a rozpuštěné látky.

4) Příčinou výskytu negativní odchylky od Raoultova zákona je skutečnost, že síly mezi různorodými částicemi jsou silnější než mezi stejnojmennými částicemi

εij > εii ; εjj (108)

2.4.2 Pozitivní odchylka od Raoultova zákona ( + )

Při vzniku těchto roztoku dochází:

1) ke spotřebě tepla 0 iH (109)

2) k nárůstu objemu roztoku 0 iV ; 0V-V 0ii ; 0

ii VV (110)

3) Aktivity prvků jsou v těchto roztocích větší než jejich koncentrace a součinitele aktivit jsou větší než 1 a blíží se této hodnotě se vzrůstající teplotou, s níž se zmenšuje pozitivní odchylka.

1⇒ iii xa (111)

4) Uvedené roztoky se vyznačují tím, že síly vzájemného působení mezi stejnorodými atomy jsou větší než mezi atomy různorodými.

εij < εii ; εjj (112)

Page 29: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Roztoky

27

Grafické znázornění průběhu tenze páry v závislosti na obsahu složky i resp. složky j v binárním ideálním roztoku je na obr. 3a. Obr. 3b a 3c znázorňují křivky závislosti tlaku páry na složení binárního roztoku, jednak s pozitivní a jednak s negativní odchylkou od Raoultova zákona.

a) Ideální roztok b) Roztok s pozitivními

odchylkami od Raoultova zákona

c) Roztok s negativními odchylkami od Raoultova zákona

Obr. 3 Závislost celkového tlaku a parciálních tlaků na složení binárního roztoku i-j.

2.4.3 Regulární roztok

Teorie regulárních roztoků přihlíží jen k tepelnému efektu, který doprovází vznik tohoto roztoku a nezabývá se jeho vlivem na změnu entropie.

V metalurgii považujeme roztok za regulární, vyznačuje-li se těmito základními znaky:

a) vznik regulárního roztoku je spojen s vybavením nebo se spotřebou tepla, tedy 0HΔ i .

b) vzájemné rozmístění a orientace atomů jsou obdobné jako u ideálního roztoku a změna entropie, doprovázející vznik regulárního roztoku, je tedy výsledkem růstu počtu přeskupení mezi atomy (molekulami), k němuž dochází při vzniku roztoku. Proto je směšovací entropie složky i při vzniku regulárního roztoku stejná jako u ideálního roztoku a určuje ji rovnice (99).

c) změnu volné entalpie, doprovázející vznik regulárního roztoku, lze vypočítat pomocí rovnice

ixRT lnHΔSTΔHΔGΔ iiii (113)

Tato směšovací volná entalpie souvisí s aktivitou složky v roztoku vztahem

iii xRTRTaRT lnlnlnGΔ i (114)

Page 30: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Roztoky

28

Porovnáním rovnic (113) a (114) lze odvodit vztah pro aktivitní součinitel γi

RTHΔlnγ i

i (115)

Protože směšovací teplo složky a teplotu roztoku lze měřit, má teorie regulárních roztoků značný význam pro výpočet aktivit složek v metalurgických taveninách, především v taveninách strusek.

2.4.4 Reálný roztok

Reálné roztoky se vyznačují těmito hlavními znaky:

a) vznik reálného roztoku je doprovázen tepelným efektem 0HΔ i ,

b) růst entropie při vzniku reálných roztoků nastává nejen následkem růstu počtu přeskupení mezi atomy (molekulami), ale i vlivem vzájemného působení mezi částicemi rozpouštědla a rozpuštěné látky. Potom směšovací entropie vyjadřuje vztah

*iii ΔSRlnxSΔ (116)

Druhý člen pravé strany rovnice *iΔS tzv. dodatková entropie představuje další zvýšení

neuspořádanosti vlivem interakce mezi atomy rozpouštědla a rozpuštěné látky. První člen pravé strany rovnice je stejný jako u ideálních roztoků.

c) změnu volné entalpie doprovázející rozpouštění složky v rozpouštědle, s nímž tvoří reálný roztok, vyjadřují rovnice

*iST-RTlnxHΔSTΔHΔGΔ iiiii (117)

iRTlnxRTlnγRTlnaGΔ iii (118)

Z rovnic (117) a (118) vyplývá, že aktivitní součinitel rozpuštěné složky v reálném roztoku souvisí jak s tepelným efektem, tak i s dodatkovou entropií při vzniku reálného roztoku.

RS

RTl

*i

H

n i (119)

2.5 Zředěný roztok

Vlastnostem ideálních roztoků se blíží vlastnosti roztoků zředěných. Budeme-li mít binární roztok s atomy i a j, mohou se teoreticky mezi atomy rozpouštědla i a atomy rozpuštěné látky j uplatňovat síly vzájemného působení typu εij ; εii ; εjj.

V oblasti velmi vysokých zředění při velmi nízké koncentraci rozpuštěné látky jsou její částice v roztoku jednak od sebe relativně velmi vzdáleny, jednak jsou zcela obklopeny velkým počtem částic rozpouštědla.

Page 31: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Roztoky

29

Síly vzájemného působení mezi stejnorodými částicemi rozpuštěné látky εii a mezi různorodými částicemi εij se za těchto podmínek téměř neprojeví, neboť pravděpodobnost konfigurace ij je malá a konfigurace ii se prakticky rovná nule. Charakter meziatomového působení se proto při vysokém zředění roztoku ve srovnání s čistým rozpouštědlem jen velmi málo mění.

Vlastnosti nekonečně zředěných roztoků vyjadřujeme:

a) u rozpouštědla Raoultovým zákonem;

b) u rozpuštěné látky Henryho zákonem. Podle Henryho zákona množství molekulárně rozpuštěného plynu v nekonečně zředěném roztoku je za dané teploty úměrné jeho parciálnímu tlaku nad roztokem:

*i

*i pkx *

i*i xkp

k1k

(120)

kde: xi* … molární zlomek rozpuštěného plynu v nekonečně zředěném roztoku; 1

pi* … parciální tlak plynu nad zředěným roztokem; Pa

k … konstanta Henryho zákona; Pa

Hodnota konstanty k se určuje extrapolací poměru pi*/xi* na hypotetickou koncentraci xi = 1. Pak pi

H/xi = k. To objasňuje obr. 4, který schematicky znázorňuje závislost parciálního tlaku páry složky i na její koncentraci v roztoku pro pozitivní a negativní odchylku Raoultova zákona.

Obr. 4 Závislost tlaku páry pi na koncentraci rozpuštěné látky xi pro roztok s pozitivní odchylkou od Raoultova zákona (4a) a pro roztok s negativní odchylkou od Raoultova

zákona (4b)

Na obr. 4 představuje Rip … průběh tenze páry složky i v ideálním roztoku splňujícím Raoultův zákon

Page 32: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Roztoky

30

Hip … průběh tenze páry složky i v hypotetickém roztoku, který splňuje Henryho

zákon v celém rozsahu koncentrací. (Jedná se o lineární průběh funkční závislosti H

ip = f(xi) bez ohledu na její fyzikální neuskutečnitelnost).

pi … představuje skutečný průběh hodnot tenze páry složky i v závislosti na její koncentraci xi.

k … tenze páry složky i nad hypotetickým roztokem splňujícím Henryho zákon v celém roztoku koncentrací pro xi = 1.

xi xi* … koncentrace nekonečného zředění složky i

pi pi* … tenze páry složky i nad nekonečně zředěným roztokem.

Z obr. 4 je zřejmé, že Henryho zákon je splněn pouze při koncentracích xi xi*, kdy

.

Při koncentracích vyšších xi > xi* je poměr

.

U pozitivní odchylky od Raoultova zákona je

a u negativní odchylky

od Raoultova zákona je

.

Konstanta k tudíž představuje tenzi par složky i nad hypotetickým roztokem splňujícím Henryho zákon v celém rozsahu koncentrací pro xi = 1.

2.6 Termodynamická aktivita složky v roztoku. Způsoby vyjadřování

aktivity složky v roztoku.

Termodynamické vztahy odvozené pro ideální roztoky je možno aplikovat na roztoky reálné, jestliže se koncentrace složek nahradí aktivitami.

Aktivita složky v roztoku vyjadřuje její efektivní koncentraci, to znamená podíl koncentrace složky, který může roztok opustit (např. chemicky zreagovat, vypařit se, nebo vytvořit novou fázi). Je to praktická veličina, která nahrazuje koncentraci v termodynamických závislostech a rozšiřuje tak jejich platnost na neideální soustavy. Aktivitu složky i v roztoku lze obecně definovat:

stavumstandartníveisložkypárytenzeroztokemnadisložkypárytenze

a i (121)

Hodnota aktivity závisí tudíž na zvoleném standardním stavu.

Podle volby standardního stavu definujeme tyto formy aktivit:

Aktivita vzhledem k Raoultovu zákonu (standardní stav – tenze páry nad čistou složkou):

Ri

0ii0

i

iRi app

ppa (122)

Page 33: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Roztoky

31

aktivitní koeficient je vyjádřen poměřem aktivity a molárního zlomku:

i

Ri

i xaγ (123)

Tato aktivita se využívá pro vyjádření obsahu složek v koncentrovaných taveninách např. ve struskách.

Aktivita vzhledem k Henryho zákonu (standardní stav – konstanta Henryho

zákona):

Hii

iHi akp

kpa (124)

aktivitní koeficient je vyjádřen poměrem aktivity a molárního zlomku:

i

HiH

i xaf (125)

V metalurgické praxi se často využívá vyjádření aktivity vzhledem k 1 hmot.%

roztoku složky v železe. Standardním stavem je tudíž tenze páry nad jednoprocentním roztokem složky v železe.

Potom platí:

1%i

1%ii1%

i

i1%i app

ppa (126)

Aktivitní koeficient je vyjádřen poměrem aktivity hmotnostního procenta složky

v tavenině železa [%i].

%iaf

1%i1%

i (127)

Tavenina železa obsahující 1hmot.% a méně rozpuštěné složky se prakticky vždy chová jako zředěný roztok. Např. molární zlomek, roztoku uhlíku nebo manganu v taveninách železa, které obsahuje 1 hmot.% C, resp. 1hmot.% Mn je pouze xC = 0,045 resp. xMn = 0,010.

2.7 Vzájemný přepočet aktivit vzhledem k Raoultovu zákonu a Henryho

zákonu.

Tenzi páry složky i lze vzhledem k Raoultovu zákonu vyjádřit rovnicí

Ri

0ii0

i

iRi app

ppa

ii0i xp (128)

Stejnou tenzi páry složky i lze vzhledem k Henryho zákonu vyjádřit rovnicí

Page 34: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Roztoky

32

Hii

iHi akp

kpa i

Hi xfk (129)

Z porovnání rovnic (128) a (129) vyplývá

iH

iii0ip xfkx (130)

0

0Hi

i

pf

k (131)

V rovnici (131) je koeficient 0 vyjádřen jako poměr standardních stavů a slouží jako přepočítací koeficient aktivit R

ia a Hia .

Hi

0i

Hi

0ii

Ri fa axx (132)

2.8 Výpočet aktivity složky v polykomponentních soustavách.

Základní úvaha vychází z předpokladu, že aktivitu libovolné složky v roztoku (tavenině) ovlivňují jak rozpouštědlo, tak i všechny rozpuštěné složky. Jestliže v tavenině železa jsou rozpuštěny prvky B, C, D, ..., E, pak lze součinitel aktivity prvku B v této polykomponentní tavenině vyjádřit jako součin dílčích součinitelů aktivit, které vyjadřují parciální vliv každého prvků.

Koeficient aktivity prvku B ve vícesložkové tavenině bude tedy vyjádřen: EB

DB

CB

*B

ED,B,C,Fe,B ...fffff (133)

kde: *Bf … součinitel aktivity prvku B v binární tavenině Fe–B,

EB

DB

CB f,f,f … součinitele aktivity prvku B v ternární tavenině Fe–B–C, Fe–B–D a

Fe–B–E.

Např. součinitel aktivity CBf vyjadřuje vliv prvku C na aktivitu prvku B v tavenině

Fe–B–C, součinitel DBf vliv prvku D a součinitel E

Bf vliv prvku E na aktivitu prvku B v příslušné ternární tavenině.

Bylo prokázáno, že v úzkých koncentračních rozmezích pro libovolný prvek platí, že závislost i

Bflog na obsahu prvku i v tavenině Fe–B–i je lineární.

i%eflog iB

iB (134)

kde: iBe … interakční koeficient, vyjadřující vliv prvku i na koeficient aktivity prvku B

v tavenině Fe–B–i.

Interakční součinitele jsou tabelovány pro teplotu 1600 °C, některé i v teplotní a koncentrační závislosti.

Logaritmováním rovnice (133) dostáváme vztah EB

DB

CB

*B

E-DC,B,Fe,B logf ... flogflogflogf log (135)

Page 35: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Roztoky

33

a po dosazení rovnic (134)

%E ... %D%C%Bf log EB

DB

CB

BB

E-DC,B,Fe,B eeee (136)

kde: BBe … parametr vyjadřující vliv prvku B na aktivitu prvku B v binární soustavě

Fe-B, který formálně plní funkci interakčního součinitele.

Interakční součinitele v ternární soustavě lze vzájemně přepočítat. Např. pro soustavy Fe-B-C a Fe-C-B platí

CCC B

B

B eMMe (137)

kde: Mi … molární hmotnost příslušného prvku i, kg.kmol-1 Aktivitu prvku B v polykomponentní tavenině Fe, B, C, D, … E následně vypočítáme

%Ba ED,C,B,Fe,B

ED,C,B,Fe,B f (138)

Shrnutí pojmů kapitoly

Je uvedeno v části „Členění kapitoly“

Otázky k probranému učivu

Formulace otázek k učivu odpovídá názvům dílčích kapitol v části „Členění kapitoly“

Page 36: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Roztavené ocelářské strusky

34

3 ROZTAVENÉ OCELÁŘSKÉ STRUSKY

Členění kapitoly

Rozdělení strusek a jejich tvorba.

Struktura strusek.

o Molekulární teorie

o Iontová teorie strusek

Struktura křemičitanových aniontů

Čas ke studiu: individuální

Cíl Po prostudování této kapitoly budete umět

formulovat základní pojmy

vysvětlit význam základních pojmů a jejich vzájemné souvislosti

aplikovat použití základních pojmů v procesech výroby a rafinace oceli

Základní pojmy jsou obsahem části „Členění kapitoly“

Strusky jsou nezbytnou součástí výroby a rafinace oceli. Tavenina strusky je nemísitelná s taveninou oceli. Strusky mají nižší měrnou hmotnost než oceli a proto se nacházejí na hladině oceli.

Úloha ocelářských strusek:

chrání kov před atmosférou, před přechodem O2, N2, H2O(g) do oceli

chrání kov před únikem tepla do atmosféry

pohlcují nekovové vměstky

zabezpečují rafinaci oceli (odfosfoření, odsíření)

Jak dalece plní ocelářské strusky tyto úkoly závisí na jejich fyzikálních a chemických vlastnostech (viskozita, povrchové napětí, tepelná a elektrická vodivost, interval teplot tavení), které jsou určeny především jejich chemickým složením a teplotou.

Ocelářské strusky způsobují opotřebení vyzdívek pecí a pánví, což je negativní vlastnost strusek.

Page 37: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Roztavené ocelářské strusky

35

3.1 Rozdělení strusek a jejich tvorba

Pecní strusky (kyslíkové konvertory, EOP, tandemové pece, SM pece). Jsou to zásadité (obsah CaO 45 až 55 hmot.%) a oxidační strusky (obsah oxidů železa FeOn 10 až 35 %hm). Ve slévárnách, využívajících kysele vyzděnou EOP, musí pracovat s kyselou struskou s vysokým obsahem SiO2 (až 60 %hm).

Pecní strusky jsou tvořeny struskotvornými materiály vsázky (vápno, aglomerát, magnezit, okuje), dále produkty oxidace prvků ze surového železa (FeO, MnO, SiO2, P2O5) a oxidy z vyzdívky pánve (MgO, Al2O3 …), která se v průběhu zkujňování opotřebovává.

Pánvové strusky jsou strusky zásadité opět s vysokým obsahem CaO a redukční s minimálním obsahem FeO (i pod 1 %hm). Při výrobě oceli s řízeným obsahem síry se v pánvi používají strusky se sníženou zásaditostí, kde obsah CaO je přibližně roven 1,5 násobku obsahu SiO2.

Pánvové strusky jsou tvořeny produkty dezoxidace při odpichu oceli do pánve (MnO, SiO2, Al2O3), struskotvornými materiály sázenými do pánve (vápno, syntetické strusky, šamot, magnezit apod.), dále pak oxidy z opotřebení vyzdívky pánve (MgO, Al2O3) a podílem pecní strusky přeteklé do pánve při odpichu oceli. Množství této pecní strusky je třeba minimalizovat, protože je zdrojem P2O5. který po redukci zvýší obsah nežádoucího fosforu v oceli.

3.2 Struktura strusek

V dnešní době se setkáváme se dvěma základními teoriemi o struktuře roztavených strusek, a to s teorií molekulární a iontovou.

Podle molekulární teorie strusek se všechny složky v roztavených struskách nacházejí v podobě jednoduchých molekul nebo složitějších sloučenin.

V protikladu k této teorii je iontová teorie roztavených strusek, která vychází z úplné elektrolytické disociace chemických sloučenin ve struskách.

3.2.1 Molekulární teorie

Podstatou molekulární teorie je představa, že roztavené strusky jsou roztoky zásaditých, kyselých a amfoterních oxidů, které se navzájem slučují na složitější sloučeniny. V závislosti na vnějších termodynamických podmínkách (především na teplotě) tyto sloučeniny termicky disociují na volné oxidy, např. podle obecného vzorce:

)(SiO2(MeO))SiO(2MeO 22 (139)

Se stoupající teplotou roste disociační stupeň a tím i koncentrace tzv. volných oxidů. Rozdělení nejdůležitějších oxidů, které se nacházejí v roztavených struskách, na zásadité,

kyselé a amfoterní udává Tabulka 1. Zařazení některých oxidů uvedených skupin je ovšem podmíněné; např. oxidy Fe2O3 a Cr2O3 se podobají svými vlastnostmi kyselým oxidům, mezi něž se také velmi často zařazují. Strusky s převážným podílem oxidů první skupiny se nazývají kyselé na rozdíl od zásaditých strusek, v nichž je převážný podíl oxidů skupiny

Page 38: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Roztavené ocelářské strusky

36

druhé. Nejvýraznější vliv na povahu ocelářských strusek projevují v tomto smyslu oxid vápenatý a oxid křemičitý.

Tabulka 1 Rozdělení oxidů na kyselé, zásadité a amfoterní.

Kyselé Zásadité Amfoterní

SiO2 CaO Al2O3

P2O5 MgO Fe2O3

TiO2 FeO Cr2O3

V2O5 MnO V2O3

Zásaditost (bazicita) strusky – se využívá k posouzení povahy ocelářských strusek. V podstatě se jedná o poměr obsahů zásaditých a kyselých oxidů ve strusce.

Zpravidla se vyjadřuje poměrem:

2%SiO%CaOB (140)

Někdy je bazicita ocelářských strusek počítána dle vztahu

322

2 O%Al%SiO%MgO%CaOB

(141)

Výhodou tohoto vyjádření zásaditosti strusek je jednoduchost, avšak mezi parametry popisující děje probíhající mezi struskou a kovem (např. odsíření nebo odfosfoření oceli) a touto zásaditostí lze nalézt převážně pouze statistické a nikoliv fyzikálně chemické vztahy.

Zásaditost strusek lze vyjádřit i jako obsah volného CaO ve strusce ve hmotnostních procentech.

Například v zásadité strusce, která obsahuje i kyselé oxidy (SiO2) a (P2O5) které reagují s (CaO) na (Ca2SiO4) a (Ca3(PO4)2), obsah volného CaO je dán rozdílem mezi analyticky stanoveným obsahem CaO a podílem CaO vázaným na kyselé oxidy.

52

OP

CaO2

SiO

CaOln O%P

M3M%SiO

M2M%CaO%CaO

522

ývo (142)

kde: CaOM , 2SiOM

52OPM jsou molární hmotnosti příslušných oxidů, kg.kmol-1

Dle stupně bazicity lze strusky rozdělit na tři skupiny

Strusky kyselé:

5,1-3,1%%

2

SiO

CaOB (143)

- obsahující 35 - 40 hmot.% CaO; 25-30 hmot.% SiO2

Page 39: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Roztavené ocelářské strusky

37

Strusky středně zásadité:

2,2-8,1%%

2

SiO

CaOB (144)

- obsahující 40-45 hmot.% CaO; 20-25 hmot.% SiO2

Strusky silně zásadité:

5,2>%%

2SiO

CaOB

(145)

- obsahující 45-55 hmot.% CaO; 12-20 hmot.% SiO2

Z molekulární teorie strusek plynou následující závěry.

a) Taveniny strusek představují elektroneutrální roztoky jak volných, tak ve sloučeninách vázaných oxidů.

b) Mezi volnými a vázanými oxidy se ustavuje chemická rovnováha.

c) Aktivní oxidy, které se podílejí na reakcích strusky s kovem, jsou pouze volné oxidy.

3.2.2 Iontová teorie strusek

Předpokládá úplnou disociaci oxidů a dalších sloučenin na ionty, to znamená na kationty a anionty. Nejdůležitější kationty, zpravidla přítomné v ocelárenských struskách, můžeme rozdělit na dvě skupiny:

1. kationty Ca2+, Mg2+, Fe2+, vyznačující se poměrně většími rozměry a poměrně malými náboji. Tyto kationty jsou stabilní, ve struskách mohou samostatně existovat.

2. kationty Si4+, P5+, Al3+, vyznačující se poměrně malými rozměry a poměrně velkými náboji. Tyto kationty mají vysokou afinitu k elektronům, nemohou ve struskách existovat samostatně, slučují se s anionty kyslíku na stabilní komplexní anionty.

Obdobně můžeme rozdělit i nejdůležitější anionty na tři skupiny:

1. Stabilní jednoduché anionty s relativně malým nábojem O2-, S2-, 2. stabilní komplexní anionty -4

4SiO , -34PO , -3

3AlO vyznačují se tzv. koordinačně kovalentní vazbou, vznikají z kationtů 2. a aniontů 1. skupiny,

3. málo stabilní komplexní anionty -2FeO , -

2CrO , -OH , aj.

Z hlediska iontové teorie je mírou zásaditosti strusek koncentrace iontů, které jsou schopny poskytovat elektronové dvojice. V roztavených struskách mohou poskytovat elektronové dvojice zejména anionty kyslíku. Při rozpouštění zásaditých oxidů v taveninách strusek dochází k jejich disociaci (rozpadu iontové mřížky těchto oxidů) a uvolňují se kyslíkové anionty, které zajišťují zásaditost strusek.

(CaO) (Ca2+) + (O2-) (146)

Page 40: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Roztavené ocelářské strusky

38

(MnO) (Mn2+) + (O2-) (147)

(FeO) (Fe2+) + (O2-) (148)

Proto je zásaditost z hlediska iontové teorie strusek definovaná jako aktivita volných

kyslíkových aniontů -2Oa .

Při rozpouštění kyselých oxidů se koncentrace kyslíkových iontů ve strusce snižuje vlivem tvorby aniontových komplexů. Tím zásaditost strusky klesá. Na poklesu zásaditosti se podílí hlavně SiO2, P2O5 a další kyselé oxidy.

3.2.2.1 Struktura křemičitanových aniontů

Základní strukturní jednotkou křemičitanů, hlinitokřemičitanů i všech modifikací SiO2, která tvoří kostru jejich mřížek, je čtyřstěn SiO4

4- (obr. 5), skládající se ze čtyř iontů kyslíku, které jsou pevně poutány malým kationtem Si4+, ležícím ve středu čtyřstěnu.

Obr. 5 Čtyřstěn (SiO4)4- v křemičitanech

Podobné čtyřstěny se mohou různě spojovat svými vrcholy prostřednictvím společných

atomů kyslíku především podle toho, v jakém poměru jsou přítomny ionty Si4+ a O2- (obr. 6 a obr. 7).

a) jednoduchý řetěz tetraedrů; b) dvojitý řetěz tetraedrů.

a) nezávislý tetraedr; b) dvojice tetraedrů; c) trojčetný kruh tetraedrů; d) čtyřčetný kruh tetraedrů; e) šestičetný kruh tetraedrů

Obr. 6 Řetězové vazby tetraedrů (SiO4)4- v křemičitanech

Obr. 7 Vazby tetraedrů (SiO4)4- v křemičitanech

Page 41: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Roztavené ocelářské strusky

39

Tudíž přítomnost SiO2 ve struskách, nevede ke vzniku jediného typu aniontů, nýbrž v závislosti na obsahu volných O2- iontů (zásaditosti strusky), umožňují vznik řady křemičitanových aniontů s různým poměrem obsahu O : Si. Např. s rostoucím obsahem iontů O2- mohou vznikat následující křemičitany.

Vliv rostoucí zásaditosti strusky na typ křemičitanového aniontu Poměr O : Si

v křemičitanovém aniontu

SiO2 2 : 1 2

522

2 OSiO2SiO 2,5 : 1

6114

2252 OSiOO2Si 2,75 : 1

23

26114 SiO4O OSi 3 : 1

23

2252 SiO2OOSi 3 : 1

672

223 OSiOSiO2 3,5 : 1

44

2672 2SiOOOSi 4 : 1

44

223 SiOOSiO 4 : 1

Navíc tyto anionty mají schopnost vytvářet řetězce – viz obr. 6 a 7. Z toho vyplývá, že čím je větší obsah SiO2 ve strusce a tudíž i nižší obsah volných O2- iontů, tím vznikají složitější křemičitanové anionty. Velikost jednotlivých článků řetězce i celých řetězců závisí na zásaditosti strusky a teplotě. S tím souvisí i důležitá fyzikální vlastnost strusek a to viskozita, která roste s růstem obsahu SiO2 a klesající teplotou. V silně zásaditých strukách s přebytkem volných O2- iontů vznikají pouze samostatné anitonty 4

4SiO , které jsou teplotně velmi stabilní.

Shrnutí pojmů kapitoly

Je uvedeno v části „Členění kapitoly“

Otázky k probranému učivu

Formulace otázek k učivu odpovídá názvům dílčích kapitol v části „Členění kapitoly“

Page 42: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Roztavené ocelářské strusky

40

4 ROZDĚLOVACÍ ROVNOVÁHA

Členění kapitoly

Rozdělení složek mezi dvěma stýkajícími se fázemi

Rozdělení kyslíku mezi struskou a kovem

o Rozdělení kyslíku mezi struskou a kovem z hlediska molekulární teorie strusek

o Rozdělení kyslíku mezi kovem a struskou z hlediska iontové teorie

Čas ke studiu: individuální

Cíl Po prostudování této kapitoly budete umět

formulovat základní pojmy

vysvětlit význam základních pojmů a jejich vzájemné souvislosti

aplikovat použití základních pojmů v procesech výroby a rafinace oceli

Základní pojmy jsou obsahem části „Členění kapitoly“

Výklad

4.1 Rozdělení složek mezi dvěma stýkajícími se fázemi

Rozdělovací rovnováha popisuje rozdělení složek rozpuštěných ve dvou stýkajících se nemísitelných fázích. Příkladem je roztavený kov a roztavená struska, které obsahují rozpuštěný kyslík, síru, fosfor, mangan a další složky. Rovnováhu v této soustavě popisuje Nerstův rozdělovací zákon.

Poměr aktivit složek rozpuštěných ve stýkajících se fázích je za dané teploty

konstantní. Tudíž pro rozdělení složky i v oceli a strusce za rovnováhy platí

( ) (149)

)(Tfa

aK

i

ii (150)

kde: (ai); [ai] … rovnovážná aktivita složky i ve strusce a v oceli, 1

Page 43: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Roztavené ocelářské strusky

41

Ki je Nernstův rozdělovací součinitel, který jako každá rovnovážná konstanta je závislý pouze na teplotě. Protože poměr aktivit složky ve strusce a v oceli je za rovnováhy konstantní, pak volbou teploty a aktivity složky ve strusce je určena i aktivita složky v tavenině oceli. Bude-li jedna fáze složkou nasycena, musí být, vzhledem k definici Nerstova rozdělovacího zákona, současně nasycena i fáze druhá.

Rovnici (150) můžeme vyjádřit ve tvaru

i

ii

fi

iK

.%

.% (151)

Tato rovnice naznačuje způsob, jímž lze snížit obsah složky [i] v kovu.

Toho lze dosáhnout:

snížením obsahu složky i ve strusce (např. stahováním strusky a vytvořením strusky nové);

zvýšením množství strusky, což sníží obsah složky i ve strusce;

snížením součinitele γi ve strusce vazbou složky i na jinou složku;

zvýšením součinitele aktivity fi v kovu změnou chemického složení kovu;

zvýšením hodnoty Ki u endotermických procesů zvýšenou teplotou a u exotermických procesů sníženou teplotou.

V praxi se často používá rozdělovací součinitel vyjádřený jako poměr obsahů složky ve strusce a oceli

i

iLi %

% =

i

ii

fK

. (152)

Tento ocelářský rozdělovací koeficient je však závislý jak na teplotě, tak na chemickém složení strusky a oceli. Ki = f(T) ; fi = f (chemické složení oceli); i = f (chemické složení strusky). V souladu s tímto principem se rozděluje řada prvků rozpuštěných v kovu a ve strusce, např. kyslík, síra, fosfor, mangan, chrom, atd.

4.2 Rozdělení kyslíku mezi struskou a kovem

4.2.1 Rozdělení kyslíku mezi struskou a kovem z hlediska molekulární teorie

strusek

Kyslík v roztavené strusce existuje jako oxid železnatý (FeO), v kovu jako atomárně rozpuštěný [O]. Mezi aktivitou kyslíku ve strusce a aktivitou kyslíku v kovu se ustavuje rovnováha podle reakce

Fe(l) + [O] = (FeO) (153)

Rovnovážnou konstantu (Nernstův rozdělovací koeficient) reakce (153) lze vyjádřit vztahem

Page 44: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Roztavené ocelářské strusky

42

O

FeO

Oa

aK (154)

kde: a(FeO), a[O] představují aktivitu FeO ve strusce a aktivitu kyslíku v kovu, 1

Za předpokladu, že kyslík v kovu tvoří zředěný roztok řídící se Henryho zákonem, platí: a[O] = [%O], tj. aktivita se nahrazuje hmotnostním procentem kyslíku. Rovnice (154) pak přechází na tvar:

O

aK

FeO

O % (155)

Je-li struska tvořena pouze FeO, je a(FeO) = 1 a pod touto struskou je obsah kyslíku v roztavené oceli maximální. Vztah (155) přechází na tvar

.max%1

OK O (156)

kde: [%O]max ….. rozpustnost kyslíku v železe při teplotě T, hmot.%

Z rovnic (155) a (156) pak vyplývá pro strusku s libovolným obsahem FeO vztah pro určení aktivity (FeO):

max

OFeO %O%O%OKa

(157)

Aktivitu FeO ve strusce lze vyjádřit a tudíž i počítat jako poměr obsahů kyslíku v oceli pod struskou daného složení a pod struskou tvořenou FeO.

Teplotní závislost rozpustnosti kyslíku v čistém roztaveném železe lze vyjádřit následovně:

2,734-

T6320

%O1loglogK

maxO

(158)

2,734T

6320-%Olog max (159)

Podle této rovnice je maximální rozpustnost kyslíku v čistém roztaveném železe při teplotě 1600°C [%O]max = 0,23 hmot.%.

Vliv kyselých a zásaditých oxidů na aktivitu FeO ve strusce

Optimální zásaditost strusek, zajišťující nejvyšší aktivitu (FeO) ve struskách, je dle dostupné literatury B = 1,7, což přibližně odpovídá hmotnostnímu poměru CaO : SiO2 ve

stabilním dikalciumsilikátu Ca2SiO4 ( 6056 . 2 1,86)

Page 45: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Roztavené ocelářské strusky

43

Je-li zásaditost strusek nižší než B = 1,7, klesá aktivita oxidu železnatého v roztavených struskách vlivem reakce FeO s volným SiO2, která je spojena s tvorbou křemičitanů.

2(FeO) + (SiO2) = (Fe2SiO4) (160)

Je-li zásaditost strusek vyšší než B = 1,7, klesá aktivita oxidu železnatého vlivem reakce (161) při které vznikají železitany vápenaté.

3(FeO) + (CaO) = (CaO) + (Fe2O3) +Fe¨(l) = (CaFe2O4) +Fe¨(l) (161)

S rostoucí bazicitou roste i obsah volného CaO a klesá obsah FeO ve strusce, tudíž klesá i oxidační schopnost strusky. Protože oxidační strusky obsahují vždy kromě FeO i kyselý Fe2O3 a ten v zásaditých struskách reaguje s volným CaO a reakce (161) se posouvá doprava.

Oxidační schopnost strusky definuje molekulární teorie roztavených strusek jako aktivitu FeO ve strusce. Obdobný účinek jako FeO má i MnO, jehož rozdělení lze popsat formálně stejně. Ostatní oxidy (např. MgO, CaO, Al2O3, aj.) nevykazují oxidační schopnost, protože nejsou v tavenině železa rozpustné a nejsou schopny zanášet do taveniny železa kyslík.

4.2.2 Rozdělení kyslíku mezi kovem a struskou z hlediska iontové teorie

Přechází-li mezifázovým rozhraním struska – kov částice s určitým elektrickým nábojem, objevují se v roztaveném kovu i v roztavené strusce přebytečné náboje.

Tak vzniká na mezifázovém rozhraní struska – kov elektrická dvojvrstva a s ní spojený určitý potenciální spád.

Vzniklá dvojvrstva by velmi brzy zabránila podobným individuálním přechodům, kdyby souběžně neprobíhaly pochody, které kompenzují další shromažďování nábojů na mezifázové hranici.

Oxid železnatý je ve strusce disociován na své ionty (Fe2+) + (O2-) a kyslík je v železa rozpuštěn atomárně [O]. Tudíž přechod aniontů kyslíku mezi struskou a kovem je nejpravděpodobněji doprovázen souběžným přechodem kationtů železa a záporné náboje se navzájem kompenzují.

[O] + 2e = (O2-) (162)

Fe(l) - 2e = (Fe2+) (163)

Fe(l) + [O] = (Fe2+) + (O2-) (164)

Rovnovážnou konstantu reakce (164) lze vyjádřit

O

OFeO a

aa=K

-2+2 (165)

Je-li struska tvořena pouze oxidem FeO, pak +2Fea = 1 a -2Oa = 1.

Page 46: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Roztavené ocelářské strusky

44

maxO

O a1=K (166)

Pak

maxmaxO

OOOOFe %O

%Oa

a=a.Kaa -2+2 (167)

Tudíž oxidační schopnost strusky podle iontové teorie lze vyjádřit shodně s molekulární teorií strusek jako poměr obsahu kyslíku v kovu pod danou struskou a obsahu kyslíku v kovu pod struskou z FeO.

Oxidační schopnost strusky představuje schopnost strusky zanášet do kovu kyslík a vyjadřuje se jako FeOa resp. -2+2 OFe

aa .

Shrnutí pojmů kapitoly

Je uvedeno v části „Členění kapitoly“

Otázky k probranému učivu

Formulace otázek k učivu odpovídá názvům dílčích kapitol v části „Členění kapitoly“

Page 47: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Reakce probíhající při výrobě a rafinaci oceli

45

5 REAKCE PROBÍHAJÍCÍ PŘI VÝROBĚ A RAFINACI

OCELI

Členění kapitoly

Způsoby oxidace prvků obsažených v surovém železe

Pořadí oxidace doprovodných prvků v surovém železe

Odfosfoření oceli

o Termodynamika procesu odfosfoření

Oxidace fosforu oxidem železnatým ze strusky

Oxidace fosforu adsorbovaným kyslíkem

o Odfosfoření z hlediska iontové teorie strusek

Odsíření ocel

o Temodynamika procesu odsíření

Odsíření oceli struskou

Odsíření dezoxidované oceli struskou

o Parametry odsíření oceli

o Odsíření oceli z hlediska iontové teorie

o Možnost odsíření oceli oxidací síry kyslíkem

Čas ke studiu: individuální

Cíl Po prostudování této kapitoly budete umět

formulovat základní pojmy

vysvětlit význam základních pojmů a jejich vzájemné souvislosti

aplikovat použití základních pojmů v procesech výroby a rafinace oceli

Základní pojmy jsou obsahem části „Členění kapitoly“

Výklad

Page 48: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Reakce probíhající při výrobě a rafinaci oceli

46

5.1 Způsoby oxidace prvků obsažených v surovém železe

V následující kapitole budou schematicky znázorněny možné způsoby oxidace doprovodných prvků - reakce probíhající v průběhu zkujňování surového železa. Při popisu způsobů oxidace doprovodných prvků se vychází z technologického postupu:

dmýchání čistého kyslíku tryskou do tekutého surového železa:

horem (LD konvertor, tandemová pec, někdy i elektrická oblouková pec),

spodem (OBM konvertor).

Oxidace probíhá následujícími způsoby:

1) plynným kyslíkem,

2) kyslíkem rozpuštěným v objemu kovu,

3) kapičkami FeO zanesenými do objemu kovu. ad 1) Oxidace prvků rozpuštěných v surovém železe plynným kyslíkem O2(g)

Tyto reakce probíhají na rozhraní plyn-kov

[Si] + O2(g) = (SiO2) ΔH << 0 (168)

[Mn] + 1/2O2(g) = (MnO) ΔH < 0 (169)

[C] + 1/2O2(g) = CO(g) ΔH < 0 (170)

Tímto způsobem přechází do strusky cca 5% rozpuštěných prvků z tekutého surového železa.

ad 2) Oxidace prvků v surovém železe kyslíkem rozpuštěným v objemu kovu

Nejprve je třeba popsat přechod plynného kyslíku do kovu. Plynný kyslík, vzhledem k vysoké afinitě k železu a vysoké teplotě, nejprve železo oxiduje a teprve v druhé etapě se vzniklé oxidy rozpouštějí v železe. (Tento mechanismus se výrazně liší o přechodu vodíku a dusíku do taveniny železa – viz kapitola 7.)

Fe(l) + 1/2O2(g) = (FeO) ; (Fe3O4); (Fe2O3); H <<0 (171)

(FeO) = Fe(l) + O H > 0 (172) 1/2O2(g) = + O H < 0 (173)

Výsledná reakce představuje tudíž jen formální součet reakcí předchozích. Vyšší oxidy železa se při styku s taveninou kovu redukují na FeO.

(Fe3O4) + Fe(l) = 4 (FeO) (174)

(Fe2O3) + Fe(l) = 3 (FeO) (175)

Podíl kyslíku, který ve formě (FeO) zůstane ve strusce a který jako atomárně rozpuštěný přejde do kovu lze ovlivnit vzdáleností kyslíkové trysky nad hladinou lázně. Při „měkkém dmýchání“ je tryska vysoko nad hladinou (např. 3 m) a vznikající FeO se soustřeďuje ve strusce, protože kapičky FeO jsou zaneseny pouze mělce pod hladinu kovu. Při „tvrdém

Page 49: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Reakce probíhající při výrobě a rafinaci oceli

47

dmýchání“ je tryska nízko nad lázní (např. 1,5 m), vznikající FeO je zanášen hluboko pod hladinu kovu a v důsledku reakce (172) se převážná část kyslíku rozpouští v kovu a obsah FeO ve strusce klesá.

Zkujňovací reakce probíhají v objemu kovu

Si + 2 O = (SiO2) H <<0 (176)

Mn + O = (MnO) H < 0 (177)

C + O = CO(g) H < 0 (178)

Tímto způsobem se oxiduje cca 85 % rozpuštěných prvků v surovém železe.

ad 3) Oxidace prvků v surovém železa na povrchu kapiček vzniklého FeO probíhá

následně (strusková fáze s vysokým obsahem FeO je v surovém železe emulgována)

Si + 2 (FeO) = (SiO2) + 2 Fe(l) H<0 (179)

Mn + (FeO) = (MnO) + Fe(l) H <0 (180)

C + (FeO) = CO( g ) + Fe(l) H >0 (181)

Příslušné reakce lze získat jako součet exotermických procesů (176), (177), (178) a endotermické reakce (172). Protože exotermický tepelný efekt oxidace uhlíku (178) je v absolutní hodnotě menší než endotermický efekt rozpouštění FeO v kovu (172), je i reakce (181) doprovázena spotřebou tepla.

Tímto mechanismem se oxiduje cca 10% prvků ze surového železa.

5.1.1 Pořadí oxidace doprovodných prvků v surovém železe

Z praxe je známo, že při zkujňování surového železa se z doprovodných prvků jako první oxiduje křemík, následuje mangan a posléze i uhlík. K oxidaci fosforu dochází až po splnění druhé podmínky tohoto procesu a tou je dostatečný obsah volného CaO ve strusce.

K započetí oxidace prvku v surovém železe může dojít až v okamžiku, kdy dosažená (skutečná) aktivita kyslíku rozpuštěného v surovém železe je větší než jeho rovnovážná aktivita vypočtená z rovnovážné konstanty, teploty surového železa, aktivity prvku v surovém železa a aktivity vznikajících oxidů ve struskové fázi.

rovn..O

skut.O aa (182)

Rovnovážnou aktivitu kyslíku odpovídající obsahu oxidovaného prvku vypočteme ze vztahu pro rovnovážnou konstantu oxidační reakce

m/n [X] + O = 1/n (XmOn) (183)

nm

nm

m

XX

1/n)(Xrovn.

O fXKa

a

nO (184)

Page 50: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Reakce probíhající při výrobě a rafinaci oceli

48

kde: KX …. rovnovážná konstanta reakce (je závislá pouze na teplotě a tudíž ji z teplotní závislosti vypočteme), 1

[X] … obsah prvku v surovém železe, hmot.%

fX …. aktivitní součinitel (obsahuje vliv složení surového železa na aktivitu prvku [X], lze jej vypočítat pomocí interakčních součinitelů a obsahu prvků v surovém železe, hmot.%-1

nOmXa …. aktivita vznikajícího oxidu ve strusce (je závislá na okamžitém

složení strusky. V prvním přiblížení lze považovat nOmXa = 1, což odpovídá vzniku čistého oxidu), 1

Tabulka 2 uvádí vypočtené hodnoty rovnovážných aktivit kyslíku pro surové železo obsahující 0,5 až 0,8 hmot.% křemíku, 0,5 až 0,8 hmot.% manganu a 4,0 až 4,5 hmot.% uhlíku při t = 1300 °C a při jednotkových aktivitách vznikajících oxidů MnOa = 1, 2SiOa = 1, pCO = 1

Tabulka 2 Rovnovážné aktivity kyslíku pro zadané složení surového železa, t = 1300 °C a požadované hodnoty aktivit kyslíku nutné pro započetí oxidační reakce.

reakce rovn.Oa pro nOmXa = 1

rovn.Oa pro

.Xm

anO 1

[Si] + 2[O] = (SiO2) 6,15 . 10-5 4,35 . 10-5 pro 2SiOa = 0,5

[Mn] + [O] = (MnO) 6,9 . 10-3 6,9 . 10-4 pro a(MnO) = 0,1

[C] + [O] = CO(g) 11,25 . 10-5 11,25 . 10-3 pro přesycení (100x)

V posledním sloupci tabulky 2 jsou uvedeny upravené hodnoty rovnovážných aktivit kyslíku, jestliže aktivity vznikajících oxidů jsou menší než jedna. Tyto hodnoty současně představují minimální hodnoty skutečných aktivit kyslíku, které jsou nutné k započetí příslušné oxidační reakce.

Křemík se oxiduje, když struska již obsahuje zásaditý oxid FeO a tudíž lze očekávat, že bude 2SiOa < 1. Oxiduje se jako první až na nulovou koncentraci.

Mangan se oxiduje do kyselé strusky s vysokým obsahem SiO2, tudíž aktivita zásaditého MnO bude výrazně menší než jedna MnOa < < 1. Oxiduje se po křemíku na hodnoty 0,1 až 0,2 hmot.% Mn.

Uhlík. Podmínkou oxidace uhlíku je vznik bubliny CO, což vytváří kinetickou bariéru průběhu uhlíkové reakce. Její překonání vyžaduje cca 100 násobné přesycení taveniny kyslíkem oproti rovnováze. Oxidace uhlíku započne po křemíku a manganu až aktivita kyslíku v surovém železe vzroste řádově na hodnotu

COa 10-3. Po vzniku bublin CO - reakce již probíhá na jejich povrchu, což

nevyžaduje přesycení a proto probíhá rychle až explozivně.

Page 51: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Reakce probíhající při výrobě a rafinaci oceli

49

Zdrojem kyslíku v surovém železe je oxid FeO, který vzniká oxidací železa ihned po zahájení dmýchání kyslíku – viz reakce (171) a (172). Tato reakce probíhá jako první před oxidací křemíku a je zdrojem jak FeO ve strusce, tak i kyslíku v kovu.

5.2 Odfosfoření oceli

Fosfor jako prvek ve většině případů představuje ve vyrobené oceli nežádoucí příměs.

Zhoršuje mechanické vlastnosti, zejména vrubovou houževnatost a způsobuje křehkost oceli za studena.

Fosfor patří mezi feritotvorné prvky tzn., že rozšiřuje oblast feritu a zmenšuje oblast austenitu.

Jedná se o povrchově aktivní prvek, v tuhé fázi se vylučuje na hranicích zrn, kde je jeho koncentrace mnohonásobně vyšší než v objemu kovu.

Dosahované obsahy fosforu:

Surové železo: 0,15 – 0,18 hmot.% v podmínkách České republiky

Běžná uhlíková ocel: pod 0,02 % hm.

Jakostní oceli: pod 100 ppm = 0,01 % hm.

Oceli namáhané za vysokých teplot: pod 10 ppm = 0,001 hmot.%

Vzhledem k nízké stabilitě oxidu P2O5 a jeho snadné redukovatelnosti ze železných rud, předchází při vysokopecním pochodu 100 % fosforu z rud do surového železa.

5.2.1 Termodynamika procesu odfosfoření

Úspěšný přechod fosforu do oxidické strusky je podmíněn několika faktory a to především:

Chemickým složením strusky

Chemickým složením kovu

Oxidačním potenciálem struky a kovu

Teplotou

Fosfor se v roztaveném železe nachází v atomární podobě. K jeho oxidaci a přechodu do strusky dochází na mezifázovém rozhraní struska – kov.

5.2.1.1 Oxidace fosforu oxidem železnatým ze strusky

Odfosfoření surového železa je dvoustupňový proces. Nejprve dochází k oxidaci fosforu na mezifázovém rozhraní se struskou přítomným FeO a následně musí být vzniklý P2O5 ve strusce stabilizován zásaditým oxidem CaO. Tyto reakce lze popsat rovnicemi

52OPFeO5P2 + 5Fe(l) (185)

24352 )(POCaCaO3OP (186)

(l)243 5FePOCaCaO3FeO5P2 (187)

Page 52: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Reakce probíhající při výrobě a rafinaci oceli

50

Protože oxidace fosforu (185) je silně exotermická, je silně exotermická i výsledná reakce (187).

Ze vztahu pro rovnovážnou konstantu reakce (187) vyplývají optimální podmínky odfosfoření kovu

Pf.aa%Pa

K4(CaO)

5(FeO)

2)(POCa

P243

(188)

vysoká aktivita FeO (obsah 18 až 25 hmot.%) a CaO (obsah 45-55 hmot.%) ve strusce

nízká aktivita Ca3(PO4)2 ve strusce - obsah Ca3(PO4)2 lze snížit stahováním strusky

snížená teplota cca 1550 - 1600°C.

Nadměrný obsah FeO ve strusce (nad 285 %) snižuje aktivitu CaO v důsledku přítomnosti kyselého oxidu Fe2O3 a nadměrný obsah CaO (nad 55 %) zvyšuje teplotu likvidu strusky, tudíž její viskozitu, hustotu a posléze i heterogenitu strusky a proces odfosfoření zpomaluje. Tímto dvoustupňovým procesem probíhá odfosfoření v LD konvertoru, T-peci, SM-peci a EOP.

5.2.1.2 Oxidace fosforu adsorbovaným kyslíkem

Podle jiného mechanismu probíhá oxidace fosforu ve spodem dmýchaném OBM konvertoru. Do tohoto agregátu je dmýchán kyslík spolu s jemně rozemletým vápnem tryskami ve dně konvertoru. Vznikající reaktivní struska obsahuje pouze cca 10 hmot.% FeO a přesto OBM konvertor odsiřuje stejně úspěšně jako horem dmýchaný LD konvertor.

V tomto procesu je zřejmě fosfor oxidován kyslíkem adsorbovaným na povrchu zrníček vápna a v okamžiku vzniku je P2O5 stabilizován reakcí s CaO

52OPO5P2 ads (189)

24352 )(POCaCaO3OP (186)

243 POCaCaO3O5P2 ads (190)

Tento mechanismus oxidace fosforu respektuje skutečnost, že oxid fosforečný je za teplot zkujňování surového železa plyn (teplota sublimace P2O5 je 358 °C). K oxidaci fosforu nemůže dojít pomocí kyslíku rozpuštěného v tavenině kovu, protože by musela vzniknout bublina P2O5 obdobně, jako při oxidaci uhlíku vzniká plynný oxid uhelnatý. Plynný P2O5 na rozdíl od plynného CO se nikdy ve spalinách nevyskytl. Tudíž je zřejmé, že fosfor je oxidován kyslíkem adsorbovaným na povrchu zrn dmýchaného vápna a molekula P2O5 v okamžiku vzniku reaguje s CaO na fosforečnan vápenatý, který spolu s dalšími oxidy obsaženými ve vznikající strusce vyplouvá do akumulační strusky na hladinu lázně.

Další málo pravděpodobnou sloučeninou je vznik fosforečnanu Ca4P2O4 v tekuté strusce podle reakce

92452 OPCaOPCaO4 (191)

Page 53: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Reakce probíhající při výrobě a rafinaci oceli

51

Ze stavového diagramu CaO-P2O5 vyplývá, že C4P2O9 je stabilní pouze v tuhé fázi a za vysokých teplot se rozkládá na Ca3(PO4)2 a CaO ještě pod teplotou tavení. Fosforečnan Ca3(PO4)2 vykazuje na tomto diagramu ostré maximám až do t 1800 °C, tzn. stabilní existenci této sloučeniny. Z toho plyne, že v tavenině strusky fosforečnan Ca4P2O9 vzniká rozpouštěním CaO ve fosforečnanu Ca3(PO4)2 a je ve skutečnosti roztokem CaOCa3(PO4)2, který může existovat v silně zásaditých struskách.

5.2.2 Odfosfoření z hlediska iontové teorie strusek

Podle iontové teorie je atom fosforu na rozhraní se struskou oxidován na fosforečný kation P5+. Akceptorem elektronů z tohoto procesu je buď železnatý kation Fe2+

z disociovaného FeO ve strusce nebo atom kyslíku adsorbovaný na rozhraní kov-struska

5e)(PP 5

(192)

l2 Fe5,25e)2,5(Fe (193)

2ads. O2,55eO2,5 (194)

Vzniklý kation P5+, který se vyznačuje vysokou afinitou k elektronům, vytváří s volnými kyslíkovými O2- ionty v zásadité strusce stabilní komplexní fosforečnanové anionty

( ) ( ) ( ) (195)

Zdrojem těchto aniontů kyslíku ve strusce je především oxid vápenatý a částečně i oxid železnatý.

1,5 (CaO) = 1,5 (Ca2+) + 1,5 (O2-) (196)

2,5 (FeO) = 2,5 (Fe2+) + 2,5 (O2-) (197)

Proces odfosfoření lze tudíž popsat dvěma mechanismy.

1. Fosfor je na rozhraní taveniny železa a strusky oxidován kationty Fe2+ z disociovaného FeO a vznikající kation P5+ je vázán na anionty O2- (viz rovnice (192) + (193) + (195)).

[P] + 2,5 (Fe2+) + 4 (O2-) = ( ) + 2,5 Fe(l) (198)

Anionty O2- vznikají disociací oxidů FeO a CaO (rovnice (196) a (197)), přičemž kationty Ca2+ současně stabilizují aniont

. Pak součtem rovnic (198) + (197) + (196) lze získat z rovnice iontové teorie odfosfoření rovnici molekulární teorie odfosfoření.

[P] + 2,5 (FeO) + 1,5 (CaO) = 0,5 (Ca3(PO4)2) + 2,5 Fe(l) (199)

2. Fosfor je na rozhraní tavenin železa a strusky oxidován kyslíkem adsorbovaným na povrchu strusky a vznikající kation P5+ je vázán na anionty O2- z disociovaného CaO (viz rovnice (192) + (194) + (195)).

34

2ads. O5,1O2,5 P PO (200)

Page 54: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Reakce probíhající při výrobě a rafinaci oceli

52

Protože zdrojem kyslíkových aniontů a současně i kationtů Ca2+ je disociovaný CaO, lze součtem rovnic (200) a (196) přeměnit iontovou reakci na reakci podle molekulární teorie strusek

[P] + 2,5 [O]ads.+ 1,5 (CaO) = 1,5 (Ca2+) + 34PO = 0,5 (Ca3(PO4)2) (201)

Souvislost mezi dvěma mechanismy procesu odfosfoření je dána reakcí rozdělení kyslíku mezi kovem a struskou (202) nebo (203).

2,5 Fe(l) + 2,5 [O]ads.= 2,5 (Fe2+) + 2,5 (O2-) (202)

resp.

2,5 Fe(l) + 2,5 [O]ads.= 2,5 (FeO) (203)

Podíl 1. mechanismu (reakce (198) nebo (199)) a 2. mechanismu (reakce (200) nebo (201)) na procesu odfosfoření je závislý na okamžité hodnotě oxidačního potenciálu strusky a oceli tzn. a(FeO) resp. a[O]. Jestliže a(FeO) > a[O], pak bude převažovat 1. mechanismus odfosfoření, jestliže a[O] > a(FeO), pak bude převažovat 2. mechanismus odfosfoření.

Z výše uvedeného rozboru vyplývá, že odfosfoření surového železa vyžaduje oxidační a zásaditou strusku a vzhledem rozdělení kyslíku mezi strusku a kovem i vysoký obsah kyslíku v kovu. V praktických podmínkách tavby v LD konvertoru odfosfoření probíhá především v první třetině procesu (nízká teplota a vysoký obsah ve strusce FeO) a v poslední třetině procesu (vysoká zásaditost i obsah FeO ve strusce, vysoký obsah kyslíku v oceli). V průběhu intenzivního oduhličení prudce klesá obsah FeO ve strusce i kyslíku v kovu a odfosfoření se zpomaluje.

Protože v LD konvertoru nelze stahovat strusku, lze tímto procesem zpracovat pouze surové železo s nízkým obsahem fosforu (max. 0,2 až 0,25 hmot.% [P]).

Zkujněná ocel před odpichem musí mít nižší obsah fosforu, než je jeho limitovaný obsah ve vzniklém odlitku, protože po dezoxidaci v pánvi může, vzhledem k redukčním podmínkám, jeho obsah v oceli pouze narůstat.

5.3 Odsíření oceli

Síra se do vyráběné oceli dostává z kovonosné vsázky a z paliva hutnických pecí (koks, topný olej apod.). Obsah síry v ocelích snižujeme, jelikož je síra u většiny značek ocelí škodlivá.

Se železem se síra v utuhlé oceli slučuje na sulfid železnatý, který tvoří se železem binární eutektikum s teplotou tání 985 °C. Při tuhnutí se toto eutektikum může vylučovat po hranicích zrn, čímž podstatně snižuje plastické vlastnosti oceli - zejména vrubovou houževnatost.

Za vysokých teplot při tváření způsobují tyto vyloučené sulfidy tzv. „křehkost za červeného žáru“ - tzn. že u oceli během tváření dochází k lomům po hranicích zrn, což samozřejmě zvyšuje technologické ztráty a snižuje výtěžek oceli.

Page 55: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Reakce probíhající při výrobě a rafinaci oceli

53

Obvyklé obsahy síry v oceli:

Konstrukční oceli: pod 0,015hmot.% (150ppm)

Hluboko odsířené oceli: pod 0,01 hmot.%(100ppm)

Oceli dlouhodobě namáhané za vysokých teplot (lopatky parních turbín), korozním prostředím (ropovody, produktovody, mořské plošiny apod.) : pod 0,005 hmot.% (50 ppm)

Oceli s řízeným obsahem síry (SBQ): 0,02-0,05 hmot.% (200 - 500ppm)

Automatové oceli se záměrně vyšším obsahem síry (až 0,1 – 0,3 hmot.%), které jsou určeny pro běžnou výrobu šroubů a matic na strojních automatech. Ocel s tímto obsahem síry má „lámavou“ třísku, což zlepšuje její obrobitelnost. Vyloučené sulfidy FeS působí rovněž při obrábění, jako tzv. mazadlo tzn., že vytváří mezivrstvu mezi ocelí a řezným nástrojem, která podstatně snižuje opotřebení.

Síra ve většině ocelí náleží k prvkům, které mají záporný vliv na její vlastnosti. Proto je úkolem metalurgie obsah síry při výrobě oceli snížit.

Největší podíl síry se z kovu odstraňuje jejím pohlcením ve strusce. Pouze v kyslíkových konvertorech (LD i OBM) se 10 až 15 % z odstraněné síry oxiduje na SO2 podle reakce:

g2g2 SOOS (204)

5.3.1 Temodynamika procesu odsíření

Teoretickou možností odsíření je reakce síry v tekuté oceli s prvky s nejvyšší afinitou k síře, jako je vápník a kovy vzácných zemin. Tyto prvky mohou vytvářet stabilní sulfidy i v tekuté oceli za vysokých teplot nad 1600 °C.

Např.

[Ca] + [S] = CaS(s) (205)

3[La] + 2[S] = La3S2 (s) (206)

Omezenou využitelnost těchto reakcí představuje u vápníku jeho nízký bod varu, který způsobuje, že v tekuté oceli je ve formě páry, která z oceli prchá do atmosféry. Kovy vzácných zemin nejprve reagují s kyslíkem na oxidy a teprve posléze se sírou za vzniku těžkotavitelných oxysulfidů. Tyto vměstky z oceli vyplouvají obtížně a podílejí se na zalepování výlevek při lití na ZPO obdobně jako oxid Al2O3.

5.3.1.1 Odsíření oceli struskou

Největší díl síry se z oceli odstraňuje pomocí strusky vhodného složení. Základní reakcí odsíření, která probíhá na mezifázovém rozhraní se struskou je reakce síry s oxidem vápenatým.

[S] + (CaO) = (CaS) + [O] (207)

Page 56: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Reakce probíhající při výrobě a rafinaci oceli

54

Ze vztahu pro rovnovážnou konstantu reakce (207) vyplývají teoretické a technologické podmínky odsíření

SCaOoS

OCaS

.fa.Ka.a

%S (208)

Protože je afinita vápníku k síře menší než ke kyslíku vyžaduje proces odsíření vysoký obsah 45 až 55 hmot.% CaO ve strusce a tomu v rovnováze odpovídá 1 až 3 hmot.% CaS. Při tomto obsahu jsou obvykle pánvové strusky oxidem vápenatým nasyceny a tudíž a(CaO) ≈ 1.

Další podmínkou procesu je nízká aktivita (CaS), což lze zajistit např. stahováním strusky a vytvářením strusky nové. Protože je reakce (207) endotermická, zvýšená teplota zvyšuje hodnotu rovnovážné konstanty o

SK a současně i ztekucuje strusku, čímž zlepšuje kinetické podmínky odsíření.

Důležitou podmínkou odsíření je minimální aktivita kyslíku v oceli, hluboké odsíření vyžaduje obsah kyslíku [O] < 15 ppm. Obsah kyslíku v oceli je vždy limitován přítomným prvkem s nejvyšší afinitou ke kyslíku. V soustavě bez dezoxidačního prvku Fe(l)-[O]-(FeO) je pro obsah [O] určující obsah FeO ve strusce a to v souladu s rovnováhou reakce.

Fe(l) + [O] = (FeO) (209)

Součtem reakcí (207) a (209) dostáváme reakci odsíření limitovanou obsahem FeO ve strusce, tzn. limitovanou oxidační schopností strusky.

Fe(l) + [S] + (CaO) = (CaS)+ (FeO) (210)

Pro hluboké odsíření by obsah FeO ve strusce neměl přesáhnout 1 hmot.% Odsíření tudíž vyžaduje zásaditou a redukční strusku a současně hluboko dezoxidovanou ocel.

5.3.1.2 Odsíření dezoxidované oceli struskou

V přítomnosti dezoxidačního prvku určuje obsah kyslíku v oceli tento prvek.

Např. při dezoxidaci oceli hliníkem se ustavuje rovnováha mezi [Al] a [O] a aktivitu kyslíku v oceli určuje hliník.

2/3[Al] + [O] = 1/3 (Al2O3) (211)

Pak i pro odsíření platí – součet reakcí (207) a (211)

[S] + (CaO) + 2/3[Al] = (CaS) + 1/3 (Al2O3) (212)

Pro obsah síry v oceli platí

SAlCaOAlS

)O(AlCaS

f.f.Al.a.Ka.a

S3

23

2

31

32 (213)

Aktivita kyslíku v rovnici (207) je zde vyjádřena pomocí rovnováhy reakce (211)

32

31

32

AlAlO

)O(AlO .K

aa

a (214)

Page 57: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Reakce probíhající při výrobě a rafinaci oceli

55

přičemž pro rovnovážné konstanty platí vztah AlO

OS

AlS K.KK (215)

Vzhledem k silně exotermickému efektu reakce (211) je i reakce odsíření oceli v přítomnosti dezoxidačního hliníku exotermická. Oxid hlinitý strusku ztekucuje a jeho optimální obsah je cca 15 hmot.%. Tím částečně nahrazuje dříve používaný kazivec CaF2. Na druhé straně v silně zásadité odsiřující strusce se chová kysele, tzn. snižuje aktivitu volného CaO. Proto nejsou vysoké obsahy Al2O3 v odsiřovací strusce žádoucí.

Podobně v bezhliníkových technologiích výroby oceli působí i křemík. Na jedné straně určuje aktivitu kyslíku v oceli, na druhé straně jeho kyselý oxid snižuje zásaditost struky ještě významněji než Al2O3. Jeho obsah ve strusce je příznivý cca do 5 hmot.% SiO2, kdy ztekucuje strusku a ještě neovlivňuje její zásaditost.

5.3.2 Parametry odsíření oceli

Mezi parametry, které v praxi využíváme, k popisu procesu odsíření patří.

1) Stupeň odsíření oceli (%)

100%S

%S-%Sηo

KoS (216)

kde. [%S]o, [%S]K …. počáteční a konečný obsah síry, hmot.%

Vyjádříme-li např. závislost stupně odsíření na obsahu FeO, zjistíme, že výrazně narůstá až po dosažení minimálního obsahu FeO ve strusce (pod cca 1,5 hmot.%). Obsahuje-li struska nad 5 hmot.% FeO, stupeň odsíření je nízký a další zvýšení obsahu FeO jej neovlivňuje – viz obr. 8

Obr. 8 Závislost stupně odsíření na obsahu FeO ve strusce

Z toho plyne, že ocelářské pecní strusky mohou odsířovat ocel pouze minimálně. K významnému odsíření může dojít pouze v redukčním a zásaditém prostředí pánve.

Page 58: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Reakce probíhající při výrobě a rafinaci oceli

56

2) Rozdělovací součinitel síry mezi struskou a kovem je vyjádřen poměrem obsahu síry ve strusce a v oceli.

%S(%S)LS , 1 (217)

Dosahované hodnoty LS v praxi metalurgických pochodů uvádí tab. 3.

Tabulka 3 Hodnoty LS u metalurgických pochodů

Metalurgický pochod Hodnota LS

VP 15 - 30 EOP 30 – 60

LD, OBM 1 – 7 pánev 100 – 250

3) Sulfidová kapacita strusky charakterizuje schopnost strusky pohlcovat síru až do stavu nasycení. Je vyjádřena vztahem

O

SS a

a%Sc (218)

resp. s ohledem na rovnici (217)

S

OSS f

aLc (219)

Pro pánvovou strusku byla stanovena empirická závislost sulfidové kapacity na teplotě a složení strusky

T13300-2,82

ABclog S (220)

kde: B = 5,626 (%CaO) + 4,15 (%MgO) – 1,152 (%SiO2) + 1,457 (%Al2O3)

A = (%CaO) + 1,391 (%MgO) + 1,86 (%SiO2) + 1,65 (%Al2O3)

Odsíření oceli ovlivňují jednak termodynamické parametry, které působí na rovnováhu procesu (chemické složení strusky i oceli, jejich teplota, obsah kyslíku ve strusce a v oceli) a jednak technologické parametry, především hmotnost strusky a výchozí a požadovaný obsah síry v oceli.

Vliv technologických parametrů lze popsat pomocí bilance síry v kovu a ve strusce, kde hmotnost síry odstraněné z kovu je rovna přírůstku hmotnosti síry ve strusce.

K ([wS]0 – [wS]) = U [(wS) – (wS)0] (221)

kde K … hmotnost kovu, kg

U … hmotnost strusky, kg

Page 59: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Reakce probíhající při výrobě a rafinaci oceli

57

[wS]0 ; [wS] … hmotnostní zlomek síry v kovu před a po odsíření 1,

100%hm.S

Sw

(wS); (wS)0 … hmotnostní zlomek síry ve strusce po a před odsířením, 1

Po úpravě

S

S

S

S

S

SS

w

w

w

w

K

U

w

ww 00 )(

(222)

S

S

S

S

S

w

wLm

w

w 00 1 (223)

kde K

Um … poměr hmotnosti strusky a kovu, 1

S

SS

w

wL

)( … rozdělovací součinitel síry, 1

Jestliže počáteční obsah síry ve strusce se blíží nule (wS)0 0 a

O

SSS a

fc´L

(rovnice 219)

O

SS

0

af

c´1 mw

w

S

S (224)

O

SS

0

af

c´1

m

ww S

S (225)

V tomto vyjádření vztahu pro dosažitelný obsah síry v oceli po odsíření [wS] jsou zahrnuty jak termodynamické (f[S], a[O]), tak i technologické parametry procesu odsíření ([wS]0, m, Sc´ ).

5.3.3 Odsíření oceli z hlediska iontové teorie

Z hlediska iontové teorie je přechod síry z kovu do strusky doprovázen přechodem aniontů kyslíku ze strusky do kovu, což kompenzuje na mezifázovém rozhraní elektrický náboj.

[S] + (O2-) = (S2-) + [O] (226)

Stejně jako u molekulární teorie strusek nízký obsah síry v kovu vyžaduje:

- nízkou aktivitu síry ve strusce )( 2Sa a kyslíku v kovu a[O]

- vysokou aktivitu kyslíkových iontů ve strusce )( 2Oa

Pokud aktivitu kyslíku v kovu určuje aktivita disociovaného FeO ve strusce, pak platí

Page 60: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Reakce probíhající při výrobě a rafinaci oceli

58

Fe(l) + [O] = (Fe2+) + (O2-) = (FeO) (227)

respektive součet rovnic (226) a (227)

[S] + Fe(l) = (S2-) + (Fe2+) (228)

Reakce (228) předpokládá, že redukci síry na sulfidový anion ve strusce doprovází oxidace železa na železnatý kation. Odsíření tudíž vyžaduje současně i nízkou aktivitu FeO ve strusce. Tuto reakci lze popsat i rovnicí (229) (součet (226) + (227)), která vyjadřuje požadavek vysoké zásaditosti )( 2O

a a nízké oxidační schopnosti )(FeOa strusky.

[S] + (O2-) + Fe(l) = (S2-) + (FeO) (229)

Pokud aktivitu kyslíku v kovu snižuje např. dezoxidační hliník, pak platí 2/3 [Al] + [O] = 1/3 (Al2O3) (230)

resp. z rovnic (226) a (230) plyne

[S] + (O2-) + 2/3 [Al] = (S2-) + 1/3 (Al2O3) (231)

kde aktivita kyslíku je vyjádřena pomocí aktivity dezoxidačního hliníku v kovu.

5.3.4 Možnost odsíření oceli oxidací síry kyslíkem

Přestože je většina síry při ocelářských pochodech odstraňována pomocí strusky, s rozvojem konvertorových procesů využívajících dmýchání kyslíku je pravděpodobné i odstraňování síry přechodem do atmosféry. Povrchová aktivita síry v kovu i ve strusce podporuje její oxidaci a přechod do plynné fáze ve formě SO2(g).

Pravděpodobný je průběh odstranění síry z kovu nebo ze strusky do plynné fáze reakcemi:

[S] + O2(g) = SO2(g) (232)

(CaS) + 3/2 O2(g) = (CaO) + (SO2) (233)

Odsíření plynnou fází, kdy se síra z kovu odstraňuje ve formě oxidu siřičitého, je doprovázeno zhoršenými exhalacemi, zvýšeným napadením vyzdívky a vyšším opotřebením odprašovacího zařízení.

V provozních podmínkách se obvykle při pochodech odsíření nedosahuje termodynamické rovnováhy. Je to způsobeno zejména kinetickými poměry reakcí.

Shrnutí pojmů kapitoly

Je uvedeno v části „Členění kapitoly“

Otázky k probranému učivu

Formulace otázek k učivu odpovídá názvům dílčích kapitol v části „Členění kapitoly“

Page 61: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Rozpouštění vodíku a dusíku v železe a oceli

59

6 ROZPOUŠTĚNÍ VODÍKU A DUSÍKU V ŽELEZE A OCELI

Členění kapitoly

Závislost obsahu plynu v tavenině oceli na tlaku

Teplotní závislost obsahu atomárně rozpuštěného plynu v roztaveném kovu

Závislost rozpustnosti vodíku a dusíku na chemickém složení oceli

Vliv vodíku na vlastnosti oceli

Vliv dusíku na vlastnosti v oceli

Čas ke studiu: individuální

Cíl Po prostudování této kapitoly budete umět

formulovat základní pojmy vysvětlit význam základních pojmů a jejich vzájemné souvislosti aplikovat použití základních pojmů v procesech výroby a rafinace oceli Základní pojmy jsou obsahem části „Členění kapitoly“

Výklad

Do pojmu plyny v oceli zahrnujeme vodík a dusík, protože rozpouštění kyslíku se řídí zcela jiným mechanismem a jeho rozpustnost v tekuté oceli je řádově vyšší.

Rozpouštění plynů v roztavených kovech a jejich vydělování z kovů jsou protichůdné pochody. Atomární rozpouštění plynů v kovech, jakož i jejich odstraňování z kovů, lze popsat obecnou rovnicí

X1/2X2 (234)

Mechanismus procesu absorpce (pohlcování) plynu v roztaveném kovu lze pak vyjádřit pomocí několika následných dějů:

difúze molekul plynu z atmosféry k povrchu kovu adsorpce molekul plynu na povrchu kovu a jejich disociace na atomy desorpce a difúze atomů plynu z povrchu do objemu kovu. Na druhé straně vydělování plynu z roztaveného kovu je spojeno s molekularizací

atomů plynu v povrchu kovu před difuzí takto vzniklých molekul do atmosféry.

Page 62: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Rozpouštění vodíku a dusíku v železe a oceli

60

6.1 Závislost obsahu plynu v tavenině oceli na tlaku

Obsah plynu v tavenině oceli je závislý na jeho parciálním tlaku nad taveninou, teplotě a chemickém složení oceli. Pro atomární roztok plynu v roztaveném kovu při konstantní teplotě vzhledem k rovnici (234) platí

rX

X

X2

pfKX (235)

kde: KX … rovnovážná konstanta Sievertsova zákona, 1

0X

X

rX2

2

2 pp

p … relativní parciální tlak plynu nad kovem, 1

2Xp … parciální tlak plynu nad kovem, Pa

0X2

p = 101325 Pa – parciální tlak plynu ve standardním stavu,

[X] … rovnovážný obsah atomárně rozpuštěného plynu v kovu, hmot.%

fX … aktivitní koeficient plynu rozpuštěného v oceli, hmot.%-1

Rovnice (235) je matematickým vyjádřením Sievertsova zákona. Sievertsův zákon je krajním případem obecnějšího Henryho zákona, který popisuje molekulární rozpouštění plynů v roztocích. Jestliže rozpouštění plynů v kovech není zcela atomární povahy, pak mocnitel v rovnici (235) nabývá hodnotu od 0,5 do 1,0.

Za předpokladu, že (px2)r = 1 a fx = 1, platí [X]max. = Kx. Hodnota Kx odpovídá rozpustnosti plynu v tavenině železa nebo nízkolegované oceli (fx→ 1) a je závislá pouze na teplotě. Rozpustnost se vyjadřuje v hmotnostních procentech či ppm.

6.2 Teplotní závislost obsahu atomárně rozpuštěného plynu v roztaveném

kovu

Tuto teplotní závislost lze za konstantního tlaku vyjádřit empirickou rovnicí

lnC2RTΔHXln (236)

kde: ΔH … celkové teplo rozpouštění 1 molu plynu, J.mol-1

C … konstanta závislá na druhu plynu a kovu

Součinitel 2 ve jmenovateli znamená, že se dvouatomární molekula plynu rozpouští v disociovaném stavu.

Rozpouštěcí teplo je tvořeno adsorpčním teplem ΔHA, disociačním teplem ΔHD a v případě, že plyn s kovem chemicky reaguje i reakčním teplem ΔHR

RDA ΔHΔHΔHΔH (237)

Page 63: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Rozpouštění vodíku a dusíku v železe a oceli

61

Zatímco disociace molekul plynu na atomy je vždy endotermický děj ΔHD > 0, adsorpce plynu v povrchu kovu a jeho chemická reakce s kovem jsou obvykle exotermické děje ΔHA < 0 a ΔHR < 0.

U plynů, které se vyznačují malou rozpustností v kovech, je výsledný tepelný efekt rozpouštění endotermický ΔH > 0, protože teplo spotřebované na disociaci molekul plynu převyšuje hodnotu adsorpčního tepla, přičemž ΔHR = 0.

Proto například rozpustnost vodíku v α, γ, δ i roztaveném železe s teplotou narůstá, zatímco rozpustnost dusíku v γ železe s teplotou klesá vzhledem k exotermickému efektu reakce γ železa s dusíkem za vzniku nitridů.

Rozpouštění vodíku a dusíku v čistém roztaveném železe se řídí Sievertsovým zákonem. Oba plyny se rozpouštějí v tavenině železa atomárně a vzhledem k převážně endotermickému charakteru procesu rozpouštění s rostoucí teplotou jejich rozpustnost narůstá.

Teplotní závislosti rozpustnosti vodíku a dusíku v tuhém α, γ, δ železe a v roztaveném železe (fH=1,fN=1), za tlaku pH2,N2=0,1 MPa, jsou uvedeny v tab. 4 pro vodík a tab. 5 pro dusík.

Tabulka 4 Závislost rozpustnosti vodíku v železe na teplotě

železo B

T

AHKH /log/log

ΔH, kJ.mol-1

pro /H/ v % hm.

α, δ 2,313T

1453 55,6

γ 2,169T

1422 54,4

tekuté 1,585T

1900 72,8

Tabulka 5 Závislost rozpustnosti dusíku v železe na teplotě

železo B

T

AHKH /log/log

ΔH, kJ.mol-1

pro /H/ v % hm.

α 1,009T

1580 60,5

γ 1,932T

420 -16,08

δ 1180T

1330 50,9

tekuté 1,24T

188 7,2

Page 64: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Rozpouštění vodíku a dusíku v železe a oceli

62

Výraz A v teplotní závislosti rozpustnosti vodíku či dusíku v sobě zahrnuje celkové rozpouštěcí teplo 1 molu rozpuštěného plynu

R2,3032ΔHA

(238)

Vypočtené hodnoty rozpustnosti vodíku a dusíku v α, γ, δ a tekutém železe jsou znázorněny na obrázcích 9 a 10.

Obr. 9 Vliv teploty na rozpustnost vodíku v

železe při tlaku 0,1 MPa. Obr. 10 Vliv teploty na rozpustnost dusíku v

železe při tlaku 0,1 MPa.

6.3 Závislost rozpustnosti vodíku a dusíku na chemickém složení oceli

Hodnoty rozpustnosti vodíku a dusíku odpovídají rovnováze čistého železa s plynnou fází obsahující pouze vodík nebo dusík při tlaku 0,1MPa (obr. 9 a 10). V praktických podmínkách mimopecní rafinace odplyňujeme ocel obsahující řadu rozpuštěných prvků, přičemž atmosféra nad kovem, resp. plynná bublina vyplouvající z kovu obsahuje i další druhy plynů.

Rozpustnost vodíku a dusíku v tavenině železa obsahující třetí prvek je určována silami vzájemného působení mezi rozpouštědlem (železem) a rozpuštěným plynem (vodíkem či dusíkem) a legujícím prvkem (Ri).

Hydridotvorné prvky (Zr, Ti, Nb, V, Ce) zvyšují rozpustnost vodíku. Prvky, které netvoří hydridy (Cr, Ni, Mn, Co, Mo, W) rozpustnost vodíku ovlivňují málo.

Skupina prvků (C, Si, S, P a další) snižuje rozpustnost vodíku, protože tyto prvky zvyšují aktivitu rozpuštěného vodíku a mají schopnost tvořit se železem karbidy, silicidy, sulfidy, fosfidy a tudíž snižovat termodynamickou aktivitu železa.

Page 65: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Rozpouštění vodíku a dusíku v železe a oceli

63

Legující prvky z hlediska jejich vlivu na rozpustnost dusíku v roztaveném železe je možno rozdělit do několika skupin.

1. Ti, Zr, V, Nb a další prvky tvoří s dusíkem stabilní nitridy a tudíž s růstem jejich koncentrace rozpustnost dusíku v železe roste.

2. Cr, Mn, Mo mají vysokou afinitu k dusíku, a proto zvyšují jeho rozpustnost v tekutém železe, i když při běžných koncentracích v roztavené oceli nitridy netvoří.

3. C, P, Ni ,Cu snižují rozpustnost dusíku v roztaveném železe, protože zvyšují aktivitu rozpuštěného dusíku.

4. Si a Al jsou sice nitridotvornými prvky, avšak křemík snižuje a hliník téměř nemění rozpustnost dusíku v železe.

5. O a S mají na rozpustnost dusíku v železe malý vliv.

Vodík a dusík rozpuštěné v oceli mají vliv na mechanické a technologické vlastnosti oceli, na její jakost. Vodík zhoršuje vždy jakost oceli, dusík v některých případech, pokud se užívá jako legující prvek, její vlastnosti zlepšuje. Obsah vodíku a dusíku v oceli závisí především na druhu oceli a způsobu její výroby.

6.4 Vliv vodíku na vlastnosti oceli

Vodík se do oceli při její výrobě dostává z pecní atmosféry, z vlhkosti kovové vsázky (lisovaný ocelový odpad, porézní feroslitiny) a struskotvorných přísad (vápno, železná ruda, bauxit, kazivec). Oceli vyrobené v kyslíkovém LD konvertoru mají poměrně nízký obsah vodíku (2 – 3 ppm), vyšší obsah vodíku (5 - 7ppm) mají oceli vyrobené v elektrických obloukových pecích, nejvyšší obsah vodíku je v OBM konvertoru (5 – 10 ppm) vzhledem k dmýchaní kyslíku s chladicím plynem (zemní plyn).

Vodík v oceli snižuje plastické vlastnosti oceli, aniž zvyšuje jejich pevnost (podobně jako kyslík) a způsobuje vznik tzv. vločkovitosti v oceli.

V roztaveném železe je rozpustnost vodíku cca 0,0025hmot.% (25 ppm), během tuhnutí a dalšího poklesu teploty dochází k jejímu snížení až na 1 ppm (600°C).

Vodík se obdobně jako dusík umísťuje v intersticiálních polohách mřížky železa α i γ - tzn. tvoří intersticiální tuhý roztok.

V železe γ je rozpustnost větší než v železe δ, což opět souvisí s velikostí dutin mezi atomy v základní mřížce KSC a KPC.

Skoková změna rozpustnosti při tuhnutí a při přeměně železa γ na α způsobuje porušení rovnováhy, uvolnění atomárního vodíku z mřížky, přičemž probíhá jeho difúze k mikrodefektům, do okolí nekovových vměstků (sulfidy, karbidy) nebo k mikrotrhlinám. V těchto místech se koncentruje a probíhá jeho rekombinace na molekulární vodík, který je již v mřížce nepohyblivý.

Tato změna je doprovázena vznikem vysokých tlaků (řádově desítky MPa), které vyvolávají silné místní pnutí vedoucí při teplotách 200 až 400 °C až k porušení soudržnosti materiálu a vzniku některých typických vad, jako jsou např. vlasové trhliny, vločky.

Page 66: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Rozpouštění vodíku a dusíku v železe a oceli

64

Z tohoto hlediska je žádoucí, aby v oceli bylo dostatek potenciálních míst pro „uchycení“ vodíku tzv. trapping points tak, aby nedocházelo k vylučování vodíku místně ve větších koncentracích s následným vznikem vločkovitosti. Jako místa pro uchycení vodíku slouží nejčastěji drobné sulfidy vyloučené v základní ocelové matrici.

Pro eliminaci vzniku vločkovitosti se někdy u zvlášť exponovaných ocelí zařazuje tzv. protivločkové žíhání. Taktéž je možné nechat ocelové polotovary (ingoty, výkovky, předvalky) po vystripování velmi pomalu ochlazovat tak, aby měl vodík dostatek času difundovat z kovu.

Nejúčinnějším způsobem eliminace škodlivého vlivu vodíku v oceli je však snížení jeho obsahu již v roztavené oceli, např. v podmínkách sníženého tlaku, které se provádí různými technologiemi vakuové metalurgie.

Vakuováním tekuté oceli lze snížit obsah vodíku průměrně o 50 – 80 %. Větší snížení obsahu vodíku ve srovnání s obsahem dusíku je zapříčiněno vyšší hodnotou koeficientu difúze H v tekutém železe (DH 3,5.10-7 m2 s-1 , DN 5,5.10-9 m2 s-1).

Vzhledem k vysoké povrchové aktivitě kyslíku a síry platí, že silně dezoxidovaná a odsířená ocel je náchylnější na pohlcování dusíku a vodíku z okolní atmosféry např. během odlévání oceli.

6.5 Vliv dusíku na vlastnosti v oceli

Dusík se do vyráběné oceli dostává především z pecní atmosféry a jeho množství je závislé na způsobu výroby oceli.

Ocel vyrobena v kyslíkovém konvertoru obsahuje 0,0030 až 0,0060 hmot.% N, ocel vyrobena v elektrické obloukové peci může mít obsah dusíku vyšší (až 0,0160 hmot.%), v důsledku rozpouštění ionizovaného dusíku, který se nachází v oblasti vysokých teplot elektrického oblouku.

Rozpouštění dusíku v železe je endotermický proces což znamená, že při snižování teploty se jeho rozpustnost v železe snižuje (obr. 10).

Skokové změny rozpustnosti dusíku při změně modifikace železa (při 911°C a 1392°C) souvisí s dutinami mezi atomy železa v mřížce KPC a KSC.

V oblasti γ železa se s poklesem teploty rozpustnost dusíku zvyšuje (viz obr. 10). Tento jev je zapříčiněn tvorbou nitridů Fe2N a Fe4N. Reakce vzniku nitridů Fe jsou exotermické a jejich kladný tepelný efekt převyšuje zápornou hodnotu tepla adsorpce a disociace dusíku v železe.

Vylučování nitridů z přesyceného tuhého roztoku dusíku v železe probíhá precipitací, při které atomy intersticiálního dusíku difundují většinou k hranicím zrn, mřížkovým poruchám nebo dislokacím, kde dochází k jejich shlukování a tvorbě nitridů.

Tento proces probíhá za normálních teplot velmi pomalu (řádově roky) a označuje se jako stárnutí oceli. Stárnutí oceli je podporováno zvýšením teploty, deformací za studena aj.

Page 67: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Rozpouštění vodíku a dusíku v železe a oceli

65

Stárnutí oceli, při kterém dochází k tvorbě nitridů, má velmi nepříznivý vliv na vlastnosti oceli. Snižuje se pevnostní a deformační charakteristiky oceli, jejichž důsledkem je výrazné zkřehnutí oceli - snižuje se tažnost, vrubová houževnatost, mez únavy. Zvětší se možnost křehkých lomů při nízkých teplotách.

Zvlášť nebezpečné je vylučování nitridů v úzkém pásmu okolo svarových spojů, které může při nižších teplotách vést k úplnému rozrušení svařované konstrukce. Vyloučené nitridy mohou rovněž zvýšit sklon oceli k interkrystalické korozi.

Základním předpokladem pro zabránění stárnutí oceli je podstatné snížení obsahu dusíku v oceli např. vhodnou volbou struskového režimu, uplatněním pánvové a vakuové metalurgie apod.

Vakuováním tekuté oceli lze snížit obsah dusíku průměrně o 10 – 30 %. Hlubší snížení obsahu dusíku je nesnadné z důvodu nízké hodnoty koeficientu difúze dusíku v tekutém železe.

Jinou možností eliminace nepříznivého vlivu dusíku je jeho vyvázání na stabilní sloučeniny přísadou nitridotvorných prvků (zejména Al, Ti, Nb).

Při přísadě Al dochází k tvorbě nitridu hliníku, který působí méně škodlivě než nitridy železa a navíc zjemňuje zrna feritu v oceli.

Dusík může být u některých ocelí použit i jako úmyslná legující přísada. Uplatňuje se pro svou schopnost stabilizovat austenit a zjemňovat zrno základní matrice.

Dusík rozšiřuje oblast austenitu - je austenitotvorným prvkem podobně jako nikl a mangan.

U chromových feritických ocelí s 12 až 16 hmot.% Cr způsobuje obsah 0,1 až 0,15 hmot.% N nárůst podílu austenitu ve struktuře a ocel se stává tvárnější a má větší odolnost vůči mezikrystalické korozi.

Shrnutí pojmů kapitoly

Je uvedeno v části „Členění kapitoly“

Otázky k probranému učivu

Formulace otázek k učivu odpovídá názvům dílčích kapitol v části „Členění kapitoly“

Page 68: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Kyslík v železe a oceli

66

7 KYSLÍK V ŽELEZE A OCELI

Členění kapitoly

Mechanismus rozpouštění kyslíku v oceli

Formy existence kyslíku v utuhlé oceli

Vliv kyslíku na vlastnosti oceli.

Cíl Po prostudování této kapitoly budete umět

formulovat základní pojmy

vysvětlit význam základních pojmů a jejich vzájemné souvislosti

aplikovat použití základních pojmů v procesech výroby a rafinace oceli

Základní pojmy jsou obsahem části „Členění kapitoly“

Výklad

7.1 Mechanismus rozpouštění kyslíku v oceli a formy existence kyslíku

v utuhlé oceli

Kyslík je prvek, který má při zkujňování surového železa zásadní technologický význam. Pomocí kyslíku, ať už v plynné formě nebo ve formě oxidické (železné rudy) je prováděno zkujňování roztavené lázně, při němž dochází k oxidaci doprovodných prvků, jako je uhlík, křemík, mangan, fosfor atd.

Rozpouštění plynného kyslíku v tekutém železe probíhá jiným mechanismem než rozpouštění vodíku a dusíku. Kyslík, vzhledem k vysoké afinitě k železu, při kontaktu s taveninou oceli chemicky reaguje na FeO (resp. i na vyšší oxidy Fe3O4, Fe2O3) a teprve následně se FeO v oceli rozpouští. Mechanismus tohoto děje je popsán v kapitole 6.

Výsledná sumární reakce ½O2(g) = [O] (173)skutečný průběh rozpouštění kyslíku v oceli nevyjadřuje. Důkazem dvoustupňovitého mechanismu je i skutečnost, že pouhým vakuováním nelze kyslík z oceli odstraňovat, protože článek (172) mechanismu neobsahuje plynnou fázi a tudíž na rovnováhu této reakce nemá tlak vliv.

Po zkujňování zůstává část kyslíku rozpuštěna v oceli. Tento rozpuštěný kyslík má na vlastnosti oceli negativní vliv. Spolu se sírou umožňuje vznik nizkotavitelných eutektik, které

Čas ke studiu: individuální

Page 69: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Kyslík v železe a oceli

67

způsobují „lámovost“ oceli při válcování za červeného žáru. Konkrétně ternární eutektikum Fe-FeO-FeS má teplotu tání pouze 910 °C. Proto po skončeném zkujňování kyslík rozpuštěný v oceli odstraňujeme pomocí dezoxidace prvky majícími vyšší afinitu ke kyslíku, než má železo. Produkty těchto dezoxidačních reakcí se mohou vyskytovat i v utuhlé oceli jako nekovové vměstky nebo bubliny CO.

Nekovové vměstky se v ocelích vyskytují v makro, mikro nebo submikroskopické velikosti (tzn. od velikosti 70μm až po < 1μm, většinou v rozmezí 5 – 10 μm) a jejich působení na vlastnosti oceli je silně závislé na jejich chemickém složení, tvaru, velikosti a rozmístění. Vlastnosti oceli ovlivňují převážně negativně a z oceli se je snažíme metodami sekundární metalurgie odstranit.

Do obsahu 0,06 hmot.% [O] se tavenina Fe-O chová jako zředěný roztok a tudíž f[O] = 1. Při vyšších obsazích kyslíku v železe lze f[O] při t = 1600 °C počítat ze vztahu

log f[O] = - 0,2 [hmot.%O] (221)

Z teplotní závislosti rovnovážné konstanty reakce (173) lze počítat rovnovážné tlaky kyslíku v atmosféře, které odpovídají dosahovaným obsahům kyslíku v oceli

4,242T

6046(atm.)p

ppmOlog 21O2

(239)

Tabulka 6 Rovnovážný tlak kyslíku v atmosféře odpovídající obsahům kyslíku v oceli při

t = 1600°C.

[O] pO2

ppm atm. Pa

100 1,15 . 10-11

1,16 . 10-6

500 2,87 . 10-10

2,91 . 10-5

2300 6,07 . 10-9

6,15 . 10-4

Z tab. 6 vyplývá, že i zanedbatelné parciální tlaky kyslíku v atmosféře (řádově 10-4 Pa) jsou schopny při t = 1600 °C zajistit nasycení taveniny železa kyslíkem.

Shrnutí pojmů kapitoly

Je uvedeno v části „Členění kapitoly“

Otázky k probranému učivu

Formulace otázek k učivu odpovídá názvům dílčích kapitol v části „Členění kapitoly“

Page 70: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Uhlíková reakce a její význam při výrobě a rafinaci oceli

68

8 UHLÍKOVÁ REAKCE A JEJÍ VÝZNAM PŘI VÝROBĚ A

RAFINACI OCELI

Členění kapitoly

Význam uhlíkové reakce při výrobě a rafinaci oceli

Podmínky rovnováhy v soustavě [C] - [O] - CO(g)

o Hmotnostní bilance uhlíku a kyslíku v průběhu uhlíkové reakce

Čas ke studiu: individuální

Cíl Po prostudování této kapitoly budete umět

formulovat základní pojmy

vysvětlit význam základních pojmů a jejich vzájemné souvislosti

aplikovat použití základních pojmů v procesech výroby a rafinace oceli

Základní pojmy jsou obsahem části „Členění kapitoly“

Výklad

Uhlíková reakce je nejdůležitější reakcí při výrobě oceli. Bez uhlíkové reakce by pochody při výrobě a rafinaci oceli často nebyly uskutečnitelné.

8.1 Význam uhlíkové reakce při výrobě a rafinaci oceli

1. Při zkujňování je uhlíková reakce významným zdrojem tepla, které je nutné k ohřevu vsázky na odpichovou teplotu oceli. Představuje cca 50 % z tepla všech exotermických reakcí probíhajících při zkujňování surového železa. Příčinou je vysoký obsah uhlíku v surovém železe až 4,5 hmot.%.

2. Při reakci mezi uhlíkem a kyslíkem v roztaveném železe se vybavují plynné bubliny oxidu uhelnatého, které při pronikání roztaveným kovem vyvolávají tzv. var lázně. Var lázně umožňuje teplotní i chemickou homogenizaci kovu, zabezpečuje průběh

Page 71: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Uhlíková reakce a její význam při výrobě a rafinaci oceli

69

reakcí mezi kovem a struskou, pomáhá vylučovat plyny rozpuštěné v kovu a usnadňuje vyplouvání nekovových vměstků z kovu.

3. Při vakuování oceli lze uhlíkovou reakci využít k dezoxidaci oceli (vakuová uhlíková dezoxidace – VCD), přičemž produkty této reakce neznečišťují ocel.

4. Uhlíkovou reakci lze využít také k hlubokému oduhličení při výrobě korozivzdorných ocelí s vysokým obsahem Cr a limitovaným obsahem C. Tento proces se nazývá oxidační vakuování (VOD).

Reakce uhlíku s kyslíkem v roztaveném železe lze vyjádřit rovnicemi

[C] + [O] = CO(g) (240)

[C] + 2 [O] = CO2(g) (241)

CO(g) + [O] = CO2(g) (242)

Rovnovážné konstanty a jejich teplotní závislosti vyjadřují následující vztahy

OC ffOCpK CO

CO

2,075T

1168logK CO (243)

2O

2CO

CO ffOCp

K 2

2

C

625,2T

9886logK2CO (244)

OfOpp

KCO

2COCOCO2

7,4T

8718logK COCO2

(245)

Reakce (241) má význam jen při velmi nízkém obsahu uhlíku v kovu a při [C] > 0,1 hmot.% již téměř neprobíhá.

Například při teplotě 1600 °C a obsahu [C] = 0,1 hmot.% je rovnovážný obsah CO2 v plynné směsi CO-CO2 pouze 1,8 %obj.

Z rovnice (243) lze pro teplotní závislost volné entalpie reakce (240) odvodit vztah

2,075

T1168RT2,303logKRT2,303ΔG CO

o

(246)

T39,7322363STΔHΔG 000 (247)

Pak afinita uhlíku ke kyslíku podle reakce (240) závisí na teplotě vztahem

39,73T22363G-afinita 00Tp,

0Tp, STH (248)

Protože entropie plynné fáze CO je řádově větší než entropie [C] a [O] rozpuštěných v tavenině železa, je výsledná reakční entropie při vzniku CO reakce (240) kladná (S0 = 39,73 J.K-1.mol-1).

Page 72: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Uhlíková reakce a její význam při výrobě a rafinaci oceli

70

0O

0C

0CO

0 SSSΔS 0O

0C

0CO SSS S0 > 0 (249)

Z toho plyne, že s rostoucí teplotou roste afinita uhlíku ke kyslíku, tudíž i stabilita CO a redukční schopnost uhlíku.

Reakční entropie při vzniku většiny ostatních oxidů, např. MnO, SiO2, Al2O3 apod. je záporná, a tudíž afinita těchto prvků ke kyslíku s rostoucí teplotu klesá, klesá i stabilita vzniklých oxidů. Uhlík je tudíž za vysokých teplot nejsilnějším redukčním činidlem – viz obr. 11.

Obr. 11 Redukční schopnost uhlíku za vysokých teplot

Na tomto obrázku jsou schematicky znázorněny teplotní závislosti afinity prvků obsažených v oceli [Mn], [Si], [Al] a [C] na teplotě. Průsečíky těchto závislostí odpovídají teplotám, kdy afinity prvků a uhlíku ke kyslíku jsou stejné. To znamená, že při vyšších teplotách než TMn, TSi, TAl může uhlík redukovat příslušné prvky z jejich oxidů podle reakce

1/n (XmOn) + C = CO(g) + m/n X (250)

Afinita uhlíku ke kyslíku roste i s klesajícím tlakem (G u reakcí spojených se změnou objemu je závislá i na tlaku). To se projeví i na závislostech aktivity kyslíku na obsahu uhlíku při klesajícím pCO za konstantní teploty vypočítaných z rovnice (243). Rostoucí dezoxidační schopnost uhlíku za sníženého tlaku je porovnávána s dezoxidační schopností dalších prvků na obr. 12. Dezoxidační schopnost je zde vyjádřena pomocí rovnovážné aktivity kyslíku v závislosti na obsahu prvku a na tlaku CO.

Page 73: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Uhlíková reakce a její význam při výrobě a rafinaci oceli

71

Obr. 12 Závislost aktivity kyslíku rozpuštěného v roztaveném Fe na obsahu C, Si, Al, Ca a Mg při t = 1600°C.

Např. pro t =1600 °C a fC = 1 je KCO = 499,5 a z rovnice (243) pro aktivitu kyslíku platí

].[a ][

CK

p

CO

COO . Pak při pCO 10 kPa 0,1 (atm) a obsahu [C] = 0,1 hmot.% je

a[O] = 210-3 hmot.% a při pCO = 1 kPa = 0,01 (atm) a stejném obsahu uhlíku je a[O] = 210-4 hmot.%.

8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g)

Uhlíková reakce je slabě exotermická HCO < 0 (H°CO = -22363 J.K-1.mol-1) a tudíž s rostoucí teplotou se její rovnováha posouvá mírně na stranu výchozích složek

Uhlíková reakce je však výrazně závislá na tlaku a jeho snížením se její rovnováha významně posouvá na stranu produktu CO. V praxi to znamená, že ve vakuu lze ocel úspěšně dezoxidovat anebo hluboko oduhličit.

Rovnováhu uhlíkové reakce v závislosti na tlaku znázorňuje Vacher – Hamiltonova izoterma – viz obr. 13.

Page 74: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Uhlíková reakce a její význam při výrobě a rafinaci oceli

72

Obr. 13 Rovnováha mezi obsahem uhlíku a kyslíku v tavenině oceli při teplotě t = 1 600 °C a

relativním tlaku pCO = 1 a pCO = 0,1 (KCO = 499,5)

Křivky na tomto obrázku znázorňují rovnovážný průběh závislosti O = fC pro tlak pCO = 1 a pro tlak pCO = 0,1 při konstantní teplotě 1600 °C. Současně je zde patrný i průběh poklesu obsahů uhlíku a kyslíku ze dvou náhodně zvolených výchozích úrovní na rovnovážné hodnoty pro tlaky pCO = 1 a pCO = 0,1.

Průběh závislostí mezi obsahy O a C lze odvodit z hmotnostní bilance uhlíku a kyslíku v průběhu uhlíkové reakce (výsledek je ve hmotnostních procentech).

8.2.1 Hmotnostní bilance uhlíku a kyslíku v průběhu uhlíkové reakce

Úbytky obsahu uhlíku a kyslíku v průběhu reakce

[C] + [O] CO(g) (240)

lze vyjádřit v molárních jednotkách

–dnC = –dnO (251)

resp. ve hmotnostních procentech (MC = 12, MO = 16)

Page 75: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Uhlíková reakce a její význam při výrobě a rafinaci oceli

73

hm.%Od43hm.%Od

1612hm.%Cd (252)

Rovnici (252) lze integrovat od počátečních obsahů [C] a [O] do rovnovážných obsahů [C]r a [O]r a upravit na tvar

rr OO43CC (253)

kde: [C], [O] … počáteční obsah uhlíku a kyslíku v oceli, % hm.

[C]r, [O]r … rovnovážný obsah uhlíku a kyslíku v oceli, hmot.%(při teplotě oceli t a vnějším tlaku pV, resp. tlaku v bublině argonu P)

Rovnováhu mezi obsahem uhlíku a kyslíku lze popsat pomocí rovnovážné konstanty reakce (240) KCO a parciálního tlaku CO nad hladinou lázně nebo v bublině CO.

Pro fC = 1 a fO = 1 platí

rCO

rCOr OK

pC

(254)

Hodnoty KCO lze počítat z teplotní závislosti rovnovážné konstanty reakce (240)

2,075T1681Klog CO (243)

Pro teplotu 1 600 °C je KCO = 499,5.

Dosazením rovnice (254) do (253) lze po úpravě získat kvadratickou rovnici (255). Kladným řešením této rovnice je vztah mezi rovnovážným obsahem kyslíku v oceli a parciálním tlakem CO pro zadané počáteční obsahy uhlíku a kyslíku v oceli (256). Odpovídající rovnovážný obsah uhlíku lze počítat dosazením [O]r do rovnice (254).

0Kp

34O

43CO

34O

CO

rCOr

2r

(255)

Kladným řešením této rovnice je vztah mezi rovnovážným obsahem kyslíku a parciálním tlakem CO pro zadané počáteční obsahy uhlíku a kyslíku v oceli.

CO

rCO

Kp

34O

43C

94O

43C

32O

2

r

(256)

Rovnici (254) lze taktéž upravit na tvar (257)

rCO

COr CK

pO

(257)

Dosazením rovnice (257) do (253) lze po úpravě získat kvadratickou rovnici (258)

0Kp

43O

43CCC

CO

rCOr

2r

(258)

Page 76: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Uhlíková reakce a její význam při výrobě a rafinaci oceli

74

Kladným řešením této rovnice je vztah mezi rovnovážným obsahem uhlíku v oceli a parciálním tlakem CO pro zadané počáteční obsahy uhlíku a kyslíku v oceli (259)

CO

rCO2

r Kp

43O

43C

41O

43C

21C

(259)

Rovnovážný obsah kyslíku se vypočítá pomocí rovnice (257).

Na obr. 13 je znázorněn:

a) Průběh uhlíkové reakce z výchozího obsahu [C]poč. = 0,1 hmot.% a [O]poč. = 0,05 hmot.% do rovnovážného obsahu uhlíku a kyslíku jednak při pCO = 1 a jednak při pCO = 0,1 v případě vakuové uhlíkové dezoxidace oceli VCD.

b) Průběh uhlíkové reakce z výchozího obsahu [C]poč. = 0,05 hmot.% a [O]poč. = 0,1 hmot.% do rovnovážného obsahu uhlíku a kyslíku jednak při pCO = 1 a jednak při pCO = 0,1 v případě oxidačního vakuování oceli VOD.

Rovnice (256) platí pro počáteční obsahy [C] – 3/4[O] > 0, resp. [C] > 3/4 [O], to znamená pro všechny body napravo od stechiometrické přímky. To je podmínka průběhu vakuové uhlíkové dezoxidace VCD (Vacuum Carbon Deoxidation).

Rovnice (259) platí pro počáteční obsahy 0O43C , resp. O

43C , tzn. pro všechny

body nalevo od stechiometrické přímky. To je podmínka průběhu oxidačního vakuování oceli (VOD) s cílem ocel hluboko oduhličit. Tento proces je v praxi využíván pro hluboké oduhličení korozivzdorných ocelí vysoce legovaných chromem.

Jestliže [C] = 3/4 [O], pak se počáteční bod nachází na stechiometrické přímce, kde obsahy uhlíku a kyslíku jsou ve stechiometrickém poměru. Rovnice (256), se zjednoduší na tvar (260), resp. rovnice (259) na tvar (261).

CO

rCOr K3

p4O (260)

CO

rCOr K4

p3C (261)

Jedná se o závislost rovnovážného obsahu kyslíku resp. uhlíku v oceli na parciálním tlaku CO pro teplotu, která je obsažena v hodnotě KCO podle rovnice (243) za předpokladu, že výchozí obsahy [C] a [O] jsou ve stechiometrickém poměru

43

O

C .

Shrnutí pojmů kapitoly

Je uvedeno v části „Členění kapitoly“

Otázky k probranému učivu

Formulace otázek k učivu odpovídá názvům dílčích kapitol v části „Členění kapitoly“

Page 77: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Dezoxidace oceli

75

9 DEZOXIDACE OCELI

Členění kapitoly

Srážecí dezoxidace oceli

o Dezoxidace manganem

o Dezoxidace křemíkem

o Dezoxidace hliníkem

Dezoxidace komplexními dezoxidovadly (feroslitinami)

Difúzní dezoxidace

Dezoxidace oceli syntetickými struskami

Vakuová uhlíková dezoxidace (VCD – Vacuum Carbon Deoxidation)

Čas ke studiu: individuální

Cíl Po prostudování této kapitoly budete umět

formulovat základní pojmy

vysvětlit význam základních pojmů a jejich vzájemné souvislosti

aplikovat použití základních pojmů v procesech výroby a rafinace oceli

Základní pojmy jsou obsahem části „Členění kapitoly“

Výklad

Téměř veškerá ocel je vyráběna oxidačními pochody, a proto v závěru tavby zůstává v kovové lázni určité množství rozpuštěného kyslíku.

Obsah kyslíku zbývajícího po oxidaci doprovodných prvků v kovové lázni závisí na složení kovu, složení strusky (aktivitě FeO), na teplotě lázně a druhu výrobního pochodu.

Úkolem dezoxidace je snížit obsah kyslíku v tekuté oceli na požadovanou výši, neboť v průběhu chladnutí, tuhnutí a krystalizace oceli se rozpustnost kyslíku podstatně snižuje, což vede ke vzniku oxidů Al2O3, SiO2, MnO, FeO, CO atd. podmiňujících vznik dutin, pórů a znečištění utuhlé oceli oxidickými vměstky. To se projeví ve špatné tvářitelnosti a zhoršení mechanických vlastností oceli.

Podle úrovně snížení obsahu kyslíku se v průběhu tuhnutí oceli reguluje průběh oduhličovací reakce (u neuklidněných a polouklidněných ocelí), anebo se průběh reakce mezi uhlíkem a kyslíkem zcela potlačí (u uklidněných ocelí).

Page 78: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Dezoxidace oceli

76

Dle způsobu provedení dělíme dezoxidaci na srážecí, difúzní, dezoxidaci syntetickými

struskami a vakuovou uhlíkovou dezoxidaci.

9.1 Srážecí dezoxidace oceli

Podstata srážecí dezoxidace spočívá v přísadě dezoxidovadel - látek s vyšší afinitou ke kyslíku než má železo - do oceli za vzniku v oceli nerozpustných oxidů.

Ke srážecí dezoxidaci se používají feroslitiny (např. FeMn, FeSi) nebo technicky čisté kovy (Al). Výhodné je i používání komplexních feroslitin (FeMnSi; FeMnSiAl; FeCaSi apod.) s poměrem obsahů dezoxidujících prvků, který zajistí vznik tekutých, z oceli dobře vyplouvajících vměstků. Výhodou použití feroslitin je jejich nižší cena oproti ceně technicky čistých kovů.

Srážecí dezoxidace se provádí nejčastěji při odpichu oceli z pece do pánve, někdy i jako předběžná dezoxidace v peci před odpichem oceli (např. v EOP), nebo při rafinaci v pánvi vstřelování Al drátu do oceli, což zajistí úzké rozmezí obsahu kyslíku v kovu.

Při srážecí dezoxidaci dochází současně k nalegování kovu dezoxidujícícm prvkem, protože i tyto reakce se po určité době blíží k rovnováze.

Cílem legování oceli je dosažení požadovaného obsahu neželezného kovu v oceli při jeho minimálním propalu, zatímco cílem dezoxidace je snížení obsahu kyslíku. I k legování se používají feroslitiny prvků s často vysokou afinitou ke kyslíku (např. FeTi, FeNb, FeV, FeCr apod.). Před jejich použitím musí být ocel dostatečně hluboko dezoxidována, aby se minimalizoval propal těchto prvků. K legování se však používají i prvky s nižší afinitou ke kyslíku než má železo (W, Mo, Ni, Cu). Jejich použití již není vázáno na hlubokou dezoxidaci oceli.

Hlavní výhodou srážecí dezoxidace je

snadnost provedení,

rychlost průběhu chemické reakce.

Nevýhoda srážecí dezoxidace spočívá ve znečišťovaní oceli nekovovými vměstky.

Posouzení schopnosti prvku dezoxidovat ocel.

1) Prvním přibližným kritériem je afinita prvku ke kyslíku (afinita)p,T = - (G°)p,T. Tato hodnota je však tabelována při t = 25 °C, která se výrazně liší od teplot tekuté oceli.

2) Poměrně přesným kritériem je měrná hodnota rovnovážné konstanty dezoxidační reakce vztažená na 1 mol kyslíku.

Podle tohoto kritéria vychází pro teplotu 1600 °C následující pořadí afinity prvků ke kyslíku od nejvyšší k nejnižší hodnotě:

Ca, Ba, Mg, Ve, La, Th, Y, Ce, Hf, Zr, W, Al, Ti, C, B, Ta, Si, V, Nb, Cr, Mn, Fe, W, Mo, Cd, Cu, Ni.

Page 79: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Dezoxidace oceli

77

3) Dezoxidační schopnost prvků lze nejúplněji posuzovat pomocí měrné hodnoty

rovnovážného obsahu kyslíku pro daný dezoxidující prvek.

Dezoxidaci oceli popisuje obecná reakce m/n X + O = 1/n (XmOn) (262)

Ze vztahu pro rovnovážnou konstantu lze odvodit výraz pro obsah kyslíku v oceli po dezoxidaci.

ox

)(

ffXK

aO

nm

nm

n1

mOnX

(263)

Kde: O] ... rovnovážný obsah kyslíku v oceli po dezoxidaci, hmot.%

fx, fo ... aktivitní součinitel dezoxidujícího prvku a kyslíku, hmot.%-1

X … obsah dezoxidujícího prvku, hmot.% K … rovnovážná konstanta dezoxidační reakce, 1

a(XnOm) … aktivita vznikajícího oxidu, 1

V hodnotě rovnovážné konstanty je obsažena afinita dezoxidujícího prvku ke kyslíku a vliv teploty. Významný je i vliv chemického složení oceli na dezoxidační schopnost prvků ukrytý v aktivitních součinitelích fX a fO.

Pokud je zplodinou dezoxidace čistý oxid, pak aXnOm = 1. Pokud zplodinu dezoxidace tvoří nenasycený roztok, pak aXnOm < 1, což se příznivě projeví v hodnotě rovnovážného obsahu kyslíku. Tato skutečnost se využívá při dezoxidaci komplexními přísadami.

Se zvyšujícím se obsahem dezoxidujícího prvku X však nedochází k monotónnímu poklesu rovnovážného obsahu kyslíku, dokonce od určité hodnoty koncentrace prvku X obsah O obvykle začne narůstat. To je způsobeno v důsledku klesající hodnoty aktivitního součinitele fO při rostoucím obsahu dezoxidujícího prvku [X] v rovnici (263). Minimum na křivce závislosti O = fX lze počítat pomocí interakčních koeficientů.

)een

m(2,303n

m

)ene(m2,303mX

xo

xx

xo

xx

max

(264)

Co se týká výběru dezoxidačních prvků, je třeba brát zřetel na zbytkové obsahy kyslíku v oceli po provedené dezoxidaci a na možnost reakce dezoxidačního prvku s dalšími metaloidy, především dusíkem a sírou.

Při srážecí dezoxidaci oceli je třeba počítat i s jejími technologickými důsledky:

výběr dezoxidovadel je třeba volit se zřetelem na zbytkový obsah kyslíku po dezoxidaci.

zbytkový obsah dezoxidačního prvku nalegovává kovovou lázeň.

Page 80: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Dezoxidace oceli

78

propal dezoxidujícího prvku je způsoben nejen průběhem dezoxidační reakce, ale i oxidačním účinkem strusky či atmosféry.

pořadí přidávání feroslitin by mělo zajistit vznik tekutých zplodin dezoxidace.

zplodiny dezoxidace ovlivňují chemické složení strusky.

9.1.1 Dezoxidace manganem

Při nízkém obsahu manganu v roztaveném železe lze dezoxidační reakci vyjádřit rovnicí

xMn + O + (1-x)Fe(l) = xMnO(1-x)FeO (265)

Při vyšším obsahu manganu je ve zplodinách dezoxidace MnO a rovnice se zjednodušuje

Mn + O = MnO(s) (266)

Mangan je slabým dezoxidačním prvkem. S kyslíkem se slučuje na oxid manganatý, který má zásaditý charakter. S oxidem železnatým je neomezeně mísitelný (obr. 14).

Obr. 14 Závislost teplot likvidu a solidu na obsahu MnO v tavenině FeO-MnO.

Uvážíme–li, že teplota roztavené oceli bývá okolo 1600°C, vyplývá z toho, že vměstky FeO-MnO vznikající při reakci mohou být kapalné nebo tuhé, podle toho, jaký je v nich poměr FeO : MnO.

Vliv vzájemné rozpustnosti oxidu železnatého a manganatého je velmi důležitý a činí při nízkém obsahu manganu v železe dezoxidaci účinnější, než kdyby za stejných podmínek vznikal čistý, tuhý oxid manganatý.

Page 81: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Dezoxidace oceli

79

9.1.2 Dezoxidace křemíkem

Křemík je silnějším dezoxidovadlem než mangan. Při obsahu křemíku do 0,05 hmot.% se tvoří v lázni křemičitany. Reakce probíhají podle rovnic

Si + 4O + 2Fe(l) = (Fe2SiO4) (267)

Si + 3O + Fe(l) = (FeSiO3) (268)

Při vyšším obsahu křemíku vzniká oxid křemičitý

Si + 2O = SiO2 (269)

Teplotní závislost rovnovážné konstanty

469,1130477log T

KSi (270)

Rovnovážné obsahy kyslíku a křemíku při různých teplotách jsou uvedeny na obr. 15. Při vyšší teplotě je v rovnováze se stejným obsahem křemíku vyšší obsah kyslíku. Dezoxidační schopnost křemíku proto klesá se stoupající teplotou. Obsah kyslíku se při zvyšování obsahu křemíku nejprve snižuje, nad 0,5 hmot.% Si klesá již nepatrně. Aby se využila dezoxidační schopnost křemíku, je jeho obsah u nelegovaných ocelí 0,3 až 0,5 hmot.%. Při obsahu nad 0,5 hmot.% se již počítá mezi legovací prvky.

Obr. 15 Rovnovážné obsahy kyslíku a křemíku při různých teplotách

Minimum na křivce wO = f(wSi) odpovídá obsahu křemíku 1,79 hmot.% a obsahu kyslíku 49.10-4 hmot.%, tj. 49 ppm. (Vypočteno pro: t = 1600°°C, Si

Sie = 0,025, SiOe = – 0,134).

Za přítomnosti uhlíku nebo manganu se dezoxidační schopnost křemíku v tavenině železa zvyšuje. Uhlík zvyšuje aktivitu křemíku ( C

Sie = 0,176), zásaditý MnO z dezoxidace manganem, snižuje aktivitu SiO2. Při dezoxidaci uhlíkových ocelí pouze křemíkem a manganem nelze vyloučit možnost vzniku bublin oxidu uhelnatého v tuhnoucím ingotu, a to následkem oxidace uhlíku vyvolané sklonem oceli k likvaci uhlíku a kyslíku.

Page 82: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Dezoxidace oceli

80

9.1.3 Dezoxidace hliníkem

Hliník patří mezi nejběžnější a nejčastěji používané dezoxidační přísady. Zplodinou dezoxidace oceli hliníkem je oxid hlinitý, v němž je oxid železnatý téměř nerozpustný. Pokud vzniká produkt dezoxidace typu FeO . Al2O3 (hercynit), pak jen tehdy, je-li obsah hliníku v kovu nepatrný. Reakci při přísadě hliníku do lázně popisujeme rovnicí:

2Al + 3O = Al2O3(s) (271)

Teplotní závislost rovnovážné konstanty

20,586T

63790Klog Al (272)

Závislost mezi obsahem hliníku a kyslíku v oceli je na obr. 16

Obr. 16 Závislost mezi obsahem hliníku a kyslíku v systému Fe- Al-O při 1600°C

Minimum na křivce O = fAl vypočteme ze vztahu (264).

Pro AlAle = 0,0781 a Al

Oe = -3,8969 je Almax = 0,075 hmot.% a tomu při t = 1600 °C odpovídá Omin = 3,5 . 10-4 hmot.%, tj. 3,5 ppm.

V soustavě Fe-O-N-Al se může hliník nacházet jako:

Alkovový., hliník, který jedině určuje obsah kyslíku v tavenině,

Al2O3 (oxid hlinitý) nebo MeO . Al2O3 (komplexní oxid),

AlN (nitrid hliníku).

Kovový hliník snižuje obsah kyslíku v oceli. Jeho přebytek má však vliv na jakost oceli, proto musí být udržován v poměrně úzkých hranicích.

Hliník ve spojení se sírou má rozhodující vliv na morfologii sulfidických a oxysulfidických vměstků. Podle množství přísady hliníku k oceli se výrazně mění tvar a uspořádání oxysulfidických vměstků a tím i mechanické vlastnosti oceli. V praktických podmínkách výroby oceli však koexistují všechny základní typy vměstků.

Page 83: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Dezoxidace oceli

81

Hliník se do lázně přisazuje obvykle do pánve. Propal hliníku je značný a je závislý na způsobu přidávání hliníku a obsahu kyslíku v oceli.

Volné vhození hliníkové housky do pece nebo na dno pánve nedává dobré výsledky. Hliník je lehký, zůstává snadno ve strusce a oxiduje se vzdušným kyslíkem.

Osvědčilo se ponořovat hliník připevněný na tyči buď do pece, nebo do pánve.

Výhodnější metoda je však přidávání hliníku vstřelováním Al drátu do lázně. Tento způsob zaručuje přisazení předepsaného množství hliníku, minimalizuje propal a zpřesňuje hloubku dezoxidace.

9.1.4 Dezoxidace komplexními dezoxidovadly

Dezoxidace komplexními slitinami je založena na poznatku, že dezoxidační schopnost prvků se vzájemně ovlivňuje a při optimálním poměru jednotlivých složek dochází ke zvýšení dezoxidační schopnosti.

Mezi nejznámější komplexní dezoxidační přísady patří feroslistiny na bázi křemíku, jako silikomangan, silikoaluminium, silikokalcium aj.

Nejvíce se v provozu rozšířila slitina křemíku a vápníku, která se využívá zvláště při modifikaci nekovových vměstků.

9.2 Difúzní dezoxidace

Spočívá ve vytvoření nerovnováhy mezi aktivitou FeO ve strusce a aktivitou kyslíku v kovu podle reakce

Fe(l) + O = (FeO) (273)

Termodynamickou podmínkou průběhu reakce (273) zleva doprava je nerovnost odvozená ze vztahu pro rovnovážnou konstantu této reakce

[O]

(FeO)FeO a

aK (274)

a(FeO) < KFeO . aO (275)

2,734T

6320Klog FeO (276)

Snižováním aktivity FeO ve strusce se vytváří podmínky pro transport kyslíku z kovu k hranici struska-kov a pro průběh reakce (263).

Strusku lze dezoxidovat (dezaktivovat) např. pomocí FeSi (dezoxidace pod bílou struskou), nebo pomocí metalurgického koksu nebo karbidem vápníku (dezoxidace pod karbidickou struskou).

2(FeO) + Si(s) = SiO2 + 2Fe(l) (277)

(FeO) + C(s) = CO(g) + Fe(l) (278)

V podmínkách vysokých teplot pod oblouky EOP probíhá reakce

Page 84: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Dezoxidace oceli

82

3 C(s) + (CaO) = CaC2 + CO(g) (279)

3(FeO) + (CaC2) = (CaO) + 2CO(g) + 3Fe(l) (280)

Karbidickou struku je vhodné v závěru tavby převézt pomocí FeSi na bílou, protože zbývající CaC2 při chlazení vodou reaguje na výbušný a jedovatý acetylen.

(CaC2) + H2O(l) = C2H2(g) + (CaO) (281)

Difúzní dezoxidace se provádí v redukčním údobí tavby v EOP.

Přednost tohoto způsobu dezoxidace spočívá v tom, že není doprovázena vznikem vměstků.

Nevýhodou významně omezující její využitelnost je pomalý průběh limitovaný difúzí kyslíku v kovu.

Použití bílých strusek je výhodné při výrobě nízkouhlíkových a středně uhlíkových ocelí.

Výhodou použití karbidické strusky je vyšší dezoxidační schopnost; nevýhodou je pak možnost nauhličení lázně a vyšší hustota strusky.

V důsledku uvedených nepříznivých fyzikálních vlastností karbidická struska při odpichu špatně vyplouvá z kovu a může být příčinou velkého množství nekovových vměstků v oceli.

9.3 Dezoxidace oceli syntetickými struskami

Princip difúzní dezoxidace se uplatňuje i při dezoxidace oceli synstetickou strusku. Tudíž musí být splněna nerovnost a(FeO) < KFeO . aO. Rozdíl spočívá v technologii provedení.

Syntetická struska se smísí z materiálů neobsahujících FeO a v pánvi se předem nataví na teplotu 1700 až 1750 °C. Do pánve se z výšky odpíchne ocel, např. z EOP. Po dopadu oceli dojde k prostoupení obou fází, tím i k výraznému zvětšení stykového povrchu oceli a strusky a k intenzivnímu míchání obou fází. Transport kyslíku k povrchu kapky kovu probíhá turbulentní difúzí, která je cca 104 krát rychlejší než atomární difúze. Kromě dezoxidace oceli zde dochází i ke koagulaci a koalescenci vměstků a jejich pohlcování struskou. Tím dochází i ke zvýšení metalografické čistoty oceli. Tento proces se nazývá „perrenování“ podle objevitele - Perrin. Nízkou aktivitu FeO ve strusce lze zajistit jednak výběrem surovin a jednak dezaktivací strusky hliníkovou krupicí, ferosiliciem nebo karbidem vápníku. Původně se k dezoxidaci používaly kyselé strusky (55 až 65 hmot.% SiO2, 15a až 25 hmot.% Al2O3, zbytek CaO + MgO). Oxid SiO2 snižuje aktivitu FeO v kyselých struskách v důsledku reakce

(SiO2) + (FeO) = (FeO.SiO2) (282)

Při rafinaci oceli je nutno zabránit výtoku pecní strusky obsahující FeO do rafinační pánve.

Spotřeba strusky se pohybuje od 2 do 6 % hmotnosti oceli.

Účinnost rafinace oceli syntetickou struskou vzrůstá se stupněm emulgace kovu a strusky.

Page 85: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Dezoxidace oceli

83

Stupeň emulgace roste se zvětšováním výšky proudu vytékajícího kovu, se zvětšováním rychlosti lití kovu do pánve a se zvětšováním množství strusky.

Při použití zásadité strusky k rafinaci oceli dochází především k odsíření oceli, a to za předpokladu, že syntetická struska neobsahuje FeO (i MnO) a ocel je současně dezoxidována.

K rafinaci oceli předem natavenou zásaditou tekutou syntetickou struskou se používají převážně hlinitovápenaté strusky tvořené 50 až 56 % CaO, 40 až 44 % Al2O3, 1 až 4 % MgO, 2 až 3% SiO2, max. 1 % FeO.

Tato struska taje již při teplotě 1450°C a má viskozitu při 1600°C nižší než 0,2 Pa.s. K její přípravě se používá pálené hutní vápno a suroviny na bázi korundu s vysokým obsahem Al2O3.

9.4 Vakuová uhlíková dezoxidace (VCD – Vacuum Carbon Degasing)

Uhlíková reakce je jedinou metalurgickou reakcí, která je doprovázena vznikem plynné fáze. Tudíž rovnováha této reakce je výrazně závislá na tlaku (viz kapitola 9.2)

Vliv sníženého tlaku na její průběh se využívá při dezoxidaci oceli ve vakuu. Z průběhu izoterm na obr. 13 a z rovnice (256) vyplývá, že ve vakuu lze teoreticky snížit obsah kyslíku na úroveň jednotek ppm. V praktických podmínkách je tak hluboké snížení obsahu kyslíku limitováno kinetickými podmínkami reakce.

Průběh uhlíkové reakce je vázán na nukleaci bublin CO, což vyžaduje mnohonásobné přesycení taveniny tak, aby skutečný součin CO byl cca 100 krát vyšší než součin rovnovážný. Součástí vakuování oceli musí být i dmýchání inertního plynu. Na povrchu bublin argonu může probíhat uhlíková reakce bez nutnosti nukleace bublin CO, což je důležité zvláště v závěru vakuování. Dalším významným cílem vakuování je odplynění oceli, tj. snížení obsahu vodíku a dusíku. Výhodou VCD je skutečnost, že není doprovázena vznikem vměstků.

Mezi technologické varianty vakuování patří.

Vakuování oceli v pánvi umístěné v kesonu – VD: Vacuum Degassing

Vakuování oceli v proudu do pánve nebo do kokily umístěné v kesonu

Vakuování oceli v komoře zdvižným způsobem – DH: Dortmund – Hüttenunion

Vakuování oceli v komoře oběžným způsobem – RH: Ruhrstahl – Heraeus

Shrnutí pojmů kapitoly

Je uvedeno v části „Členění kapitoly“

Otázky k probranému učivu

Formulace otázek k učivu odpovídá názvům dílčích kapitol v části „Členění kapitoly“

Page 86: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Vměstky v oceli

84

10 VMĚSTKY V OCELI

Členění kapitoly

Rozdělení nekovových vměstků

Termodynamika procesu vzniku endogenních vměstků

Termodynamické podmínky nukleace zárodků vměstků v oceli

Modifikace vměstků vápníkem

Vliv vápníku na vlastnosti oceli

Čas ke studiu: individuální

Cíl Po prostudování této kapitoly budete umět

formulovat základní pojmy

vysvětlit význam základních pojmů a jejich vzájemné souvislosti

aplikovat použití základních pojmů v procesech výroby a rafinace oceli

Základní pojmy jsou obsahem části „Členění kapitoly“

Výklad

Nekovové vměstky jsou velmi drobné makroskopické, mikroskopické až submikroskopické částice nekovového charakteru, které se vyskytují ve vyrobené oceli.

Jejich původ je různý a souvisí zejména s průběhem fyzikálně-chemických reakcí při vlastní výrobě, odlévání a tuhnutí oceli.

Jejich přítomnost je v oceli ve většině případů nežádoucí, neboť mají nepříznivý vliv na celou řadu vlastností oceli - a to jak na technologické, tak i užitné.

Nekovové vměstky není možno z oceli úplně odstranit. Poznávání zdrojů a příčin jejich vzniku však vytváří podmínky pro cílené snižování jejich výskytu nebo pro záměrné ovlivňování jejich složení, množství, tvaru a rozdělení v oceli tak, aby jejich nepříznivý vliv na vlastnosti oceli byl minimální.

Page 87: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Vměstky v oceli

85

10.1 Rozdělení nekovových vměstků

Nekovové vměstky rozdělujeme podle následujících kritérií:

a) podle původu dělíme vměstky na:

exogenní - jsou do oceli zanášeny z vnějšku např. při erozivním a korozivním působení oceli na žárovzdorný materiál (žlab, kanálky, vyzdívka)

endogenní – jsou produkty chemických reakcí a fyzikálně chemických dějů probíhajících v oceli při výrobě, dezoxidaci, legování, krystalizaci a tuhnutí oceli; podíl endogenních vměstků je cca 90 % celkového množství vměstků.

b) podle chemického složení dělíme vměstky na:

jednoduché sloučeniny: oxidy, sulfidy, nitridy, karbidy

složitější komplexní systémy: oxysulfidy, silikáty, alumináty, karbonitridy, karbosulfidy apod.

c) podle teploty, při kterých vznikají, dělíme vměstky na:

primární vměstky - vznikají v tekuté oceli v oblasti teplot ocelářských pochodů, tj. při cca 1600-1650°C zejména po přísadě dezoxidovadel.

sekundární vměstky – vznikají v okolí teplot likvidu oceli, vlivem klesající teploty a tudíž snižující se rozpustnosti kyslíku a rozpuštěných prvků.

terciární vměstky - vznikají mezi teplotou likvidu a solidu oceli v důsledku prudkého poklesu rozpustnosti kyslíku, síry, dusíku apod. při tuhnutí taveniny a tedy při místním zvýšením koncentrace těchto prvků v matečné tavenině.

precipitační vměstky – vznikají pod teplotou solidu v důsledku tepelného resp. mechanického zpracování oceli za tepla, difúzí prvků z objemu na hranici zrn kovu a následnou reakcí.

d) podle tvaru, homogenity a rozmístění dělíme vměstky na

globulární (vznikají jako tekuté nad teplotou likvidu oceli),

hranaté (obvykle tuhé krystalky např. Al2O3),

dendritické (vznikají při tuhnutí oceli v důsledku segregace prvku do mezikrystalických prostor),

homogenní (jednofázové), heterogenní (tvořené více na sebe nabalenými fázemi např. oxidy na povrchu s vyloučenými sulfidy apod.),

neuspořádané, uspořádané (např. po hranicích zrn, ve shlucích, jednotlivě).

e) podle tvařitelnosti dělíme vměstky na:

tvařitelné,

netvařitelné,

částečně tvařitelné.

Page 88: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Vměstky v oceli

86

Tvařitelnost vměstků je nutno posuzovat ve vztahu k tvařitelnosti základní ocelové matrice. Při tváření oceli působí tlak nejen na matrici, ale i na vměstky.

Pokud má matrice menší tvařitelnost než mají vměstky, mohou se vměstky značně deformovat.

Vliv teploty zde sehrává důležitou roli - se stoupající teplotou se obyčejně zvyšuje tvařitelnost oceli, kdežto tvařitelnost vměstků se může snižovat.

Obr. 17 Tvařitelnost vměstků ve vztahu k tvařitelnosti matrice.

10.2 Termodynamika procesu vzniku endogenních vměstků

Vznik endogenních vměstků vyžaduje splnění jak termodynamických podmínek chemické reakce, tak i termodynamických podmínek vzniku nové fáze ve fázi matečné.

Reakce vzniku oxidů, sulfidů, nitridů či karbidů vyžaduje splnění následujících podmínek.

Např. pro vznik sulfidických vměstků typu MnS(s) platí

Mn + S = MnS(s) (283)

Page 89: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Vměstky v oceli

87

Teplota tání MnS je 1610 °C proto je pravděpodobný vznik tuhého vměstku. Ze vztahu pro rovnovážnou konstantu reakce (283) lze odvodit výraz pro rovnovážný součin koncentrací manganu a síry v oceli

SMnMnS

MnSrovn

ffK

aSMn

... (284)

096,38474log T

KMnS (285)

Je zřejmé, že tento rovnovážný součin je závislý na teplotě (KMnS = f(T)) a složení oceli (fMn.fS). Aktivita vznikajícího tuhého MnS aMnS 1. U běžných konstrukčních ocelí se součin fMn.fS blíží k jedné.

Tudíž termodynamickou podmínkou vzniku MnS je nerovnost, kdy skutečný součin koncentrací manganu a síry v oceli je větší než vypočtený součin rovnovážný.

(Mn S)skut. (Mn S)rovn. (286)

O tom, zda vměstek v oceli vznikne, rozhoduje součin skutečných obsahů reagentů, teplota a chemické složení oceli i složení vznikajícího produktu reakce.

Ze vztahů (284) a (285) lze vypočítat teplotu vzniku vměstků MnS pro konkrétní obsahy manganu a síry v tuhnoucí oceli

)(log).(log])][([log096,38474

.. MnSskutSMnskut affSMnT

(287)

Např. tuhý vměstek MnS (aMnS = 1) v běžné konstrukční oceli (fMn.fS = 1) při obsahu 0,5 hmot.% Mn a 0,015 hmot.% S, může nukleovat při teplotě 1623 K, tj. 1350 °C, či teplotě nižší.

10.3 Termodynamické podmínky nukleace zárodků vměstků v oceli

Výskyt endogenních nekovových vměstků v oceli nutně předpokládá procesy vzniku nové fáze.

Nukleace nové fáze je obecně možná za takových podmínek, kdy v roztocích dosahují heterogenní koncentrační fluktuace (místní i časové odchylky koncentrace od střední hodnoty) tak vysokých hodnot, že umožňují vznik zárodků, čímž dochází k rozpadu původního homogenního roztoku.

K vyloučení stabilních zárodků nové fáze v roztoku a k jejich dalšímu růstu může docházet jen tehdy, je-li při tomto ději celková změna Gibbsovy energie záporná přičemž může být nekonečně malá.

Pro výpočet změny volné entalpie soustavy při vzniku nové fáze (resp. nukleační volné entalpie zárodku vměstku) se uvádí rovnice:

G = V .ρ/M .(G2 - G1) + . (288)

Kde G2 … Gibbsova energie nové složky v nasyceném roztoku nebo v čistém stavu, J.mol-1

Page 90: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Vměstky v oceli

88

G1 … Gibbsova energie nové složky ve skutečném roztoku, J.mol-1

G2-G1 … rozdíl charakterizující přesycení roztoku; pro nukleaci je nutné aby G1>G2, tzn. G2-G1<0 (zárodky vznikají v přesyceném roztoku)

V … objem zárodku nové fáze, m3 M … molární hmotnost zárodku, kg.mol-1

… povrch zárodku nové fáze, m2

ρ … hustota zárodku, kg.m-3

… mezifázové napětí na mezifázové hranici mezi vylučujícími se zárodky nové fáze a roztokem, J.m-2

Jak ukazuje rovnice (288), představuje vznik zárodků nové fáze i vytvoření nového mezifázového povrchu. K tomu je potřebná určitá energie, označená jako aktivační energie

nukleace, která je dána součinem velikostí povrchu () a příslušného mezifázového napětí () – je to vlastně práce při zvětšování povrchu proti silám povrchového napětí.

Úpravou předcházející rovnice pro zárodek kulového tvaru o poloměru r dojdeme ke vztahu

ΔG = 4/3 r3 . ρ/M . (G2 - G1) + 4 r2. (289)

Závislost G soustavy při tvorbě zárodků nové fáze ukazuje následující obr. 18.

Obr. 18 Změna Gibbsovy energie soustavy při tvorbě zárodků nové fáze

První objemový člen pravé strany rovnice může mít kladnou nebo zápornou hodnotu (je dána rozdílem G2-G1). Druhý povrchový člen je vždy kladný. Je-li G1 < G2 bude s rostoucím poloměrem r vzrůstat celková hodnota Gibbsovy energie G.

Růst G (G2 > G1) signalizuje, že pochod je termodynamicky neschůdný ve směru zvětšování poloměru zárodku r. Přidáme-li do nenasyceného roztoku krystaly nové složky tak se začnou rozpouštět). Schůdný je naopak ve směru snižování r

Page 91: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Vměstky v oceli

89

Bude-li G1 > G2 (tj. v případě přesyceného roztoku) bude G s rostoucím r nejdřív vzrůstat, avšak při překročení určité hodnoty r začne naopak klesat. První objemový člen s hodnotou r3 bude v absolutní hodnotě větší než druhý povrchový člen s hodnotou r2

.

Maximum na křivce odpovídá tzv. kritické velikosti zárodku rkrit, od kterého je již zárodek schopen dalšího růstu. Vznik zárodků menší velikosti je málo pravděpodobný, a pokud vzniknou, okamžitě se rozpouští v matečné fázi.

Vznik zárodků nové fáze může probíhat buď procesem homogenní nebo heterogenní nukleace.

Homogenní nukleace - bez přítomnosti cizího povrchu - je možná jen při vysokých hodnotách přesycení matečné fáze. Vytvoření nového mezifázového povrchu uvnitř homogenní taveniny vyžaduje vyšší aktivační energii nukleace než při nukleaci heterogenní.

Velikost kritického zárodku při vzniku nové fáze mechanismem homogenní nukleace můžeme získat derivací rovnice (289). Dostaneme pak vztah:

O12

21krit. C

CRTlnGG;.ρGG

M2σr

ρCCRTln

M2σr

O

krit.

(290)

kde: C/CO = - stupeň přesycení, C … okamžitá koncentrace, Co … koncentrace nasyceného roztoku.

Z uvedeného výrazu vyplývá, že velikost kritického zárodku je funkcí mezifázového napětí, přesycení a teploty. Hodnoty rkr zárodků nekovových vměstků se pohybují v rozmezích řádově 10-10 až 10-9 m.

Obr. 19 Závislost velikosti kritického zárodku na stupni přesycení pro různé hodnoty

mezifázového napětí a teploty

Page 92: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Vměstky v oceli

90

Z uvedených rovnic a obr. 19 vyplývají tyto závěry:

1. s rostoucím stupněm přesycení se při dané hodnotě mezifázového napětí a hodnotě teploty zmenšuje rozměr stabilních zárodků nové fáze

2. vyšší teploty při jinak stejných hodnotách přesycení a mezifázového napětí vedou ke zmenšování rozměru stabilních zárodků nové fáze

3. čím vyšší je hodnota mezifázového napětí mezi zárodkem a roztokem (taveninou) tím je hodnota rkrit vyšší (tzn. práce spojená s tvorbou zárodků nové fáze kritické velikosti je větší), tzn.:

při nízkých hodnotách mezifázového napětí se tvoří zárodky nové fáze velmi intenzivně již při nízkých hodnotách přesycení

zvýšení hodnoty mezifázového napětí, např. při zvýšeném obsahu některé ze složek, vede k podstatnému snížení intenzity tvorby zárodků nové fáze

další zvýšení hodnoty vede k vyloučení možnosti homogenní nukleace zárodků i při mnohonásobném přesycení

Heterogenní nukleace nové fáze je ve srovnání s homogenní nukleací výhodnější především z energetického hlediska, protože probíhá na již přítomném cizím povrchu. Z toho vyplývá, že pro heterogenní nukleaci postačuje i nižší přesycení soustavy.

Pro vznik kritického zárodku je potřebná nižší aktivační energie nukleace ve srovnání s nukleací homogenní.

Ghetkrit = Ghomkrit . f (b) (291)

Kde: f (b) … vyjadřuje vliv smáčivosti povrchu cizí fáze fází matečnou.

b … krajní úhel smáčení mezi cizí částici a matečnou fázi

f(b) = 1/4(2 + cos b).(1 - cos b)2 (292)

pro b = 30° je f(b) = 0,01 pro b = 120° je f(b) = 0,8

Základní podmínkou pro heterogenní nukleaci fáze je smáčení cizího povrchu mateční fází, tzn., že velikost krajního úhlu smáčení musí být menší než 90 °. U sulfidů je tato podmínka splněna.

Obr. 20 Rovnováha sil mezifázových napětí

Page 93: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Vměstky v oceli

91

Z obr. 20 vyplývá formulace rovnováhy sil povrchových napětí v bodě 0:

- s = - s + - . cos b (293)

Když je úhel b menší než 90 ° a - s je větší než - s, je cizí povrch smáčen mateční fází. V důsledku toho je hodnota mezifázového napětí nízká a zárodek nukleuje poměrně lehce již při malých hodnotách přesycení.

S růstem krajního úhlu, když se bude blížit 180 °, budou se k sobě blížit i hodnoty -s a -s, bude pevný povrch méně smáčen a nukleace kritického zárodku se bude blížit podmínkám homogenní nukleace. Při úplné nesmáčivosti může zárodek nukleovat pouze homogenně.

Při nukleaci vměstků je významná i rychlost tvorby zárodků. Je-li tato rychlost větší než rychlost jejich dalšího růstu, vzniká velké množství vměstků malých rozměrů (např. disperzní částice).

V opačném případě vzniká menší počet větších vměstků. Na uvedené rychlosti má vliv řada činitelů - teplota, míchání taveniny, přítomnost dalších fází, stupeň přesycení apod.

10.4 Modifikace vměstků vápníkem

Z hodnot volné entalpie vzniku oxidu vápenatého vyplývá, že vápník je velmi účinným dezoxidačním prvkem a je silnějším dezoxidovadlem než hliník. Vyznačuje se rovněž vysokou afinitou k síře.

Do oceli se vnáší nejčastěji pomocí plněných ocelových profilů. Přidává se ve formě feroslitin FeCaSi, FeCaAl, nebo ve směsi se železnými pilinami FeCa, nebo jako čistý Ca. Vzhledem k jeho nízké teplotě varu (1484 °C) se při aplikaci v tekuté oceli nachází v plynné fázi. Aby byl využitelný při dezoxidaci oceli a modifikaci vměstků, musí se nejprve rozpustit, přičemž jeho rozpustnost v tekuté oceli je velmi nízká cca 0,02 hmot.%

Ca(s) Ca(g) [Ca] (294)

Pokud se týče oxidu vápenatého je jeho teplota tání je 2570°C a teplota varu 2850°C. Oxid vápenatý tvoří s oxidem křemičitým a hlinitým lehce tavitelné sloučeniny, jež podmiňují vznik globulárních vměstků v oceli. Nejčastěji se Ca využívá k modifikaci vměstků po dezoxidaci oceli hliníkem.

Oxid vápenatý tvoří s Al2O3 řadu hlinitanů typu CaO.6Al2O3, CaO.2Al2O3, CaO.Al2O3, 12CaO.7Al2O3, 3CaO.Al2O3. Nejnižší teploty tání vykazují 12CaO.7Al2O3 (1390 °C) a CaO.Al2O3 (1550 °C) – viz obr. 21. Optimální poměr mezi obsahem Ca a Al v oceli pro vznik tekutých hlinitanů je

= 0,08 až 0,12.

Page 94: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Vměstky v oceli

92

Obr. 21 Rovnovážný diagram soustavy CaO –Al2O3.

Při dezoxidaci oceli hliníkem společně s vápníkem se dosahuje vysoké rychlosti průběhu dezoxidace, což se vysvětluje tím, že částice oxidu vápenatého a oxidu hlinitého vytváří tekutou fázi a tak snáze vyplouvají z roztavené oceli.

Při dezoxidaci oceli hliníkem společně s vápníkem se prokázalo, že během odstání roztavené oceli v pánvi se mění složení oxidických vměstků. Na počátku odpichu oceli obsah oxidu vápenatého v oxidických vměstcích je až 60 %, během odstání oceli však rychle klesá a po třech minutách je tento podíl pouze 10 %.

Spolehlivé a standardní dávkování, které je podmínkou efektivního využití vápníku, umožňují soudobé pochody vhánění prachových přísad nebo vhánění tzv. plněných profilů do roztavené oceli.

Mechanismus modifikace vměstků v roztavené oceli vápníkem lze vysvětlit tak, že již nepatrná množství oxidu vápenatého snižují bod tání oxidu hlinitého za vzniku globulárních oxidických vměstků I. typu (CaO.Al2O3).

V případě III. typu sulfidu manganu vznikají globulární oxysulfidické vměstky tvořené po okrajích MnS, popř. (Mn, Ca) S s oxidickým jádrem (CaO. Al2O3).

Pro úplnou přeměnu sulfidů na I.b typ (CaS) je nutno dosáhnout hodnoty poměru vápníku k síře v rozmezí 0,3 až 1,3 (pro obsah S=0,02% vychází pak Ca=0,0060 až 0,03%). V tomto případě se v oceli nebudou vyskytovat sulfidy manganu a převážná část nekovových vměstků budou oxysulfidy tvořené oxidickým jádrem (CaO.Al2O3) se sulfidickou obálkou (CaS).

Uvedená přeměna se projeví především ve zlepšení plastických vlastností ocelí, a to zejména hodnot vrubové houževnatosti.

Page 95: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Vměstky v oceli

93

10.5 Vliv vápníku na vlastnosti oceli

Zlepšení mechanických vlastností se objasňuje globularizací oxidických vměstků. Dochází k přeměně řádkovitých vměstků (Al2O3) a protáhlých sulfidických vměstků (MnS) na globulární oxysulfidické vměstky.

Nejvyšší podíl globulárních vměstků v oceli se zjistil při poměru vápníku k síře větším než 0,3. Přísadou silikokalcia do oceli, předběžně dezoxidované hliníkem, se dosáhlo 10procentního zvýšení hodnot vrubové houževnatosti. Přitom se zcela odstranily sulfidy II. typu.

Vápník nachází významného uplatnění při zvyšování odlévatelnosti plynule lité oceli, protože zabraňuje tvorbě usazenin typu Al2O3 v ponorných výlevkách.

Shrnutí pojmů kapitoly

Je uvedeno v části „Členění kapitoly

Otázky k probranému učivu

Formulace otázek k učivu odpovídá názvům dílčích kapitol v části „Členění kapitoly

Page 96: TEORIE PROCESŮ PŘI VÝROB ŽELEZA A OCELI · 8.2 Podmínky rovnováhy v soustavě [C] - [O] - CO(g) ... Volná entalpie (Gibbsova energie) (G) – energie, kterou soustava vymění

Literatura

94

11 LITERATURA

[1] KELLÖ, V., TKÁČ, A.: Fyzikálna chémia. Alfa Bratislava, 1969, 778 s.

[2] MYSLIVEC, Th.: Fyzikálně chemické základy ocelářství. SNTL, Praha, 1971, 445 s.

[3] FRUEHAN, R. J.: The Making, Shaping and Treating of Steel. Steelmaking and refining

Volume. Chapter 2: Fundamentals of Iron and Steelmaking. AISE Steel Foundation, 1998, 767 p.

[4] KEPKA, M.: Rafinace oceli, SNTL, Praha, 1989, 210 s.

[5] TURKDOGAN, E.T: Physical Chemistry of High Temperature Technology. Academic Press, New York, 1980. 343 s.

[6] Články v odborném tisku, příspěvky na konferencích, výzkumné zprávy.