27
UNIVERSITÀ DEGLI STUDI DI TRIESTE Dipartimento di Scienze della Vita CORSO DI LAUREA IN SCIENZE E TECNICHE PSICOLOGICHE Relazione Finale EMPATIA E NEURONI SPECCHIO. UN’ANALISI SUI PROCESSI NEURALI COINVOLTI NELLA COGNIZIONE EMOTIVA INTERPERSONALE. Laureando: Nigrin Gregorio Docente di riferimento: Dott. Scaini Denis ANNO ACCADEMICO 2013/2014

Tesi di Laurea

Embed Size (px)

Citation preview

Page 1: Tesi di Laurea

UNIVERSITÀ DEGLI STUDI DI TRIESTE

Dipartimento di Scienze della Vita

CORSO DI LAUREA IN

SCIENZE E TECNICHE PSICOLOGICHE

Relazione Finale

EMPATIA E NEURONI SPECCHIO.

UN’ANALISI SUI PROCESSI NEURALI COINVOLTI

NELLA COGNIZIONE EMOTIVA

INTERPERSONALE.

Laureando: Nigrin Gregorio Docente di riferimento: Dott. Scaini Denis

ANNO ACCADEMICO 2013/2014

Page 2: Tesi di Laurea

“Le azioni umane non vanno derise,

compiante o detestate, ma comprese”.

BARUCH SPINOZA

Page 3: Tesi di Laurea

INDICE

1 Introduzione. ..................................................................................................................... 4

2 L’empatia e il ruolo del MNS.. ........................................................................................ 7

3 Presentazione Esperimento.. ............................................................................................ 8

3.1 Metodi. ......................................................................................................................... 8

3.2 Compiti. ....................................................................................................................... 9

4 Risultati.. .......................................................................................................................... 11

4.1 Dati Comportamentali.. ........................................................................................... 11

4.2 Dati fMRI. ................................................................................................................. 12

5 Discussione. ...................................................................................................................... 15

5.1 La percezione emotiva nel sé e nell’altro: meccanismi neurali coinvolti........... 15

5.2 Sguardo diretto confrontato con sguardo distolto. .............................................. 20

5.3 Espressioni facciali impaurite confrontate a quelle arrabbiate. ......................... 21

6 Conclusioni. ..................................................................................................................... 21

7 Bibliografia. ..................................................................................................................... 25

Page 4: Tesi di Laurea

4

1 Introduzione.

Negli ultimi vent’anni, nell’ambito delle neuroscienze e delle scienze cognitive, è emerso un

notevole interesse verso le funzioni di una particolare classe di neuroni somato-sensoriali,

che possiedono la singolare caratteristica di attivarsi sia durante il compimento di un’azione

da parte nostra, sia durante l’osservazione della stessa, compiuta da un’altra persona.

In merito alle caratteristiche di questi processi d’attivazione, a questi neuroni è stato

attribuito l’appellativo di “specchio” (Mirror Neurons). (Rizzolatti G.; Fadiga, L.; Gallese,

V. & Fogassi, L., 1996); (Gallese,V.; Fadiga, L.; Fogassi, L. & Rizzolatti, G., 1996)

La scoperta dei neuroni specchio è datata all’inizio degli anni ’90, grazie al lavoro di

Giacomo Rizzolatti e collaboratori presso l’Università di Parma (di Pellegrino, Fadiga,

Fogassi, Gallese & Rizzolatti, 1992).

All’epoca i ricercatori stavano studiando la corteccia pre-motoria ventrale dei primati,

costituita dalle aree F4 e F5. (Fig. 1)

Era già stato osservato che, l’area F5, oltre a possedere svariate proprietà motorie (come ad

esempio la codifica del tipo di conformazione che la mano deve adottare per eseguire un

determinato atto), possiede anche proprietà visive.

I neuroni specchio, furono identificati nella convessità corticale di F5, in seguito ad una

registrazione, dove la scimmia non era legata a compiti fissi (di Pellegrino et al., 1992).

Questi neuroni rispondevano, come affermato sopra, sia alla produzione sia alla semplice

osservazione di un’azione.

Dal punto di vista motorio non si differenziano dagli altri neuroni di F5 (neuroni canonici),

poiché anch’essi si attivano selettivamente durante specifici atti motori (Rizzolatti G. &

Sinigaglia C., 2006).

Come accennato sopra, un’importante proprietà di questi neuroni riguarda le caratteristiche

visive, riguardanti il compimento di atti.

Essi si attivano durante l’osservazione di un’azione che comporti l’interazione tra effettore e

oggetto (e.g., osservazione della scimmia degli atti dello sperimentatore che comportano

un’interazione tra l’effettore, che può essere la mano o la bocca, e l’oggetto).

Page 5: Tesi di Laurea

5

Inoltre gran parte dei neuroni specchio presenti in F5 possono essere raggruppati in classi

differenti (e.g. neuroni specchio ”manipolare”; neuroni specchio ”afferrare” etc.) dato che

sono in grado di rispondere all’osservazione di un solo determinato tipo di atto.

Figura 1: Corteccia pre-motoria ventrale di un primate costituita dalle aree F4 e F5.

Nelle scimmie, le proprietà funzionali di questi neuroni verterebbero nel riconoscimento e

nella comprensione degli atti compiuti dagli altri, cioè la percezione di un significato (e.g. lo

sperimentatore che prefigura la presa indirizzandola verso cibo), comprendendo quegli

“eventi motori” nei termini di un determinato tipo di atto, caratterizzato da una specifica

modalità di interazione con gli oggetti, di differenziare tale tipo da altri e di utilizzare queste

informazioni in modo adattivo, in termini di risposta più appropriata. (di Pellegrino et al.,

1992); (Rizzolatti G. & Sinigaglia C., 2006).

Questo per quanto riguarda i primati, ma negli esseri umani?

Sono stati fatti diversi studi che evidenziano la presenza dei neuroni specchio nell’uomo.

Un primo indizio della presenza di questi neuroni si può trovare in un esperimento di

Gastaut e Bert (1954), i quali monitorarono con un EEG (elettroencefalogramma) la

variazione spontanea dell’attività elettrica corticale, in particolare, i ritmi α (che prevale

quando i sistemi sensoriali sono inattivi) e μ (simile all’altro, ma predominante nelle regioni

centrali.) Essi si desincronizzano durante le presentazioni di stimoli e durante lo

svolgimento di un’azione in conformità a diverse frequenze d’onda.

Si osservò una desincronizzazione del ritmo μ durante l’osservazione di azioni compiute da

altri.

Page 6: Tesi di Laurea

6

In seguito Altschuler et al. (1997), (2000);. Cochin et al. (1998), (1999), ripresero

l’esperimento, raffinandone le metodologie, notando che il ritmo μ si bloccava sia durante

l’esecuzione di movimento si durante la sua osservazione.

In un altro esperimento, gli sperimentatori registrarono i MEP (potenziali motori evocati)

attraverso la TMS (stimolazione magnetica transcranica), durante l’osservazione di gesti

finalizzati a un obiettivo (transitivi), oppure insignificanti (intransitivi) (Fadiga, Fogassi,

Pavesi & Rizzolatti, 1995).

I risultati mostrarono che i MEP subivano un incremento sia durante il compimento di atti

transitivi (afferrare un oggetto) sia durante il compimento di atti intransitivi (fini a se stessi).

Inoltre dalla registrazione dei MEP risultò che il hMNS (sistema di neuroni specchio

umano) riesce a codificare sia lo scopo del movimento, sia il suo decorso temporale.

(Gangitano, Mottaghy & Pascul-Leone, 2001).

Grazie a studi di anatomia comparata e brain imaging, venne inoltre evidenziato che, l’area

44 di Broadmann, rappresenta l’omologo umano dell’area F5 (Petrides & Pandya, 1997).

Nell’uomo, inoltre, furono identificate altre aree che costituiscono il sistema dei neuroni

specchio, come l’area premotoria (PM) e il lobo parietale inferiore (IPL), in seguito ad un

esperimento che comprendeva guardare videoclip con un attore che compiva azioni

transitive (mordere una mela, dare un calcio a un pallone etc.) e mimava le stesse (Buccino

et al. 2001).

Riassumendo, il sistema dei neuroni specchio nell’uomo possiede svariate caratteristiche in

più rispetto a quello della scimmia, come rispondere ad atti transitivi e intransitivi,

codificare scopo e decorso temporale del movimento, e infine rispondere ad atti

semplicemente mimati senza bisogno d’interazione diretta con degli oggetti.

Come accennato in precedenza, il ruolo principale di questo sistema di neuroni è legato al

riuscire a comprendere le intenzioni altrui osservando le loro azioni.

Lo scopo principale di questo elaborato è cercare di dimostrare il ruolo funzionale del MNS

(sistema di neuroni specchio) nella comprensione delle intenzioni e degli stati d’animo

(propri e altrui) nell’uomo.

In particolare, utilizzando studi di neuroimaging funzionale, si cercherà di evidenziare i

meccanismi anatomo-funzionali che sottendono il funzionamento dei processi cognitivo-

empatici presenti nel cervello umano, andando ad investigare il contributo del MNS nella

cognizione emotiva interpersonale.

Page 7: Tesi di Laurea

7

2 L’empatia e il ruolo del MNS.

L’empatia nell’accezione comune del termine determina uno stato di condivisione e

compartecipazione emotiva, da parte dell’osservatore, del vissuto dell’osservato.

Sostanzialmente si tratta di capire come l’altro viva una particolare situazione mettendosi, in

tutto e per tutto, nei suoi panni.

Negli anni, nell’ambito psicologico, si concettualizzò l’empatia attribuendole due diverse

nature: una di tipo affettivo (partecipazione/condivisione delle esperienze vissute dall’altro)

e una di tipo cognitivo (capacità di comprendere il punto di vista dell’altro).

La seconda classificazione, sostenente che la capacità empatica si caratterizza nella

comprensione d’intenzioni e pensieri, nel riconoscimento di emozioni e nel riuscire a vedere

la situazione secondo la prospettiva dell’altro osservato (Borke, 1971), è una visione

particolarmente interessante da integrare allo studio che verrà in seguito presentato.

È necessario dire che le due diverse dimensioni (cognitiva e affettiva), dell’empatia, sono tra

loro co-occorrenti e decisive nel generare una risposta empatica (Albiero & Matricardi,

2006), tuttavia il paradigma sperimentale presentato in questa tesi, tiene conto unicamente

della dimensione cognitiva, pertanto sarà l’unica presa in considerazione.

In particolare, la teoria della mente (o Theory of Mind, o ToM), rappresenta uno degli

aspetti dell’empatia cognitiva alla base della capacità di comprendere il punto di vista degli

altri, che prende il nome di “perspective taking”.

Il concetto di ToM rappresenta abilità meta-cognitive, riguardanti inferenze su credenze,

intenzioni e desideri delle altre persone (Premack & Woodruff, 1978) e, in particolare, è

importante nella distinzione tra intenzioni e pensieri propri rispetto a quelle/i altrui, cosa che

più avanti risulterà essere un aspetto chiave dell’elaborato.

Parlando dell’esperimento, gli autori (Shulte-Rüter, Markowitsch, Fink & Piefke, 2007),

ipotizzarono che il MNS non è solamente coinvolto nella mera cognizione motoria

(attivazione durante compiti di tipo imitativo) ma anche nella cognizione emotiva

interpersonale (compiti che non richiedono atti imitativi).

In particolare, gli autori si focalizzarono sulle differenze d’attivazione dei meccanismi

neurali coinvolti, in un compito nel quale ai soggetti era richiesto di osservare su uno

Page 8: Tesi di Laurea

8

schermo delle espressioni facciali esprimenti un’emozione, con diverso orientamento nello

sguardo, e di focalizzarsi sulla propria risposta emotiva (Self-task) o valutare quella altrui

(Other-task), il tutto misurato attraverso la risonanza magnetica funzionale (fMRI).

Gli autori si aspettavano un’attivazione sia delle regioni cerebrali a supporto della ToM, sia

quelle associate al MNS.

Inoltre si aspettavano che certe aree mostrassero una differente attivazione

conseguentemente allo svolgimento dei due differenti compiti cognitivi, e che, in

particolare, le aree sottendenti il MNS siano maggiormente coinvolte nella “Self-task”,

mentre i meccanismi della ToM nella “Other-task”.

3 Presentazione Esperimento.

Si andrà ora a presentare il lavoro di Shulte-Rüter, Markowitsch, Fink e Piefke, (2007):

“Mirror Neuron and Theory of Mind Mechanisms Involved in Face-to-Face Interactions:

A Functional Magnetic Resonance Imaging Approach to Empathy.”

3.1 Metodi.

I partecipanti furono 26, 12 maschi e 14 femmine, età media 24,6 anni, destrimani, di

lingua tedesca.

I soggetti furono sottoposti ad analisi mediche riguardanti la loro storia clinica nel campo

neurologico, psichiatrico, traumatologico, uso e abuso di sostanze etc.

Per quanto riguarda le loro competenze cognitive, furono testati utilizzando strumenti

neuropsicologici (e.g., test QI; attenzione selettiva; memoria di lavoro), e una scala in grado

di controllare se possedevano una sufficiente abilità nell’esprimere a parole stati emotivi

(TAS-26, una scala per l’alessitimia).

Per quanto riguarda invece le abilità empatiche, furono loro somministrati questionari come

il BEES (Balanced Emotional Empathy Scale), che permette di misurare la tendenza

empatica, cioè il grado di propensione del rispondente a farsi coinvolgere e a vivere

vicariamente le emozioni altrui. Inoltre fu utilizzata anche una sottoscala dell’IRI

(Interpersonal Reactivity Index), Davis, (1980) detta ECS (Empathic Concern Scale).

Page 9: Tesi di Laurea

9

I questionari furono somministrati per indagare su di una possibile relazione tra attivazioni

neurali e gradi individuali d’abilità empatica.

Per quanto riguarda gli stimoli, furono utilizzate 318 espressioni facciali generate da un

particolare software (FaceGen 3.0) in grado di creare volti con diverse espressioni e diverse

angolature, selezionate da 3 giudici da un pool di 1500 espressioni facciali, rappresentanti

rabbia, paura, tristezza, felicità e neutralità.

Ai partecipanti fu chiesto di indicare a quale categoria emotiva apparteneva ogni singola

faccia.

Dopo questa procedura furono selezionate 192 espressioni facciali per lo studio in fMRI (64

con espressione arrabbiata, 64 impaurita e 64 neutre, metà rappresentati volti maschili, metà

femminili).

Gli autori utilizzarono espressioni con valenza negativa data la difficoltà nel trovare due

espressioni aventi valenze positive distinguibili tra loro, inoltre perché lo scambio tra

espressioni con valenza negativa/positiva poteva essere motivo di confusione per il disegno

sperimentale.

Fu inoltre utilizzato il software statistico SPM2 per l’analisi dei dati di risonanza magnetica.

3.2 Compiti.

Nella “Self-task” ai soggetti fu chiesto di concentrarsi sulle sensazioni che emergevano in

loro stessi quando gli si presentava un’espressione facciale.

Nella “Other-task”, invece, ai soggetti fu chiesto di concentrarsi sulle sensazioni che

emergevano dall’espressione stimolo.

Nello studio s’inserirono due ulteriori variabili, ovvero l’emozione manifestata dai volti

(arrabbiata/impaurita) e la direzione del sguardo (diretto/distolto).

L’ultima condizione, denominata “High Level Baseline task”, comprendeva un compito di

determinazione del sesso e dell’età in base ai volti privi di valenza emotiva (neutri),

anch’essi presentati con sguardo diretto e distolto.

Come furono presentati gli stimoli?

Ogni volto stimolo fu presentato per 2 secondi.

Subito dopo una lista di 4 aggettivi (randomizzati da 4 serie di parole, generati dai

partecipanti di un altro studio), appariva sullo schermo per 3 secondi.

Page 10: Tesi di Laurea

10

Il compito dei soggetti era di scegliere le parole che meglio rappresentavano le emozioni nei

due compiti.

Nella “High Level Baseline Task” furono utilizzate le seguenti combinazioni di parole,

anch’esse randomizzate: “Donna anziana”, “uomo anziano, “donna giovane”, “uomo

giovane”.

Durante lo studio in fMRI, per la scelta degli aggettivi, i soggetti utilizzavano 4 dita della

mano destra su un comando con 4 pulsanti.

Ogni blocco consisteva in serie da 4 tentativi preceduti da istruzione verbale dalla durata di

2,5 secondi. (Fig. 2)

I partecipanti, inoltre, completarono sei blocchi di preparazione pre-scansione, che non

comprendevano il set di stimoli presenti per l’esperimento in fMRI.

Post-scansione i soggetti valutarono tutti i volti stimolo in base all’intensità delle emozioni

provocate nella “Self” e nella “Other-task”, e completarono dei rapporti riguardanti la

naturalezza dei volti stimolo e la difficoltà provata per tutte le condizioni.

Figura 2. Paradigma sperimentale. (A) Decorso temporale nella presentazione degli stimoli. (B) Variabili

sperimentali. Da: Schulte-Rüther, M.; Markowitsch, H.J.; Fink, G.R.; Piefke, M. (2007). Mirror neuron and

theory of mind mechanisms involved in face-to-face interactions: a functional magnetic resonance imaging

approach to empathy. "Journal of Cognitive Neuroscience". 19, 1358.

Page 11: Tesi di Laurea

11

4 Risultati.

4.1 Dati Comportamentali.

Inizialmente vennero misurati i tempi di risposta durante la scansione mediante un’ANOVA

3 2, con le variabili “direzione dello sguardo” e “compito sperimentale”, la quale evidenziò

un effetto principale significativo:

i test post-hoc appaiati mostrarono che i soggetti rispondevano più velocemente nella

condizione “High Level Baseline task”, rispetto a entrambi i compiti sperimentali.

Un’ANOVA 2 2 2 con le variabili “direzione dello sguardo”, “compito sperimentale” e

“emozione” mostrò che i tempi di reazione erano significativamente più veloci nella

condizione “Other-task” che in quella “Self-task”.

Le differenze nei tempi di reazione fra sguardo diretto distolto, come le condizioni di volti

con espressione arrabbiata/impaurita risultarono non significative.

In seguito furono analizzati i rapporti post-scansione, dove i confronti tra i gruppi di

differenti stimoli (direzione sguardo; volti arrabbiati/tristi) non mostrarono differenze

statisticamente significative per la valutazione della naturalezza dei volti.

Si notarono differenze nella difficoltà del compito: la “Self-task” fu percepita come più

difficile rispetto alla “Other-task” e la “High Level Baseline task”.

Inoltre non ci furono differenze significative nelle valutazioni medie sulla naturalezza dei

volti con espressione neutra e i volti con espressioni manifestanti emozioni.

Furono poi analizzate le correlazioni tra la valutazione di difficoltà e i tempi di reazione.

Le valutazioni individuali post-scansione riguardanti la difficoltà relata all’esecuzione dei

tre compiti (Self, Other e High Level Baseline task) sono stati confrontati alla media dei

tempi di reazione riguardanti la prestazione di ogni compito durante la scansione.

Non ci furono correlazioni positive né nella “Self-task”, né nell’“Other-task”, e una

correlazione inversa per la “High Level Baseline task”.

Infine si analizzò la valutazione dei volti stimolo nella post-scansione.

Le classificazioni medie dell’intensità dell’emozione per ogni volto stimolo vennero

confrontate da due ANOVA 2 2 con le variabili “emozione” e “direzione dello sguardo”.

Page 12: Tesi di Laurea

12

L’intensità delle emozioni provocate dai volti stimolo nei soggetti che eseguivano la “Self-

task” sono stati valutati come significativamente superiori nello condizione di sguardo

diretto vs. sguardo distolto.

Le espressioni arrabbiate furono valutate con intensità emotiva più elevata rispetto a quelle

impaurite nella “Self-task” ma non nell’”Other- task”.

4.2 Dati fMRI.

Inizialmente gli autori monitorarono gli effetti comuni delle “Self/Other task” rispetto all’

“High Level Baseline task” (rilevati attraverso una “conjunction analysis”, o analisi

combinata).

Le aree con un’attivazione differenziale rilevante furono localizzate nel solco temporale

superiore (STS) sinistro, la corteccia orbito-frontale laterale sinistra, la corteccia prefrontale

mediale sinistra, il giro frontale mediale sinistro, l’area motoria presupplementare sinistra

(pre-SMA) e il cervelletto destro. Ci furono inoltre delle attivazioni rilevanti nel STS destro,

il giro frontale inferiore destro (BA 45) e il lobo temporale. (Fig. 3)

Figura 3. Mappa statistica parametrica dimostrante l'attivazione di gruppo delle aree durante l'analisi

combinata di "Self-task" e "Other-task" rispetto alla "High Level Baseline task". Da: Schulte-Rüther, M.;

Markowitsch, H.J.; Fink, G.R.; Piefke, M. (2007). Mirror neuron and theory of mind mechanisms involved in

face-to-face interactions: a functional magnetic resonance imaging approach to empathy. "Journal of Cognitive

Neuroscience”. 19, 1361.

Poi analizzarono l’effetto principale della “Self-task” rispetto alla “Other-task”.

La scansione mostrò attivazioni significative differenziali bilaterali della giunzione

temporo- parietale (TPJ), la corteccia prefrontale mediale, la corteccia cingolata posteriore,

il giro frontale mediale, il giro frontale inferiore sinistro, l’area motoria supplementare e il

cervelletto destro. (Fig. 4)

Page 13: Tesi di Laurea

13

Il contrasto inverso (Other-task vs. Self-task) non mostrò attivazioni differenziali

significative.

Figura 4. Mappa statistica parametrica dimostrante l'attivazione di gruppo delle aree per il contrasto fra "Self-

task" e "Other-task". Da: Schulte-Rüther, M.; Markowitsch, H.J.; Fink, G.R.; Piefke, M. (2007). Mirror neuron

and theory of mind mechanisms involved in face-to-face interactions: a functional magnetic resonance imaging

approach to empathy. "Journal of Cognitive Neuroscience".19, 1361.

In seguito gli autori osservarono i cambiamenti riguardanti le condizioni di sguardo diretto

confrontato allo sguardo distolto.

Si verificò un’attivazione bilaterale del solco calcarino relativo all’effetto principale delle

espressioni facciali con sguardo diretto all’osservatore rispetto a quello distolto.

Per quanto concerne le condizioni riguardanti le espressioni impaurite confrontate con

quelle arrabbiate, non furono notate attivazioni differenziali significative.

Infine osservarono la covarianza dei punteggi riguardanti le capacità empatiche individuali e

l’attivazione cerebrale locale.

Il giro frontale inferiore (bilateralmente) e il solco temporale sinistro mostrarono una

correlazione significativa con i punteggi rilevati nel questionario BEES (Mehrabian,1997).

(Fig. 5) (Tab. 1)

Le correlazioni fra l’ECS (Davis, 1983) e le attivazioni cerebrali furono meno pronunciate,

ma comunque significative per il solco temporale sinistro e il giro frontale inferiore destro.

Per estrarre le componenti neuro-funzionali implicate nei processi auto-attributivi di

codifica facciale, ma non in quelli attributivi, il confronto tra “Self e Other task” fu

“mascherato” esclusivamente dal contrasto di “Other e High Level Baseline task”.

Page 14: Tesi di Laurea

14

Figura 5. Covarianza fra le abilità empatiche e l'attivazione dei neuroni specchio. (A) Incremento di attività

neurale nelle regioni associate al MNS. (B) Correlazioni significative corrispondenti fra i punteggi individuali nel

BEES e il livello di attivazione (mean parameter estimates) dei “peak voxels” delle regioni rappresentate. Da: Schulte-Rüther, M.; Markowitsch, H.J.; Fink, G.R.; Piefke, M. (2007). Mirror neuron and theory of mind

mechanisms involved in face-to-face interactions: a functional magnetic resonance imaging approach to

empathy. “Journal of Cognitive Neuroscience” 19, 1362.

Tabella 1. Correlazioni fra l'attivazione dei neuroni specchio e i punteggi individuali d'empatia. BEES: Balanced

Emotional Empathy Scale; ECS: Emotional Concern Scale; MNI coordinates: coordinate delle regioni cerebrali.

Da: Schulte-Rüther, M.; Markowitsch, H.J.; Fink, G.R.; Piefke, M. (2007). Mirror neuron and theory of mind

mechanisms involved in face-to-face interactions: a functional magnetic resonance imaging approach to

empathy."Journal of Cognitive Neuroscience", 19, 1364.

Page 15: Tesi di Laurea

15

5 Discussione.

I risultati dimostrano che, l’attribuzione di emozioni a se stessi in risposta ad un volto

stimolo, o l’attribuzione di emozioni diretta al volto stimolo, attivano aree cerebrali che

sono coinvolte in processi emotivi, meccanismi specchio e aree riguardanti la ToM.

5.1 La percezione emotiva nel sé e nell’altro: meccanismi neurali coinvolti.

Come si è visto dai risultati della scansione in fMRI, durante l’esecuzione dei compiti

riguardanti il sé o l’altro (Self/Other task), comparati alla linea base (High Level Baseline

task) attivarono il giro frontale inferiore bilateralmente, compresa l’area di Broca (BA

44/45) e il suo omologo nell’emisfero destro.

Queste aree rappresentano le strutture anatomiche che sottendono il sistema dei neuroni

specchio (MNS).

La differente attivazione di queste aree durante il compito riguardante il se, rispetto al

compito riguardante l’altro, indica che i neuroni specchio svolgono un importante ruolo

nell’attribuire emozioni a se stessi durante i processi cognitivi empatici interpersonali.

Le operazioni del sistema di neuroni specchio, quindi, potrebbero costituire le basi neurali

della captazione, o risonanza, che un individuo sviluppa nell’osservare gli stati emotivi

espressi da un altro individuo, affidandosi a una sorta di “mappatura inversa” delle

rappresentazioni neurali sottostanti.

Queste operazioni sono supportate anche da studi elettromiografici, dove si notò che i

muscoli facciali implicati nella regolazione delle espressioni, si attivavano anche durante la

sola osservazione passiva di volti che esprimevano un’emozione (Dimberg, Thunberg &

Elmehed, 2000);(Dimberg & Thunberg, 1998).

Secondo Iacoboni et al., 1999; 2001, la rappresentazione visiva dei movimenti osservati si

forma inizialmente nel solco temporale superiore (STS) (area che risponde alla

presentazione di movimenti biologici), trasmessa dalla corteccia parietale alle aree frontali

inferiori, dove l’informazione visiva è trasdotta in un piano motorio.

Quando un’azione è eseguita, l’attività nelle aree frontali è ritrasmessa al STS, che

ritrasduce il piano motorio in una sorta di rappresentazione visiva “prevista”.

Page 16: Tesi di Laurea

16

Il giro frontale inferiore potrebbe costituire, quindi, un’”interfaccia specchio”, avente un

ruolo fondamentale nella capacità di imitare le azioni altrui.

Questo meccanismo, inoltre, potrebbe essere anche coinvolto alla comunicazione sociale,

specialmente in una situazione d’interazione “faccia a faccia”.

In maniera simile alle azioni motorie, l’osservazione di emozioni espresse da un volto

potrebbero venir “specchiate” nel cervello per aiutare l’osservatore a comprendere i

significati sociali sottendenti la mimica facciale.

In uno studio in fMRI queste ipotesi sono state confermate, mostrando l’attivazione del giro

frontale inferiore durante compiti d’imitazione e osservazione passiva di volti (Dapretto et

al., 2006).

I risultati presenti nella discussione di quest’articolo confermano quelli di Dapretto e

collaboratori.

In particolare, in questo lavoro, gli autori si sono focalizzati in maniera accurata sulla scelta

del paradigma sperimentale, che punta a porre l’accento sulla natura diadica della

comunicazione interattiva, in modo da favorire l’attivazione delle aree cerebrali interessate

nella verifica delle ipotesi.

Anche se le possibilità di scelta dei soggetti per la valutazione dei volti erano più varie nel

compito emotivo rispetto alla “High Level Baseline task”, è improbabile che le differenti

attivazioni cerebrali osservate (ad esempio nella corteccia frontale inferiore) possano essere

state attribuite alla crescente difficoltà del compito, risultante da un più elevato livello di

sforzo nella lettura delle parole scelte nella condizione emotiva.

La sessione d’addestramento precedente alla misurazione in fMRI permise in maniera più

che sufficiente ai partecipanti di familiarizzare con le possibili opzioni di risposta presenti

nelle diverse condizioni.

Specifiche differenze “condizione-specifiche” nella variabilità delle parole-scelta non sono

riconosciute responsabili nell’aver causato differenze nello sforzo di lettura, come ad

esempio avrebbe potuto essere il caso, dell’inserimento di nuove parole per ogni prova.

Inoltre, le valutazioni post-scansione sulla difficoltà del compito differirono

significativamente fra la “Self” e la “Other-task” (dove la variabilità delle parole-scelta era

paragonabile) ma non nella “Other” e nella “High Level Baseline task”.

Tutto ciò è in accordo con la scoperta di tempi di reazione significativamente più lunghi

nella condizione “Self” relativa all’“Other-task”.

Page 17: Tesi di Laurea

17

I dati post-scansione e i tempi di reazione sono in accordo sul fatto che qualcosa di

intrinseco alla condizione del “sé” rese il compito più difficile per i soggetti, rispetto alla

condizione “altro”, è questo non è dovuto a variabili confondenti.

Le richieste di riflessione sul sé e la distinzione fra sé e altro potrebbero aver causato un

incremento nel livello di difficoltà, come riscontrato dai tempi di reazione più lunghi, e sulle

valutazioni riguardanti la difficoltà che si fecero più elevate.

Inoltre, le differenze di tempi di reazione tra i compiti emotivi e la “High Level Baseline

task” sono propense a riflettere il lavoro di processi cognitivi supplementari, richiesti per la

valutazione delle espressioni facciali che gli autori intendevano misurare.

In più, i tempi di reazione e le valutazioni post-scansione della difficoltà del compito non

erano correlati positivamente per nessuna delle condizioni incluse nell’esperimento,

suggerendo che le differenze “condizione-specifiche” nelle prestazioni comportamentali

sono attribuite alla manipolazione sperimentale controllata, piuttosto che a variabili

confondenti.

Oltretutto, la porzione del giro frontale inferiore e l’area motoria pre-supplementare, attivate

dai compiti cognitivi ideati dagli autori, sono coinvolte anche in processi riguardanti

l’elaborazione linguistica (Grezes & Decety, 2001); (Poldrack et al; 1999).

È improbabile che le attivazioni in queste aree fossero collegate alla produzione di

linguaggio in maniera intenzionale, poiché i partecipanti osservavano i volti stimolo in

silenzio, e la lettura era presente in tutte le condizioni.

Infine, la significativa covarianza nell’attivazione della corteccia frontale inferiore e le

abilità empatiche individuali rende improbabile un coinvolgimento “linguaggio-dipendente”

di questa regione, in quanto questa correlazione era presente anche nelle aree 44/45

dell’emisfero destro.

Le regioni cerebrali coinvolte nei movimenti che si attivarono nell’esperimento includono la

corteccia motoria supplementare (SMA) e il cervelletto.

Il picco di massima attività della SMA è stato localizzato nella pre-SMA, una subregione

che è implicata in maniera più marcata della SMA nelle funzioni cognitive.

In particolare, le attivazioni della pre-SMA sono state collegate all’immaginazione di

movimenti (motor imagery) e l’osservazione di movimenti aventi scopo imitativo (Grezes &

Decety, 2001).

Page 18: Tesi di Laurea

18

Altri studi dimostrano anche che la pre-SMA è coinvolta nella trasduzione di esperienze

emotive in azioni motorie.

La pre-SMA, nello studio, è coinvolta in seguito alla sua attivazione differenziale nella

condizione auto-attributiva (Self-task), in processi cognitivi d’ordine superiore (come la

ToM).

Tutto questo dimostra e sostiene l’ipotesi dell’attivazione del hMNS durante l’esecuzione di

compiti d’attribuzione emotiva osservando delle espressioni facciali.

In particolare, la forte attivazione del hMNS durante la condizione auto-attributiva rispetto a

quella attributiva, e la simultanea attivazione di aree coinvolte in processi cognitivi di ordine

superiore, suggerisce lo specifico ruolo dei meccanismi specchio nel controllo cognitivo

dell’auto-attribuzione delle emozioni.

Discutiamo ora i punteggi individuali nell’empatia e l’attivazione cerebrale.

I soggetti che nel test BEES ottennero un punteggio più elevato mostrarono un’attivazione

più marcata nella corteccia frontale inferiore destra e sinistra, come nel solco temporale

superiore.

Questi risultati potrebbero riflettere la capacità inconscia di simulare le espressioni facciali

internamente, collegandosi all’abilità di inferire i sentimenti solamente osservando i volti

delle altre persone.

Gli autori sostengono che questo è stato il primo studio a riportare l’attivazione della

corteccia frontale inferiore alla presenza di compiti d’attribuzione emotiva nella totale

assenza di qualsiasi tipo d’istruzione che prevedesse l’imitare in maniera conscia l’altrui

mimica facciale, presente invece in altri studi (Dapretto et.al, 2006);( Leslie, Johnson-Frey

& Grafton, 2004).

Ancora una volta notiamo il marcato coinvolgimento del hMNS nella comunicazione

emotiva interpersonale.

Come fa il cervello a distinguere le emozioni riguardanti il sé e l’altro?

In questo studio, gli autori osservarono differenti attivazioni auto-attributive nella corteccia

prefrontale mediale (MPFC), ovvero un’area coinvolta nei processi cognitivi relativi alla

teoria della mente (Gallagher & Frith, 2003), nella cognizione sociale (Ochsner et al. 2004)

e diversi tipi di processi collegati alla percezione di sé (Kampe et.al, 2003);( Ruby &

Decety, 2003);( Vogeley & Fink, 2003).

Page 19: Tesi di Laurea

19

Prove mostrano che i giudizi socio-cognitivi appartengono alla corteccia prefrontale mediale

dorsale (dMPFC), mentre i processi cognitivi attribuibili al sé e quelli emotivi

apparterrebbero alla parte ventrale dalla MPFC (vMPFC).

Nello studio gli autori mostrano che, le attivazioni legate al sé nella MPFC non risultavano

solamente localizzate nella sua parte dorsale, ma che si estendevano anche nelle aree

ventrali.

Secondo alcuni ricercatori (Mitchell, Banaji & Machal, 2005) esisterebbe una doppia

dissociazione tra parte ventrale e dorsale della MPFC.

La parte ventrale risulterebbe maggiormente attiva nei giudizi correlati all’ “oggettivazione

del sé” (differenza tra sé ed altro), rispetto alla parte dorsale.

Riassumendo, gli autori, in accordo con lo studio dei ricercatori sopracitati, confermarono

l’ipotesi sull’importanza della vMPFC nei processi emotivi e nei processi riguardanti il sé.

Anatomicamente, inoltre, la vMPFC risulterebbe fortemente interconnessa con l’amigdala,

lo striato ventrale e la corteccia orbito frontale, confermando il suo ruolo nei processi

emotivi.

Al contrario la dMPFC non possiede le interconnessioni menzionate, confermando l’ipotesi

che la parte dorsale risulterebbe maggiormente implicata in compiti di tipo cognitivo.

La memoria nella ricerca sembra avere ruolo importante.

In particolare furono coinvolti i lobi temporali, implicati nella memoria episodica

autobiografica per il recupero di stati emotivi, che permetterebbe di attribuire emozioni a se

stessi o agli altri. (Piefke, Weiss, Markowitsch & Fink, 2003);(Fink et al., 1996).

I lobi temporali sono altresì coinvolti nella capacità di ricordare volti e scene familiari

(Sugiura, Shah, Zilles & Fink, 2005);(Nakamura et al., 2000).

In aggiunta, sono inoltre implicati la corteccia cingolata posteriore (PCC) e il precuneus.

La PCC sembra implicata in diverse tipologie di cognizione sociale, come ad esempio

l’osservazione di scenari a sfondo sociale (Iacoboni et al., 2004), mentre il precuneus

risulterebbe importante per processare delle informazioni relative al sé (Shah et al., 2001).

Nello studio il ruolo di PCC/Precuneus venne confermato, in particolare nella cognizione

relativa al sé.

In questo studio MPFC, solco temporale superiore e giunzione temporo-parietale (STS/TPJ)

e cortecce temporali basali si attivarono nell’analisi congiunta (Fig. 6), dimostrando che le

Page 20: Tesi di Laurea

20

abilità connesse alla ToM sono importanti per la consapevolezza dell’empatia, in particolare

negli aspetti prettamente cognitivi di quest’ultima.

In particolare, discutiamo il ruolo della TPJ nell’espressione della ToM.

Si pensa che le regioni della TPJ siano coinvolte nel “preprocessamento” di segnali sociali

che assistono e sostengono la teoria della mente (Gallagher & Frith, 2003) o anche nella

teoria della mente stessa, cioè sulla riflessione dei contenuti presenti nella mente delle altre

persone (Saxe & Kanwisher, 2003).

I dati presenti nell’articolo, mostrarono che, le due funzioni, riguardanti la teoria della

mente sopracitata, potrebbero venir elicitate in diverse regioni della TPJ.

In particolare le analisi congiunte nel compito legato al sé e all’altro mostrarono delle

attivazioni in STS/TPJ in una regione implicata nel processare indizi sociali rilevanti (Frith

& Frith, 2003).

Una regione posteriore della TPJ si attivò durante l’auto-attribuzione di emozioni.

Le regioni della TPJ, secondo gli autori, potrebbero essere una fonte di mediazione fra la

nostra prospettiva, ovvero come vediamo le cose noi stessi e la prospettiva degli altri (role

taking).

Figura 6. Attivazione di gruppo delle aree durante l'analisi combinata di "Self- task" e "Other- task" rispetto alla

"High Level Baseline task" nelle regioni associate alla ToM. (A) Solco temporale superiore dx; (B) Lobi temporali dx e

sx; (C) Corteccia prefrontale mediale sx; (D) Solco temporale superiore sx. Da: Schulte-Rüther, M.; Markowitsch, H.J.;

Fink, G.R.; Piefke, M. (2007). Mirror neuron and theory of mind mechanisms involved in face-to-face

interactions: a functional magnetic resonance imaging approach to empathy. “Journal of Cognitive Neuroscience”,

19, 1367.

5.2 Sguardo diretto confrontato con sguardo distolto.

I risultati mostrarono che, i volti con lo sguardo diretto all’osservatore aumentavano la

risposta emotiva nella ”Self-task”, ma non attecchivano sull’intensità dell’emozione

percepita nella “Other-task”.

Page 21: Tesi di Laurea

21

Lo sguardo diretto sembra quindi influire sulle reazioni empatiche a livello

comportamentale.

L’effetto però non fu eguagliato da differenti attivazioni oltre a quelle nelle aree visive

primarie.

Gli autori osservarono differenti attivazioni nella condizione di sguardo diretto confrontato

a quello distolto unicamente nella corteccia striata.

5.3 Espressioni facciali impaurite confrontate a quelle arrabbiate.

Non si osservarono differenti attivazioni riguardanti i processi di codifica dei volti stimolo

arrabbiati o impauriti.

6 Conclusioni.

Con questo studio, come affermato alla sua presentazione, si è cercato di attribuire al

sistema dei neuroni specchio, e alle aree che lo regolano, una partecipazione nella

cognizione emotiva interpersonale, sostenendo l’attivazione di questi meccanismi anche

senza la presenza di una particolare componente o istruzione motoria, come ad esempio,

l’imitazione.

I risultati confermano questa partecipazione, mostrando, inoltre l’esistenza di diverse

regioni che fungerebbero da mediatrici nel “perspective taking” riguardante se stessi oppure

gli altri, supportando, con le immagini in fMRI, le ipotesi sul ruolo dei meccanismi che

regolano il costrutto di teoria della mente.

Dopo la lettura di questo e di svariati altri articoli, ho notato che negli studi sull’empatia

vengono utilizzati metodi simili fra loro, come la somministrazione di questionari (si veda il

paradigma sperimentale presentato sopra, dove vennero somministrati il BEES e la

sottoscala ECS presente nell’IRI), e la presentazione di stimoli su schermo, rappresentanti

volti e situazioni aventi valenza emotiva.

In particolare, mi sono chiesto se fosse possibile raffinare quest’ultima metodologia,

utilizzando modi alternativi e teoricamente più “emotigeni” nell’ambito degli studi

sull’empatia, e, più in generale, sulla macro categoria che la contiene, ovvero quella delle

emozioni.

Page 22: Tesi di Laurea

22

L’empatia è un costrutto molto studiato in psicologia, e svariati autori e autrici, si sono

sforzati nel costruire dei test in grado di misurarlo.

Si nota, tuttavia una certa difficoltà nella costruzione di questi strumenti, data la natura

dinamica e multidimensionale di questo costrutto.

Secondo Bishof-Köhler (citata in “Che cos’è l’empatia”, Albiero & Matricardi, 2006),

l’empatia può essere definita da due punti di vista: quello fenomenologico, cioè

l’esperienza di comprensione e condivisione emotiva con l’altro, e quello funzionale che

opera una distinzione tra le emozioni relative al sé e all’altro.

In particolare, secondo l’autrice, esistono due pattern di stimoli che elicitano l’empatia:

Il comportamento espressivo dell’altro (come ad esempio le espressioni facciali).

La situazione dell’altro, cioè la situazione in cui l’altro sta vivendo una particolare

emozione.

Inoltre esisterebbero anche dei meccanismi interni dinamici all’individuo che varierebbero

in funzione di certe componenti: quella affettiva, quella socio-cognitiva (ad esempio il

processo di “oggettivazione del sé”) e infine quella motivazionale (legata ad un contesto

pro-sociale).

Ora, notiamo che per elicitare l’empatia, secondo l’autrice, al comportamento espressivo

dell’altro si unisce una componente situazionale.

Come fare quindi a studiare i meccanismi di manifestazione empatica in un contesto

situazionale?

Feshbach e Roe (1968) elaborarono un test per valutare l’empatia espressa dai bambini di

età scolare (6-7 anni), il FASTE (Feshbach Affective Situation Test for Empathy), che

utilizza come strumenti delle storie figurate, presentate in diverso formato (audiocassette,

testo scritto o diapositive), al termine delle quali il protagonista della storia presentata

esprime un’emozione (paura, felicità, tristezza e rabbia).

In seguito viene chiesto ai bambini, tramite un’intervista verbale, che emozione loro stessi

provano nell’osservare l’emozione esperita dal protagonista della storia, e l’attribuzione di

un’emozione a quest’ultimo.

Questo test presenta svariati vantaggi (ad esempio maneggevolezza e applicabilità) ed è in

grado di valutare le esperienze e vissuti interni dei bambini, oltre che operare un’analisi

sulle conoscenze che essi possiedono riguardo l’empatia.

Page 23: Tesi di Laurea

23

Hoffman (1982) mosse tuttavia alcune critiche ai tipi di test che presentano storie figurate, e

una in particolare ha richiamato la mia attenzione: la valenza emotiva.

L’autore, infatti, sostiene che gli stimoli presentati in questi test sono troppo artificiosi,

essendo poco efficaci nel suscitare nell’osservatore una risposta emotiva vicaria.

Come fare allora ad aumentare la valenza emotiva, e quindi migliorare lo studio dei processi

empatici in un contesto situazionale controllabile in laboratorio?

Recentemente in America, Palmer Luckey, interessato alla tecnologia riguardante gli HMD

(Head Mounted Display) sviluppò un particolare device per videogiocatori che permise a

questi di sperimentare un’esperienza videoludica unica basata sulla realtà virtuale, l’Oculus

Rift. (Fig. 7)

Quando ho letto la notizia e guardato dei video

dove questo dispositivo viene messo alla prova,

non ho potuto fare a meno di domandarmi se

fosse possibile una sua applicazione in campo

scientifico. Gli utilizzi sarebbero veramente

molteplici, e applicabili in svariate discipline, in

particolare nel campo neuroscientifico e psicologico. Come utilizzare questo dispositivo

quindi, come risposta alla domanda di prima? Secondo me si potrebbe ideare un software

con l’aiuto di un game designer che permetta di creare delle situazioni di vita quotidiana

cariche di contenuto emotivo, degli stimoli situazionali che permettano di ridurre

l’artificiosità dei test con storie figurate. Negli studi sulla misurazione dell’empatia vengono

utilizzati anche degli indici psicofisiologici e le neuroimmagini. Gli indici psicofisiologici,

in particolare, presentano svariati vantaggi, come:

La loro potenziale libertà da bias, legati a presentazione di sé e desiderabilità sociale

La registrazione di cambiamenti emotivi nel tempo

In ambienti non coercitivi (con limitata immobilità coercitiva dovuta all’utilizzo di

macchinari) questi indici rappresenterebbero un’utile evidenza (a livello di cambiamenti

elettrofisiologici) a supporto della dichiarazione di esperienza emotiva provata per via

vicaria, da parte di una persona.

Si potrebbe quindi costruire un esperimento, nel quale si andrebbe a indagare l’intensità

della risposta emotiva in particolari situazioni presentate con formati diversi:

Figura 7. Oculus Rift.

Page 24: Tesi di Laurea

24

Ad un gruppo di soggetti potrebbero venir presentate delle storie figurate tramite

diapositive/monitor;

Ad un altro gruppo si potrebbe presentare una situazione (creata ad hoc tramite

software) tramite l’Oculus Rift;

Il terzo gruppo potrebbe fungere da controllo eseguendo altri tipi di compiti.

Per ogni condizione si misurerebbero le risposte psicofisiologiche dei soggetti, come ad

esempio il battito cardiaco, sudorazione, diminuzione della resistenza elettrica somatica etc.,

al fine di misurare se effettivamente nella condizione di realtà virtuale potrebbe emergere

una risposta emotiva più marcata rispetto alle altre condizioni.

In seguito si potrebbe decidere se effettivamente la realtà virtuale rappresentasse una valida

alternativa agli altri formati di presentazione.

Ovviamente si dovrebbero analizzare anche le possibili variabili confondenti, come ad

esempio:

la consapevolezza della finzione nella realtà virtuale, e come questa influenzi la

risposta empatica;

la presenza di “motion sickness”, o “cinetosi”, ovvero la percezione, nel partecipante,

di non corrispondenza tra il movimento percepito visivamente e quello percepito dal

sistema vestibolare (potrebbe essere utile far compiere ai partecipanti un training pre-

esperimento per accertarsi della presenza/non presenza del fenomeno);

variabili ambientali (come, ad esempio, la presenza di limitata mobilità se s’intende

utilizzare anche uno scanner fMRI) etc.

Nonostante le molte domande riguardanti la validità di questo strumento che attendono

ancora una risposta, sono convinto che in futuro rivestirà un ruolo importante in ambito

scientifico, data la sua capacità di far lavorare in simultanea diversi canali sensoriali, il suo

essere versatile, e la sua ergonomia (che sicuramente subirà degli upgrades in modo da

ottimizzarla ancora di più).

Tutto questo, nell’ambito di studi psicologici e neuropsicologici (come può essere un

compito riguardante l’empatia), potrebbe rappresentare una costruttiva innovazione da

affiancare alla metodologia classica.

Page 25: Tesi di Laurea

25

7 Bibliografia.

Albiero, P.; Matricardi G. (2006). Che cos’è l’empatia. Roma: Carocci Editore.

Altschuler, E.L.; Vankov, A.; Wang, V.; Ramachandran, V.S.; Pineda, J.A. (1997). “Person

see, person do: Human cortical electropyshiological correlates of monkeys see monkey do

cell”. Society of Neuroscience Abstract. 719, 17.

Altschuler, E.L.; Vankov, A.; Hubbard, E.M.; Roberts, E.; Ramachandran, V.S.; Pineda, J.A

(2000). Mu wave blocking by observation of movements and its possible use as a tool to

study theory of other minds. Society of Neuroscience Abstract. 68, 1.

Borke, H. (1971). Interpersonal Perception of Young Children: Egocentrism or Empathy? In

Developmental Psychology. 5, 263-69.

Buccino, G.; Binfoski, F.; Fink, G.R.; Fadiga, L.; Fogassi, L.; Gallese, V.,…Freund H.J.

(2001). Action observation activates premotor and parietal areas in a somatotopic manner:

an fMRI study. European Journal of Neuroscience. 13, 400-404.

Cochin, S.; Barthelemy, C.; Lejeune, B.; Roux, S.; Martineau, J. (1998). Perception of

motion and qEEG activity in human adults. Electroencepalography and Clinical

Neurophysiology. 107, 287-295.

Dapretto, M.; Davies, M.S.; Pfeifer, J. II; Scott, A.A.; Sigman, M.; Bookheimer, S.Y.; et al.

(2006). Understanding emotions in others: Mirror neuron dysfunction in children with

autism spectrum disorders. Nature Neuroscience. 9, 28-30.

Davis, M.H. (1980). A Multidimensional Approach to Individual Differences in Empathy.

JSAS Catalog of Selected Documents in Psychology. 10, 85.

di Pellegrino, G.; Fadiga L.; Fogassi, L.; Gallese, V.; Rizzolatti, G. (1992). Understanding

motor events: a neurophysiological study. Experimental Brain Research. 91, 176-180.

Dimberg, U. & Thunberg, M. (1998). Rapid facial reactions to emotional facial expressions.

Scandinavian Journal of Psychology. 39, 39-45

Dimberg, U.; Thunberg, M. & Elmehed, K. (2000). Unconscious facial reactions to

emotional facial expressions. Psychological Science. 11, 86-89.

Fadiga, L.; Fogassi, L.; Pavesi, G.; Rizzolatti, G. (1995). Motor facilitation during action

observation: a magnetic stimulation study. Journal of Neurophysiology. 73, 2068-2611.

Feshbach, N. D.; Roe, K. (1968). Empathy in Six- and Seven-years-old. Child Development.

39, 133-45.

Frith, U. & Frith, C. D. (2003). Development and neurophysiology of mentalizing.

Philosophical Transactions of the Royal Society of London. Series B. Biological sciences.

358, 459-453.

Page 26: Tesi di Laurea

26

Gallese,V.; Fadiga, L.; Fogassi, L.; Rizzolatti, G. (1996). Action recognition in the premotor

cortex. Brain. 119, 593-609.

Gallagher, H.L. & Frith, C.D. (2003). Functional imaging of “theory of mind”. Trends in

Cognitive Sciences, 7, 77-83.

Gangitano, M.; Mottaghy, F.M.; Pascul-Leone, A. (2001). Phase specific modulation of

cortical motor output during movement observation. Neuroreport. 12, 1489-1492.

Gastaut, H.J. & Bert, J. (1954). EEG changes during cinematographic presentation.

Electroencephalography and clinical neurophysiology. 6, 433-444.

Grezes, J. & Decety, J. (2001). Functional anatomy of execution, mental stimulation,

observation, and verb generation of actions: A meta-analysis. Human Brain Mapping. 12, 1-

19.

Hoffman, M. L. (1982). The measurement of Empathy, in C.E. Izard (Ed.), Measuring

Emotions in Infant and Children, Cambridge University Press, Cambridge. 279-96.

Iacoboni, M.; Woods, R. P.; Brass, M.; Bekkering, H.; Mazziotta, J. C.; Rizzolatti, G.

(1999). Cortical Mechanisms of Human Imitation. Science. 286. 2526-2528.

Iacoboni, M.; Koski, L.M.; Brass, M.; Bekkering, H.; Woods, R.P.; Dubeau,

M.C.;…Rizzolatti, G. (2001). Re-afferent copies of imitated actions in the right superior

temporal cortex. Proceeding of The National Academy of Sciences, U.S.A, 98, 13995-

13999.

Iacoboni, M.; Lieberman, M.D.; Knowlton, B.J.; Molnar-Szakacs, L.; Moritz, M.; Throop,

C.J. et al. (2004). Watching social interactions produces dorso-medial prefrontal and medial

parietal BOLD fMRI signal increases compared to a resting baseline. Neuroimage. 21,

1167-1173.

Kampe, K.K.; Frith, C.D. & Frith, U. (2003). “Hey John”: signals conveying

communicative intention toward the self-activate brain regions associated with

“mentalizing” regardless of modality. Journal of Neuroscience. 23, 5258-5263.

Leslie, K.R.; Johnson-Frey, S. II & Grafton, S.T. (2004). Functional Imaging of face and

hand imitation. Towards a motor theory of empathy. Neuroimage. 21, 601-607.

Murata, A.; Fadiga, L.; Fogassi, L.; Gallese, V.; Raos, V.; Rizzolatti, G. (1997). Object

representation in the ventral premotor cortex (Area F5) of the monkey. Journal of

Neurophysiology. 79, 2226-2230.

Mitchell, J.P.; Banaji, M.R. & Macrae, C.N. (2005). The link between social cognition and

self- referential thought in the medial prefrontal cortex. Journal of Cognitive Neuroscience.

17, 1306-1315.

Nakamura, K.; Kawashima, R.; Sato, N.; Nakamura, A.; Sugiura, M.; Kato, T.;…Zilles, K.

(2000). Functional delineation of the human occipito-temporal areas related to face and

scene processing.A PET study. Brain. 123, 1903-1912.

Page 27: Tesi di Laurea

27

Ochsner, K.N.; Knierim, K.; Ludlow, D. II; Haneli, J.; Ramachandran, T.; Glover, G.;

Mackey, S.C.(2004). Reflecting upon feelings: An fMRI study on neural systems supporting

the attribution of emotion to self and other. Journal of Cognitive Neuroscience. 16, 1746-

1772.

Petrides, M.; Pandya, D.N. (1997). Comparative architectonic analysis of the human and the

macaque frontal cortex. In Bolder, F.; Grafman, J.(Eds.) Handbook of Neurophysiology.

Elseiver, Amsterdam, vol.9, 17-58.

Piefke, M.; Weiss, P. II.; Zilles, K.; Markowitsch, II. J.; & Fink, G.R. (2003). Differential

remoteness and emotional tone modulate the neural correlates of autobiographical memory.

Brain. 126, 650-668.

Poldrack, R.A.; Wagner, A.D.; Prull, M.W.; Desmond J.E.; Glover, G.H.; & Gabrieli, J.D.

(1999). Functional specialization for semantic e phonological processing in the left inferior

prefrontal cortex. Neuroimage. 10, 15-35.

Rizzolatti G.; Fadiga, L.; Gallese, V.; Fogassi, L. (1996). Premotor cortex and the

recognition of motor actions. Cognitive Brain Research. 3, 131-141.

Rizzolatti G.; Sinigaglia C. (2006). So quel che fai. Il cervello che agisce e I neuroni

specchio. Milano: Raffaello Cortina Editore.

Ruby, P.; Decety, J. (2004). How would you feel versus how do think she would feel? A

neuroimaging study of perspective-taking with social emotions. Journal of Cognitive

Neuroscience. 16, 988-999.

Saxe, R. & Kanwisher, N. (2003). People thinking about thinking people. The role of the

temporo-parietal junction in “theory of mind”. Neuroimage. 19, 1835-1842.

Shah, N.J.; Marshall, J.C.; Zafiris, O.; Schwah, A.; Zilles, K.; Markowitsch et.al (2001).

The neural correlates of person familiarity. A functional magnetic resonance imaging study

with clinical implications. Brain. 124, 804-815.

Sugiura, M.; Shah, N.J.; Zilles, K. & Fink, G.R. (2005). Cortical representations of

personally familiar objects and palces. Functional organization of the human posterior

cingulate cortex. Journal of Cognitive Neuroscience. 17, 183-198.

Schulte-Rüther, M.; Markowitsch, H.J.; Fink, G.R.; Piefke, M. (2007). Mirror neuron and

theory of mind mechanisms involved in face-to-face interactions: a functional magnetic

resonance imaging approach to empathy. Journal of Cognitive Neuroscience. 19, 1354-

1372.

Vogeley, K.; Fink, G.R.; (2003). Neural correlates of the first person perspective. Trends in

Cognitive Neuroscience. 7, 38-42.