127
i ORGANIZACIÓN SOCIAL DE Octodontomys gliroides (Gervais y d'Orbigny, 1844) Y SUS IMPLICANCIAS SOBRE EL ORIGEN Y EVOLUCIÓN DE LA SOCIABILIDAD EN ROEDORES OCTODÓNTIDOS

Tesis Daniela Rivera final

Embed Size (px)

Citation preview

Page 1: Tesis Daniela Rivera final

i

ORGANIZACIÓN SOCIAL DE Octodontomys gliroides (Gervais y

d'Orbigny, 1844) Y SUS IMPLICANCIAS SOBRE EL ORIGEN Y

EVOLUCIÓN DE LA SOCIABILIDAD EN ROEDORES

OCTODÓNTIDOS

Page 2: Tesis Daniela Rivera final

ii

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE CIENCIAS BIOLÓGICAS

PROGRAMA DOCTORADO EN CIENCIAS BIOLÓGICAS

MENCIÓN ECOLOGÍA

ORGANIZACIÓN SOCIAL DE Octodontomys gliroides (Gervais y d'Orbigny, 1844)

Y SUS IMPLICANCIAS SOBRE EL ORIGEN Y EVOLUCIÓN DE L A

SOCIABILIDAD EN ROEDORES OCTODÓNTIDOS

Por

DANIELA SUZANA RIVERA ROCABADO

Tesis presentada a la Facultad de Ciencias Biológicas de la Pontificia Universidad Católica

de Chile para optar al grado académico de Doctor en Ciencias Biológicas con mención en

Ecología.

Dirigida por:

Luis A. Ebensperger PhD.

R. Eduardo Palma PhD.

Septiembre, 2013

Santiago, Chile

Page 3: Tesis Daniela Rivera final

iii

RESUMEN…………………………...………………………………………………….. ix

INTRODUCCIÓN GENERAL………………...…………………………………...……… 1

MARCO TÉORICO……………………………...………………………………………… 2

Modelo de estudio, Hipótesis y predicciones……….…………………………..... 6

REFERENCIAS……………………………………………………………………..……. 10

CAPÍTULO I

PHYLOGEOGRAPHY AND GENETIC STRUCTURE OF THE ANDEAN DEGU,

OCTODONTOMYS GLIROIDES (RODENTIA: OCTODONTIDAE) .………......... 19

ABSTRACT……………………...…………………………………………………….… 20

INTRODUCTION….…………………………………………………............................ 21

METHODS……….………………………………………………………………............ 20

RESULTS…………………..…………………………………………............................ 30

DISCUSSION………………………………………………………………...….............. 34

AKNOWLEDGMENTS………………………………………………………................ 41

REFERENCES…………………………………………………………………………...42

TABLES………………………………………………………………………................. 55

FIGURES…………………………………………………………………..…..……...…. 59

CAPÍTULO II

WITHIN BUT NOT BETWEEN VARIATION IN ECOLOGY PREDICT

POPULATION DIFFERENCES IN OCTODONTOMYS GLIROIDES GROUP-

LIVING ………………………………………………………………………………….. 70

ABSTRACT……………………………………………………………………………… 71

INTRODUCTION…………………………………………………….............................. 72

Page 4: Tesis Daniela Rivera final

iv

METHODS…………………………………………………………….............................. 77

RESULTS……………………………………………………………................................ 87

DISCUSSION…………….………………………..…………………………………..… 90

AKNOWLEDGMENTS………..………………………………………............................ 94

REFERENCES…………………………………………….……………..……………….. 95

TABLES………………………………………………….……………………………… 109

FIGURES………………………………….…………………………………………….. 113

CONCLUSIONES GENERALES……………………………………………………….117

Page 5: Tesis Daniela Rivera final

v

A mis papás, pilares fundamentales en mi vida, soy lo que

soy gracias a ustedes

Page 6: Tesis Daniela Rivera final

vi

AGRADECIMIENTOS Esta tesis no hubiera sido posible llevarla a cabo si no hubiera contado con el apoyo de

varias personas que en cierto punto, ya sea académico o personal, de lejos o de cerca

estuvieron presentes en momentos claves del desarrollo de este trabajo. Es por tanto que en

las siguientes líneas tratare de manifestar un agradecimiento general a todos ellos…

Al Dr. Luis A. Ebensperger, por la ayuda y confianza que me brindo como asesor de esta

tesis, por las ideas, las correcciones e interés que demostró en esta investigación. Por tener

siempre el tiempo de leer lo que le enviaba y por sobre todo por enseñarme el mundo de la

sociabilidad y de los degus. Al Dr. Eduardo Palma, como cotutor de este trabajo, por

abrirme las puertas de su laboratorio y hacer que siempre me sintiera bienvenida, por su

constante apoyo y sus comentarios y correcciones a los resultados.

A los miembros de mi comisión asesora de tesis integrada por los doctores Rodrigo

Vásquez, María Fernanda Pérez y Claudio Latorre, por toda su buena disposición,

correcciones y aportes a esta tesis.

A Mauricio Lima, quien me dio la oportunidad de poder postular al programa de doctorado.

A Pancho Bozinovic por abrirme las puertas de su laboratorio desde el comienzo.

A todas y cada una de las fuentes de financiamiento que hicieron posible la presente tesis.

A la Organización de Estados Americanos (OEA), la beca con la cual llegue a Chile y con

la que inicie mis estudios de doctorado. A Comisión Nacional Científica y Tecnológica

(CONICYT), por los dos años de beca doctoral. A la Vicerrectoría de Investigación (VRI-

UC) y Dirección de Investigación y Postgrado (DIP-UC). Al proyecto FONDECYT

1090302 “A mechanistic model to explain direct fitness consequences of sociality in the

rodent Octodon degus”. Al Programa 1 del Centro de Estudios Avanzados en Ecología y

Page 7: Tesis Daniela Rivera final

vii

Biodiversidad (FONDAP 1501–001). Al Animal Behaviour Society (Developing Nations

Award) y American Society of Mammalogists por los fondos para cubrir parte de los

terrenos. Al Departamento de Ecología de la Facultad de Ciencias Biológicas de la

Pontificia Universidad Católica de Chile, en la cual desarrolle mis estudios y pase gran

parte de mi tiempo.

A todas las instituciones y colegas biólogos que me brindaron y enviaron muestras de tejido

para los análisis genéticos: Al Field Museum of Natural History; Sam Noble Oklahoma

Museum of Natural History; Colección de Flora y Fauna Profesor Patricio Sánchez Reyes,

UC; Instituto de Ecología y Evolución, UACh; Museo de Ciencias Naturales y Tradicional

de Mar del Plata "Lorenzo Scaglia"; a Agustina y Ricardo Ojeda de la Colección de

Mamíferos del Instituto Argentino de Investigaciones de zonas Áridas (IADIZA), Jorge

Jayat y Raúl Sobrero.

Al Centro de Biodiversidad y Genética por todo el material de campo. A las comunidades

de “Oploca” y “Chusmiza” donde realice el terreno, a tanta gente linda que nos brindaron

su ayuda, recibiéndonos con las puertas abiertas.

A todos los valientes voluntarios de campo, Ariel, Marco Antonio, Alejo, Mauri, que

aguantaron frio, calor, cebar trampas de madrugada y revisarlas varias veces en la noche.

A Huber por su valentía y destreza en el campo, por permanecer despierto tantas noches

cuidando de que no nos pasara nada y por aguantar dos meses aislado. Por sus

conocimientos de botánica y ayuda con la identificación de las especies vegetales.

A Gabi Villanueva por ser amiga y un 10 en el campo, por tantos momentos lindos que

compartimos despiertas tantas noches durante el trampeo y telemetría. Por su entusiasmo y

predisposición, por seguirme en todas mis ocurrencias y por su amistad.

Page 8: Tesis Daniela Rivera final

viii

A Sebas Abades, por sus valiosos aportes para el análisis estadístico de los datos. A Andrés

Parada y Juliana Vianna, por su paciencia y ayuda con los programas filogenéticos.

A mis compañeros y ex compañeros del lab Ebensperger. A Ricardo Cancino por iniciarme

en el mundo de las pipetas y de los PCRs. A Marlene Manzano por ser mi hada madrina de

los análisis genéticos y una verdadera amiga.

A Sabri, Li, Bea, por tantos lindos momentos. A los grandes amigos que ya migraron a

tierras lejanas y otras más cercanas: Ana, Sergio, Claudiña, David, Fernanda, Felipe, Stella

gracias por tantos recuerdos.

A mis amigos del día a día: Feñita, Felipe, Lore, Sebas y a los amigos que a pesar de la

distancia se que están presentes. Al Sr. Fernando y Sra. Daniela por estar siempre

preocupados y pendientes de mí.

A mi familia, a mis papás por brindarme su apoyo incondicional y darme ánimos cuando

más lo necesitaba. A mis hermanos, porque a pesar de la distancia siempre me acompañan

y me sacan de apuro. A mi mamá por ser mi pilar y fortaleza y saber transmitirme sus

sabios consejos a lo largo de toda mi carrera y formación profesional. A mi abuelita

“mămaie” que me dejo durante mi primer año en el programa, pero que siempre me ha

acompañado. A mi abuelo “tătaie” que me acompaña a pesar de la distancia.

A mi cable a tierra, Fernando Alfaro, por aguantarme y por estar siempre, por su infinita

paciencia y por brindarme su apoyo incondicional. Por tantos momentos amargos y dulces

compartidos en toda esta etapa.

A todos ustedes muchas gracias!!!

Page 9: Tesis Daniela Rivera final

ix

Resumen

El comportamiento social es variable entre especies de roedores de la familia Octodontidae,

y donde el número de especies sociales es más frecuente en las ramas terminales de este

grupo. Determinar si la vida social en las formas más derivadas evolucionó en respuesta a

cambios ambientales recientes dependen fundamentalmente de las características de la

estructura social de Octodontomys gliroides, el taxón hermano del clado compuesto por la

mayoría de las especies sociales. Por lo tanto, la ocurrencia de hábitos solitarios en O.

gliroides indicaría que la vida social en la familia Octodontidae es un rasgo derivado. En

cambio, la ocurrencia de hábitos sociales en O. gliroides indicaría que este rasgo

evolucionó temprano y que la sociabilidad en Octodontidae es el producto de presiones de

selección históricas. El objetivo central de esta tesis fue determinar el grado de sociabilidad

de O. gliroides, la importancia de factores ecológicos como causas de su posible variación,

y las implicancias de esto sobre la evolución de la vida en grupo en Octodontidae. Para ello

se realizó un análisis filogeográfico que permitió determinar el grado de estructuración

genética de las poblaciones de O. gliroides a lo largo de su rango de distribución. Los

resultados indicaron que las poblaciones de esta especie están estructuradas genéticamente.

En base a estos resultados, se seleccionaron dos de estas poblaciones genéticamente

distintas pero que habitan ambientes con distinta productividad primaria determinada por

un gradiente de precipitación. La sociabilidad cuantificada como tamaño de grupo y grado

de cohesión social entre individuos del mismo grupo no presentó variación entre las

poblaciones estudiadas, a pesar de diferencias marcadas en condiciones ecológicas

(distribución de alimento y refugio, riesgo de depredación, costos asociados a excavar

madrigueras). En cambio, se registró una asociación entre diferencias ecológicas y la

variación en el tamaño de los grupos dentro de estas poblaciones. En conjunto, los

resultados son consistentes con que la sociabilidad en esta especie evolucionó en respuesta

a las condiciones de aridez en el pasado y que esta se han mantenido relativamente

invariable a lo largo del tiempo a pesar de las diferencias ecológicas entre sus poblaciones

actuales. Tomando en cuenta la posición filogenética de O. gliroides es posible inferir que

la sociabilidad en Octodontidae evolucionó temprano en el clado “social”.

Page 10: Tesis Daniela Rivera final

1

INTRODUCCIÓN GENERAL

Page 11: Tesis Daniela Rivera final

2

MARCO TÉORICO

La sociabilidad, definida como la tendencia de los individuos a vivir gran parte de su ciclo

vital con otros individuos de la misma especie y a interactuar más frecuentemente con estos

(Alexander 1974; Blumstein & Armitage 1998; Lacey & Sherman 2007; Wey et al. 2008),

es relativamente común en insectos y otros invertebrados (Seeley 1989; Avilés & Tufiño

1998), así como en peces (Heg et al. 2005; Reddom et al. 2011), aves y mamíferos (Lott

1991; Heinsohn 1992; Brown & Brown 1996; Ebensperger 2001; Lacey & Sherman 2007).

La tendencia de los individuos a agruparse puede resultar a partir del estímulo generado por

recursos externos a éstos (e.g. refugio y/o alimento), o por una atracción generada entre los

propios individuos (Parrish et al. 1997; Ebensperger 2001). Esta tendencia no es un rasgo

invariante, tal como lo demuestran estudios que han documentado cambios en el tamaño de

grupo, estructura y grado de cohesión social tanto dentro como en diferentes poblaciones de

vertebrados (Lott 1984; 1991; Brashares & Arcese 2002; Schradin & Pillay 2005). La

ocurrencia de variación en el comportamiento social es evidente incluso dentro de especies

con una estructura social cohesionada y permanente (Lott 1991), un aspecto esencial para

estudios cuyo objetivo es determinar las causas ecológicas y significancia funcional de la

sociabilidad (Lott 1991; Foster 1999, Johnson et al. 2002). En particular, comparaciones

entre poblaciones tienen la ventaja de abarcar un rango más amplio de condiciones

ecológicas, en particular cuando estas poblaciones están asociadas a diferencias importantes

en condiciones ecológicas (Ebensperger et al. 1995; Travis et al. 1995; Shradin & Pillay

2005), lo que sin embargo permite “controlar” otras fuentes de variación como filogenia y

nicho ecológico (Clutton-Brock & Harvey 1978; Lott 1991; Maher 1994). A diferencia de

los estudios en una sola población, los estudios comparativos a lo largo de gradientes

ambientales (i.e., variación entre poblaciones), representan “experimentos naturales” que

Page 12: Tesis Daniela Rivera final

3

permitan evaluar la contribución relativa de las condiciones ecológicas sobre la estructura y

tamaño de los grupos sociales (Johnson et al. 2002). Así entonces, comparaciones entre

poblaciones pueden contribuir a determinar si variación en condiciones ecológicas se han

traducido en diferencias en el grado de sociabilidad (Foster 1999; Ebensperger et al. 2012).

La variación intraespecífica en el grado de sociabilidad es a menudo atribuida al

efecto de diferencias en condiciones ecológicas (e.g., clima, riesgo de depredación,

densidad, disponibilidad de lugares para nidificar, calidad, cantidad o distribución de

alimento) (Lott 1991), las cuales determinarían los beneficios y costos que emergen de las

decisiones de los individuos por asociarse o a abandonar un grupo (Slobodchikoff 1984;

Lacey 2000; Brashares & Arcese 2002; Ebensperger et al. 2012). Entre los potenciales

beneficios que se atribuyen a la formación y mantención de la vida en grupo se incluyen

una disminución en el riesgo per cápita de depredación, un incremento en la eficiencia de

forrajeo debido a una localización y/o defensa más eficiente de los recursos, así como un

incremento en el ahorro energético producto de termorregulación social entre otros

(Alexander 1974; Bertram 1978; Armitage 1981; Krebs & Davies 1993; Ebensperger 2001;

Lacey & Sherman 2007). Por otro lado, los costos asociados a la vida en grupo, incluyen un

incremento en la trasmisión de parásitos y competencia por recursos entre otros (Alexander

1974; Loehtle 1995; Altizer et al. 2003).

Son numerosos los estudios que han documentado una relación estrecha entre el

grado de sociabilidad y variación en factores ecológicos asociados a beneficios de la vida

en grupos. Por ejemplo, hembras del venado de cola blanca (Odocoileus virginianus) que

habitan ambientes abiertos y de mayor susceptibilidad a depredadores forman grupos más

numerosos comparados con grupos de la misma especie en ambientes más cerrados (Hirth

1977; Lott 1991). Por otra parte, la distribución de recursos críticos es uno de los

Page 13: Tesis Daniela Rivera final

4

principales agentes ecológicos de la conducta social. En particular, recursos que se

encuentran distribuidos de manera heterogénea en espacio y tiempo pueden promover la

vida en grupo debido a que los grupos más numerosos son más eficientes en localizar o

defender recursos de alta calidad (Slobodchikoff 1984; Travis et al. 1995; Brashares &

Arcese 2002; Maher & Burger 2011). Por ejemplo, la rata topo común (Cryptomys

hottentotus hottentotus) forma colonias más numerosas en ambientes áridos donde el

alimento está distribuido en forma heterogénea que en ambientes más húmedos donde el

alimento está distribuido en forma más uniforme. Un mayor número de individuos en

ambientes áridos determina una localización y defensa más eficiente de estos recursos

(Spinks & Plagányi 1999; Spinks et al. 2000). De manera similar, los perritos de la pradera

de Gunnison (Cynomys gunnisoni) incrementan el tamaño de grupo y solapamiento de sus

ámbitos de hogar cuando los recursos se encuentran más dispersos en espacio y tiempo

(Verdolin 1999). Además de la distribución, la abundancia de los recursos también parece

tener algún efecto sobe la tendencia a formar grupos. Así por ejemplo, variación en el

tamaño de grupo durante la actividad de forrajeo en mamíferos carnívoros (Canis lupus,

Crocuta crocuta) está asociada a diferencias estacionales o temporales en la disponibilidad

de presas (Mech 1970; Kruuk, 1972).

En contraste con un escenario en el cual las condiciones ecológicas son atribuidas

como causas de la evolución de la vida en grupo, diferencias en el grado de sociabilidad

entre especies dentro de un clado también pueden representar rasgos heredados a partir de

formas ancestrales. En este escenario, los rasgos pueden permanecer invariantes a pesar de

diferencias entre los ambientes de las formas ancestrales y actuales. Es decir, el rasgo o

estado del rasgo en las formas actuales representarían inercia filogenética. Esta hipótesis es

apoyada por comparaciones entre especies. Por ejemplo, la vida social en miembros de la

Page 14: Tesis Daniela Rivera final

5

super-familia Cavioidea ha sido atribuida a los efectos filogenéticos dentro de este grupo,

es decir, que el rasgo social habría estado presente también en las formas ancestrales,

independiente de diferencias en los ambientes usados por estas especies (Rowe &

Honeycutt 2002). Del mismo modo, la organización social y espacial en especies de

caballos salvajes (familia Equidae) es uniforme a pesar de diferencias ambientales y

demográficas, lo que apoya que la estructura social observada sería un rasgo ancestral y un

caso de inercia filogenética (Linklater2000). En aves se ha enfatizado el posible rol de

factores ecológicos (e.g., depredación, dispersión limitada) como causa evolutiva de la vida

social. Sin embargo, existe evidencia que apoya que la vida social es el estado ancestral en

varias familias de aves, lo que no descarta un componente filogenético (Arnold & Owens

1998; 1999; Covas & Griesser 2007). Además, estudios en los que inicialmente se atribuyó

el efecto de causas ecológicas a la sociabilidad han sido re-evaluados encontrando un fuerte

componente filogenético. Por ejemplo, Van Schaik & Van Noordwijk (1986) indicaron que

diferencias en riesgo de depredación serían la causa de diferencias en el tamaño de grupo

en poblaciones de macacos de cola larga (Macaca fascicularis). Sin embargo, la evidencia

más reciente a partir de estudios comparados es más consistente con que la sociabilidad en

especies del género Macaca estarían está vinculada a inercia filogenética (Thierry et al.

2000). En conjunto, estos estudios indican que no es claro en qué medida la variación social

observada en poblaciones de especies actuales es el resultado de adaptación a variación en

condiciones ecológicas o el legado de formas ancestrales.

Por otra parte, un escenario de inercia también puede ser evaluado indirectamente a

partir de compasiones intraespecíficas. En particular, una ausencia de variación social en

poblaciones genéticamente distintas y asociadas a condiciones ambientales diferentes sería

más consistente con un escenario de inercia. Solo un estudio reciente ha examinado esta

Page 15: Tesis Daniela Rivera final

6

posibilidad en el tejón europeo (Meles meles), y donde una ausencia de variación social está

vinculada con variación ecológica significativa.

Modelo de estudio, Hipótesis y predicciones

El orden Rodentia constituye un grupo de especies particularmente apropiado para

examinar los roles de condiciones ecológicas y de inercia filogenética en el origen y

evolución de la sociabilidad. En particular, en este orden prevalecen clados monofiléticos

bien sustentados y donde las especies exhiben una gran diversidad ecológica y morfológica

(Nedbal et al. 1994; Rowe & Honeycutt 2002). Es así, que la vida social en este taxón se ha

registrado en no menos de 70 especies, representantes de 39 géneros y 18 familias

ampliamente distribuidas (Lacey & Sherman 2007).

El orden Rodentia está representado por tres grupos taxonómicos: los sciurognatos,

los miomorfos y los hystricognatos (Wilson & Reeder 2005). Los hystricognatos

sudamericanos (degus, cururos, cobayos, ratas vizcachas, tuco-tucos) incluyen especies que

varían morfológica y fisiológicamente y que se han adaptado a diferentes modos de vida

(e.g., sociales, escansoriales, fosoriales, semifosoriales), pudiendo encontrarse en casi todo

tipo de ambientes (Contreras et al. 1987; Mares & Ojeda 1982; Eisenberg & Redford 1999).

Estos patrones de diversidad morfológica, fisiológica y ecológica tienden a covariar

con patrones de organización social y comportamiento, donde la estructura social varía

entre especies solitarias y/o especies altamente sociales y gregarias (Ebensperger & Cofré

2001; Lacey & Ebensperger 2007; Ebensperger et al. 2008). Dentro de los hystricognatos

sudamericanos, los octodontidos (Octodontidae) corresponden a uno de los grupos más

característicos en ambientes áridos y semiáridos del cono sur de Sudamérica (Contreras et

al. 1987; Lacey & Ebensperger 2007; Honeycutt et al. 2007). Los Octodontidae constituyen

Page 16: Tesis Daniela Rivera final

7

un grupo monofilético (Honeycutt et al. 2003; Lessa et al. 2008) con 13 especies divididas

en siete géneros (Aconaemys, Octodon, Octodontomys, Octomys, Spalacopus,

Tympanoctomys y Pipanacoctomys; Wilson & Reeder 2005; Ojeda et al. 2013). Al mismo

tiempo, se trata de un grupo ecológicamente diverso que incluye especies con hábitos de

vida escansorial, semisubterráneos y subterráneos (Redford & Eisenberg 1992; Lacey &

Ebensperger 2007; Ebensperger et al. 2008). Estas especies se encuentran distribuidas a lo

largo de la Cordillera de los Andes desde los 16° S a 41° S, especialmente en las laderas

occidentales (Contreras et al. 1987; Ojeda et al. 1996; Verzi 2001), ocupando una gran

diversidad de ambientes que incluyen pastizales abiertos, bosques ralos y bordes de salares

extremadamente áridos (Redford & Eisenberg 1992; Lacey & Ebensperger 2007).

Si bien la información disponible sobre la estructura social para la mayoría de las

especies de octodóntidos es poco conocida, se ha establecido que el clado chileno

compuesto por las especies Octodon degus (Fulk 1976; Lacey & Ebensperger 2007),

Spalacopus cyanus (Reig 1970; Lacey & Ebensperger 2007), Aconaemys fuscus (Reise &

Gallardo 1989) y O. lunatus (Sobrero 2013) serían sociales. Por otra parte, las especies del

clado argentino: Tympanoctomys barrerae, Octomys mimax y Pipanacoctomys aureus

presentan hábitos solitarios (Mares et al. 1997; Ebensperger et al. 2008). Se ha planteado

que este patrón de diversificación podría haber evolucionado en respuesta a cambios

climáticos (Reig 1986; Ojeda & Tabeni 2009). La evaluación de esta hipótesis depende

fundamentalmente de la estructura social de la especie Octodontomys gliroides (soco,

choschori, rata cola de pincel o degu Andino), un aspecto completamente desconocido

hasta ahora.

Diversas observaciones sugieren que la historia evolutiva de O. gliroides pudo estar

marcada por respuestas a variación en las condiciones ecológicas de los ambientes usados

Page 17: Tesis Daniela Rivera final

8

por estos animales. Se trata e una especie que se encuentra en la región tropical de

Sudamérica (Gallardo et al. 2007), en ambientes con características climáticas y

geográficas contrastantes (e.g., desiertos extensos, montañas elevadas, extensos salares)

(Ojeda et al. 2000). La distribución geográfica actual de esta especie coincide con un

gradiente de precipitación de este a oeste creado por el efecto de “sombra de lluvia” de los

Andes. La evidencia disponible apoya que esta zona se caracteriza por una historia

compleja de cambios asociados con períodos secos-húmedos que ocurrieron en el

Pleistoceno-Holoceno (Nester et al. 2007; Santoro & Latorre 2009). Esta variación

climática ha causado cambios en la distribución de la flora local y la localización de zonas

andinas xéricas donde O. gliroides se encuentra en la actualidad (Ribichich 2002; Teta &

Ortiz 2002; Barquez et al. 2006).

Por otra parte, la mayoría de las reconstrucciones filogenéticas recientes sitúan a O.

gliroides como el taxón hermano del clado compuesto por la mayoría de las especies

sociales (Honeycutt et al., 2003; Gallardo et al. 2004; Opazo 2005; Rowe et al. 2010). Por

lo tanto, la ocurrencia de hábitos solitarios en O. gliroides apoyaría que la vida social en

Octodontidae sería un rasgo derivado, y potencialmente en respuesta a condiciones

eclógicas recientes. En contraste, la ocurrencia de hábitos sociales en O. gliroides indicaría

que este rasgo evolucionó temprano en Octodontidae y que es el resultado de presiones de

selección históricas. De esta manera, el objetivo central de esta tesis fue determinar el grado

de sociabilidad de O. gliroides, examinando la importancia de factores ecológicos (e.g.,

distribución de recursos, riesgo de depredación) como posibles causas, así como sus

implicancias sobre la evolución de la vida en grupo en el resto de los octodóntidos sociales.

Para esto, se realizó primero un análisis filogeográfico que permitió determinar el grado de

diferenciación genética entre poblaciones de O. gliroides a lo largo de su rango de

Page 18: Tesis Daniela Rivera final

9

distribución. En base a estos resultados, se seleccionaron dos poblaciones genéticamente

distintas pero que ocurren en ambientes con distinta productividad primaria determinada

por un gradiente de precipitación. En ambas poblaciones se evaluó la importancia de

diferentes factores ecológicos, en particular, la distribución de recursos, riesgo de

depredación y costos asociados a cavar madrigueras como predictores de la variación en el

grado de sociabilidad dentro y entre poblaciones.

Page 19: Tesis Daniela Rivera final

10

REFERENCIAS

Alexander, R. D. 1974. The evolution of social behavior. Ann. Rev. Ecol. Syst. 5: 325-383.

Altizer, S., Nunn, C. L., Thrall, P. H., Gittleman, J. L., Antonovics, J., Cunningham, A. A.,

Dobson, A. P., Ezenwa, V., Pedersen, A. B., Poss, M. & Pulliam, J. R. C. 2003. Social

organization and parasiterisk in mammals: integrating theory and empirical studies. Annual

Review of Ecology, Evolution and Systematics, 34: 517-547.

Armitage, K.B. & Woods, B.C. 2003. Group hibernation does not reduce energetic costs of young

yellow-bellied marmots. Physiological and Biochemical Zoology 76: 888–898.

Arnold, K. E. & Owens, I.P.F. 1998. Cooperative breeding in birds a comparative test of the

history hypothesis. Proc. R. Soc. Lond. B 265:739-745.

Arnold, K. E. & Owens, I. P. F. 1999. Cooperative breeding in birds: the role of ecology. Behav.

Ecol. 10: 465- 471.

Avilés, L. & Tufiño, P. 1998. Colony size and individual Wtness in the social spider Anelosimus

eximius. American Naturalist 152: 403–418.

Barquez, R. M., Díaz, M. M. & Ojeda, R. 2006. Mamíferos de Argentina. Sistemática y

Distribución. Sociedad Argentina para el Estudio de los Mamíferos (SAREM).Tucuman,

Argentina. 359 pp.

Bertram, B. C. R. 1978. Living in groups: predators and prey. In: Behavioural ecology: and

evolutionary approach (Krebs, J. R. & Davies, N. B., eds). Blackwell Scientific

Publications, Oxford, UK, pp. 64-96.

Blumstein, D.T. & Armitage, K.B. 1998. Life history consequences of social complexity a

comparative study of ground-dwelling sciurids. Behavioral Ecology 9: 8-19.

Brashares, J. S. & Arcese, P. 2002. Role of forage, habitat and predation in the behavioural

plasticity of a small African antelope. Journal of Animal Ecology, 71: 626-638.

Page 20: Tesis Daniela Rivera final

11

Brown, C. R. & Brown, M. B. 1996. Coloniality in the Cliff Swallow: the Effect of Group Size on

Social Behavior. University of Chicago Press, Chicago.

Cahan, S. H, Blumstein, D. T., Sundström, L., Liebig, J. & Griffin, A. 2002. Social trajectories and

the evolution of social behavior. Oikos 96: 206–216.

Clutton-Brock, T. H. & Harvey, P. H. 1978. Mammals, resources and reproductive strategies.

Nature 273: 191-195.

Clutton-Brock, T. H., Gaynor, D., McIlrath, G. M., Maccoll, A. D., Kansky, R., Chadwick, P.,

Manser, M., Skinner, J. D. & Brotherton, P. N. M. 1999. Predation, group size and

mortality in a cooperative mongoose, Suricata suricatta. Journal of Animal Ecology 68:

672-683.

Contreras, L.C., Torres-Mura, J. C. & Yánez., J.L. 1987. Biogeography of octodontid rodents: an

eco-evolutionary hypothesis. In: Patterson B.D., Timm, R.E. (Eds.): Studies of Neotropical

Mammalogy. Essays in honor of P. Herskovitz. Fieldiana, Zoology (new series). 39.

Chicago Field Museum, Chicago, IL, pp. 401–411.

Covas, R. & Griesser, M. 2007. Life history and the evolution of family living in birds.

Proceedings of the Royal Society B. 274: 1349–1357

Ebensperger, L. A. 2001. A review of the evolutionary causes of rodent group-living. Acta

Theriologica 46: 115-144.

Ebensperger, L. A. & Cofré, H. 2001. On the evolution of group-living in the New World cursorial

hystricognath rodents. Behavioral Ecology 12: 227-236.

Ebensperger, L. A. & Hurtado, M. J. 2005. On the relationship between herbaceous cover and

vigilance activity of degus (Octodon degus). Ecology 111: 593-608.

Ebensperger, L. A. & Blumstein, D. T. 2006. Sociality in New World hystricognath rodents is

linked to predators and burrow digging. Behavioral Ecology 17:410-418.

Page 21: Tesis Daniela Rivera final

12

Ebensperger, L..A., Sobrero, R., Campos V. & S.M. Giannoni. 2008. Activity, range areas, and

nesting patterns in the viscacha rat, Octomys mimax: implications for its social

organization. Journal of Arid Environments 72: 1174–1183.

Ebensperger, L.A. & Hayes. L.D. 2008. On the dynamics of rodent social groups. Behavioural

Processes 79: 85–92.

Ebensperger, L. A., Castro, R. A., Sobrero, R., Quirici, V., Burger, J. R, Quispe, R., Villavicencio,

C., Vásquez, R. A., Soto-Gamboa, M. & Hayes, L. D. 2012. Ecological drivers of group-

living in two populations of the communally rearing rodent, Octodon degus. Behavioral

Ecology and Sociobiology 66: 261-274

Eisenberg, J. F. & Redford, K. H. 1999. Mammals of the Neotropics. The central Neotropics:

Ecuador, Peru, Bolivia, Brasil. Vol. 3. The University of Chicago Press.

Foster, S.A. & Endler, J. A. 1999. Geographic variation in Behavior: Perspectives on evolutionary

mechanisms. Oxford University Press, Inc. NY. 308 pp.

Fulk, G. W. 1976. Notes on the activity, reproduction, and social behavior of Octodon degus. J

Mammal 57:495–505.

Gallardo, M. H., Kausel, G., Jiménez, A., Bacquet, C., González, C., Figueroa, J., Köhler, N. &

Ojeda, R. 2004. Whole‐genome duplications in South American desert rodents

(Octodontidae). Biological Journal of the Linnean Society 82: 443-451.

Gallardo, M. H., Ojeda, R. A., Gonzalez C. A. & Rios. C. A. 2007. The Octodontidae revised. Pp.

695-720 In: Kelt, D.A., E.P. Lessa, J.Salazar Bravo & J.L.Patton (eds). The Quintessential

Naturalist: Honoring in Life and Legacy of Oliver P.Pearson. University of California

Publications in Zoology 134:1- 981.

Heg, D., Brouwer, L., Bachar, Z. & Taborsky, M. 2005. Large group size yields group stability in

the cooperatively breeding cichlid Neolamprologus pulcher. Behaviour 142: 11-12.

Page 22: Tesis Daniela Rivera final

13

Heinsohn, R. G. 1992. Cooperative enhancement of reproductive success in white-winged

choughs. Evolutionary Ecology 6: 97–114.

Hirth, D. H. 1977. Social behavior of white-tailed deer in relation to habitat. Wildlife Monographs.

33: 1-55

Honeycutt, R. L., Rowe, D. L. & Gallardo, M. H. 2003. Molecular systematics of the South

American Caviomorph rodents: relationships among species and genera in the family

Octodontidae. Molecular Phylogenetics and Evolution 26: 476-489.

Isvaran, K. 2007. Intraspecific variation in group size in the blackbuck antelope: the roles of

habitat structure and forage at different spatial scales. Oecologia 154: 435-444

Johnson, D. D., Baker, S., Morecroft, M. D. & Macdonald, D. W. 2001. Long-term resource

variation and group size: a large-sample field test of the resource dispersion hypothesis.

BMC Ecology 1: 2-2.

Johnson, D. D. P., Kays, R., Blackwell, P. G. & MacDonald, W. 2002. Does the resource

dispersion hypothesis explain group-living? Trends in Ecology and Evolution 17: 563-570.

Krebs, J. R. & Davies, N. B. 1993: An introduction to behavioural ecology. Blackwell Scientific

Publications, Oxford, UK.

Kruuk, H. 1972. The spotted hyena: a study of predation and social behavior. Chicago, IL:

University of Chicago Press. 335 pp.

Lott, D. F. 1991. Intraespecific variation in the social systems of wild vertebrates. Cambriges

University Press.

Lacey, E. A. & Sherman, P. W. 1997. Cooperative breeding in naked mole rats: Implications for

vertebrate and invertebrate sociality. In Cooperative breeding in mammals, ed. N. G.

Solomon and J. A. French, 267–301. Cambridge: Cambridge University Press.

Page 23: Tesis Daniela Rivera final

14

Lacey, E. A. 2000. Spatial and social systems of subterranean rodents. In Life underground: The

biology of subterranean rodents, ed. E. A. Lacey, J. L. Patton, and G. N. Cameron, 257–96.

Chicago: University of Chicago Press.

Lambin, X. 1994. Natal philopatry, competition for resources, and inbreeding avoidance in

Townsend’s voles (Microtus townsendii). Ecology 75: 224-235.

Lessa, E.P, Vassallo, A. I., Verzi, D. H. & Mora, M. S. 2008. Evolution of morphological

adaptations for digging in living and extinct ctenomyid and octodontid rodents. Biological

Journal of the Linnean Society 95: 267–283.

Linklater, W. L. 2000. Adaptative explanation in social-ecology: lessons from the Equidae. Biol.

Rev. 75: 1-20.

Loehle, C. 1995. Social barriers to pathogen transmission in wild animal populations. Ecology 76:

326-335.

Mares, M. A., Braun, J. K., Channell, R. 1997. Ecological observations on the octodontid rodent,

Tympanoctomys barrerae, in Argentina. Southwestern Naturalist 42: 488–504.

Maher, C. R. 1994. Pronghorn male spatial organisation: population differences in degree of

nonterritoriality. Canadian Journal of Zoology 72: 455-464.

Maher, C. R. & Burger, J. R. 2011. Intraspecific variation in space use, group size, and mating

systems of caviomorph rodents. Journal of Mammalogy 92: 54-64.

Mech, L.D. 1970. The wolf. Nat. Hist. Press (Doubleday): New York. 389 pp. www.wolf.org

Mulder, R. A. 1995. Natal and breeding dispersal in a cooperative, extra-group mating bird.

Journal of Avian Biology 26: 234-240.

Nester, P. L., Gayó, E., Latorre, C., Jordan, T. E. & Blanco, N. 2007. Perennial stream discharge in

the hyperarid Atacama Desert of northern Chile during the latest Pleistocene. Proceedings

of the National Academy of Sciences 104: 19724-19729.

Page 24: Tesis Daniela Rivera final

15

Ojeda, R. A. & Tabeni, S. 2009. The mammals of the Monte Desert revisited. Journal of Arid

Environments 73: 173- 181.

Ojeda, A. A., Novillo, A., Ojeda, R. A. & Roig-Juñent, S. 2013. Geographical distribution and

ecological diversification of South American octodontid rodents. Journal of Zoology 289:

285–293. doi: 10.1111/jzo.12008.

Parrish, J. K., Hamner, W. M. & Prewitt, C. T. 1997. Introduction – From individuals to

aggregations: unifying properties, global framework, and the holy grails of congregation.

In: Animal groups in three dimensions (Parrish, J. K. & Hamner, W. M., eds). Cambridge

University Press, Cambridge, UK. 1-13.

Reddon, A. R., Balk, D. & Balshine, S. 2011. Sex differences in group-joining decisions in social

fish. Animal Behaviour 82: 229-234.

Redford, K.H. & Eisenberg, J.F. 1992. Mammals of the Neotropics Vol. 2: The Southern Cone.

The University of Chicago Press. Chicago, IL., EUA.

Reig, O. A. 1970. Ecological Notes on the Fossorial Octodont Rodent Spalacopus cyanus

(Molina). Journal of mammalogy Vol. 51, No. 3, pp. 592-601

Reig, O. A. 1986. Diversity patterns and differentiation of High Andean Rodents. Pp. 404 - 439.

In: Vuilleumier F. & M. Monasterio. High Altitude Tropical Biogeography. Oxford

University Press. New York.

Reise, D. & Gallardo, M. H.1989. An extraordinary occurrence of the tunduco Aconaemys fuscus

(Waterhouse, 1841) (Rodentia, Octodontidae) in the central valley, Chillán, Chile. Medio

Ambiente 10: 67-69.

Roberts, G. 1996. Why individual vigilance declines as group size increases. Animal Behaviour 51:

1077-1086.

Page 25: Tesis Daniela Rivera final

16

Rowe, D. L. & R. L. Honeycutt. 2002. Phylogenetic relationships, ecological correlates, and

molecular evolution within the Cavioidea (Mammalia, Rodentia). Molecular Biology and

Evolution 19: 263–77.

Rowe, D. L., Dunn, K. A., Adkins, R. M. & Honeycutt, R. L. 2010. Molecular clocks keep

dispersal hypotheses afloat: evidence for trans‐Atlantic rafting by rodents. Journal of

Biogeography 37: 305-324.

Santoro, C. M. & Latorre, C. 2009. Propuesta metodológica interdisciplinaria para poblamientos

humanos Pleistoceno tardío/Holoceno temprano, precordillera de Arica, Desierto de

Atacama Norte. Andes 7: 13-35.

Seeley, T. D. 1989. The honey bee colony as a superorganism. American Scientis 77: 546–553

Schradin C., Pillay, N. & Solomon, N. G. 2005. Intraspecific variation in the spatial and social

organization of the african striped mouse. Journal of Mammalogy 86: 99-107.

Slobodchikoff, C. N. 1984. Resources and the evolution of social behavior. In A new ecology:

novel approaches to interactive systems (Ed. By P. W. Price, C. N. Slobodchikoff & W. S.

Gaud), pp. 227-251. New York, USA: John Wiley.

Sobrero, R. 2013. Correlatos neuroanatómicos de la complejidad del hábitat y la vida social en

roedores. Ph.D. thesis, Pontificia Universidad Católica de Chile.

Spinks, A. C. & Plaganyi, E. E. 1999. Reduced starvation risks and habitat constraints promote

cooperation in the common mole-rat, Cryptomys hottentotus hottentotus: a computer-

simulated foraging model. Oikos 435-444.

Spinks, A. C., Bennett, N. C. & Jarvis, J. U. M. 2000.Comparative patterns of philopatry and

dispersal in two common mole-rat populations: implications for the evolution of mole-rat

sociality. Journal of Animal Ecology 69: 224-234.

Page 26: Tesis Daniela Rivera final

17

Teta, P. & Ortiz P. E. 2002. Micromamíferos andinos Holocenicos del sitio arqueologico Inca

Cueva 5, Jujuy, Argentina: Tafonomía, zoogeografía y reconstrucción paleoambiental.

Estudios Geol 58: 117-135

Thierry, B., Iwaniuk, A. N. & Pellis, M. 2000. The influence of phylogeny on the social behavior

of macaques (Primates: Cercopithecidae, genus Macaca). Ethology 106: 713-728

Travis, S. E., Slobodchikoff C. N. and Keim P. 1995. Ecological and demographic effects on

intraspecific variation in the social system of prairie dogs. Ecology 76: 1794-1803.

Van Schaik, C.P. & van Noordwijk, M. A. 1985. Evolutionary Effect of the Absence of Felids on

the Social Organization of the Macaques on the Island of Simeulue (Macaca fascicularis

fusca, Miller 1903) Folia Primatol 44: 138-147

Verdolin, J. L. 2009. Gunnison’s praire dog (Cynomys gunnisoni): testing the resource dispersion

hypothesis. Behavioral Ecology and Sociabiology, 63: 789-799.

Verzi, D.H. 2001. Phylogenetic position of Abalosia and the evolution of the extant Octodontinae

(Rodentia, Caviomorpha, Octodontidae). Acta Theriologica 46: 243-268.

Wey T, Blumstein, D.T., Shen, W. & Jorda, F. 2008. Social network analysis of animal behaviour:

a promising tool for the study of sociality. Animal Behaviour 75: 333-344.

Page 27: Tesis Daniela Rivera final

18

CAPITULO I

Phylogeography and genetic structure of the Andean degu, Octodontomys

gliroides (Rodentia: Octodontidae)

Daniela S. Rivera1 *Juliana A. Vianna2Luis A. Ebensperger1and R. Eduardo Palma1

Page 28: Tesis Daniela Rivera final

19

To be summited to Journal of Evolutionary Biology

Phylogeography and genetic structure of the Andean degu, Octodontomys

gliroides (Rodentia: Octodontidae)

Daniela S. Rivera1 * Juliana A. Vianna2 Luis A. Ebensperger1 and R. Eduardo Palma1

1 Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad

Católica de Chile, Casilla 114-D, Santiago, Chile

2 Departamento de Ecosistemas y Medio Ambiente, Facultad de Agronomía e Ingeniería

Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile

Short title: Phylogeography of Octodontomys gliroides

*Correspondence:

Address: Daniela S Rivera, Departamento de Ecología, Pontificia Universidad Católica de

Chile, Santiago. Chile.

Phone: (56-2) 686 2950

Email: [email protected]

Page 29: Tesis Daniela Rivera final

20

Abstract

The Andean degu, Octodontomys gliroides constitutes the only species of the family

Octodontidae inhabiting pre-Andean Prepuna and Puna environments of tropical South

America. To gain insights into its phylogenetic relationships, phylogeographic patterns, and

origin, 21 populations of O. gliroides across its entire distributional range were studied

through a 579-bp fragment of the mitochondrial DNA control region. We evaluated the

intraspecific genealogy, the population structure, the demographic history as well as the

reconstruction of the ancestral distributionof the species, by means of different Likelihood,

Bayesian, Network and Statistical Dispersal-Vicariance analyses.Our results showed that O.

gliroides is characterized by a geographical structure, which is in agreement with major

geographical barriers (e.g., rivers, salt flats, deserts and mountain systems). The haplotype

network analysis inferred three haplogroups along the distribution of O. gliroides, the same

that were corroborated by the population structure analysis. The mismatch distributions and

neutrality test along with Bayesian Skyline Plots suggested contrasting histories for

different cluster of populations, with some cluster showing demographic stability and no

significant departures from neutrality. Others were fitted more with a contraction-expansion

model coincident with dry-wet events during Pleistocene. Finally, we suggest that one

possible ancestral area in the diversification of O. gliroides populations which includes the

Andean Puna-Prepuna ecoregion.

Keywords: Andean degu; Octodontomys gliroides; historical demography; phylogeography;

Andean Puna- Prepuna.

Page 30: Tesis Daniela Rivera final

21

INTRODUCTION

Octodontidae (degus, cururos, viscacha rats) is an endemic family of Hystricognath rodents

distributed along South America (Reig, 1981; Mares & Ojeda, 1982). Interestingly, these

rodents include species that are ecologically diverse, includingcursorial, rock-dwelling,

semi-subterranean and truly subterranean forms (Lacey & Ebensperger, 2007), that occur in

a wide array of habitats.They also show variation in social behavior with species ranging

from solitary-living to highly gregarious species (Mares & Ojeda, 1982; Reig, 1986;

Contreras et al., 1987; Lacey & Ebensperger, 2007). Octodontid rodents represent one of

the most characteristic groups in the arid lands of southern South America (Ojeda, 2010),

ranging along both sides of the Andes in Argentina, Bolivia and Chile between 15° and

40°S (Ojeda et al., 2013). Within this narrow geographical range, the Octodontidae occurs

in a great array of habitats, including coastal areas in central Chile, pre-Andean and Andean

regions, desert and semi-desert scrublands, and extremely arid salt flats (Contreras et al.,

1987; Mares & Ojeda, 1982; Redford & Eisenberg, 1992; Gallardo et al., 2007). Living

Octodontidae contains 13 recognized species (Woods & Kilpatrick, 2005) assigned to six

monotypic and two polytypic genera (Ojeda et al., 2013). Eight of the 13 species occur

exclusively in the Andes of Chile, while four of them inhabit extremely arid salt flats in

Argentina and a single species (Octodontomys gliroides) occupies simultaneously the

Andean region of northern Argentina and Chile, and central-southern Bolivia (Contreras et

al., 1987; Ojeda et al., 2013).

O. gliroides (the Andean degu) is the only octodontid living in tropical South

America, in environments with contrasting climatic and geographical characteristics,

ranging from the north mesic Puna in Bolivia, to the northern boundary of the Atacama

Page 31: Tesis Daniela Rivera final

22

Desert in Chile (Ojeda et al., 2000). The current geographical distribution of O. gliroides

matches with a rainfall gradient from east to west created by the rain shadow effect of the

Andes. While, the Quaternary history of the rest of octodontids has been punctuated by a

sequence of glacial advances and retreats that resulted in extreme environmental changes

from Andean Puna to Tierra del Fuego (Verzi et al., 2002; Verzi & Quintana, 2005;

Gallardo et al., 2013), recent evidence suggests that actual distribution of O. gliroides could

be associated to a complex history of dry-wet periods during the Pleistocene-Holocene in

the central Andean Puna (Nester et al., 2007; Placzek et al., 2011). In particular, because

extensive flood cycles in the last 0.02 Mya produced large paleo-lakes that divided the

western and eastern sides of Andean Puna (Placzek et al., 2013), affecting the local climate

on this region, which in turn affected the distribution of vegetation. How these changes in

climate and connectivity in the Andean Puna have affected the current distribution of

populations and phylogeographic history of O. gliroides, it has never been evaluated.

To clarify aspects of population differentiation it is critical to elucidate the historical

and geographical context in which the evolution of the O. gliroides took place.

Phylogeography is an excellent approach to gain further insights to investigate the historical

factors that have shaped current diversity patterns and to document the evolution and

biogeography of this unique species. Therefore, in the present study, we examine the

genetic structure and phylogeographic patterns of O. gliroides. To achieve this objective,

we sequenced the mitochondrial DNA (mtDNA) control region from specimens of this

species across its entire distributional range. We used the latter mtDNA marker because it

does have a number of advantages such as the lacking of recombination (Avise, 2000;

Rokas et al., 2003), its maternally inherited property, and it does a lower effective

population size compared to nuclear markers. Therefore it takes less time for

Page 32: Tesis Daniela Rivera final

23

polymorphisms to become fixed in a population and evolves relatively fast which allows

greater resolution at intra-specific scale (Brown et al., 1979; Moore, 1995; Avise, 2000). In

addition, we analyzed the biogeographic history that shaped the current distribution of

living populations of O. gliroides, to propose a potential scenario for inferring the past

environment in which O. gliroides evolved.

METHODS

Study area and sample collections

Specimens were collected in the field from 11 localities along the entire range of the

species across northern, central and southern Bolivia. Skulls, skins and tissues from Bolivia

localities were deposited at the collection of the Colección Boliviana de Fauna, La Paz,

Bolivia and the Museo de Historia Natural Alcides d’Orbigny, Cochabamba, Bolivia. This

study followed the American Society of Mammalogists guidelines (Animal Care and Use

Committee, 1998; Gannon et al., 2007; Sikes et al., 2011) and adhered to Bolivian and

Chilean laws (permit number MMAyA-VMA-DGBAP N 0937/11 by the Dirección

General de Biodiversidad y Áreas Protegidas, and by the authorization number 1-62-2012

[2373] by the ServicioAgrícola y Ganadero, Chile). All procedures that involved handling

of live animals were approved by the Bioethic Committee of the Faculty of Biological

Sciences at Pontificia Universidad Católica de Chile (CBB-040-2011). Additionally, to

optimize the number of samples and cover the full geographic range of the species, tissues

and/or skin were requested from Collections and Museums of Argentina (Museo de

Ciencias Naturales y Tradicional de Mar del Plata "Lorenzo Scaglia"; Colección de

Mamíferos del Instituto Argentino de Investigaciones de zonas Áridas , IADIZA and

Catálogo de campo de Jorge Pablo Jayat), Chile (Colección de Flora y Fauna Profesor

Page 33: Tesis Daniela Rivera final

24

Patricio Sánchez Reyes, Pontificia Universidad Católica de Chile and Instituto de Ecología

y Evolución, Universidad Austral de Chile) and the United States (Field Museum of

Natural History, Chicago, Illinois and the Sam Noble Oklahoma Museum of Natural

History, The University of Oklahoma). All samples are listed and documented in Table 1.

Extraction of DNA, amplification, and sequencing

Genomic DNA extractions were performed using the phenol-chloroform method

(Sambrook et al., 1989). An 800-base pair (bp) fragment of the mitochondrial DNA control

region (CR) was amplified by the polymerase chain reaction technique (PCR) from 97

individuals using primers FVAL (5’ GAA AAC AAA CTC CTC AAA TGA AG 3’) – and

H191 (5’ ATT ATG CGG GCT AAG GGA ACT G 3’), designed to amplify the same

mtDNA region for the sister species of O. gliroides, Tympanoctomys barrerae (Ojeda,

2010) and Octodon degus (Valladares, 2009), respectively. Amplifications were performed

using a thermal cycler (Applied Biosystems 2720) with the following parameters: initial

denaturation at 94°C for 3 minutes; 30 cycles of 45 s at 94°C; 1 minute at 50°C; 1 minute at

72°C and a final extension for 5 minutes at 72°C. All amplifications, including positive and

negative controls were checked in a 2% agarose gelwith TAE buffer, using the proper

molecular weight ladder and gels were visualized in a UV transiluminator. Double-stranded

PCR products were purified with Wizard SV gel Gel and PCR Clean-Up System

(Promega). All PCR products weresequenced by Macrogen Inc. (Seoul, South Korea;

www.macrogen.com).

Page 34: Tesis Daniela Rivera final

25

Sequence analyses

Sequences were aligned manually using CodonCode Aligner v. 1.5.1 (Codon Code

Corporation, Dedham, MA) and collapsed into haplotypes using the FaBox package

(Villesen, 2007) (http://users-birc.au.dk/biopv/php/fabox/). Analyses were performed

across populations, which corresponded to:, (Llacasa, Bo1; Eucaliptus, Bo2; Villa Ventilla,

Bo3; Jirira, Bo4; Hara, Bo5; Castilluma, Bo6; Uyuni, Bo7; Oploca, Bo8; Tupiza, Bo9;

Villa Abecia, Bo10; Cieneguillas, Bo11; Iscayachi, Bo12; Putre-Murmutani, Ch1; Putre-

Chungará, Ch2; Camiña-Chusmiza, Ch3; Chusmiza, Ch4; Pucara del Tilcara, Ar1; Susques,

Ar2; San Antonio de los Cobres, Ar3; Santa Victoria, Ar4; and Cachi, Ar5, see Fig. 1).

Analyses were also performed across two major ecogeographic ecoregions: the Andean

Puna and the Andean Prepuna (Table 1). For the subdivision into ecoregions the elevation

was taken into consideration. In this way, for the Andean Puna we considered elevations

between 3400 and 4500 m (Cabrera, 1957; 1968; Cabrera & Willink, 1973; Fernández &

Busso, 1999; Aagesen et al., 2009), whereas for the Andean Prepuna we considered

altitudes of 2000 to 3400 m (Cabrera & Willink, 1973; López & Beck, 2002; López et al.,

2006; Aagesen et al., 2009). Additionally, we followed to Beck, (1985); Cabrera, (1968);

Davis et al., (1997); Ortuño et al., (2011) and subdivided the Andean Puna considering the

rainfall gradient from north to south and from east to west of Andes into: Northern Puna or

Moist Puna, Central Puna and Southern Puna or Dry Puna (Table 1).

A single sequence for each haplotype was used for further phylogenetic analyses.

The output from FaBox was then used as the input file for the DnaSP v5.0 program

(Librado & Rozas, 2009) and for ARLEQUIN (Excoffier et al., 2005) to estimate levels of

genetic diversity, including numbers of haplotypes (H), haplotype diversity (Hd),

nucleotide diversity (π) and the number of polymorphic sites (PS). At this point, we

Page 35: Tesis Daniela Rivera final

26

combined different sampling localities based on geographic proximity, similarity of

habitats and sample sizes (Table 1).

Population Genetic Analyses

To evaluate the presence of population structure for O. gliroides, we used the program

GENELAND v.4.0.3 (Guillot et al., 2005a, b) in the R-Package, a Bayesian approach

which estimates the number of classes (genetic clusters) present in the data set and

incorporates the geographical coordinates of the individuals to detect and locate genetic

discontinuities (Guillot et al., 2005a). The number of clusters was determined by running

MCMC (Markov chain Monte Carlo) iterations five times, allowing K (i.e., the most

probable number of populations) to vary, with the following parameters: 5 × 106 MCMC

iterations, maximum rate of the Poisson process fixed to 100 (equal to sample size as

recommended by Guillot et al., 2005a). The minimum K fixed to 1 and maximum K fixed

to 10, the maximum number of nuclei in the Poisson-Voronoi tessellation was fixed to 300

(roughly three times the sample size as suggested by Guillot et al., 2005a). After inferring

the number of populations in the data set from these five runs, the MCMC was run 30 times

with K fixed to the inferred number of clusters, with the other parameters the same as

above. We ranked the models by mean logarithm of posterior probability and conducted

post-processing analyses for the three runs with the highest values. We used a burn-in

period of 1000 x 100 iterations, a spatial domain of 400 pixels along the X-axis and 200

pixels along the Y-axis and checked the runs visually for consistency.

Relationship between haplotypes and geography in order to infer the historical

processes that shaped the sample populations were examined in a haplotype network. The

network was built using the median-joining approach implemented in Network 4.6.1.1

Page 36: Tesis Daniela Rivera final

27

software (http://www.fluxus-technology.com), with all characters weighted equally. The

median-joining method uses a maximum parsimony (MP) approach to search for the

shortest phylogenetic trees (Bandelt et al., 1999). MP is particularly suitable for interpreting

intraspecific phylogenies because they explicitly allow for the co-existence of ancestral and

descendant haplotypes in a sample (Posada & Crandall, 2001).

Historical Demography and Biogeographic Analysis

Sudden demographic history of expansion (Rogers & Harpending, 1992) and spatial

expansion (Excoffier 2004) models of the resulting GENELAND cluster analysis were

fitted to the observed mismatch distribution using 1000 bootstrap and the sum of square

deviations (SSD) between observed mismatch distribution and simulated data as a test

statistic (i.e., test of goodness of fit; Schneider & Excoffier, 1999; Excoffier, 2004)

implemented in ARLEQUIN software (Excoffier & Lischer 2010). This analysis assumes

that signatures in the distribution of pairwise nucleotide differences result from episodes of

population growth and decline. Thus, when a population has undergone sudden

demographic expansion, it should display an unimodal and smooth distribution, whereas a

population that either is subdivided or in demographic equilibrium is expected to exhibit a

multimodal or random and rough distribution (Rogers & Harpending, 1992). Tajima’s D

neutrality statistic (Tajima, 1989) and Fu’s FS values (Fu, 1997) were calculated to detect

deviations from a neutral Wright-Fisher model of mutation-drift equilibrium. These

neutrality tests assume that the population has been in mutation-drift balance for a long

period of evolutionary time (Nei & Kumar, 2000). When the population is not under

mutation-drift equilibrium due to sudden expansion, these indexes tend to have

significantly negative values and an excess of polymorphisms at low frequency can be

Page 37: Tesis Daniela Rivera final

28

expected. By contrast, positive values reflect the elimination of rare alleles after genetic

bottlenecks (Ramos-Onsins & Rozas, 2002).

Although D, Fs and mismatch distributions are able to provide insights into whether

or not population growth has been expansive, they are not able to provide information

about the shape of population growth over time. For example, a no significant negative

values of D and Fs should indicate that populations have not undergone expansive growth

(i.e., population stability). However, such values are agnostic as to whether population are

expanding slowly, are contracting or remaining relatively constant size (Fontanella et al.,

2008). Therefore, to estimate the shape of population growth through time we constructed a

Bayesian Skyline Plot (BSP) as implemented in the software BEAST v 1.7.4 (Drummond

& Rambaut, 2007). This Bayesian approach incorporates the uncertainty in the genealogy

by using Markov chain Monte Carlo integration under a coalescent model, providing

information about effective population sizes through time (Drummond et al., 2005). The

best-fit substitution model for each cluster was estimated in MODELGENERATOR 0.85

(Keane et al., 2006). BSP was performed for each of the clusters recovered with

GENELAND. The running conditions include 3.0 x 107 iterations, of which the model

parameters were sampled every 1000 steps under a relaxed lognormal molecular clock with

a fixed rate calibration and uniformly distributed priors. The first 10% of the steps were

discarded to allow for burn-in. To assess the robustness of parameter estimates, 2

independent chains were run with identical settings. Log-files were visualized using Tracer

v1.5 (Drummond & Rambaut, 2007). If population sizes are constant through time then the

slope of skyline plot should not be significantly different than zero.

Page 38: Tesis Daniela Rivera final

29

Divergence time

In order to estimate divergence we used a Bayesian analysis in BEAST 2.0.2 (Drummond

& Rambaut, 2007). This software relies on a Bayesian Markov chain Monte Carlo

(MCMC) method to infer a relaxed phylogenetic topology that allows us to co-estimate

phylogeny and divergence times (Drummond et al., 2006). Because no fossils or reliable

geological evidence were available to calibrate a local molecular clock for populations of

Octodontomys we used external calibrations of that put the origin of crown Octodontidae

dates back to the late Miocene: 9 (6.7, 11.6) Mya. And we follow Opazo (2005) estimations

that put the divergence of O. gliroides and Octodon + Spalacopus + Aconaemys genera

have occurred around 6.07 ± 1.3 Mya. As outgroups we used mtDNA control region

sequences from seven species of the family Octodontidae from GenBank: Aconaemys

fuscus (AY836575); Octodon degus (GQ168717); Octomys mimax (GQ168718);

Spalacopus cyanus (AY836572) and Tympanoctomys barrerae (GQ168701), and other

sequenced by us: Octodon lunatus and Pipanacoctomys aureus. Phylogenetic estimates

were constructed using the best-fitting model selected using the AIC criterion implemented

in MODELGENERATOR 0.85 (Keane et al., 2006). To estimate the mutation rate, an

uncorrelated lognormal relaxed molecular clock model was used to allow rate variation

among branches (Drummond et al., 2006) and the Yule speciation process which is more

appropriate when considering sequences from different species (Drummond & Rambaut,

2007). Both normal prior calibrations had a mean of 9.0, with standard deviations of 1.4 for

the first calibration of Upham & Patterson (2012) and 6.04 and 0.6 for the second

calibration of Opazo (2005). Analyses were run for 2 x 107 generations, with parameters

logged every 1000 generations following a pre burn-in of 5000 generations. Multiple runs

were conducted to check for stationarity and that independent runs were converging on a

Page 39: Tesis Daniela Rivera final

30

similar result. Output from BEAST was examined in Tracer 1.5 with 10% burn-in and the

tree results were summarized using TreeAnnotator 1.7 (included in the BEAST package).

The tree was visualized using FIGTREE 1.3.1 (Rambaut, 2010).

Biogeographic Analysis

To reconstruct ancestral area distributions we performed a Statistical Dispersal-Vicariance

Analysis (S-DIVA) analysis implemented in the program RASP (Reconstruct Ancestral

State in Phylogenies) 2.1 alpha (Yu et al., 2010; 2011). For this, the combined output from

three BEAST runs (62499 trees) served as the input file. To account for uncertainties in

phylogeny, we used all of the post burn-in trees obtained with BEAST for the combined

dataset. Distribution areas of sister species of O. gliroides were assigned to geographical

region as defined by Ojeda et al., (2013). For population of O. gliroides we distinguish

between two major phytogeographic ecoregions: Andean Puna and Andean Prepuna. The

number of maximum areas allowed at the nodes was kept as either three or two whereas

outgroups distributions were not considered. Ten Markov chains were run with the default

setting for 5 x 105 generations, sampling every 100 generations and discarding a bur-in of

100 samples.

RESULTS

Mitochondrial DNA Sequence Variation

Amplification and sequencing of the mtDNA control region yielded a minimal consensus of

579 bp for 101 individuals of O. gliroides. Sequences comparisons yielded a total of 24

variable sites including 3 singletons and 21 parsimony informative sites, which determined

27 haplotypes (Table 2, Fig. 1). The CR mtDNA sequences of O. gliroides showed a

Page 40: Tesis Daniela Rivera final

31

pattern of high haplotype diversity (0.921 ± 0.01) but moderate nucleotide diversity (π)

(0.0059 ± 0.0005, Table 2). At the population level, the highest estimates haplotype and

nucleotide diversity were found in combination of population Bo11 and Bo12 (CI) and Ar1

and Ar4 (ArgN) whereas the lowest values of haplotype and nucleotide diversity was found

in Bo5 and Bo1 populations respectively (Table 2). Five populations, Bo4, Bo6, Bo9, Ch1

and Ch2, were invariant (Table 2). Among subdivisions into phytogeographic regions the

Andean Prepuna presented the lowest values of haplotype diversity, whereas Andean Puna

showed the highest value of nucleotide diversity (Table 2). Most of the 27 haplotypes were

restricted to a single phytogeographic ecoregion (81% private haplotypes); only five

haplotypes (H3, H6, H8, H9 and H10) were shared among two or more region. The most

widely distributed haplotypes in the entire sample were H3, H8 and H10. H3 was restricted

to Andean Puna at Bolivia and Chile (Central and Southern Puna) and Andean Prepuna at

Chile. H8 also vas restricted to Andean Puna occurring in both Central and Southern Puna.

H10 was present in three regions and was restricted principally at Andean Prepuna and in a

low proportion at Andean Puna (Central and Southern Puna).

The Median-joining network topology generated three geographically well-

structured haplogroups among the entire range of O. gliroides distribution (Fig. 2). Only

haplogroup III, which contains sequences from Argentina and only a sequence of southern

Bolivia are clearly isolated and separated by a six mutational steps from the rest of

haplogroups. Haplogroups I and II were separated only by one mutation step, with a single

shared haplotype (H20). Two of the most widely distributed haplotype (H3 and H10) were

found in haplogroup I, whereas H8 was found in haplogroup II. Our results did not

illustrate a clear phytogeographic region separation indicated the existence of admixture

haplotypes in this level between all of the three haplotype groups (Fig. 2).

Page 41: Tesis Daniela Rivera final

32

Along with this, the population structure for O. gliroides estimated by the

GENELAND program inferred three most probable genetic clusters (k = 3, Fig. 3a), that

were congruent with the network analysis in recognizing the same three major groups.

Although haplogroup I and II was only separated by one mutational step, and also we

identified one shared haplotype between both groups the GENELAND analysis appaeared

to confirm the separation of these groups. Cluster I (haplogroup I) comprised all samples

from northern Chile (Ch1 to Ch4), central and southern Bolivia (Bo6, Bo7, Bo8, Bo9, Bo10

and Bo12) and the northernmost population of Argentina (Ar4, Fig. 3b). The second cluster

(haplogroup II) joined sequences representing the northernmost population of Bolivia (Bo1)

and four populations from central Bolivia (Bo2, Bo3, Bo4 and B5, Fig. 3c). The third

cluster (haplogroup III) comprised the four southernmost populations from Argentina (Ar1,

Ar2, Ar3 and Ar5) and one population of southern of Bolivia (Bo11, Fig. 3d). Similarly to

network topology, GENELAND analysisi did not illustrate a clear phytogeographic region

separation.

Population demographic history

Neutrality test were performed to detect evidence of population growth expansion. Results

for the entire sample Fu´s Fs test of neutrality was statistically negative (Fs = -11.93, P =

0.001), suggesting a demographic range expansion process. In contrast, the Tajima´s D- test

did not reveal a signal of demographic range expansion for entire samples level. At the

haplotype group level, we found a signal of population range expansion only in

haplogroups I and III (Fs = -5.78, P = 0.003 and Fs = -3.027, P = 0.012). Similarly, signals

of population expansion were not detected in any of all three haplogroups using Tajima’s

D-test (Table 3). The discrepancy between D and Fs test is likely due to the decreased

Page 42: Tesis Daniela Rivera final

33

statistical power of D in detecting significant changes in population sizes (Ramos-Onsins &

Rozas, 2002). These results suggest that the historical demographic processes of range

expansion for some areas differed within the distribution of O. gliroides. We found signals

of stability only for haplogroup II. The mismatch distribution of pairwise nucleotide

differences for all entire sample level and for each haplogroups was roughly multimodal

(Fig. 4 left) and we did not found departures from an equilibrium model (Table 3),

suggesting constant population size or structuring or stable or shrinking population.

Similarly, mismatch distributions for each cluster no showed evidence of sudden expansion

model (see pSSD and pSSD* in table 3).

Finally the Bayesian skyline plots (BSP) suggested relatively stable population size

for all entire sample level and for each haplogroup over the last (0.1 – 0.3 Mya). Congruent

with the mismatch analyses, BSP for all entire sample level showed an increase in the

effective population size starting about 0.03 Mya (Fig. 4b), about 0.025 Mya for the cluster

I and III (although the pattern is not very clear for the latter, Fig 4d, h respectively). After

this population expansion, a recent decrease of Ne occurred when all cluster are considered

(Fig. 4b) and in a low proportion in cluster I (Fig. 4d). This pattern of expansion was not

evident in cluster II (Fig. 4f).

Clade-dating

Divergence dating indicates that the genus Octodon split up from the O. gliroides

during Early Pliocene approximately 4.70 Mya (95% CI = 3.18-6.28 Mya). The most recent

common ancestor for the main lineages of O. gliroides was estimated to live during Early

Pleistocene around 2.43 Mya (95% CI = 0.98-4.03 Mya). the divergence estimations

Page 43: Tesis Daniela Rivera final

34

obtained for the remaining lineages, suggested that thye appeared during the Middle

Pleistocene (Fig. 5)

Biogeographic Analysis

Reconstruction of ancestral biogeography using S-DIVA analysis implemented in

RASP suggests one possible ancestral area for the most recent common ancestor of

Octodontomys population (node 48 in Fig. 7) which includes Andean Puna-Prepuna

ecoregions (AB) with a support value of 100%. This analysis also showed that dispersal

had more influence on lineage diversification than vicariance (17 events compared to 7,

Fig. 6).

DISCUSSION

Haplotype and nucleotide diversity

This study is the first to assess the phylogeography of unknown Andean degu over its entire

range distribution yielding important insights into the evolutionary history of this species.

The network topology and GENELAND analyses showed that O. gliroides is characterized

by geographical subdivision of variation in mtDNA. This translates into three well resolved

haplotype groups or clusters along O. gliroides entire range distribution: haplogroup I

comprises populations from northern slopes of the Chile Andean Puna, Andean Puna and

Prepuna population from southern Bolivia and northernmost Andean Prepuna population of

Argentina. Haplogroup II is formed by northern and central Andean Puna and Prepuna

populations of Bolivia. Finally the third group comprises populations of Argentina Andean

Puna and Prepuna and one Andean Prepuna population of southern Bolivia.

Page 44: Tesis Daniela Rivera final

35

All of three genetic haplogroups are in agreement with the major barriers present in

the area (i.e., major rivers, salt flats, the Atacama Desert and orogeny formations of the

Andes in Bolivia), and have been associated with strong level of genetic differentiation

(Fig. 7). The Andean Puna is flanked by high mountains in East Andes Cordillera and by

West Andes Cordillera (Fernández & Buso, 1999). These geographic barriers determine

that lacustrine and rivers system conform an extensive endorheic basin constituted for

Titicaca and Poopo lakes and Coipasa and Uyuni salt flats. Mayor rivers connecting lakes

and salt flats are Desaguadero and Lacajahuira (Fig.7). The Titicaca and Poopo lakes are

connected by Desaguadero River that flowing permanently, meanwhile, Lacajahuira River

connect Poopo Lake with Coipasa salt flat. These two rivers are permanents with large

increase in caudal during wet season in austral summer (Roche et al., 1991) and constituted

the principal barrier between cluster II and I (Fig. 7). A critical characteristic of these two

Andean rivers is the large river-floodplain systems that which advance parallel to the river,

in particular, in Desaguadero River that undergoes strong floods when water level increases

in Titicaca Lake and floodplain has around 1km of width. Floodplain is constituted by large

sand deposits without vegetation, locally known as “arenales”. Therefore these river

systems separate the populations of haplogroup II (the northernmost and central Andean

Puna population at Bolivia) from haplogroup I (Andean Puna and Prepuna at northern Chile

and southern Bolivia populations). On the other hand, the San Juan River originate in high

mountains near to Jujuy, Argentina, and flows from northern Argentina to south-west

Bolivia through varied environments is the principal barrier that separated Argentina

populations of haplogroup III from central and southern Bolivia populations (Fig. 7).The

San Juan River is the larger river in the East Andes and is the principal tributary of

Pilcomayo River. Additionally, Argentina populations are separated from the Chilean group

Page 45: Tesis Daniela Rivera final

36

by presence of the Atacama Desert and also by the high mountain range (more than 4800

m) found in the border to Chile and Argentina (Fig. 7). Another potential barrier is the

mountain range of The Cordillera de los Frailes which borders Poopó Lake in the northwest

and extends to south in the northeast of the department of Potosi (Montes de Oca, 2005).

Our analyses of genetic diversity showed that that O. gliroides has high haplotype

diversity for all of three clusters, but low nucleotide diversity for each of the clusters,

suggesting recent differentiation with rapid population growth (Grant & Bowen, 1998).

This is particularly true for haplogroup III where we obtained the highest haplotype

diversity and in haplogroup II where we recovered the lowest nucleotide diversity. A

similar pattern of nucleotide and haplotype diversity has been reported for population of

Octodon degus (Valladares, 2009), Spalacopus cyanus (Opazo, 2008) and Tymapnoctomys

barrerae (Gallardo et al., 2013). This pattern of genetic variability suggests population

growth following a period of decrease of effective population size (Grant & Bowen, 1998;

Avise, 2000; Cope, 2004). Low genetic divergence among most of O. gliroides populations

(i.e., low values of nucleotide diversity among haplotypes) suggests that colonization into

recently available ranges occurred rapidly (Grant & Bowen, 1998; Palma et al., 2012). Our

analyses consistently show a history of long-term demographic stability for O. gliroides in

most of its current distributional range. Neutrality tests indicated that the demographic

histories of some areas differed, suggesting that O. gliroides have experimented different

demographic events in recent past. In this way, the roughly multimodal mismatch

distribution for all entire sample level and haplogroup I (Fig. 4b, d) suggested sudden

expansion events. Our analyses of the Fu’s Fs test are consistent with this scenario. BSP

analyses for all entire sample level and all of three haplogroups showed that the effective

population sizes of O. gliroides seem to have remained constant until a recent increase in

Page 46: Tesis Daniela Rivera final

37

population size between 0.03 Mya for the all entire sample level and a more recent

expansion period (approximately 0.025 Mya) for haplogroup I. We also found a signal of

population range expansion for group III (statistical significant values for the Fu’s Fs test),

however while BSP analysis suggests slightly evidence of recent expansion (Fig. 4h) this

pattern is not clear probably due to the limited sample size. Our results are in agreement

with evidence of other octodontids: Valladares, (2009) and Gallardo et al., (2013) found a

similar evidence of recent population expansion in Octodon degus and Tympanoctomys

barrerae respectively.

Biogeographic scenario

Knowledge about the major climatic changes that occurred at the Andean Puna region

during Pleistocene wet-dry events (Placzek et al., 2009) may help understand the pattern of

demographic expansion occurred in population of O. gliroides. At least three major events

associated with dramatic changes in precipitation have been reported for the Andean Puna

during the last 0.12 Mya (Risacher & Fritz, 2000; Placzek et al., 2011), which have been

associated to important modification of the biota of the area (Placzek et al., 2009) and the

primary habitat for O. gliroides. During this period, climatic oscillations contributed to

formation of large paleo-lakes that covered endorheic basin of Titicaca and Poopo lakes

and Coipasa and Uyuni salt flats (Placzek et al., 2009). Potential causes that be argument

for explain this climate changes are attributed to potential role of interannual and millenial

scale variability of tropical Pacific sea-surface temperature gradients (Garreaud et al., 2003;

Cane, 2005), and recently Plazcek et al., (2013) suggested a critical role of the North

Atlantic sea-surface temperature on moisture arriving to Central Andean Puna. The first

maximum pale-lake expansion denominated Ouki-Salinas started around 0.12 Mya and

Page 47: Tesis Daniela Rivera final

38

ended about 0.08 Mya (Placzek et al., 2013), with ca 80 m of deep (Placzek et al., 2009).

After this prorogated period, the lake retreated and the Andean Puna environments were

relatively dry and cold during the next 0.04 Mya (Placzek et al., 2006). Posterior, a new

shorter wet period took place around 0.02 Mya with formation of the Tauca lake cycle that

reached a maximum around 0.015 Mya and resulting in the deepest (ca. 140 m) and largest

lake in the basin over the past 0.12 Mya (Placzek et al., 2009). The last period known as the

Coipasa lake cycle with ages between 0.013 and 0.011 Mya (Placzek et al., 2006), together,

both Tauca and Coipasa lake cycles as referred as the Central Andean Pluvial Event

(CAPE) (Quade et al., 2008). Our results support the above biogeographic scenario with

relatively stable population size for all clades during the Ouki lake cycles, and a posterior

moderate population growth starting around 0.04 Mya in accordance with the drier wet

stable period. After this population expansion a relatively recent decrease of population size

occurred during CAPE phase (approximately 0.015 Mya). This pattern of expansion and

recent decrease was evident only when we considered all three clusters (all entire sample

level) and for cluster I. Interestingly, expansion on populations coincides with the inter-lake

time (0.08 to 0.025 years) that was the longest period of dry conditions in Andean Puna in

last 1.3 Mya (Placzek et al., 2013). Past hydrologic change recorded in two sediment cores

(Fornary et al., 2004; Chepstow-Lusty et al., 2005) evidence an increase in vegetation

species with presence of Polylepis/Acaena pollen, high abundance of Asteraceae,

Chenopodiaceae, Cyperaceae, Myriophyllum and Pediastrum inter alia during this period.

Page 48: Tesis Daniela Rivera final

39

Divergence-date estimates

Calibration estimates derived from mtDNA control region suggest that the most recent

common ancestor between O. gliroides and genus Octodon took place during that the mid

Pliocene (4.7 Mya, range 3.18 to 7.22 Mya), whereas the origin of Andean degu is

estimated to have occurred at approximately 2.43 Mya. In general, our divergence estimates

are slightly earlier than the estimate calculated by Upham & Patterson (2012) in

Octodontoidea, using growth hormone receptor and 12S rRNA markers. They are slightly

later than estimations reported by Opazo (2005) and are consistent with values reported by

Rowe et al., (2010).

Ancestral biogeographic reconstruction

The contemporary genetic population structure can be strongly influenced by both their

history and current ecological conditions (Shaikano et al., 2012). Based on our analysis of

optimal S-DIVA reconstruction for the history of O. gliroides we proposed that Andean

Puna-Prepuna region as the most likely ancestral area for where Andean degu diversified

(node 48, Fig. 7). Our geographical reconstruction of the ancestral area of Andean degu is

consistent with reconstruction of ancestral area for South America octodontid rodents

(Ojeda et al., 2013). These authors suggested an ambiguous ancestral area for the clade

containing Andean degu and Chilean octodontid species: High Monte or “protopuna”,

Valdivian Temperate Forest, Central Andean Puna and Central Andean Dry Puna. Given O.

gliroides extends its distribution to pre-Andean Prepuna and Puna habitats in northern

Argentina, southern Bolivia and north-east Chile (Contreras et al., 1987), and also because

the adaptation for arid environment had been proposal for occurred early in the

Octodontidae (Honeycutt et al., 2003), we propose that ancestral forms of O. gliroides

Page 49: Tesis Daniela Rivera final

40

evolved in aridlands with posterior colonization and diversification to more mesic

environments.

Page 50: Tesis Daniela Rivera final

41

ACKNOWLEDGMENTS

We thank G. Villanueva, H. Villca, M. Orellana and A. Coca for their assistance during

data collection. DSR is extremely thankful to F. Alfaro for his continuously assistance. We

thanks to R. Ojeda, A. Ojeda, P. Jayat, D. Flores and R. Sobrero for provided tissue

samples. We also want to thank the following institutions who collaborated with the

shipping and loan of tissue and skin samples: Field Museum of Natural History, Sam Noble

Oklahoma Museum of Natural History Instituto de Ecología y Evolución, Universidad

Austral de Chile, Colección de Flora y Fauna Profesor Patricio Sánchez Reyes, P.

Universidad Católica de Chile, Museo de Ciencias Naturales y Tradicional de Mar del Plata

"Lorenzo Scaglia", Mar del Plata and Colección de Mamíferos del Instituto Argentino de

Investigaciones de zonas Áridas (IADIZA). DSR is really thankful to personal of

Laboratory of Evolutionary Biology of prof. E. Palma and M. Manzano for their laboratory

assistance. DSR is also thankful to A. Parada for his assistance with molecular analysis. We

thank the Dirección General de Biodiversidad, Bolivia and Servicio Agrícola y Ganadero,

Chile for permission to work and capture specimens in Bolivia and Chile respectively. The

Centro de Biodiversidad y Genética- Universidad Mayor de San Simón and Laboratorio de

Ecología Conductual, Departamento de Ecología-Pontificia Universidad Católica provided

traps and field equipment. DSR was supported by the Organización de los Estados

Americanos (OEA), Comisión Nacional Científica y Tecnológica (CONICYT),

Vicerrectoría de Investigación and Dirección de Investigación y Postgrado-Pontificia

Universidad Católica de Chile (VRI-UC and DIP-UC), the Animal Behaviour Society

(Developing Nations Award), the American Society of Mammalogists, and the Program 1

of Centro de Estudios Avanzados en Ecología y Biodiversidad (FONDAP 1501–001). LAE

and REP were supported by FONDECTY grant (#1090302 and #1100558 respectively).

Page 51: Tesis Daniela Rivera final

42

REFERENCES

Aagesen, L., Szumik, C. A., Zuloaga, F. O. & Morrone, O. 2009. Quantitative

biogeography in the South America highlands—recognizing the Altoandina, Puna

and Prepuna through the study of Poaceae. Cladistics 25: 295-310.

Animal Care and Use Committee. 1998. Guidelines for the capture, handling, and care of

mammals as approved by the American Society of Mammalogists. Journal of

Mammalogy 79: 1416–1431.

Avise, J. C. 2000. Phylogeography: the history and formation of species. Harvard

University Press, Cambridge, Massachusetts.

Bandelt, H. J., Forster, P. & Rohl, A. 1999. Median-joining network for inferring

intraspecific phylogenies. Molecular Biology and Evolution 16: 37–48.

Barquez, R. M., Díaz, M. M. & Ojeda, R. 2006. Mamíferos de Argentina. Sistemática y

Distribución. Sociedad Argentina para el Estudio de los Mamíferos

(SAREM).Tucuman, Argentina.

Beck, S.G. 1985. Florula ecológica de Bolivia: Puna semiárida en el Altiplano Boliviano.

Ecología en Bolivia 6: 1-41.

Brown, W. M., J. George, M. & Wilson, A. C. 1979. Rapid evolution of animal

mitochondrial DNA. Proceedings of the National Academy of Science USA 76:

1967-1971.

Cabrera, A. L. 1957. La vegetación de la Puna Argentina. Rev. Invest. Agric. 11: 317-412.

Cabrera, A. L. 1968. Ecología vegetal de la Puna. Colloquium Geographicum 9: 91-116.

Cabrera, A.L. & Willink, A.W. 1973. Biogeografía de América Latina Serie de Biología

OEA. Monografía 13: 1–117.

Page 52: Tesis Daniela Rivera final

43

Cane, M. A. 2005. The evolution of El Niño, past and future. Earth and Planetary Science

Letters 230: 227-240.

Chepstow-Lusty, A., Bush, M. B., Frogley, M. R., Baker, P. A., Fritz, S. C. & Aronson, J.

2005. Vegetation and climate change on the Bolivian Altiplano between 108,000

and 18,000 yr ago. Quaternary Research 63: 90-98.

Contreras, L. C., Torres-Mura, J. C. & Yánez, J. L. 1987. Biogeography of octodontid

rodents: an eco-evolutionary hypothesis. In: Fieldiana Zoology (new series) (Ed. by

B.D. Patterson & R.E. Timm), pp. 401–411. Chicago, IL: Field Museum of Natural

History.

Contreras, L. C., Torres-Mura, J. C., Spotorno, A. E. & Catzeflis, E. 1993. Morphological

variation in the glans penis of South American octodontid and abrocomid rodents.

Journal of Mammalogy 74: 926-935.

Contreras, L. C., Torres-Mura, J. C., Spotorno, A. E. & Walker, L. I. 1994. Chromosomes

of Octomys mimax and Octodontomys gliroides and relationships of octodontid

rodents. Journal of mammalogy, 768-774.

Cope, J. M. 2004. Population genetics and phylogeography of the blue rockfish (Sebastes

mystinus) from Washington to California. Canadian Journal of Fisheries and

Aquatic Sciences 61: 332–342.

Davis, S. D., V. H. Heywood, O. Herrera-MacBryde, J. Villa-Lobos & Hamilton, A. C.

1997. Altoandina Argentina, Chile. Centres of plant diversity: A guide and strategy

for their conservation, Vol. 3 The Americas. Eds. S.D. Davis, V.H. Heywood, O.

Herrera-MacBryde, J. Villa-Lobos and A C. Hamilton IUCN, WWF, Oxford, UK.

Page 53: Tesis Daniela Rivera final

44

Drummond, A. J., Rambaut, A., Shapiro, B., & Pybus, O. G. 2005. Bayesian coalescent

inference of past population dynamics from molecular sequences. Molecular

Biology and Evolution 22: 1185-1192.

Drummond, A. J., Ho, S. Y. W., Phillips, M. J. & Rambaut, A. 2006. Relaxed

phylogenetics and dating with confidence. PLoS Biology 4: e88.

Drummond, A. J. & Rambaut, A. 2007. BEAST: Bayesian evolutionary analysis by

sampling trees. BMC Evolutionary Biology 7: 214.

Dupanloup, I., Schneider, S. & Excoffier, L. 2002. A simulated annealing approach to

define the genetic structure of populations. Molecular Ecology 11: 2571–2581.

Excoffier, L., Smouse, P. E. & Quattro, J. M. 1992. Analysis of molecular variance inferred

from metric distances among DNA haplotypes: application to human mitochondrial

DNA restriction data. Genetics, 131: 479–491.

Excoffier, L. 2004. Patterns of DNA sequence diversity and genetic structure after a range

expansion: lessons from the infinite-island models. Molecular Ecology 13: 853–864.

Excoffier, L., Laval, G. & Schneider, S. 2005. Arlequin (version 3.0): an integrated

software package for population genetics data analysis. Evolutionary Bioinformatics

Online 1: 47–50.

Excoffier, L. & Lischer, H. E. L. 2010. Arlequin suite ver 3.5: a new series of programs to

perform population genetics analyses under Linux and Windows. Molecular

Ecology Resources 10: 564–567.

Fernández, O. A. & Busso, C. A. 1999. Arid and semi-arid rangelands: two thirds of

Argentina. Agricultural Research Institute.

Fontanella, F. M., Feldman, C. R., Siddall, M. E. & Burbrink, F. T. 2008. Phylogeography

of Diadophis punctatus: Extensive lineage diversity and repeated patterns of

Page 54: Tesis Daniela Rivera final

45

historical demography in a trans-continental snake. Molecular phylogenetics and

evolution 46: 1049-1070.

Fornari, M., Risacher, F. & Feraud, G. 2001. Dating paleolakes in the central Altiplano of

Bolivia. Palaeogeography Palaeoclimatology Palaeoecology 172: 269–282.

Fu, Y. X. 1997. Statistical tests of neutrality of mutations against population growth,

hitchhiking and background selection. Genetics 147: 915–925.

Gallardo, M. H., Bickham, J. W., Honeycutt, R. L., Ojeda, R. A. & Köhler. 1999.

Discovery of tetraploidy in a mammal. Nature 40: 341.

Gallardo, M.H., Kausel, G., Jiménez, A., Bacquet, C., González, C., Figueroa, J., Köhler,

N. & Ojeda, R. 2004. Whole-genome duplications in South American desert rodents

(Octodontidae). Biological Journal of the Linnean Society 82: 443–451.

Gallardo, M. H., Ojeda, R. A., González, C.A. & Ríos, C.A. 2007. The Octodontidae

revised. In The Quintessential Naturalist: Honoring the Life and Legacy of Oliver P.

Pearson (Ed. by D.A. Kelt, E. P. Lessa, J. Salazar-Bravo & J. L. Patton), pp. 695-

720. University of California Publications in Zoology.

Gallardo, M. H., Suárez‐Villota, E. Y., Nuñez, J. J., Vargas, R. A., Haro, R. & Köhler, N.

2013. Phylogenetic analysis and phylogeography of the tetraploid rodent

Tympanoctomys barrerae (Octodontidae): insights on its origin and the impact of

Quaternary climate changes on population dynamics. Biological Journal of the

Linnean Society 108: 453-469.

Gannon, W. L. & Sikes, R. S. 2007.Guidelines of the American Society of Mammalogists

for the use of wild mammals in research. Journal of Mammalogy 88: 809-823.

Page 55: Tesis Daniela Rivera final

46

Garreaud, R. D., Vuille, M. & Clement, A. C. 2003. The climate of the Altiplano: observed

current conditions and mechanisms of past changes. Palaeogeography

Palaeoclimatology Palaeoecology 194: 5–22.

Grant, W. A. S. & Bowen, B. W. 1998. Shallow population histories in deep evolutionary

lineages of marine fishes: insights from sardines and anchovies and lessons for

conservation. Journal of Heredity 89: 415–426

Guillot, G., Estoup, A., Mortier, F. & Cosson, J.F. 2005a. A spatial statistical model for

landscape genetics. Genetics 170: 1261–1280.

Guillot, G., Mortier, F. & Estoup, A. 2005b. Geneland: a computer package for landscape

genetics. Molecular Ecology Notes 5: 712–715.

Hasegawa, M., Hirohisa K. and Taka-aki, Y. 1985. Dating of the human-ape splitting by a

molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22.2: 160-

174.

Harpending, H. C. & Rogers, A. R. 2000. Genetic perspectives on human origins and

differentiation. Annual Review of Genomics and Human Genetics 1: 361–385.

Honeycutt, R. L., Rowe, D. L. & Gallardo, M. H. 2003. Molecular systematics of the South

American Caviomorph rodents: relationships among species and genera in the

family Octodontidae Molecular Phylogenetics and Evolution 26: 476-489.

Keane, T. M., Creevey, C. J., Pentony, M. M., Naughton, T. J. & McInerney, J. O. 2006.

Assessment of methods for amino acid matrix selection and their use on empirical

data shows that ad hoc assumptions for choice of matrix are not justified. BMC

Evolutionary Biology 6: 29.

Kruuk, H. 1972. The spotted hyena. Chicago: University of Chicago Press.

Page 56: Tesis Daniela Rivera final

47

Lacey, E. A. & Ebensperger, L. A. 2007. Social structure in Octodontid and Ctenomyid

rodents. In: Rodent Societies An Ecological and Evolutionary Perspective. (Ed. by

J.O. Wolff & P.W. Sherman), pp. 257-296. Chicago, IL: University of Chicago

Press.

Librado, P. & Rozas, J. 2009. DnaSP v5: a software for comprehensive analysis of DNA

polymorphism data. Bioinformatics 25: 1451.

López, R.P. & Beck, S.G. 2002. Phytogeographical affinities and life form composition of

the Bolivian Prepuna. Candollea 57: 77–96.

López, R. P., Alcázar, D. L. & Macía, M. J. 2006. The arid and dry plant formations of

South America and their floristic connections: new data, new interpretation.

Darwiniana 44: 18-31.

Mares, M.A. & Ojeda, R.A., 1982. Patterns of diversity and adaptation in South American

hystricognath rodents. Pymatuning Laboratory of Ecology 6: 393–431.

Mares, M. A., Braun, J. K. & Channell, R. 1997. Ecological observations on the octodontid

rodent, Tympanoctomys barrerae, in Argentina. Southwestern Naturalist 42: 488–

504.

Mech, L.D. 1970. The wolf: the ecology and behavior of an endangered species. The

Natural History Press, New York.

Moore, W. S. 1995. Inferring phylogenies from mtDNA variation: mitochondrial-gene trees

versus nuclear-gene trees. Evolution 49: 718-726.

Montes de Oca, I. 2005. Enciclopedia Geográfica de Bolivia. Ed. Atenea. La Paz. 871 pp.

Nester, P. L., Gayó, E., Latorre, C., Jordan, T. E. & Blanco, N. 2007. Perennial stream

discharge in the hyperarid Atacama Desert of northern Chile during the latest

Pleistocene. Proceedings of the National Academy of Sciences 104: 19724-19729.

Page 57: Tesis Daniela Rivera final

48

Nei, M. & Kumar, S. 2000. Molecular evolution and phylogenetics. Oxford University

Press, Oxford.

Ojeda, R. A., Blendinger, P. G. & Brandl, R. 2000. Mammals in South American Drylands:

Faunal Similarity and Trophic Structure. Global Ecology & Biogeography 9: 115-

123.

Ojeda, A. A. 2010. Phylogeography and genetic variation in the South American rodent

Tympanoctomys barrerae (Rodentia: Octodontidae). Journal of mammalogy 91:

302–313.

Ojeda, A. A., Novillo, A., Ojeda, R. A. & Roig-Juñent, S. 2013. Geographical distribution

and ecological diversification of South American octodontid rodents. Journal of

Zoology 289: 285–293. doi: 10.1111/jzo.12008.

Olsson, U., Alström, P., Gelang, M., Ericson, P. G. & Sundberg, P. 2006. Phylogeography

of Indonesian and Sino-Himalayan region bush warblers (Cettia, Aves). Molecular

Phylogenetics and Evolution 41: 556-565.

Opazo, J. 2005. A molecular timescale for Caviomorph rodents (Mammalia,

Hystricognathi). Molecular Phylogenetics and Evolution 37: 932-937.

Ortuño, T., Ledru, M. P., Cheddadi, R., Kuentz, A., Favier, C. & Beck, S. 2011. Modern

pollen rain, vegetation and climate in Bolivian ecoregions. Review of Palaeobotany

and Palynology 165: 61-74.

Palma, R. E., Boric-Bargetto, D., Torres-Pérez, F., Hernández, C. E. & Yates, T. L. 2012.

Glaciation effects on the phylogeographic structure of Oligoryzomys longicaudatus

(Rodentia: Sigmodontinae) in the Southern Andes. PloS one 7: e32206.

Page 58: Tesis Daniela Rivera final

49

Placzek, C., Quade, J. & Patchett, P. J. 2006. Geochronology and stratigraphy of late

Pleistocene lake cycles on the southern Bolivian Altiplano: Implications for causes

of tropical climate change. Geological Society of America Bulletin 118: 515–532.

Placzek, C., Quade, J., Betancourt, J. L., Patchett, P. J., Rech, J. A., Latorre, C., Matmon,

A., Homgren, C. & English, N. B. 2009. Climate in the Dry Central Andes over

geologic, millennial, and interannual timescales 1. Annals of the Missouri Botanical

Garden 96: 386-397.

Placzek, C. J., Quade, J. Patchett, P. J. 2011. Isotopic tracers of paleohydrologic change in

large lakes of the Bolivian Altiplano. Quaternary Research 75: 231–244.

Placzek, C. J., Quade, J. & Patchett, P. J. 2013. A 130 ka reconstruction of rainfall from the

Bolivian Altiplano. Earth and Planetary Science Letters 363: 97-108.

Polzin, T. & Daneshmand, S. V. 2003. On Steiner trees and minimum spanning trees in

hypergraphs. Operations Research Letters 31: 12–20.

Posada, D. & Crandall, K. A. 2001. Intraspecific gene genealogies: trees grafting into

networks. Trends in Ecolology and Evolution 16: 37–45.

Posada, D. & Buckley, T. R. 2004. Model selection and model averaging in phylogenetics:

advantages of the AIC and Bayesian approaches over likelihood ratio tests.

Systematic Biology 53: 793-808.

Posada, D. 2008. jModelTest: phylogenetic model averaging. Molecular Biology and

Evolution 25: 1253- 1256.

Posada, D. & Crandall, K. A. 1998. Modeltest: testing the model of DNA substitution.

Bioinformatics 14:817–818.

Page 59: Tesis Daniela Rivera final

50

Quade, J., Rech, J. A., Betancourt, J. L., Latorre, C. & Fisher, T. 2008. Paleowetlands and

regional climate change in the central Atacama Desert, northern Chile. Quaternary

Research 69: 343–360.

Rabassa J, Clapperton CM. 1990. Quaternary glaciations of the southern Andes.

Quaternary Science Reviews 9: 153–174.

Rabassa J, Coronato AM, Salemme M. 2005. Chronology of the Late Cenozoic Patagonian

and their correlation with biostratigraphic glaciations units of the Pampean region

(Argentina). Journal of South American Earth Sciences 20: 81–103.

Rambaut, A. 2010. FigTree 1.3. 1.

Ramos-Onsins, S. E. & Rozas, J. 2002. Statistical properties of new neutrality tests against

population growth. Molecular Biology and Evolution 19: 2092-2100.

Redford, K.H. y Eisenberg, J.F. 1992. Mammals of the Neotropics Vol. 2: The Southern

Cone. The University of Chicago Press. Chicago, IL., EUA.

Reig, O. A. 1981. Teoría del Origen y Desarrollo de la Faunade Mamíferos de América del

Sur. Monographie Naturae, Museo Municipal de Ciencias Naturales ‘Lorenzo

Scaglia’. Mar del Plata, Argentina.

Reig, O. A. 1986. Diversity patterns and differentiation of High Andean Rodents. Pp. 404

- 439. In: Vuilleumier F. & M. Monasterio. High Altitude Tropical Biogeography.

Oxford University Press. New York.

Reig, O. A. 1970. Ecological Notes on the Fossorial Octodont Rodent Spalacopus cyanus

(Molina). Journal of Mammalogy 51: 592-601.

Risacher, F. & Fritz, B. 2000. Bromine geochemistry of Salar de Uyuni and deeper salt

crusts, central Altiplano, Bolivia. Chemical Geology 167: 373–392.

Page 60: Tesis Daniela Rivera final

51

Roche, M. A., Bourges, J., Cortes, J. & Mattos, R. 1991. Climatología e hidrología de la

cuenca del lago Titicaca. El Lago Titicaca, C. Dejoux and A. Iltis. ORSTOM. Paris.

83–104.

Rokas, A., Emmanuel, L. & Eleftherios, Z. 2003. Animal mitochondrial DNA

recombination revisited. Trends in Ecology and Evolution 18.8: 411-417.

Rogers, A. R. & Harpending, H. 1992. Population-growth makes waves in the distribution

of pairwise genetic-differences. Molecular Biology and Evolution 9: 552–569.

Rowe, D. L., Dunn, K. A., Adkins, R. M. & Honeycutt, R. L. 2010. Molecular clocks keep

dispersal hypotheses afloat: evidence for trans-Atlantic rafting by rodents. Journal

of Biogeography 37: 305–324.

Rozas, J., Sánchez-DelBarrio, J. C., Messeguer, X. & Rozas, R. 2003. DnaSP. DNA

polymorphism analyses by the coalescent and other methods. Bioinformatics 19:

2496–2497.

Sambrook, J., Fritsch, E. F., & Maniatis, T. 1989. Molecular cloning (Vol. 2, pp. 14-9).

New York: Cold spring harbor laboratory press.

Sanmartín, I., Van Der Mark, P. & Ronquist, F. 2008. Inferring dispersal: a Bayesian

approach to phylogeny‐based island biogeography, with special reference to the

Canary Islands. Journal of Biogeography 35: 428-449.

Santoro, C. M. & Latorre, C. 2009. Propuesta metodológica interdisciplinaria para

poblamientos humanos Pleistoceno tardío/Holoceno temprano, precordillera de

Arica, Desierto de Atacama Norte. Andes 7: 13-35.

Schneider, S. & Excoffier, L.1999. Estimation of past demographic parameters from the

distribution of pairwise differences when the mutation rates vary among sites:

application to human mitochondrial DNA. Genetics 152: 1079–1089.

Page 61: Tesis Daniela Rivera final

52

Schneider, S., Roessli, D. & Excoffier, L. 2000. Arlequin: a software for population genetic

data analysis. Vers. 2.000. Genetics and Biometry Laboratory, University of

Geneva, Switzerland.

Shikano, T., Shimada, T., Herczeg, G. & Merilä, J. 2010. History vs. habitat type:

explaining the genetic structure of European nine‐spined stickleback (Pungitius

pungitius) populations. Molecular Ecology 19: 1147-1161.

Sikes, R. S. & Gannon, W. L. 2011. Guidelines of the American Society of Mammalogists

for the use of wild mammals in research. Journal of Mammalogy 92: 235-253.

Small, R. L. & Wendel, J. F. 2000a. Copy number lability and evolutionary dynamics of

the Adh gene family in diploid and tetraploid cotton (Gossypium). Genetics 155:

1913-1926.

Small, R. L. & Wendel, J. F. 2000b. Phylogeny, duplication, and intraspecific variation of

Adh sequences in New World diploid cottons (Gossypium L., Malvaceae).

Molecular Phylogenetics and Evolution 16: 73–84.

Solbrig, O. T. 1976. The origin and floristic affinities of the South American temperate

desert and semidesert regions. In: Goodall, D.W (Ed.). Evolution of desert biota.

Austin, London, University of Texas Press. 7-49.

Soltis, D. E., Soltis, P. S. & Tate, J. A. 2004. Advances in the study of polyploidy since

plant speciation. New Phytologist 161: 173-191.

Swofford, D. L. 2002. PAUP*: phylogenetic analysis using parsimony (*and other

methods), version 4.0b10. Sinauer Associates, Inc., Publishers, Sunderland,

Massachusetts.

Page 62: Tesis Daniela Rivera final

53

Tamura, K. & Nei, M. 1993. Estimation of the number of nucleotide substitutions in the

control region of mitochondrial DNA in humans and chimpanzees. Molecular

Biology and Evolution 10: 512–526.

Tajima, F. 1989. Statistical Method for Testing the Neutral Mutation Hypothesis by DNA

Polymorphism. Genetics 123: 585-595.

Teta, P. & Ortiz, P. E. 2002. Micromamíferos andinos Holocénicos del sitio arqueológico

Inca Cueva 5, Jujuy, Argentina: Tafonomía, zoogeografía y reconstrucción

paleoambiental. Estudios Geológicos 58: 117-135.

Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. 1997. The

CLUSTAL X Windows interface: flexible strategies for multiple sequence

alignment aided by quality analysis tools. Nucleic Acids Research 25: 4876–4882.

Upham, N. S. & Patterson, B. D. 2012. Diversification and biogeography of the

Neotropical caviomorph lineage Octodontoidea (Rodentia: Hystricognathi).

Molecular Phylogenetics and Evolution 63: 417-429.

Valladares, J. P. 2009. Variación geográfica de la conducta antidepredatoria del Octodon

degus (Molina 1782) bajo un contexto filogeográfico. Ph.D. thesis, Universidad de

Chile.

Verzi, D. H., Montalvo, C. I. & Vucetich, M. G. 1999. Afinidades y significado evolutivo

de Neophanomys biplicatus (Rodentia, Octodontidae) del Mioceno tardio-Plioceno

temprano de Argentina. Ameghiniana 36: 83-90.

Verzi, D.H. 2001. Phylogenetic position of Abalosia and the evolution of the extant

Octodontinae (Rodentia, Caviomorpha, Octodontidae). Acta Theriologica 46: 243-

268.

Page 63: Tesis Daniela Rivera final

54

Verzi, D. H., Tonni, E. P., Scaglia, O. A. & San Cristóbal, J. O. 2002. The fossil record of

the desert-adapted South American rodent Tympanoctomys (Rodentia,

Octodontidae). Paleoenvironmental and biogeographic significance.

Palaeogeography Palaeoclimatology Palaeoecology 179: 149–158.

Verzi, D. H. & Quintana, C. A. 2005. The caviomorph rodents from the San Andrés

formation, east-central Argentina, and global Late Pliocene climatic change.

Villesen, P. 2007. FaBox: an online toolbox for fasta sequences. Molecular Ecology Notes

7: 965–968.

Wilson, S.C. & Kleiman, D. G. 1974. Eliciting Play: A Comparative Study American

Zoologist 14: 341-370. Palaeogeography, Palaeoclimatology, Palaeoecology 219:

303–320.

Wilson, D. E. & Reeder, D. M. 1995. Mammal species of the world. A taxonomic and

geographic reference. 3rd ed. Johns Hopkins University Press, Baltimore, Maryland.

Woods, C. A. & Kilpatrick, C. W. 2005. Infraorder Hystricognathi. In Mammal Species of

the World: a taxonomic and geographic reference (Ed. by D. E. Wilson & D. M.

Reeder), pp. 1538-1600. Third edition, Baltimore: John Hopkins University Press.

Yu, Y., Harris, A.J. & He, X.-J. 2010. S-DIVA (statistical dispersal–vicariance analysis): a

tool for inferring biogeographic histories. Molecular Phylogenetics and Evolution

56: 848–850.

Yu, Y., Harris, A. J. & He, X. J. 2011. RASP (Reconstruct Ancestral State in Phylogenies)

1.1. <http://mnh.scu.edu.cn/soft/blog/RASP>.

Zink, R, M. & Barrowclough, G.F. 2008. Mitochondrial DNA under siege in avian

phylogeography. Molecular Ecology 17: 2107–2121.

Page 64: Tesis Daniela Rivera final

55

Table1 1. Description of sampling localities of Octodontomys gliroides specimens in Bolivia (Bo), Chile (Ch) and Argentina (Ar).

Localities and habitat type as shown in Fig. 1. Some of the localities have been combined and their abbreviations are showed. For all

specimens we show the Id code/museum or collection source.

Map references Locality Abbreviation Latitude Longitude Phytogeographical regions

Id code/Source Haplotypes

Bolivia Bo1 Bo2 Bo3 Bo4 Bo5 Bo6 Bo7 Bo8 Bo9 Bo10 Bo11 Bo12 Chile Ch1 Ch2 Ch3 Ch4 Argentina Ar1 Ar2 Ar3

Llacasa Eucaliptus Villa Ventilla Jirira Hara Castilluma Uyuni Oploca Tupiza Villa Abecia Cieneguillas Iscayachi Putre Murmutani Putre Chungará Camiña Chusmiza Chusmiza Pucara del Tilcara Susques San Antonio los Cobres

EVva EVva

CIb CIb

ArgNc ArgSd ArgSd

16°40’S 17°35’S 17°58’S 19°50’S 19°46’S 19°56’S 20°26’S 21°19’S 21°25’S 20°59’S 21°19’S 21°29’S

18°12’S 18°22’S 18°13’S 19°41’S

23°35’S 24°00’S 24°16’S

68°01’W 67°33’W 67°09’W 67°37’W 67°34’W 68°15’W 66°45’W 65°57’W 65°43’W 65°14’W 65°02’W 64°58’W

69°49’W 69°33’W 69’15’W 69°10’W

65°24’W 66°30’W 66°30’W

Northern Puna Central Puna Central Puna

Southern Puna Southern Puna Southern Puna Southern Puna

Prepuna Prepuna Prepuna Prepuna

Central Puna

Central Puna Central Puna

Prepuna Prepuna

Prepuna

Southern Puna Southern Puna

DSR DSR

FMNH1 DSR DSR DSR DSR DSR DSR DSR

FMNH DSR

IEEUACH2 IEEUACH IEEUACH

SSUC3/DSR

MMPMa4 OMNH5

CMI-RAO6

6, 9, 12, 13 5 - 9 27 8 8 3 10, 20 - 23 10, 14, 15 10 10, 24 - 26 4 6, 10 3 3 1, 2 1, 2, 3 16, 17 11 19

Page 65: Tesis Daniela Rivera final

56

Ar4 Ar5

Santa Victoria Cachi

ArgNc ArgSd

22°13’S 25°01’S

65°12’W 66°14’W

Prepuna Prepuna

JPJ7 OMNH

10 18

1Field Museum of Natural History, Chicago, Illinois 60605 2Instituto de Ecología y Evolución, Universidad Austral de Chile, Valdivia 3Colección de Flora y Fauna Profesor Patricio Sánchez Reyes, P. Universidad Católica de Chile, Santiago, Chile 4 Museo de Ciencias Naturales y Tradicional de Mar del Plata "Lorenzo Scaglia", Mar del Plata 5Sam Noble Oklahoma Museum of Natural History, The University of Oklahoma, Norman, Oklahoma 6Colección de Mamíferos del Instituto Argentino de Investigaciones de zonas Áridas (IADIZA) 7Catálogo de campo de Jorge Pablo Jayat. aEVv: Eucaliptus-Villa Ventilla; bCI: Cieneguillas - Iscayachi; cArgN: Pucara del Tilcara - Santa Victoria; dArgS: Susques - San Antonio los Cobres -Cachi

Page 66: Tesis Daniela Rivera final

57

Table 2. Number of sequences, haplotypes, polymorphic sites by population, haplotype diversity (H) and nucleotide (π) from

Octodontomys gliroides. Some of the localities have been combined for diversity calculation. Abbreviations of localities are defined in

Table 1.

Sample locality

Number of sequences

Haplotype

Polymorphic

sites

Haplotype diversity H

Standard desviation

Nucleotide diversity

π (10-3)

Standard

desviation

Bo1 EVv Bo4 Bo5 Bo6 Bo7 Bo8 Bo9 Bo10

CI Ch1 Ch2 Ch3 Ch4

ArgN ArgS

Andean Puna Andean Prepuna

Total

12 18 5 7 5 11 6 5 7 3 2 3 2 7 3 4 66 35 101

4 6 1 2 1 5 3 1 4 3 1 1 3 3 3 3 16 14 27

3 8 0 3 0 7 3 0 6 9 0 0 3 3 12 3 19 18 24

0.77 0.82 0.00 0.47 0.00 0.85 0.73 0.00 0.71 1.00 0.00 0.00 0.67 0.67 1.00 0.83 0.88 0.84 0.92

0.07 0.05 0.00 0.17 0.00 0.06 0.15 0.00 0.18 0.27 0.00 0.00 0.31 0.15 0.27 0.22 0.02 0.05 0.01

2.04 3.85 0.00 2.47 0.00 4.90 2.07 0.00 2.96 10.36 0.00 0.00 3.45 1.97 13.82 2.59 5.74 6.01 5.97

0.31 0.70 0.00 0.89 0.00 0.75 0.74 0.00 1.11 4.38 0.00 0.00 1.63 0.76 5.54 0.95 0.58 1.26 0.59

Page 67: Tesis Daniela Rivera final

58

Table 3. Characteristics of all three defined groups by Network and GENELAND analysis including the number of sequences (N),

number of haplotypes (Hap), polymorphic sites (S), haplotype and nucleotide diversity, values of Tajima’s D and Fu’s FS tests, and

Mismatch distribution demographic (SSD) and spatial (SSD*).

Group

Geographic location

N

Hap

S

Haplotype diversity h

Nucleotide diversity π (10-3)

Tajima’s D Fu’s Fs Mismatch distribution

D P (Ds < Dobs) F P (Fs < Fobs) pSSD pSSD*

I II III

18°12’ - 21°29’ 16°40’ - 19°50’ 21°19’ - 25°01’

52 42 7

16 11 6

14 9 6

0.833 (0.04) 0.827 (0.04) 0.952 (0.09)

3.42 (0.43) 3.39 (0.38) 3.78 (0.76)

-1.354 -0.696 -0.536

0.076 0.251 0.343

-5.785 -1.545 -3.027

0.003 0.251 0.012

0.56 0.16 0.52

0.48 0.20 0.56

Page 68: Tesis Daniela Rivera final

59

FIGURE LEGEND

Figure 1. Map of Octodontomys gliroides sampling locations along its range distribution

(see Table 1 for Abbreviations of localities). Pie charts displaying the frequency of

occurrence of each haplotype in each locality; pie chart size is proportional to population

size. A total of 27 mtDNA control region haplotypes are represented.

Figure 2. Median-joining network (MJN) of the 27 O. gliroides mtDNA control region

haplotypes recovered from 21 populations. Each circle represents a different haplotype with

size proportional to frequencies, with the largest circles representing the most abundant

haplotypes. Shading indicates localities and black small lines denote the number of

mutational steps between haplotypes. Absence of black small lines is equivalent to a single

mutational event. Small red circles represent missing or unsampled haplotypes. The

coloration of each haplotype represents the four major phytogeographical region of O.

gliroides distribution. The three dashed circles represent each one of the GENELAND

clusters.

Figure 3. Map of cluster membership and posterior probability for each cluster based on

the GENELAND analysis. a) the estimated cluster membership represent the modal cluster

assignment of each pixel, the rest of the inset maps show the posterior probability of

individuals of O. gliroides in Argentina, Bolivia and Chile. Region with the greatest

probability of inclusion are indicated by light yellow, whereas diminishing probabilities of

inclusion are proportional to the degree of red. Black dots represent sampling localities.

The three clusters are b) continuous population extending from northern of Chile, central

Page 69: Tesis Daniela Rivera final

60

and southern of Bolivia and northern of Argentina, c) northern and central of Bolivia and d)

rest of Argentina populations and one population from southern of Bolivia.

Figure 4. Pairwise mismatch distribution (left) and Bayesian skyline plots (right) depicting

the demographic history for a-b) the entire sample level, c-d) cluster I, e-f) cluster II and g-

h) cluster III. For the mismatch distributions, white circles represent the observed

distribution of Pairwise differences and the black circles represent theoretical expected

distribution under a population expansion model. For the skyline plot, black lines represent

median estimation and gray lines represent the upper and lower 95% credible intervals. The

x-axes of these figures are the time before present and the y-axis is the estimated effective

population size.

Figure 5. Divergence time estimates in million years (above the branches) and 95%

credible intervals (below the braches) for principal nodes for each clade of O.gliroides and

other sister species of family Octodontidae.

Figure 6. Ancestral areas reconstruction of Andean degu, O. gliroides along its entire

distribution range, obtained by Statistical Dispersal-Vicariance Analysis (S-DIVA), using

mt-DNA CR. Color legend represents possible ancestral ranges at different nodes; black

with asterisk represent other ancestral ranges. Areas: A: Andean Prepuna; B: Andean Puna;

C: Valdivian Temperate Forest; D: Chilean Scrublands; E: Dry Chaco; F: Argentina Monte

Desert; G: Patagonian Steppe. See Table 1 for Abbreviations of localities.

Page 70: Tesis Daniela Rivera final

61

Figure 7. Most important barriers separating the population of O. gliroides when

considered each one of the haplogroups or GENELAND clusters 1) and 2) are principal

barrier separating cluster II from cluster I 3); 4) and 6) are the principal barrier separating

Argentina populations from southern Bolivia and Chilean populations respectively 5) is

major barrier separating the northernmost and central Bolivia populations from the rest of

southern Bolivia populations.

Page 71: Tesis Daniela Rivera final

62

Figure 1.

Page 72: Tesis Daniela Rivera final

63

Figure 2.

Page 73: Tesis Daniela Rivera final

64

Figure 3.

Page 74: Tesis Daniela Rivera final

65

Figure 4.

Page 75: Tesis Daniela Rivera final

66

Figure 5.

Page 76: Tesis Daniela Rivera final

67

Figure 6.

Page 77: Tesis Daniela Rivera final

68

Figure 7.

Page 78: Tesis Daniela Rivera final

69

CAPITULO II

Within but not between variation in ecology predict population

differences in Octodontomys gliroides group-living

Daniela S. Rivera1,2* Sebastian Abades1,3 and Luis A. Ebensperger1

Page 79: Tesis Daniela Rivera final

70

Within but not between variation in ecology predict population

differences in Octodontomys gliroides group-living

Daniela S. Rivera1* Sebastian Abades1,2 and Luis A. Ebensperger1

1 Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad

Católica de Chile, Casilla 114-D, Santiago, Chile

2 Centro de Investigación e Innovación para el Cambio Climático (CIICC), Universidad

Santo Tomás, Santiago, Chile

Short title: Ecological drivers of group-living

*Correspondence:

Address: Daniela S Rivera, Departamento de Ecología, Pontificia Universidad Católica de

Chile, Santiago. Chile.

Phone: (56-2) 686 2950

Email: [email protected]

Page 80: Tesis Daniela Rivera final

71

ABSTRACT

Given that variation in sociality is thought to be driven by multiple ecological factors,

among and within population comparisons linked to different environmental conditions

remain a powerful approach to identify costs and benefits of group-living. We studied two

Andean degu, Octodontomys gliroides populations located at two extremes of the climate-

vegetation gradient across the Andes range. We evaluated how ecological variation in terms

of abundance and distribution of resources, predation risk, and burrowing costs predicted

intraspecific variation in group size and range area overlap (two proxies of sociality). We

found that multiple population differences in ecology (i.e., abundance and distribution of

resources, predation, burrowing costs, and Andean degu density) did not relate to variation

in sociality. In contrast, within population variation in ecology predicted significant

variation in group size, and where larger social groups were in patches with greater density

of vegetation patches and density of burrow openings. In addition, more socially cohesive

groups (as indicated from higher overlap in same group range areas) used areas with lower

soil hardness and density of vegetation patches. Thus, costs and benefits linked to living

socially in O. gliroides seem fine tuned to within but not to between population differences

in ecology. The social behavior of O. gliroides supports that sociality across octodontids

rodents evolved early in the clade and represents historical selection pressures. Thus, an

uncoupling between a relatively ancient social phenotype and current day population

differences in ecology cannot be ruled out.

Keywords: Andean degu; distribution of resources; predation risk; burrowing costs; group

size; range area overlap; sociality.

Page 81: Tesis Daniela Rivera final

72

INTRODUCTION

Intra-specific variation in the number and composition of group members characterizes

socially flexible, but also socially cohesive groups in vertebrates (Lott 1991; Maher &

Burger 2011). This variation in sociality is thought to be driven by ecological conditions

(e.g., weather, predation pressure, density, nest-site availability, and quality, quantity, or

distribution of food) (Lott 1991), which in turn determine fitness benefits and costs

associated to individuals’ decision to join or leave groups (Ebensperger et al. 2012). Group-

living benefits social individuals through several ways. Individuals in larger groups are

known to decrease predation risk, locate and defend food resources more efficiently,

decrease costs of burrow or nest construction, decrease thermoregulatory costs, or decrease

risk of infanticide (Alexander 1974; Wrangham 1979; Ebensperger 2001; Ebensperger &

Cofré 2001; Ebensperger & Blumstein 2006). These benefits typically come to fitness

costs, including greater competition over food resources and parasitism (Alexander 1974;

Wrangham 1979; Freeland, 1979; Loehle 1995; Altizer et al. 2003). Given that most of

these benefits and costs may be influenced by ecological conditions, ecological variation

remains a major, ultimate cause of intraspecific variation in social group size (Lott 1991;

Slobodchikoff 1984; Brashares & Arcese 2002; Ebensperger et al. 2012).

Predation risk remains a commonly reported ecological correlate of variation in the

size of social groups (Lott 1991; Brashares & Arcese 2002; Isvaran 2007; Maher & Burger

2011). Individuals in larger groups can reduce per capita predation risk through several

mechanisms, including dilution, predator confusion effects, earlier detection and warning,

or through cooperative defense (Pulliam & Caraco 1984; Krause & Ruxton 2002;

Ebensperger et al. 2006). As a consequence, individuals in groups can spend more time

feeding and less time scanning for predators (Alexander 1974; Roberts 1996; Lacey 2000;

Page 82: Tesis Daniela Rivera final

73

Ebensperger 2001; Ebensperger et al. 2006). Distribution of critical resources (e.g., food,

nest sites, shelter) is an additional ecological driver of social behavior (Johnson et al. 2002).

Resources that are patchily (heterogeneously) distributed through space and time promote

group-living because larger groups attain preferential access to high-quality resources

(Slobodchikoff 1984; Travis et al. 1995; Brashares & Arcese 2002; Maher & Burger 2011).

Alternatively, relatively large patches of food may relax intraspecific competition and

promote recruitment of individuals, which in turn favor greater sociality without any

apparent fitness benefit (Macdonald 1983; Johnson et al. 2002; Verdolin 2009). Other

ecological factors have been suggested to explain variation in social systems, including

ambient temperature (e.g., group-living decreases thermoregulation costs through huddling)

(Berteaux et al. 1996; Canals et al. 1998; Kaufman et al. 2003), or physical conditions that

influence the costs of burrow or nest construction (e.g., soil harness to burrowing

organisms) (Lacey 2000; Ebensperger 2001; Ebensperger & Cofré 2001).

One powerful approach to examine how intraspecific variation in sociality tracks

ecological variation is to examine populations facing different environmental conditions.

Population comparisons have the advantage of spanning a greater range of ecological

conditions, particularly near the extremes of a species’ distribution (Travis & Slobodchikoff

1995; Spinks et al. 2000; Schradin & Pillay 2005). However, recent evidence from these

studies has not revealed consistent relationships between ecological variation and group-

living (Ebensperger et al. 2012). For example, the effect on larger group size in populations

of cercopithecoid primates living in a gradient of predation risk was greater in populations

under high predation risk (Hill & Lee 1998). In contrast, Clutton-Brock et al. (1999) did not

find population variation in group size and composition in social groups of mongoose

facing different predation regimes. Regarding the effect of food resources, larger social

Page 83: Tesis Daniela Rivera final

74

groups of some rodents and ungulates are associated with greater patchiness and abundance

food across populations (Travis et al. 1995; Brashares & Arcese 2002). In contrast, studies

on European badgers (Meles meles) showed no consistent relationship between territory

size and resource dispersion, or between group size and resource richness (Johnson et al.

2001). In another study, Kruuk & Parish (1987) found that a decrease in food availability

was followed by territory expansion rather than by the expected group size reduction.

However, most of these studies have focused on each of these factors individually (Kruuk

& Parish1987; Hill & Lee 1998; Clutton & Brock et al. 1999; Johnson et al. 2001; Hass &

Valenzuela 2002) and only a few studies examined simultaneously and quantitatively the

link between ecological conditions and social behavior (Brashares & Arcese2002; Isvaran

2007; Ebensperger et al. 2012).

Model species, hypotheses and predictions

A potentially informative group of model organisms to understand how sociality and social

organization tracks ecological conditions is the New World hystricognath (or caviomorph)

rodents (Ebensperger 1998, 2001; Lacey & Sherman 2007; Maher & Burger 2011).

Caviomorph rodents exhibit relatively large differences in social behavior, with species

ranging from solitary living to highly gregarious (Lacey & Ebensperger 2007). This

variation also occurs across populations within species (Maher & Burger 2011), providing a

natural system to examine the extent to which different ecological conditions influence

social behavior (Ebensperger et al. 2012). Within octodontids, the social behavior of

Octodontomys gliroides (Andean degu) remains scarcely known, yet this knowledge is

critical to determine the extent to which social behavior in these animals is maintained by

current ecological conditions. According to phylogenetic hypothesis (Honeycutt et al.,

Page 84: Tesis Daniela Rivera final

75

2003; Gallardo et al. 2004; Opazo, 2005; Rowe et al. 2010), O. gliroides is basal to Chilean

clade composed of more social octodontids (Ebensperger et al. 2004; Gallardo et al. 2007;

Lacey & Ebensperger 2007). Therefore, solitary living in O. gliroides would suggest that

social living is a more derived trait. On the contrary, if O. gliroides presents social habits,

would support that that solitary living evolved rather recently through the clade.

The aim of this study was to examine the relative importance of different ecological

factors as predictors of variation in group size within and across two populations of O.

gliroides. We selected two populations that are genetically similar based on molecular

markers (Rivera 2013) but represent two extremes of the characteristic climate-vegetation

east to west gradient throughout the distribution of this species across the Andes range. In

particular, we assessed how variables linked to resource distribution and food abundance,

predation risk, and burrowing costs predicted population variation in group size.

Ecological variation faced by O. gliroides suggests differences in the abundance and

distribution of food, which in turn predict an effect on social behavior in this species. The

geographic distribution of Andean degu faces an east to west gradient of decreasing

precipitation caused by a rain shadow effect across the Andes Mountains. This area is

characterized by a complex history of changes associated with dry-wet periods that took

place in the Pleistocene-Holocene (Nester et al. 2007; Santoro & Latorre 2009). This

variation has driven changes in the distribution and cover of the local flora used of xeric

Andean regions (Puna, Prepuna, Monte and high Andes) used by O. gliroides (Ribichich

2002; Teta & Ortiz 2002; Barquez et al. 2006). In particular, O. gliroides burrows in

patches of columnar and ground-level cacti and/or shrubs where these rodents feed on the

vegetation, hide from predators, and rear their offspring (Rivera 2013). Because resources

in arid or semi arid ecosystems such as food and shelter are distributed in a mosaic of

Page 85: Tesis Daniela Rivera final

76

patches with high plant cover interspersed in a low-cover matrix (Sala & Aguilar 1996;

Aguilar & Sala 1999), larger groups would be expected in patches with relatively low plant

cover (Ebensperger 2001).

Even though the role of predation risk as a driver of social behavior in O. gliroides

has not been examined, its influence cannot be ruled out. Population studies in the sister

species Octodon degus indicated predation risk influences the size of foraging groups

(Ebensperger & Wallem 2002; Ebensperger et al. 2006; 2012). In addition, vegetation

overhead cover has been shown to influence predation risk (Ebensperger & Hurtado 2005).

Thus, the ecological variation in the distribution and cover of the local flora faced by

Andean degus may have influenced variation in social behavior of these animals. Given

that predation risk is thought to increase in areas with relatively low shrub cover because

shrubs provide overhead protective cover (Vásquez et al. 2002; Ebensperger & Hurtado

2005; Taraborelli 2009), larger social groups would be expected in patches with lower plant

overhead cover. In addition, we considered predation risk to increase with distance to the

nearest burrow system, and decrease with density of burrow openings (i.e., abundance of

safe havens) (Ebensperger et al. 2012). Thus, larger groups would be expected in the

population with greater distance between burrow systems and with greater density of

burrow openings.

Given that burrowing is energetically expensive and this cost generally increases

with soil harness (Ebensperger & Bozinovic 2000), we also examined the prediction of

larger groups using patches with increasing soil hardness.

To summarize, we examined the above predictions to determine the relative

contribution of different ecological factors in driving the size of Andean degu social

groups. The observation of larger social groups and range area overlap (two proxies of

Page 86: Tesis Daniela Rivera final

77

sociality) in the population holding more clumped resources would support resource

abundance and distribution is a driver of Andean degu sociality. The observation of larger

social groups and greater range area overlap in the population with greater overhead cover

would support a role for predation risk. Finally, larger social groups and greater range area

overlap in the population with harder soil conditions would support burrowing costs are

relevant to Andean degu sociality.

METHODS

Study populations

We examined two Andean degu populations located 400 km apart in two habitats with

extreme differences in ecology. The Oploca population (hereafter Oploca) was located in

southwest Bolivia (21°20´S 65°50´W; 3,121 m of altitude); the Chusmiza population

(hereafter Chusmiza) was located in the high Andean plateau of northern Chile (19°40´S

69°10´W; 3,460 m of altitude).

Differences in rainfall between these populations lead to further differences in

vegetation types and plant cover (HilleRisLambers et al. 2001; Schradin 2005). Oploca

ecosystem is characterized by dry climate with rainfall ranging from 200 to 650 mm; most

rain falls during summer months (November–February), and mean temperature ranges from

14 to19° C (López 2003; SENAMHI 2012). The study area of this population was

characterized by xerophytic vegetation, where the succulent Trichocereus tacaquirensis,

Oreocereus celsianus, Opuntia boliviensis and the thorn scrub Acacia feddeana, Cercidium

andicola, and Prosopis ferox were the most common species (Ibisch et al. 2003; López

2000; 2009; 2010). In contrast, Chusmiza population exhibits an arid climate, with a mean

annual precipitation of 101 mm (Ministerio de Obras Públicas, MOP 2012) that

Page 87: Tesis Daniela Rivera final

78

concentrates during the austral summer months (January- March; "invierno boliviano")

(Garreaud et al. 2009). Mean ambient temperature ranges from -0.2 to 6.8° C (Ministerio de

Obras Publicas, MOP 2012). Vegetation at the study site was dominated by small bushes

and cacti of Tarapacá Precordillera (Atriplex sp., Bacharis boliviensis, Senna birostris,

Lophopappus tarapacanus, Corryocactus brevistylus, Oreocereus leuvotrichus,

Trichocereus atacamensis, Opuntia soehrensii, Opuntia camachoi) (Philippi 1941;

Villagran et al. 1999; Moreira-Muñoz 2011).

Trapping and marking of animals

The study was conducted in both populations during the spring-summer transition (i.e.,

before the rainy season). Thus, Oploca was examined during October through December

2011, and Chusmiza was studied during November 2012-January 2013. We trapped

Octodontomys using a combination of Tomahawk (Tomahawk Live Trap Co., Tomahawk,

Wisconsin) and locally produced medium and large sized Sherman traps, all baited with

mixture of tuna’s fruit (Opuntia fus-indica) and grated apple. We set traps at previously

identified burrow systems. Occupancy was based on the presence of finger prints, "paths",

fresh droppings or fresh brands of consumption of cacti leaves or seedpods in the vicinity

of burrows. We placed a total of 220 traps at Oploca and 160 traps at Chusmiza. The total

area examined for both populations was similar and reached 11 ha. A similar combination

of Sherman and Tomahawk traps were distributed at each burrow systems. The number of

traps used per day at each burrow systems averaged 8 ± 0.2 at Oploca and 6 ± 0.0 at

Chusmiza. The total number of burrow systems trapped at Oploca was 45 and 40 at

Chusmiza. These burrows were found primarily on the base of shrubs, columnar, and

ground-level cacti at Oploca, but were associated only to columnar cacti at Chusmiza.

Page 88: Tesis Daniela Rivera final

79

We trapped Andean degus during 26 consecutive days at Oploca and 18 consecutive

days at Chusmiza. Traps were opened during most daylight hours and checked

approximately every 2 hours. Traps were closed between 11:00 until 16:30 to prevent

individuals dying through overheating. The sex, body mass, and reproductive condition

(e.g., whether females were perforated, pregnant or lactating and males had descended

testes) were recorded for all animals captured. Upon first capture, individuals were given a

unique identification with the use of metal ear tags coded with numbers (National Band and

Tag Co. Newport, USA). In addition, a small sample of ear tissue was taken first caught

subjects for subsequent genetic analyses.

To characterize spatial relationships among individuals, all adult sized individuals

(≥ 140 g) caught during this trapping period were fitted with 6-7 g radio-collars (AVM

Instrument Co., USA). Weight of radio-collars represented 4-5% of study subjects’ body

weight. At the end of data collection (see below) all radio-collared animals were recaptured

and transmitters were removed.

This study followed the American Society of Mammalogists guidelines (Animal

Care and Use Committee 1998; Gannon et al. 2007), and adhered to Bolivian and Chilean

laws (permit number MMAyA-VMA-DGBAP N 0937/11 by the Dirección General de

Biodiversidad y Áreas Protegidas and by the permit number 1-62-2012 [2373] by the

Servicio Agrícola y Ganadero). All procedures that involved handling of live animals were

approved by the Faculty of Biological Sciences at Pontificia Universidad Católica de Chile

(CBB-040-2011).

Page 89: Tesis Daniela Rivera final

80

Temporal activity and range area

The Andean degu has been presumed to be active at nighttime by some (Ipinza et al. 1971;

Nowak 1991; Pedreros & Valenzuela 2009), but diurnally active by others (Mann 1978).

Therefore, we first needed to confirm this discrepancy and examined patterns of temporal

activity. We used the homing technique (Kenward 2001) to follow all radio-collared

animals with the use of LA 12-Q receivers and hand held, and 3-element Yagi antennas

(tuned to 150.000-151.999 MHz; AVM Instrument Co., USA). In particular, two observers,

each holding a receiver and an antenna, tracked all radio-collared animals every two hours

during nighttime and daytime. Once located, the position of each animal was marked with

coded flags. Each fixing location was then geo-referenced with a Garmin portable GPS

(Garmin International Inc., Olathe, Kansas, USA). The rugged micro-topography of both

study sites caused frequent signal bounce and precluded the use of long-range radio-fixings

(i.e., triangulation) (Kenward 2001). To prevent observers affecting the movements of

animals and disrupt their behavior, each observer was trained to avoid stepping loudly

when near each radio-collared subject, and to left swiftly once its location was confirmed.

Daily patterns of activity were then characterized from how activity varied with time of

night and day on both populations.

Social group identification

Given that activity of Andean degu rats concentrated their activity mostly during night

time, the criterion to assign Andean degu rats to social groups was based on the sharing of

burrow systems (in which they rest and interact) during day-time (e.g., Hayes et al. 2009).

During a total of 10 days we determined resting locations at burrows systems three times

per day: in the morning (09:30 to 11:30 h), afternoon (12:30 to 14:30 h) and before sunset

Page 90: Tesis Daniela Rivera final

81

(15:30 to 17:30 h). This effort has been adequate to determine group membership in other

octodontids rodents (Ebensperger et al. 2004).

The determination of group composition required the compilation of a symmetric

similarity matrix of pairwise association of the burrow locations of all adult Andean degus

during daytime telemetry (Whitehead 2008). We determined the association (overlap)

between any two individuals by dividing the number of days that these two animals were

tracked with telemetry to the same burrow system by the number of days that both

individuals were tracked with telemetry on the same day (Ebensperger et al. 2004). We

determined group composition using the SOCPROG software (Whitehead 2009). We

performed hierarchical cluster analysis of the association matrix. We confirmed the fit of

data with the cophenetic correlation coefficient, a correlation between the actual association

indices and the levels of clustering in the diagram. Under this procedure, values above 0.8

would indicate that hierarchical cluster analysis has provided an effective representation of

the data (Whitehead 2008). We chose maximum modularity criteria (Newman 2004) to cut

off the dendrogram and define social groups. Group size was then calculated as the number

of Andean degus assigned to a same social group.

Range areas and overlap

To determine whether Andean degus assigned to the social unit formed a socially cohesive

group when active above ground, we used night radio locations to monitor patterns of space

use. Location of radio fixes for each individual were first transferred to an X-Y system of

coordinates, and then mapped using the 95% minimum convex polygon algorithm (MCP)

with the software Ranges VI (Kenward et al. 2003). Pairwise estimates of percentage range

Page 91: Tesis Daniela Rivera final

82

area overlap among individuals and nesting associations were also calculated using Ranges

VI (Ebensperger et al. 2006; Kenward et al. 2003).

Ecological differences across populations

At the level of population, availability of food resources was estimated based on abundance

of ground-level cacti biomass. We previously determined that Octodontomys gliroides

feeds principally on ground-level cacti at Chusmiza, but on cacti and shrubs (Prosopis

flexuosa) at Oploca (Villanueva 2013). One 100 m transect was established randomly in

each study population: each transect was then divided into ten 10 x 2 m plots. Within each

plot we used from 1 to 7 0.25 m2 quadrants at Oploca and from 4 to 13 0.25 m2 quadrants

per plot at the Chusmiza to quantify the abundance of cacti leaves. From each 0.25 m2

quadrant we randomly removed five leaves that were stored inside paper bags, and

transported to the laboratory. All cacti leaf samples were oven-dried at 60° C for 10

consecutive days to determine its dry mass (biomass in g).

A second measure of food availability was vegetation cover (Reus et al. 2013). We

estimated vegetation cover based on ground-level cacti, columnar cacti, and shrubs at each

population. To do so, we established other 15 (50 x 2 m) randomly located transects.

Vegetation cover was recorded every 10 m using the line point intercept method (Bonham

1989). Percent cover was calculated as the number of hits for each plant species or ground

cover class divided by the total number of points per transect.

We used Poisson variance-to-mean ratios of distance between patches with ground-

level cacti, columnar cacti, and shrubs to estimate the distribution of resources within each

population. To do this, all patches in the total area (11 ha) were georeferenced in each

population. We then divided the variance of distance between patches by its mean. Values

Page 92: Tesis Daniela Rivera final

83

<1 were indicated a relatively uniform distribution; values >1 were taken to represent a

relatively clumped distribution (Travis & Slobodchikoff 1993; Krebs 1999).

At the level of populations, predation risk was recorded first from the active burrow

entrances at each burrow system. Active burrow entrances were identified from the

presence of fresh droppings, urine marks, signs of recent soil digging, or remains of

recently consumed cacti leaves. Number of active burrow entrances per square meter at

each burrow system was calculated as the number of active burrow openings divided by the

area covered by the burrow system (hereafter density of burrow openings). A second

measure of predation risk was distance (meters) from each burrow system to the nearest

shrub or a cactus (distance to cover). Finally, predation risk was recorded from vegetation

overhead cover as suggested by several previous studies (Hill & Dumbar 1998; Jensen et al.

2003; Ebensperger & Hurtado 2005). For Oploca population we considered the ground-

level cacti as cover because we observed that these species of cacti are large enough to

provide coverage against predators. On the other hand, in Chusmiza the ground-level cacti

were too small to provide any protection, so we did not considered in this analysis.

We estimated soil penetrability as an index of soil hardness and therefore, energy

costs associated with building burrows (Lacey & Wieczorek 2003; Ebensperger et al.

2012). At the level of the population we established 15 randomly located transects (50 x 2

m). Soil penetrability was recorded twice every 10 m. Soil penetrability was recorded with

the use of a hand-held soil compaction meter (Lang Penetrometer Inc., Gulf Shores, AL,

USA).

Page 93: Tesis Daniela Rivera final

84

Ecological predictors within populations

At the level of burrow systems used by Andean degus, distribution of food resources was

measured as distance between patches with shrub and/or ground-level and columnar cacti

and density of vegetation patches. Both, distance between patches and density of vegetation

patches were calculated as the distance and number of locations with shrub and/or ground-

level or columnar cacti on an area of 1 ha around each burrow systems used by varying

number of these rodents.

To examine predation risk, we considered the density of burrow openings (number

of active burrow entrances per m2), overhead vegetation cover, and distance (meters) from

each burrow system used to the nearest overhead shrub or cacti. In the context of energy

costs associated with burrow digging, we recorded the soil penetrability around burrow

systems of social groups. Soil penetrability was recorded five times in each of four points

located in north, east, west, and south orientation and on the perimeter of each burrow

systems used by Andean degus. The five measures per point were averaged for subsequent

analyses.

Andean degu abundance

We used data from burrow trapping to calculate the abundance of Andean degu assuming a

closed population (no emigration, immigration, death or birth). We restricted this analysis

to the first 18 days of burrow trapping at each population. These analyses were performed

using the CAPTURE software (Otis et al. 1978; White et al. 1982; Rexstad & Burnham

1991).

Page 94: Tesis Daniela Rivera final

85

Statistical analysis

Unless stated differently, statistical analyses were performed using Statistica 9.0 (StatSoft

Inc., Tulsa, Oklahoma, USA). We used General Linear Models (GLM) when data did not

violate the assumptions of normal distribution and homogeneity of variances, or could be

transformed to meet these assumptions. Percentage values were arcsine square-root

transformed (Zar 1996). Alternatively, we used Generalized Linear Model (GZLM)

assuming a Poisson distribution and a log link function.

To examine how group size varied between populations, we used GZLM with

population entered as a categorical factor (Oploca vs. Chusmiza) and group size entered as

the dependent variable. To examine range area overlap, we used a GLM where population

was entered as a categorical factor (Oploca vs. Chusmiza), group size was entered as a

covariate, and range area overlap was the dependent variable. For descriptive purposes, we

also used GLM approach to examine the effects of population (Oploca vs. Chusmiza), sex

(males vs. females), and population by sex interaction on the size of range areas.

To determine differences in ecological conditions between populations we used

GZLM with Poisson distribution. During these analyses population was entered as a

categorical factor and ecological predictors (i.e., measures of food availability, Poisson

variance to mean ratio, predation risk, and, soil hardness) represented dependent variables.

To quantify how variation in ecology predicted variation in sociality within

populations we used two different and complementary approaches, including partial least

squares regression analysis (PLSR; Abdi 2007), and regression commonality analysis

(Kraha et al. 2012). Both techniques are robust to relatively low sample sizes, a relatively

high number of predictors, or to relatively high degree of correlation between predictor

variables (i.e., multi-collinearity) (Carrascal et al. 2009; Kraha et al. 2012). The PLSR

Page 95: Tesis Daniela Rivera final

86

analysis reduced the set of ecological predictor variables of resource distribution and

predation risk to a few components that exhibit maximum covariance with the dependent

variables. We performed separate PLSR analyses for group size and range area overlap as

dependent variables but used all same ecological predictors: distance between patches and

density of vegetation patches as measures of resource distribution; density of burrow

openings, vegetation cover and distance to cover as measures of predation risk; soil

hardness as a measure of borrowing costs. Additionally, we consider population level as

categorical factor for both analyses. Only components that were significant after a fivefold

validation procedure were retained (Carrascal et al. 2012). Prior to PLSR analyses, we

transformed predictor and dependent variables in order to make their distributions be fairly

symmetrical. We followed Wold et al. (2004) and log-transformed variables whose range of

values spanned over ten orders of magnitude. Variables whose values spanned over less

than ten orders of magnitude were fourth rooted transformed. All PLSR analyses were

performed with both dependent and explanatory variables centered and standardized.

The Regression Commonality Analysis partitions the total explained variance

accounted for by the full regression model (R2) into unique and non-unique contributions

made by each ecological predictor variables (Mood 1969; 1971; Newton & Spurrell 1967),

a procedure that makes collinearity assessment an informative part of the analysis instead

of a methodological nuisance. We implemented Regression Commonality Analysis after

fitting a full model to both group size and range area overlap with all ecological predictors.

We focused on the extent to which R2 was partitioned into unique, common and total

contributions of each predictor to the overall fit of the model, as a way to estimate the

partial contribution of each variable to the total variance explained (Kraha et al. 2012).

Page 96: Tesis Daniela Rivera final

87

Regression Commonality Analysis was conducted with the of “yhat” module (Interpreting

Regression Effects) of R package, version 1.0-5 (Nimon & Roberts 2012).

Data are reported as mean ± SE. Statistical significance was determined at P < 0.05.

RESULTS

Population differences in sociality

At Oploca we monitored 6 females and 9 males, representing a total of 5 social groups. At

Chusmiza we monitored 5 females and 6 males, and determined 5 additional social groups.

Social group sizes at Oploca (3.0 ± 0.32 adults) and Chusmiza (2.2 ± 0.2 adult) were not

statistically different (GZLM: χ21 = 0.61, P = 0.435; Fig. 1a). Group size ranged from 2 to 4

adults at Oploca and from 2 to 3 adults at Chusmiza. Of these, the number of adult females

ranged from 1 to 2 individuals at Oploca. Social groups at Chusmiza always had only one

adult female (Fig. 1b, c). Andean degus from same social groups at both populations

always used one burrow system as resting and hiding place.

Individual range areas of Andean degus in the Chusmiza (0.37 ± 0.07 ha) were

significantly larger than range areas at the Oploca (0.12 ± 0.03 ha) (GLM: F1,22 = 20.652, P

< 0.001). In addition, range areas varied significantly with sex (GLM: F1,22 = 7.62, P <

0.011). Male range areas (0.29 ± 0.06) were larger than those of females (0.14 ± 0.03).

There was not a statistically significant population by sex interaction on range areas (GLM:

F1,22 = 0.25, P < 0.620).

Range area overlap among same group members (50.9 ± 6.9%) was greater than

overlap among individuals from different social groups (0.6 ± 0.4%) at Chusmiza (GZLM:

χ21 = 56.96, P < 0.001; Fig. 2). Likewise, overlap among same group members (32.8 ±

8.9%) was greater than overlap among individuals from different social groups (0%) at

Page 97: Tesis Daniela Rivera final

88

Oploca (Fig. 2). Overlap of range areas among same group members at Oploca (32.8 ±

8.9%) and Chusmiza (50.9 ± 6.9) did not differ when group size was controlled for (GLM:

F1,7 = 1.64, P = 0.242 and F1,7 = 0.02, P = 0.896, respectively).

Abundance of Andean degus

The abundance of Andean degus was greater at Chusmiza than at Oploca. There were 23 ±

4 adults at Chusmiza, and 19 ± 4 adults at Oploca.

Ecological differences between populations

Abundance of ground-level cacti biomass (GZLM: χ21 = 358.27, P < 0.001) and vegetation

cover (GLM: F1,28 = 4.55, P = 0.042), two measures of food availability, were higher at

Oploca than at Chusmiza (Table 2). Regarding the distribution of food resources, the

Poisson variance to mean ratio of distance between patches was higher at Chusmiza than at

Oploca (GZLM: χ21 = 314.8, P < 0.001; Table 2), implying a more clumped distribution of

resources at Chusmiza.

Two out of the three measures of predation risk examined differed between

populations. Distance to overhead cover (GLM: F1,665 = 192.27, P < 0.001) was greater at

Chusmiza than at Oploca, but the overhead vegetation cover was higher at Oploca than at

Chusmiza (GLM: F1,28 = 21.71, P < 0.001) (Table 2). Even though the absolute number of

active burrow entrances per burrow system was greater at Bolivian Prepuna (5.4 ± 0.89)

compared with Chilean Prepuna (1.62 ± 0.14), density of burrow openings (number of

burrow entrances per m2) was similar between populations (GZLM: χ21 = 0.1, P = 0.749;

Table 2).

Page 98: Tesis Daniela Rivera final

89

There was a statistically significant difference in soil hardness (GZLM: χ21 = 7.11, P

< 0.001), in which soil was harder at Oploca compared with Chusmiza (Table 2).

Ecological predictors of sociality

The PLSR analysis revealed that group size was explained by two partial least regression

components that accounted for 75% of the variation in this measure of sociality (Table 2).

However, only Component 1 was statistically significant and explained 47.9% of the total

variance. Component 1 associated variation in group size to density of vegetation patches

and density of burrow openings. Therefore, larger social groups were using areas with

greater density of vegetation patches and greater density of burrow openings.

Regarding the effects of ecological predictors on overlap in range areas, the PLSR

analysis revealed two components, accounting for 31.69%, a relatively low proportion of

the original variance. Only Component 1 was significant and explained 25.3% of variance

in this additional measure of group-living (Table 2). The most influential ecological factors

were soil hardness and density of vegetation patches. Greater range overlap within social

groups was associated with low soil hardness and with low density of vegetation patches.

The Regression Commonality Analysis revealed an overall significant fit for group

size (R2 = 0.87, F6,39 = 52.51, P < 0.001), but not for overlap in range areas (R2 = 0.099,

F6,39= 0.72, P = 0.636). In particular, density of vegetation patches and density of burrow

openings showed the highest total contribution to variation in group size. In contrast,

distance between vegetation patches, vegetation cover, distance to cover, and soil hardness

were less important (Table 3).

Page 99: Tesis Daniela Rivera final

90

DISCUSSION

General findings

Our study revealed ecological differences between populations. First, preferred food

resources (ground-level cacti biomass) were more abundant at Oploca than at Chusmiza.

Similarly, vegetation cover as a second measure of food abundance based on ground-level

cacti, columnar cacti, and shrubs at each population was higher at Oploca. A measure based

on the Poisson variance to mean ratio indicated that preferred food and other resources

(e.g., hiding or resting places) were patchier at Chusmiza. In addition, amount of distance

to cover was higher at Chusmiza, and overhead vegetation cover was greater at Oploca,

implying that refuge against predators was less abundant, yet more patchily distributed, at

Chusmiza. Thirdly, soil hardness was higher at Oploca suggesting that burrowing costs to

degus from this population were higher. Fourthly, Andean degu abundance was higher at

Chusmiza than at Oploca. Taken together, ecological conditions in terms of Andean degu

abundance, resource distribution and predation risk were more challenging at Chusmiza,

but the opposite was true in terms of burrowing costs, and food abundance. These

population differences did not translate into social differences in terms of mean group size,

a raw measure of sociality, and within group range area overlap, a measure of social

cohesion during activity. In contrast, within population variation in ecology predicted

significant variation in group size, and where larger social groups were in locations with

greater density of vegetation patches and density of burrow openings (number of burrow

entrances per m2). However, more socially cohesive groups (as indicated from higher

overlap in same group range areas) used areas with lower soil hardness and density of

vegetation patches.

Page 100: Tesis Daniela Rivera final

91

Within vs. between population variation in ecological conditions

Intra and inter-specific variation in the number and composition of group members

characterizes more socially cohesive groups in vertebrates (Lott 1991; Maher & Burger

2011), and both sources of variation should reflect trade-offs between current fitness

benefits and costs that emerge from individuals' decisions to join or leave groups

(Ebensperger et al. 2012). Thus, variation in sociality should mirror within and between

population differences in ecology. While both sources of variation have been frequent

subjects of previous studies, these are rarely addressed simultaneously (Brashares & Arcese

2002; Isvaran 2007; Ebensperger et al. 2012). Unexpectedly, our study on O. gliroides

revealed group size and range area overlap within groups did not vary with population

differences food abundance and distribution, predation risk, or burrowing costs. Thus, costs

and benefits linked to living socially in O. gliroides are not fined tuned to current day

population differences in ecology. This lack of social variation may need further

examination on the basis of a larger number of social groups and populations, yet our

current findings imply a small effect size if any. In contrast, variation in group size within

populations was coupled to spatial variation in density of vegetation patches and density of

burrow openings. In addition, range area overlap among group members was associated to

soil hardness and density of vegetation patches. The lack of population level differences in

sociality departs from what has been recorded in other social octodontids (Ebensperger et

al. 2012), other social rodents (Travis et al. 1995, Schradin & Pillay 2005), and other social

mammals (e.g., ungulates) (Rowe-Rowe et al. 1992; Brashares & Arcese 2002).

Very likely, the evolution of octodontids, including O. gliroides, has been shaped by

changes in the landscape and habitat fragmentation in response to Andean uplift and

increasing aridity about 7.8 Mya (Reig 1986; Contreras et al. 1987; Honeycutt et al. 2003).

Page 101: Tesis Daniela Rivera final

92

However, a lack of covariation between population differences in ecology and social

behavior in O. gliroides could suggest that group-living in current day populations reflects

historical but not current day selective pressures. We lack direct evidence to support this

possibility, yet patterns of sociality across Octododontids provide some indirect support.

According to phylogenetic hypothesis (Honeycutt et al. 2003; Gallardo et al. 2004; Opazo

2005; Rowe et al. 2010), O. gliroides is basal to social-Chilean clade (Ebensperger et al.

2004; Lacey & Ebensperger 2007) of living octodontids. The observation that O. gliroides

exhibit group-living supports that sociality in O. gliroides and the Chilean clade

octodontids evolved early in the clade and represents historical selection pressures. Thus,

an uncoupling between a relatively ancient social phenotype and current day population

differences in ecology cannot be ruled out.

Within population predictors of group-living O. gliroides

Overall, our results support multiple factors may be important in explaining variation in

sociality within populations of Andean degus. Resource availability in particular may

predispose some organisms to adopt social living (Rolland et al. 1998; Beauchamp 2002)

through benefits derived from the collective defense of resources (Travis et al. 1995;

Brashares & Arcese 2002), or through mutual attraction to resources per se with no benefits

involved (Carr & Macdonald 1986; Johnson et al. 2001). Either way, the size of social

groups is expected to increase with increasing abundance, quality and distribution

heterogeneity of food resources (Travis et al. 1995; Brashares & Arcese 2002; Verdolin

2007). Within populations of O. gliroides, group size was positively and range area overlap

negatively associated with density of vegetation patches, implying that resource distribution

(food, shelter) remains a driver of group-living at Andean degus. This findings supports

Page 102: Tesis Daniela Rivera final

93

previous studies based on within population correlates other mammals (Taber &

Macdonald 1992; Brashares & Arcese 2002; Isvaran 2007).

Within population variation in predation risk also had an influence on group size of

Andean degu at Oploca. Larger (yet not more socially cohesive) social groups were

recorded in locations with greater density of burrow openings, implying that larger groups

decrease predation risk through building more safe heavens. The abundance of safe havens

has been noted to decrease vulnerability to predators of other ground-dwelling rodents

(Bonenfant & Kramer 1996; Ebensperger & Hurtado 2005). Thus, results from our study

converge upon studies on other social mammals (rodents) in that predation risk remains a

driver of sociality within populations (Asher et al. 2004; Ebensperger & Wallem 2002;

Hayes et al. 2007), but also provide unique evidence on a social enhancement of safe

heaven abundance.

Burrow systems play an important role in the life of many rodent species in arid

environments (Shenbrot et al. 2002). Since the construction and maintenance of burrows

systems is energetically costly (Ebensperger & Bozinovic 2000), animals may be forced to

live in groups to minimize these costs (Ebensperger 2001). Indeed, active burrow digging

has been linked to the evolution of group-living of New World histricognath rodents

(Ebensperger & Cofré 2001; Ebensperger & Blumstein 2006). The results of this study do

not provide strong support to this hypothesis. Within population variation in group size was

unrelated to spatial variation in soil hardness. Moreover, social cohesion within social

groups (as evidence from range area overlap) decreased in patches with harder soil

conditions, and this association had a relatively low effect size.

Page 103: Tesis Daniela Rivera final

94

ACKNOWLEDGMENTS

We thank G. Villanueva, H. Villca, A. Galarza and M.A Jaldin for their assistance during

data collection. DSR is extremely thankful to F. Alfaro for his continuously assistance. We

thank to Oploca and Chusmiza community who welcomed us and facilitated our study. We

thank the Dirección General de Biodiversidad, Bolivia and Servicio Agrícola y Ganadero,

Chile for permission to work and capture specimens in Bolivia and Chile respectively.

Comments and suggestions made by L. Hayes and helped us to improve an early version of

this article. The Centro de Biodiversidad y Genética- Universidad Mayor de San Simón and

Laboratorio de Ecología Conductual, Departamento de Ecología-Pontificia Universidad

Católica provided traps and field equipment. DSR was supported by the Organización de

los Estados Americanos (OEA), Comisión Nacional Científica y Tecnológica (CONICYT),

Vicerrectoría de Investigación and Dirección de Investigación y Postgrado-Pontificia

Universidad Católica de Chile (VRI-UC and DIP-UC), the Animal Behaviour Society

(Developing Nations Award), the American Society of Mammalogists, and the Program 1

of Centro de Estudios Avanzados en Ecología y Biodiversidad (FONDAP 1501–001). LAE

was supported by FONDECTY grant (#1090302).

Page 104: Tesis Daniela Rivera final

95

REFERENCES

Abdi, H. 2007. Partial least square regression (PLS regression). In: Encyclopedia of

measurement and statistics. (Ed. by N.J. Salkind), pp 740-744. Sage, Thousand

Oaks.

Aguilar, M. R. & Sala, O. E. 1999. Patch structure, dynamics and implications of the

functioning of arid ecosystems. Trends in Ecology and Evolution, 14, 273-277.

Alexander, R. D. 1974. The evolution of social behavior. Annual Review of Ecology,

Evoution and Systematics, 5, 325-383.

Altizer, S., Nunn, C. L., Thrall, P. H., Gittleman, J. L., Antonovics, J., Cunningham,

A. A., Dobson, A. P., Ezenwa, V., Pedersen, A. B., Poss, M. & Pulliam, J. R. C.

2003. Social organization and parasiterisk in mammals: integrating theory and

empirical studies. Annual Review of Ecology, Evolution and Systematics, 34, 517-

547.

Animal Care and Use Committee. 1998. Guidelines for the capture, handling, and care of

mammals as approved by the American Society of Mammalogists. Journal of

Mammalogy, 79, 1416-1431.

Asher, M., Spinelli de Oliveira, E. & Sachser, N. 2004. Social system and spatial

organization of wild guinea pigs (Cavia aperea) in a natural population. Journal of

Mammalogy, 85, 788-796.

Barquez, R. M., Díaz, M. M. & Ojeda, R. 2006. Mamíferos de Argentina. Sistemática y

Distribución. Sociedad Argentina para el Estudio de los Mamíferos

(SAREM).Tucuman, Argentina.

Page 105: Tesis Daniela Rivera final

96

Berteaux, D., Bergeron, J. M., Thomas, D.W. & Lapierre, H . 1996. Solitude versus

gregariousness: do physical benefits drive the choice in overwintering meadow

voles? Oikos, 76, 330-336.

Beauchamp, G. 2002. Higher-level evolution of intraspecific flock-feeding in birds.

Behavioral Ecology and Sociobiology, 51, 480-487.

Bonenfant, M. & Kramer, D. 1996: The influence of distance to burrow on flight

initiation distance in the woodchuck, Marmota marmota. Behavioral Ecology, 7,

299-303.

Bonham, C.D. 1989. Measurements for Terrestrial Vegetation. Wiley, New York.

Brashares, J. S. & Arcese, P. 2002. Role of forage, habitat and predation in the

behavioural plasticity of a small African antelope. Journal of Animal Ecology, 71,

626-638.

Canals, M., Rosenmann, M., Novoa, F. F. & Bozinovic, F. 1998. Modulating factors of

the energetic effectiveness of huddling in small mammals. Acta Theriologica, 43,

337-348.

Carrascal, L. M., Galván, I. & Gordo, O. 2009. Partial least squares regression as an

alternative to current regression methods used in ecology. Oikos, 118, 681-690.

Carrascal, L. M., Villén-Pérez, S. & Seoane, J. 2012. Thermal, food and vegetation

effects on winter bird species richness of Mediterranean oakwoods. Ecological

research, 27, 293-302.

Carr, G. M. & Macdonald, D. W. 1986. The sociality of solitary foragers: a model based

on resource dispersion. Animal Behaviour, 34, 1540-1549.

Clutton-Brock, T. H., Gaynor, D., McIlrath, G. M., Maccoll, A. D., Kansky, R.,

Chadwick, P., Manser, M., Skinner, J. D. & Brotherton, P. N. M. 1999.

Page 106: Tesis Daniela Rivera final

97

Predation, group size and mortality in a cooperative mongoose, Suricata suricatta.

Journal of Animal Ecology, 68, 672-683.

Contreras, L. C., Torres-Mura, J. C. & Yánez, J. L. 1987. Biogeography of octodontid

rodents: an eco-evolutionary hypothesis. In: Fieldiana Zoology (new series) (Ed. by

B.D. Patterson & R.E. Timm), pp. 401-411. Chicago, IL: Field Museum of Natural

History.

Ebensperger, L. A. 1998. Sociality in rodents: the New World fossorial hystricognaths as

study models. Revista Chilena de Historia Natural, 71, 65-77.

Ebensperger, L. A. & Bozinovic, F. 2000. Communal burrowing in the hystricognath

rodent, Octodon degus: a benefit of sociality? Behavioral Ecology and

Sociobiology, 47, 365-369.

Ebensperger, L. A. 2001. A review of the evolutionary causes of rodent group-living. Acta

Theriologica, 46, 115-144.

Ebensperger, L. A. & Cofré, H. 2001. On the evolution of group-living in the New World

cursorial hystricognath rodents. Behavioral Ecology, 12, 227-236.

Ebensperger, L. A. & Wallem, P. K. 2002. Grouping increases the ability of the social

rodent, Octodon degus, to detect predators when using exposed microhabitats.

Oikos, 98, 491-497.

Ebensperger, L. A., Hurtado, M. J., Soto-Gamboa, M., Lacey, E. A. & Chang, A. T.

2004. Communal nesting and kinship in degus (Octodon degus).

Naturwissenschaften, 91, 391-395.

Ebensperger, L. A. & Hurtado, M. J. 2005. On the Relationship between Herbaceous

Cover and Vigilance Activity of Degus (Octodon degus). Ethology, 111, 593-608.

Page 107: Tesis Daniela Rivera final

98

Ebensperger, L. A. & Blumstein, D. T. 2006. Sociality in New World hystricognath

rodents is linked to predators and burrow digging. Behavioral Ecology, 17, 410-418.

Ebensperger, L. A., Hurtado, M. J. & Ramos-Jiliberto, R. 2006. Vigilance and

collective detection of predators in degus (Octodon degus). Ethology, 112, 879-887.

Ebensperger, L. A., Sobrero, R. Campos, V. & Giannoni, S. M. 2008. Activity, range

areas, and nesting patterns in the viscacha rat, Octomys mimax: implications for its

social organization. Journal of Arid Environments, 72, 1174-1183.

Ebensperger, L. A., Castro, R. A., Sobrero, R., Quirici, V., Burger, J. R, Quispe, R.,

Villavicencio, C., Vásquez, R. A., Soto-Gamboa, M. & Hayes, L. D. 2012.

Ecological drivers of group-living in two populations of the communally rearing

rodent, Octodon degus. Behavioral Ecology and Sociobiology, 66, 261-274.

Freeland, W. J. 1979. Primate social groups as biological islands. Ecology, 60,719-728.

Gallardo, M. H., Kausel, G., Jiménez, A., Bacquet, C., González, C., Figueroa, J.,

Köhler, N. & Ojeda, R. 2004. Whole‐genome duplications in South American

desert rodents (Octodontidae). Biological Journal of the Linnean Society 82: 443-

451.

Gannon, W. L. & Sikes, R. S. 2007.Guidelines of the American Society of Mammalogists

for the use of wild mammals in research. Journal of Mammalogy, 88, 809-823.

Garreaud, R. D., Vuille, M., Compagnucci, R. & Marengo, J. 2009.Present-day South

American climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 281, 180-

195.

Hass, C. C. & Valenzuela, D. 2002. Anti-predator benefits of group-living in white-nosed

coatis (Nasua narica). Behavioral Ecology and Sociobiology, 51, 570-578.

Page 108: Tesis Daniela Rivera final

99

Hayes, L. D., Chesh, A. S. & Ebensperger, L. A. 2007. Ecological predictors of range

areas and use of burrow systems in the diurnal rodent, Octodon degus. Ethology,

113, 155-165.

Hayes, L. D., Chesh, A. S., Castro, R. A., Tolhuysen, L. O., Burger, J. R.,

Bhattacharjee, J. & Ebensperger, L. A. 2009. Fitness consequences of group

living in the degu Octodon degus, a plural breeder rodent with communal care.

Animal Behaviour, 78, 131-139.

Hill, R. A. & Dunbar, R. I. M. 1998. An evaluation of the roles of predation rate and

predation risk as selective pressures on primate grouping behavior. Behaviour, 411-

430.

Hill, R. A. & Lee, P. C. 1998. Predation risk as an influence on group size in

cercopithecoid primates: implications for social structure. Journal of Zoology, 245,

447-456.

HilleRisLambers, R., Rietkerk, M., van den Bosch, F., Prins, H. H. & de Kroon, H.

2001. Vegetation pattern formation in semi-arid grazing systems. Ecology, 82, 50-

61.

Honeycutt, R. L., Rowe, D. L. & Gallardo, M. H. 2003.Molecular systematics of the

South American Caviomorph rodents: relationships among species and genera in the

family Octodontidae. Molecular Phylogenetics and Evolution, 26, 476-489.

Ibisch, P. L., Beck, S. G., Gerkmann, B. & Carretero, A. 2003. La diversidad biológica:

ecorregiones y ecosistemas. In: Biodiversidad: La Riqueza de Bolivia (Ed. by P.L.

Ibisch & G. Mérida), pp. 47-88. Santa Cruz: Fundación Amigos de la Naturaleza

(FAN).

Page 109: Tesis Daniela Rivera final

100

Ipinza, J., Tamazo, M. & Torrmann, J. 1971. Octodontidae in Chile. Noticiario Mensual,

Boletín del Museo Nacional de Historia Natural (Santiago), 16, 3-10.

Isvaran, K. 2007. Intraspecific variation in group size in the blackbuck antelope: the roles

of habitat structure and forage at different spatial scales. Oecologia, 154, 435-444.

Jensen, S. P., Grey, S. J. & Hurst, J. J. 2003: How does habitat structure affect activity

and use of space among house mice? Animal Behaviour, 66, 239-250.

Johnson, D. D., Baker, S., Morecroft, M. D. & Macdonald, D. W. 2001. Long-term

resource variation and group size: a large-sample field test of the resource

dispersion hypothesis. BMC ecology, 1, 2-2.

Johnson, D. D. P., Kays, R., Blackwell, P. G. & MacDonald, W. 2002. Does the resource

dispersion hypothesis explain group-living? Trends in Ecology and Evolution, 17,

563-570.

Kaufman, A.S., Paul, M.J., Butler, M.P. & Zucker, I. 2003. Huddling, locomotor, and

nest-building behaviors of furred and furless Siberian hamsters. Physiology and

Behavior, 79, 247-256.

Kenward, R. E. 2001. A Manual for Wildlife Radio Tagging.Academic Press, San Diego,

CA, USA.

Kenward, R. E., South, A. B. & Walls, S. S. 2003. Ranges 6, Version 1.2: For the

Analysis of Tracking and Location Data. Online Manual. Anatrack Ltd., Wareham,

United Kingdom.

Kraha, A., Turner, H., Nimon, K., Zientek, L. R. & Henson, R. K. 2012. Tools to

support interpreting multiple regression in the face of multicollinearity. Frontiers in

psychology, 3.

Krause, J. &Ruxton, G. D. 2002. Living in groups. Oxford University Press, Oxford

Page 110: Tesis Daniela Rivera final

101

Krebs, C. J. 1999. Ecological Methodology, 2nd ed. Menlo Park, CA: Longman.

Kruuk, H. & Parish, T . 1987.Changes in the size of groups and ranges of European

Badger (Meles meles L.) in an area in Scotland. Journal of Animal Ecology, 56,

351-364

Lacey, E. A. 2000. Spatial and social systems of subterranean rodents. In: Life

underground. The biology of subterranean rodents. (Ed. by E. A. Lacey, J. L. Patton

& G. N. Cameron), pp. 257-296. Chicago and London: The University of Chicago

Press.

Lacey, E. A. & Wieczorek, J. R. 2003. Ecology of sociality in rodents: a ctenomyid

perspective. Journal of Mammalogy, 84, 1198-1211.

Lacey, E. A. & Ebensperger, L. A. 2007. Social structure in Octodontid and Ctenomyid

rodents. In: Rodent Societies An Ecological and Evolutionary Perspective. (Ed. by

J.O. Wolff & P.W. Sherman), pp. 257-296. Chicago, IL: University of Chicago

Press.

Lacey, E. L. & Sherman, P. W. 2007. The ecology of sociality rodents. In: Rodent

societies: An ecological & evolutionary perspective (Ed. by J.O. Wolff & P.W.

Sherman), pp. 243-254. Chicago, IL: University Chicago Press, USA.

Loehle, C. 1995. Social barriers to pathogen transmission in wild animal populations.

Ecology, 76, 326-335.

López, R. P. 2000. La Prepuna boliviana. Ecología en Bolivia, 34, 45-70.

López, R. P. 2003. Soil seed banks in the semiarid Prepuna of Bolivia. Plant Ecology, 168,

85-92.

Page 111: Tesis Daniela Rivera final

102

López, R. P., Larrea-Alcázar, D. M. & Ortuño, T. 2009. Positive effects of shrubs on

herbaceous species richness across several spatial scales: evidence from the

semiarid Andean subtropics. Journal of Vegetation Science, 20, 728-734.

López, R. P., Larrea-Alcázar, D., & Zenteno-Ruiz, F. 2010. Spatial pattern analysis of

dominant species in the Prepuna: Gaining insight into community dynamics in the

semi-arid, subtropical Andes. Journal of Arid Environments, 74, 1534-1539.

Lott, D.F. 1991. Intraespecific variation in the social systems of wild vertebrates.

Cambriges University Press, Cambridge.

Macdonald, D. W. 1983. The ecology of carnivore social behavior. Nature, 301, 379-384.

Maher, C. R. & Burger, J. R. 2011. Intraspecific variation in space use, group size, and

mating systems of caviomorph rodents. Journal of Mammalogy, 92, 54-64.

Mann, F. G. 1978. Los pequeños mamíferos de Chile (marsupiales, quirópteros, edentados

y roedores). Gayana Zoología, 40, 1-342.

Mares, M. A., Braun, J. K. & Channell, R. 1997. Ecological observations on the

octodontid rodent, Tympanoctomys barrerae, in Argentina. Southwestern Naturalist,

42, 488-504.

Ministerio de Obras Públicas (MOP). 2012. Datos temperaturas período 1989–2011. In

Departamento de Hidrología, Dirección General de Aguas. Ministerio de Obras

Públicas, Santiago, Chile.

Mood, A. M. 1969. Macro-analysis of the American educational system. Operations

Research, 17, 770-784.

Mood, A. M. 1971. Partitioning variance in multiple regression analyses as a tool for

developing learning models. American Educational Research Journal, 8, 191-202

Page 112: Tesis Daniela Rivera final

103

Moreira-Muñoz, A. 2011. Plant geography of Chile. Plant and Vegetation, vol.5. Springer

Science, Business Media.

Nester, P. L., Gayó, E., Latorre, C., Jordan, T. E. & Blanco, N. 2007. Perennial stream

discharge in the hyperarid Atacama Desert of northern Chile during the latest

Pleistocene. Proceedings of the National Academy of Sciences, 104, 19724-19729.

Nedbal, M. A., Allard, M. W. & Honeycutt, R. L. 1994. Molecular systematics of

hystricognath rodents: evidence from the mitochondrial 12S rRNA gene. Mol.

Phylogenet. Evol. 3:206–220.

Newman, M. E. J. 2004. Analysis of weighted networks. Physical Review E, 70, 056131.

Newton, R. G. & Spurrell, D. J. 1967. A development of multiple regression for the

analysis of routine data. Applied Statistics, 16, 51-64.

Nimon, K. & Roberts, J. K. 2012.yhat: Interpreting Regression Effects. R package version

1.0-5. http://CRAN.R-project.org/package=yhat

Nowak, R. M. 1991. Walker's Mammals of the World. 5th edn, Vol. 1.J- Hopkins

University Press, Baltimore.

Ojeda, A. A. 2010. Phylogeography and genetic variation in the South American rodent

Tympanoctomys barrerae (Rodentia: Octodontidae). Journal of Mammalogy, 91,

302-313.

Opazo, J. 2005. A molecular timescale for Caviomorph rodents (Mammalia,

Hystricognathi). Molecular Phylogenetics and Evolution 37: 932-937.

Otis, D. L., Burnham, K. P., White, G.C., & Anderson, D. R. 1978. Statistical inference

from capture data on closed populations. Wildlife Monographs, 62, 1-135.

Pedreros, A. M. & Valenzuela, J. Y. 2009. Mamíferos de Chile. CEA ediciones. Santiago,

Chile.

Page 113: Tesis Daniela Rivera final

104

Pennycuick, C. J. 1988: Conversion Factors: SI Units and Many Others. Univ. Chicago

Press, Chicago, IL.

Philippi, B. R. A. 1941. Notas sobre aves observadas en la provincia de Tarapacá. Boletín

Museo Nacional Historia Natural, 19, 43-77.

Pulliam, H.R. & Caraco, T. 1984. Living in groups: is there an optimal group size? In:

Behavioural ecology: an evolutionary approach (Ed. by J.R. Krebs & J.B. Davies),

pp. 122-147. Sunderland, MA: Sinauer Associates.

Reig, O. A. 1986. Diversity patterns and differentiation of High Andean Rodents. In: High

Altitude Tropical Biogeography (Ed. by F. Vuilleumier & M. Monasterio), pp. 404-

439. New York: Oxford University Press.

Reus, M. L., Peco, B., de los Ríos, C., Giannoni, S. M. & Campos, C. M. 2013. Trophic

interactions between two medium-sized mammals: the case of the native Dolichotis

patagonum and the exotic Lepus europaeus in a hyper-arid ecosystem. Acta

Theriologica, 1-10.

Rexstad, E. & Burnham, K. P. 1991. User’s guide for interactive program CAPTURE.

Abundance estimation of closed populations. Colorado State University, Fort

Collins, Colorado, USA.

Ribichich, A. M. 2002. El modelo clásico de la fitogeografía de Argentina: un análisis

crítico. Interciencia, 27, 669-675.

Rivera, D. S. 2013. Organización social de Octodontomys gliroides (Gervais y d'Orbigny,

1844) y las implicaciones sobre el origen y evolución de la sociabilidad en roedores

octodóntidos. Ph.D. thesis, Pontificia Universidad Católica de Chile.

Roberts, G. 1996. Why individual vigilance declines as group size increases. Animal

Behaviour, 51, 1077-1086.

Page 114: Tesis Daniela Rivera final

105

Rolland, C., Danchin, E. & Fraipont, M. D. 1998. The evolution of coloniality in birds in

relation to food, habitat, predation, and life-history traits: a comparative analysis.

The American Naturalist, 151, 514-529.

Rowe-Rowe, D. T., Everett, P. S. & Perrin, M. R. 1992.Group sizes of oribis in different

habitats. South African Journal of Zoology, 27, 140-143.

Rowe, D. L., Dunn, K. A., Adkins, R. M. & Honeycutt, R. L. 2010. Molecular clocks

keep dispersal hypotheses afloat: evidence for trans‐Atlantic rafting by rodents.

Journal of Biogeography 37: 305-324.

Sala, O. E. & Aguiar, M. R. 1996.Origin, maintenance, and ecosystem effect of vegetation

patches in arid lands. In Range lands in a Sustainable Biosphere (Proceedings of the

Fifth International Rangeland Congress (Ed. by N. West), pp. 29-32. Denver:

Society for Range Management.

Santoro, C. M. & Latorre, C. 2009. Propuesta metodológica interdisciplinaria para

poblamientos humanos Pleistoceno tardío/Holoceno temprano, precordillera de

Arica, Desierto de Atacama Norte. Andes, 7, 13-35.

Schradin, C. 2005. When t olive alone and when t olive in groups: ecological determinants

of sociality in the African striped mouse (Rhabdomys pumilio, Sparrman, 1784).

Belgian Journal of Zoology, 135, 77-82.

Schradin, C., Pillay, N. & Solomon, N. G.2005.Intraspecific variation in the spatial and

social organization of the african striped mouse. Journal of Mammalogy, 86, 99-

107.

Page 115: Tesis Daniela Rivera final

106

SENAMHI, E .2012. El Servicio Nacional de Meteorología e Hidrología (SENAMHI)

http://www.senamhi.gob.bo/

Shenbrot, G., Krasnov, B., Khokhlova, I., Demidova, T. & Fielde, L. 2002.Habitat-

dependent differences in architecture and microclimate of the burrows of

Sundevall´sjird (Meriones crassus) (Rodentia: Gerbillinae) in the Neveg Desert,

Israel. Journal of Arid Environments, 51, 265-279.

Slobodchikoff, C. N. 1984. Resources and the evolution of social behavior. In A new

ecology: novel approaches to interactive systems (Ed. By P. W. Price, C. N.

Slobodchikoff & W. S. Gaud), pp. 227-251. New York, USA: John Wiley.

Spinks, A. C., Bennett, N. C. & Jarvis, J. U. M. 2000.Comparative patterns of philopatry

and dispersal in two common mole-rat populations: implications for the evolution of

mole-rat sociality. Journal of Animal Ecology, 69, 224-234.

Taber, A. B. & Macdonald, D. W. 1992. Spatial organization and monogamy in the mara

Dolichotis patagonum. Journal of Zoology (London), 227, 417-438.

Taraborelli, P. 2009. Is communal burrowing or burrow sharing a benefit of group-living

in the lesser cavy Microcavia australis?. Acta theriologica, 54, 249-258.

Teta, P. & Ortiz, P. E. 2002. Micromamíferos andinos Holocénicos del sitio arqueológico

Inca Cueva 5, Jujuy, Argentina: Tafonomía, zoogeografía y reconstrucción

paleoambiental. Estudios Geológicos, 58, 117-135.

Travis, S. E. & Slobodchikoff, C. N. 1993. Effects of food resource distribution on the

social system of Gunnison’s prairie dog (Cynomys gunnisoni). Canadian Journal of

Zoology, 71, 1186-1192.

Page 116: Tesis Daniela Rivera final

107

Travis, S. E., Slobodchikoff, C. N. & Keim, P. 1995. Ecological and demographic effects

on intraspecific variation in the social system of prairie dogs. Ecology, 76, 1794-

1803.

Upham, N. S. & Patterson, B. D. 2012. Diversification and biogeography of the

Neotropical caviomorph lineage Octodontoidea (Rodentia: Hystricognathi).

Molecular Phylogenetics and Evolution, 63, 417-429.

Vásquez, R. A., Ebensperger, L. A. & Bozinovic, F. 2002.The influence of habitat on

travel speed, intermittent locomotion, and vigilance in a diurnal rodent. Behavioral

Ecology, 13, 182-187.

Verdolin, J. L. 2009. Gunnison’s praire dog (Cynomys gunnisoni): testing the resource

dispersion hypothesis. Behavioral Ecology and Sociabiology, 63,789-799.

Villanueva, G. 2013. Evaluación de la dieta de la rata cola de pincel, Octodontomys

gliroides (Rodentia Octodontidae) en dos ambientes contrastantes. Bachellor thesis,

Universidad Mayor de San Simón.

White, G. C., Anderson, D. R., Burnham, K. P. & Otis, D. L. 1982. Capture-recapture

and removal methods for sampling closed populations. Los Alamos National

Laboratory, Los Alamos, New Mexico, USA.

Whitehead, H. 2008. Analyzing animal societies: quantitative methods for vertebrate

social analysis. Chicago University Press, Chicago, IL.

Whitehead, H. 2009. SOCPROG programs: analyzing animal social structures. Behavioral

Ecology and Sociabiology, 63,765-778

Wold, S., Eriksson, L., Trygg, J. & Kettaneh, N. 2004. The PLS method-partial least

squares projections to latent structures and its applications in industrial RDP

(research, development, and production). Unea University.

Page 117: Tesis Daniela Rivera final

108

Wrangham, R. W. 1979. On the evolution of ape social systems. Social Science

Information, 18, 335-368).

Zar, J. H. 1996. Biostatistical Analysis, 3rd edn. Prentice Hall, Inc., Upper Saddle River,

NJ.

Page 118: Tesis Daniela Rivera final

109

Table 1. Mean (±SE) estimates and statistical comparisons of ecological conditions between Oploca and Chusmiza populations.

Values in bold indicate statistical significant differences at P < 0.05.

aTo convert lbf/in2 into kg/m2 we used 1 lbf/in2 = 0.07031 kg/cm2 (Pennycuick 1988).

Ecological condition/variables

Populations

P-value Oploca Chusmiza

Food Abundance

Abundance of food biomass (g/m2)

Vegetation cover (%)

Distribution of resources

Poisson variance to mean ratio of

distance between patches

Predation risk

Overhead vegetation cover (%)

Distance to cover (m)

Density of burrow openings (number/m2)

Burrowing costs

Soil hardness (Kg/cm2)a

141.19± 42.48

46.67

31.44 ± 0.44

46.67

27.93 ± 0.43

0.1 ± 0.02

29.42 ± 0.22

77.64± 5.82

37.19

39.21 ± 1.21

24.67

37.77 ± 0.57

0.14 ± 0.03

24.36 ± 0.25

<0.001

0.04

<0.001

<0.001

<0.001

0.749

<0.001

Page 119: Tesis Daniela Rivera final

110

Table 2. Results of the Partial least squares regression (PLSR) model for most influential variables from three hypotheses explaining

two measures of Andean degu sociality (group size, range area overlap); w COMP 1 and 2 represent the weights of each variable in the

first and second PLSR components, respectively; R2 is the percentage of variance in the response variable accounted for by each

component of the PLSR. PLSR weights whose squares are larger than 0.2 for the significant component are shown in bold.

Ecological predictor variable Sociality measure

PLSR Group size

PLSR Range area overlap

w COMP1

w COMP2

w COMP1

w COMP2

Resource Distribution Distance between patches Density of vegetation patches Predation risk Density of burrow openings Distance to cover (m) Vegetation cover Burrowing costs

0.2875

0.4734

0.4656

0.0899

-0.1674

0.1765

-0.0313

0.6128

-0.0996

0.3062

-0.2557

-0.4053

-0.1233

-0.0925

0.3113

0.1045

0.2234

0.7933

0.2974

0.4095

Page 120: Tesis Daniela Rivera final

111

* The PLSR model was not significant (P > 0.05).

Soil harness R2 (%) P*

0.2678

47.893

<0.0001

-0.6752

27.126

*

-0.4911

25.34

<0.0001

0.2316

6.359

*

Page 121: Tesis Daniela Rivera final

112

Table 3. Results from regression commonality analysis for ecological variables explaining two measures of sociality (group size, range

area overlap) in the Andean degu. Values in bold indicate independent predictors whose contribution was larger than 20%, when

overall fit of multiple regression model was statistically significant.

Note: Unique, x’s unique effect; Common, Σ x’s common effects; Total = Unique + Common; % of R2 = Total/R2

Hypothesis Sociality measures

Group size Range area overlap

Unique

Common

Total

%R 2

Unique

Common

Total

%R2 Resource Distribution Distance between patches Density of vegetation patches Predation risk Burrow density Distance to cover (m) Vegetation cover Burrowing costs Soil harness

0.0550

0.3528

0.0009

0.0174

0.000

0.2881

0.1010

0.0278

0.2576

-0.0172

0.1006

-0.2069

0.1560

0.3806

0.2585

0.0002

0.1006

0.0812

17.871

43.602

29.614

0.023

11.525

9.302

0.0013

0.0315

0.0121

0.0012

0.0000

0.0034

0.0157

0.0454

-0.0030

-0.0011

0.0248

0.0470

0.0170

0.0769

0.0091

0.0001

0.0248

0.0504

17.172

77.677

9.191

0.101

25.050

50.909

Page 122: Tesis Daniela Rivera final

113

FIGURE LEGENDS

Figure 1. Mean (± SE) (a) total group size, (b) number of female group members, and (c)

number of male group members of O. gliroides at Oploca population (white squares) and

Chusmiza population (black squares).

Figure 2. Mean (± SE) range area overlap among individuals of same social groups at

Oploca and Chusmiza. Pie graphs on top of the bars are used to compare range area overlap

among individuals from same social groups (white proportion) and overlap among

individuals from different social groups (black proportion). There was no overlap in range

areas among individuals from different social groups at Chusmiza.

Page 123: Tesis Daniela Rivera final

114

Figure 1.

Localities

To

tal g

rou

p s

ize

0

1

2

3

4

5

ChusmizaOploca

a)

Localities

Nu

mb

er o

f fe

mal

es

0

1

2

3

4

5

Chusmiza

b)

Oploca

Localities

Nu

mb

er o

f m

ales

0

1

2

3

4

5

ChusmizaOploca

c)

Page 124: Tesis Daniela Rivera final

115

Figure 2.

Localities

Intr

a-g

rou

p

ho

me

ran

ge

ove

rlap

(%

)

0

20

40

60

80

100

Oploca Chusmiza

Page 125: Tesis Daniela Rivera final

116

CONCLUSIONES GENERALES

Page 126: Tesis Daniela Rivera final

117

CONCLUSIONES

Los resultados de esta tesis son los primeros en dilucidar las relaciones filogeográficas,

comportamiento social y ecología del roedor octodóntido, Octodontomys gliroides. Los

resultados indicaron que las poblaciones actuales de O. gliroides presentan una alta

estructuración genética, con tres grupos principales y que son congruentes con las

principales barreras geográficas postuladas para la distribución de esta especie. Tanto los

análisis de diferencias pareadas entre sitios nucleotídicos como las pruebas de neutralidad y

BSP señalan historias contrastantes para cada uno de los tres grupos. Por un lado el grupo I,

representado por poblaciones al Este y Oeste de la cordillera de los Andes (Chile, Bolivia y

Argentina) evidenció una expansión demográfica reciente, la cual estaría asociada a los

periodos secos-húmedos que tuvieron lugar durante el Pleistoceno-Holoceno. Por otro lado,

el grupo II incluyó a las poblaciones del norte-centro de Bolivia, y el grupo III

representando por poblaciones argentinas se caracterizaron por presentar estabilidad

demográfica. Mientras que la historia del Cuaternario para el resto de los octodóntidos ha

sido asociada a eventos de avance y retraída de ultimo máximo glacial (LGM), los

resultados de estas tesis apoyan que la actual distribución de O. gliroides está asociada a

una alternancia de periodos secos y húmedos que tuvieron lugar durante el Pleistoceno en la

Puna Andina. La reconstrucción del escenario biogeográfico más plausible indica que el

nodo de origen de Octodontomys tuvo lugar en un ambiente con características tanto de la

Puna como la Prepuna Andina de hace aproximadamente 2.43 millones de años atrás

(Plesitoceno), a partir del cual esta especie diversificó.

En base a estos resultados, se seleccionaron dos poblaciones genéticamente distintas

sometidas a distinta productividad primaria determinada por un gradiente de precipitación

Page 127: Tesis Daniela Rivera final

118

Este-Oeste generado por el efecto de “sombra de lluvia” de los Andes. Se determinó y

comparó el grado de sociabilidad entre poblaciones de O. gliroides y cómo una posible

variación en este aspecto del comportamiento este se relaciona con factores ecológicos en

términos de abundancia y distribución de recursos, riesgo de depredación y costos

asociados a cavar madrigueras. Los resultados indicaron que la sociabilidad cuantificada a

partir del tamaño de grupo y porcentaje de solapamiento de espacial entre individuos del

mismo grupo (una medida de cohesión social) no varió significativamente entre las dos

poblaciones estudiadas, a pesar de diferencias marcadas en las condiciones ecológicas entra

ambas. En cambio, se registró una asociación entre diferencias ecológicas y variación en el

tamaño de los grupos dentro de estas poblaciones. En conjunto, los resultados son

consistentes con que la sociabilidad en esta especie evolucionó en respuesta a las

condiciones de aridez en el pasado y que esta se han mantenido relativamente invariable a

lo largo del tiempo a pesar de las diferencias ecológicas entre sus poblaciones actuales.

Finalmente, y tomando en cuenta la posición filogenética de O. gliroides, los resultados de

esta tesis son consistentes con un escenario donde la sociabilidad en la familia

Octodontidae evolucionó temprano en el clado “social”. La verificación de esta hipótesis

requiere de un análisis de reconstrucción del estado ancestral en Octodontidae.