30
The spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University of Tokyo) Andrei Bernevig, Taylor Hughes (Stanford Un iversity) Xiaoliang Qi (Tsinghua), Yongshi Wu (Utah) PITP 2005/05 Science 301, 1348 (2003) PRB 69, 235206 (2004), PRL93, 156804 (2004) cond-mat/0504147, cond-mat/0505308

The spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University of Tokyo) Andrei Bernevig, Taylor

Embed Size (px)

Citation preview

Page 1: The spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University of Tokyo) Andrei Bernevig, Taylor

The spin Hall effect

Shoucheng Zhang (Stanford University)

Collaborators:Shuichi Murakami, Naoto Nagaosa (University of Tokyo)Andrei Bernevig, Taylor Hughes (Stanford University)Xiaoliang Qi (Tsinghua), Yongshi Wu (Utah)

PITP 2005/05

Science 301, 1348 (2003)PRB 69, 235206 (2004), PRL93, 156804 (2004)cond-mat/0504147, cond-mat/0505308

Page 2: The spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University of Tokyo) Andrei Bernevig, Taylor

Can Moore’s law keep going?Power dissipation=greatest obstacle for Moore’s law! Modern processor chips consume ~100W of power of which

about 20% is wasted in leakage through the transistor gates.

The traditional means of coping with increased power per generation has been to scale down the operating voltage of the chip but voltages are reaching limits due to thermal fluctuation effects.

0

100

200

300

400

500

0.5 0.35 0.25 0.18 0.13 0.1 0.07 0.05

Active Power

Passive Power (Device Leakage)

350 250 180 130 100 70 50

500

500

400

300

200

100

0

Technology node (nm)

Po

we

r d

ensi

ty (

W/c

m)2

Page 3: The spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University of Tokyo) Andrei Bernevig, Taylor

Generalization of the quantum Hall effect

Fspinkijkspinij ekEJ

h

e

q

pEJ HjijHi

2

• Quantum Hall effect exists in D=2, due to Lorentz force.

• Natural generalization to D=3, due to spin-orbit force:

• 3D hole systems (Murakami, Nagaosa and Zhang, Science 2003)

• 2D electron systems (Sinova et al, PRL 2004)• Quantum Hall effect in D=4 (Zhang and Hu):

EJ iH

i

Page 4: The spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University of Tokyo) Andrei Bernevig, Taylor

Time reversal symmetry and dissipative transport• Microscopic laws physics are T invariant.

• Almost all transport processes in solids break T invariance due to dissipative coupling to the environment.

• Damped harmonic oscillator:

lkh

ewhereEJorRVI Fjj

22

/

• Only states close to the fermi energy contribute to the dissipative transport processes.

•Electric field=even under T, charge current=odd under T.

•Ohmic conductivity is dissipative!

kxxxm

Page 5: The spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University of Tokyo) Andrei Bernevig, Taylor

Only two known examples of dissipationless transport in solids!

• Supercurrent in a superconductor is dissipationless, since London equation related J to A, not to E!

• Vector potential=odd under T, charge current=odd under T.

• In the QHE, the Hall conductivity is proportional to the magnetic field B, which is odd under T.

t

A

cEAJ j

jjSj

1

,

BEJ HH ,

Page 6: The spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University of Tokyo) Andrei Bernevig, Taylor

- vT

-v

- v-v

- v

-vT

Time reversal and the dissipationless spin current

Page 7: The spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University of Tokyo) Andrei Bernevig, Taylor

The intrinsic spin Hall effect

Fspinkijkspinij ekEJ

• Key advantage:• electric field manipulation, rather than magnetic field.• dissipationless response, since both spin current and

the electric field are even under time reversal.• Topological origin, due to Berry’s phase in momentum

space similar to the QHE.• Contrast between the spin current and the Ohm’s law:

lkh

ewhereEJorRVI Fjj

22

/

Page 8: The spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University of Tokyo) Andrei Bernevig, Taylor

Dissipationless spin current induced by the electric field

Page 9: The spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University of Tokyo) Andrei Bernevig, Taylor

Mott scattering or the extrinsic Spin Hall effectE

Electric field induces a transverse spin current.

• Extrinsic spin Hall effect

Spin-orbit couping

Mott (1929), D’yakonov and Perel’ (1971) Hirsch (1999), Zhang (2000)

up-spin down-spinimpurity

• Intrinsic spin Hall effect Berry phase in momentum space

impurity scattering = spin dependent (skew-scattering)

Independent of impurities !

Cf. Mott scattering

Page 10: The spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University of Tokyo) Andrei Bernevig, Taylor

Valence band of GaAs

Luttinger Hamiltonian

( : spin-3/2 matrix, describing the P3/2 band)S

2

22

21 22

5

2

1Skk

mH

2/3000

02/100

002/10

0002/3

02/300

2/3010

0102/3

002/30

02/300

2/300

002/3

002/30

zyx SS

i

ii

ii

i

S

S

P

S

P3/2

P1/2

Page 11: The spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University of Tokyo) Andrei Bernevig, Taylor

Luttinger model

Expressed in terms of the Dirac Gamma matrices.

Page 12: The spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University of Tokyo) Andrei Bernevig, Taylor

Non-abelian gauge field in k and d space

Gauge field in the 3D k space is induced from the SU(2) monopole gauge field in the 5D d space. The gauge field on S4 is exactly the Yang-Mills instanton solution!

Page 13: The spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University of Tokyo) Andrei Bernevig, Taylor

Full quantum calculation of the spin current based on Kubo formula

ijkLF

HF

k

kijHLijk

kijkj

i

kke

kGknknV

Ej

26

)()]()([4

Final result for the spin conductivity: (Similar to the TKNN formula for the QHE. Note also that it vanishes in the limit of vanishing spin-orbit coupling).

xJzyJ

Page 14: The spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University of Tokyo) Andrei Bernevig, Taylor

Topological structure of the intrinsic SHE• Wigner-Von Neumann classes for level crossing:

Co-

dimensionsymmetry systems

orthogonal 2 Time-reversal invariant, no Krammer degeneracy.

bosons

unitary 3 Time-reversal breaking SO(3) spinor

symplectic 5 Time-reversal invariant, with Krammer degeneracy.

SO(5) spinor

g• U(1) Dirac monopole in D=3. First Chern class.

Haldane sphere for the QHE.• SU(2) Yang monopole in D=5, related to the Yan

g-Mills instanton in D=4. Second Chern class. 4DQHE of Zhang and Hu.

Page 15: The spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University of Tokyo) Andrei Bernevig, Taylor

)(2

2eff xV

m

kH

)(~

kAk

iDx ii

ii

Effective Hamiltonian for adiabatic transport

kjijki

iii kEkm

kxEk

3

,

ijjiijjiji iFxxikxkk ],[,],[,0],[

Eq. of motion

3k

kF k

ijkij

(Dirac monopole)

ik

E

Drift velocity Topological term ijj F

eE

Nontrivial spin dynamics comes from the Dirac monopole at the center of k space, witheg=:

Page 16: The spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University of Tokyo) Andrei Bernevig, Taylor

Rashba model: Intrinsic spin Hall conductivity (Sinova et al.(2004))

+ Vertex correction in the clean limit (Inoue et al (2003), Mishchenko et al, Sheng et al (2005))

Effect due to disorder

0S

8

eS

+ spinless impurities ( -function pot.)

8vertex e

S

xyyx kkm

kH

2

2

Green’s function method

xJzyJ

xJ

zyJ

Luttinger model: Intrinsic spin Hall conductivity (Murakami et al.(2003)) )(

6 2

LF

HFS kk

e

+ spinless impurities ( -function pot.)

0vertex S

yxxy SkSkSkm

kH 2

21

2

2

xJzyJ

xJ

zyJ

Vertex correction vanishes identically!(Murakami (2004), Bernevig+Zhang (2004)

Page 17: The spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University of Tokyo) Andrei Bernevig, Taylor

carrier density

mobility Charge conductivity

Spin (Hall) conductivity

1019 50 80 73

1018 150 24 34

1017 350 5.6 16

1016 400 0.64 7.3

)cm( 3n )cm( -11/Vs)cm( 2 )cm( -11s

3/1nk

en

FS

As the hole density decreases, both and decrease. decreases faster than .

S

S

Order of magnitude estimate (at room temperature)

Page 18: The spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University of Tokyo) Andrei Bernevig, Taylor

Spin accumulation at the boundary

x0

s

yxy

yy txs

x

txj

x

txsD

t

txs

),(),(),(),(

2

2

p-GaAs :Spin current :

0x)()( xjxj xyxy

Diffusion eq.

p-GaAs

xyj

Steady-state solution: sLxs

xyy DLe

Djxs

,)( /

x0

ys

sDL

sxyjs total

Total accumulated spins:

Page 19: The spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University of Tokyo) Andrei Bernevig, Taylor

Y.K.Kato, R.C.Myers, A.C.Gossard, D.D. Awschalom, Science 306, 1910 (2004)

Experiment -- Spin Hall effect in a 3D electron film

(i) Unstrained n-GaAs(ii) Strained n-In0.07Ga0.93As

-316 cm103T=30K, Hole density:

: measured by Kerr rotationzS

Page 20: The spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University of Tokyo) Andrei Bernevig, Taylor

• Circular polarization %1

meV2.1/

• Clean limit :

much smaller than spin splitting

• vertex correction =0 (Bernevig, Zhang (2004))

It should be intrinsic!

Experiment -- Spin Hall effect in a 2D hole gas --

J. Wunderlich, B. Kästner, J. Sinova, T. Jungwirth, PRL (2005)

• LED geometry

Page 21: The spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University of Tokyo) Andrei Bernevig, Taylor

Quantum Spin Hall

• 2D electron motion in radial electric field which increases with the distance from the center.

raE

raE charge

raE charge

GaAs

E• Example of such a field: inside a

uniformly charged cylinder

raE charge

• Hamiltonian for electrons with large g-factor:

22

2ear

m

pH

Epmc

g B

Page 22: The spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University of Tokyo) Andrei Bernevig, Taylor

Quantum Spin Hall • In semiconductors without inversion symmetry, shear strain is

like an electric field in terms of the SO coupling term

dh TO breaking

symmetry

inversion

cubic gp symm gp: Ixyz (rotation part only, inversion not a symmetry)

y

x

z

E

E

E

yzxxz

xyzy

zyxxy

Ixyz

~

~

~

~

~z

~

xz

yz

xy

ay

axraE

xz

yz

xy

0

zyyzxxz ppC

Drm

pH )(

2232

2

(shear strain gradient creates the same SO coupling situation as a radialy increasing electric field)

zxyyx ypxpRyxppH )(2222 (up to a coordinate re--scaling)

aD

mCR

2

23

Page 23: The spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University of Tokyo) Andrei Bernevig, Taylor

Quantum Spin Hall

GaAs

E• Hamiltonian for electrons:

zxyyx ypxpRyxppH )(2222

• Tune to R=2

2

2

0

0

Ap

ApH

)0,,( xyA

• Spin up

21 ApH

effectiveB

• Spin down

21 ApH

effectiveB

Page 24: The spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University of Tokyo) Andrei Bernevig, Taylor

Quantum Spin Hall

• P,T-invariant system

0arg xyech

42

22

2 e

eh

espin

• Spin up

effectiveB

zzn

n en

z 2

1

!

• Spin down

effectiveB

zz

m

m em

z 2

1

!

njiji

ji

m

jijiji

jiji

mjii zzzzzzz

,;,;,;

),,(

• Halperin-like wavefunction

Page 25: The spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University of Tokyo) Andrei Bernevig, Taylor

Quantum Spin Hall

• Purely electrical detection measurement, measure xx

echarg

xyxxxx

• More effort to directly measure , open question. spin

• Landau Gap and Strain Gradient

aCELandau 3 m/s108 53 C

strain gradienta

m10over %1for a mKELandau 10

Page 26: The spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University of Tokyo) Andrei Bernevig, Taylor

Topological Quantization of Spin Hall • Topological Quantization in Conserved Spin Hall Conductivity

Conserved spin Hall conductivity in Luttinger model

Inverse band: insulator case

LH

HH

topological quantized to be n/2

Page 27: The spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University of Tokyo) Andrei Bernevig, Taylor

Topological Quantization of Spin Hall • Physical Understanding: Edge states

In a finite spin Hall insulator system, mid-gap edge states emerge and the spin transport is carried by edge states.

Energy spectrum on stripe geometry.

Laughlin’s Gauge Argument:

When turning on a flux threading a cylinder system, the edge states will transfer from one edge to another

Page 28: The spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University of Tokyo) Andrei Bernevig, Taylor

Topological Quantization of Spin Hall • Physical Understanding: Edge states

When an electric field is applied, n edge states with transfer from left (right) to right (left).

accumulation Spin accumulation

Conserved Non-conserved

+=

Page 29: The spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University of Tokyo) Andrei Bernevig, Taylor

Conclusion & Discussion

• A new type of dissipationless quantum spin transport, realizable at room temperature.

• Natural generalization of the quantum Hall effect.• Lorentz force and spin-orbit forces are both velocity depende

nt.• U(1) to SU(2), 2D to 3D.

• Instrinsic spin injection in spintronics devices.• Spin injection without magnetic field or ferromagnet.• Spins created inside the semiconductor, no issues with the i

nterface.• Room temperature injection.• Source of polarized LED.

• Reversible quantum computation?

Page 30: The spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University of Tokyo) Andrei Bernevig, Taylor

Physics behind the semi-conductor revolution

• Quantum mechanics: invented in 1920, lead to the invention of the transistor in 1947

• Relativity: invented in 1905, no applications yet in electronics?