12
Title Ascending chain condition for F-pure thresholds Author(s) 佐藤, 謙太 Citation 代数幾何学シンポジウム記録 (2017), 2017: 69-79 Issue Date 2017 URL http://hdl.handle.net/2433/229092 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University

Title Ascending chain condition for F-pure thresholds 代数幾 …...:0 pklt p s M S ù M x T ® Ð : Ã ç ¯ q z y à ç Ú q | Y ª: p F Y p s M S ù M x T ® Q Ã ç ¯( \) w

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Title Ascending chain condition for F-pure thresholds

    Author(s) 佐藤, 謙太

    Citation 代数幾何学シンポジウム記録 (2017), 2017: 69-79

    Issue Date 2017

    URL http://hdl.handle.net/2433/229092

    Right

    Type Departmental Bulletin Paper

    Textversion publisher

    Kyoto University

  • ASCENDING CHAIN CONDITION FOR F -PURE THRESHOLDS

    . 2017

    F (F -purethreshold) ( 1.9). F (ACC)

    1 20 lct ACC

    1 3 Ultraproduct2 4 1 5

    1.

    F F log canonical, klt

    1.1. .k , (X,∆) k X k ∆

    R- KX +∆ R-Cartier f : Y −→ XY Y R- ∆Y

    ∆Y := f∗(KX +∆)−KY

    KY Y f KX

    1.1. (X,∆) kawamata log terminal ( klt) (resp. log canonical lc))Y f : Y −→ X ∆Y 1 (resp.

    1 )

    klt lc (X,∆) log resolution g : Z −→ X(X,∆) klt (resp. lc) ∆Z 1 (resp. )

    ( [KM, Corollary 2.31 (3)]) X (X, 0) kltk 0 klt lc

    klt (X,∆)klt ∆

    1.2. (X,∆) lc D ̸= 0 X R-Cartier D (X,∆)log canonical threshold lct(X,∆;D)

    lct(X,∆;D) := sup{t ∈ R!0 | (X,∆+ tD) lc} ∈ R!0log canonical threshold

    1

    69

  • 2

    1.3. (X,∆) k 0 ̸= a ⊆ R , t ! 0(X,∆, at) klt (resp. lc) f : Y −→ X a · OY = OY (−F )

    Y Cartier F Y R ∆Y + tF1 (resp. )

    klt lc log resolution a = 0(X,∆, at) klt lc

    1.4. (X,∆) k lc a ! R 0 ̸= a ⊆ OX (X,∆)log canonical threshold

    lct(X,∆; a) := sup{t ∈ R!0 | (X,∆, at) lc} ∈ R!0.

    (X,∆) lc a = 0 lct(X,∆; a) 0 ∆ = 0lct(X, 0; a) lct(X; a)

    1.5. (X,∆)

    (1) D 0 Cartier lct(X,∆;OX(−D)) = lct(X,∆;D)(2) (X,∆) klt lct(X,∆; a) = sup{t ! 0 | (X,∆, at) klt}.

    1.2. .lc, klt, lct

    F F fpt

    R p > 0 F : R −→ R (r ∈ R F (r) := rp)R- M e ! 0 M F e R F e∗MZ- M = F e∗M m ∈ M F e∗m ∈ F e∗M

    R F - FR p > 0 F -

    1.6. F - R F -

    (1) R(2) R F -

    1.7 ([HW02], [Sch08]). ∆ SpecR R- 0 ̸= a ⊆ R, t ∈ R!0(1) (R,∆, at) F e ! 1 , 0 a ∈ a⌈t(pe−1)⌉ R

    R −→ F e∗ (R(⌈(pe − 1)∆⌉))r (−→ F e∗ (arp

    e

    )

    R-(2) (R,∆) F c ̸= 0 ∈ R e ! 1 0

    a ∈ a⌈t(pe−1)⌉ RR −→ F e∗ (R(⌈(pe − 1)∆⌉))r (−→ F e∗ (carp

    e

    )

    R-

    a = R t = 0 (R,∆, at) (R,∆) ∆ = 0 RF R F a = 0 F F

    F F R R F

    klt lc

    70

  • 3

    1.8 ([HW02, Theorem 3.3], [Har98]). (X = SpecR,∆) k

    (1) (X,∆) F lc(2) (X,∆) F klt(3) dimX = 2, ∆ = 0, p > 5 F klt

    klt F mod p([Tak04]) lc F mod p

    0 kltF ( ) ([ST14]).

    1.9. (R,∆) F 0 ̸= a ! R a (R,∆) F

    fpt(R,∆; a) := sup{t ! 0 | (R,∆, at) F }

    (R,∆) F a = 0 fpt 0 (R,∆) F ,fpt(R,∆; a) := sup{t ! 0 | (R,∆, at) F } ( [Sch08])

    1.10. (R,∆) 1.7 a, b ⊆ R 0 s, t ! 0 (R,∆, atbs)F e > 0, a ∈ a⌈t(pe−1)⌉ b ∈ b⌈s(pe−1)⌉

    R −→ F e∗ (R(⌈(pe − 1)∆⌉))r (−→ F e∗ (abrp

    e

    )

    R-

    F

    1.3. . F

    - 1.11 ([Sch10, Theorem 6.3]). (R,∆, atbs) 1.10 R J ⊆ R(R,∆, atbs) F -compatible e ! 0 ϕ ∈ HomR(F e∗ (R(⌈(pe−1)∆⌉)), R) ϕ(F e∗ (Ja⌈t(p

    e−1)⌉b⌈s(pe−1)⌉)) ⊆ J

    0 F -compatible(R,∆, atbs) (test ideal) τ(R,∆, atbs)

    a = 0 b = 0 0 b = R, s = 0 τ(R,∆, atbs)τ(R,∆, at)

    1.12. (R,∆, at) F τ(R,∆, at) = R (R,∆) Ffpt(R,∆; a) = sup{t ! 0 | τ(R,∆, at) = R}

    R F R KR dualizing complex( [ST17, 2.2 ]) R Q- ∆ KR +∆ (R,∆) log Q-Gorenstein

    ( dualizing complex )R (R, 0) log Q-Gorenstein

    1.13 ([ST14]). (R,∆, at) 1.7 (R,∆) log Q-Gorenstein

    (1) s > t τ(R,∆, as) ⊆ τ(R,∆, at).(2) ε > 0 t < s < t+ ε τ(R,∆, as) = τ(R,∆, at).(3) s < t τ(R,∆, as) " τ(R,∆, at) t ∈ Q

    1.14. (3) t (R,∆; a) F - (F -jumping number)1.12 (R,∆) F log Q-Gorenstein fpt(R,∆; a) (R,∆; a) F

    71

  • 4

    R k k[[x1, . . . , xd]] ∆ = 0

    F∗R ∼= ⊗λR · F∗(xλ),

    λ = (λ1, . . . ,λd) 0 " λi " p − 1 λ ∈ Nd xλ := xλ11 . . . xλdd ∈ RR Tr : F∗R −→ R F∗(xp−11 . . . x

    p−1d )

    1.15. R = k[[x1, . . . , xd]], a, b ⊆ R 0 s, t ∈ R!0(1) ([HT04]) a l t ! l τ(R, atbs) = aτ(R, at−1bs).(2) ([ST14, Lemma 4.4 (b)])Tr(F∗(τ(R, atbs)) = τ(R, at/pas/p).(3) ([Tak06]) τ(R, (a+ b)t) =

    ∑u,v∈R!0,u+v=t τ(R, a

    ubv).

    2.

    2.1. 0 . log canonical thresholdlct ACC (I,") (ACC) I(xn)n∈N n xn = xn+1

    2.1 ([dFEM10]). 0 k n ! 1 LCTregnACC

    LCTregn := {lct(X; a) | X n , a ! O}.

    Shokurov ([Sho92]) ,

    Hacon, McKernan, Xu [HMX14]ACC 0 lct ACC

    lct ACC([HMX14])

    2.2. . Blickle, Mustaţă, Smith 2.1

    2.2 ([BMS09]). k n ! 1 FPTregn ACC

    FPTregn := {fpt(R; a) | X = SpecR k n , a ! R}.

    fpt lct 02

    2.3 ([Sat17, Theorem 1.2]).

    fpt

    1 ([Sat17, Main Theorem]). k n ! 1 R = k[[x1, . . . , xn]]FPT(R) ACC

    FPT(R) := {fpt(R; a) | a ! R}.

    2.4. [Sat17] R[Sat17]

    3. Ultraproduct

    ultraproduct

    72

  • 5

    3.1. Ultraproduct .

    3.1. N P(N) U ⊆ P(N) non-principalultrafilter

    (1) A ⊆ N A ̸∈ U.(2) A ∈ U, A ⊆ B ⊆ N B ∈ U.(3) A,B ∈ U A ∩B ∈ U.(4) A ⊆ N A ∈ U N \A ∈ U.

    Zorn non-principal ultrafilter U

    3.2. {Tm}m∈N∏

    m Tm ∼U(am)m ∼U (bm)m ⇔ {m ∈ N | am = bm} ∈ U.

    {Tm}m ultraproduct ulimm Tm

    ulimm Tm := (∏

    m

    Tm)/ ∼U .

    (am)m ∈∏

    Tm ulim am ∈ ulimm Tm m ∈ Nfm : Tm −→ Sm ulimm fm : ulimm Tm −→ ulimm Sm ulimm am (−→

    ulimm fm(am) T m Tm := T ulimm Tm∗T T ultrapower

    - 3.3 ([Gol98, Theorem 5.6.1]). w = ulimm am ∈ ∗R supm am < ∞ infm am > −∞w0 ∈ R

    ε > 0 {m ∈ N | |am − w0| < ε} ∈ U.w0 w shadow sh(w)

    3.2. Ultraproduct . ultraproduct

    3.4. m Tm ker(∏

    m Tm −→ ulimm Tm)∏

    m Tmulimm Tm

    ∏m Tm m Tm (resp.

    , ) ulimTm .

    m Rm Mm Rm ulimm Mm ulimm Rmam ⊆ Rm ulimm am ulimm Rm (Rm,mm, km)

    (ulimm Rm, ulimm mm, ulimm km)

    3.5. ultraproduct R = k[[x]](∗R, ∗m, ∗k) ulimm(xm) ∈ ∩m(∗m)m ∩m(∗m)m ̸= 0 Krull

    ∗R

    3.6. (R,m, k) catapower ∗R

    R# :=∗R/(∩m(∗mm))

    ∗m m# (R#,m#, ∗k)

    R#

    3.7 ([Scho10, 8.1.19]). (R,m, k) R̂ k −→ R̂

    R# ∼= R̂ ⊗̂k(∗k).R#

    73

  • 6

    ulimm fm ∈ ∗R [fm]m ∈ R# ulimm am ⊆ ∗R [am]m ⊆ R#

    3.8. R = k[[x1, . . . , xd]] R# = (∗k)[[x1, . . . , xd]] λ = (λ1, . . . ,λd) ∈ Ndxλ := xλ11 · · ·x

    λdd fm =

    ∑λ∈Nd am,λx

    λ ∈ R [fm]m =∑

    λ∈Nd [am,λ]mxλ ∈ R#

    R# R

    3.9. (R,m, k) am, bm ⊆ R [am]m ⊆ [bm]m ⊆ R#n

    {m ∈ N | am ⊆ bm +mn} ∈ U.

    3.3. 2.

    2 ([BMS09], [Sat17, Theorem 1.5]). R F {am}m R

    sh(ulimm fpt(R; am)) = fpt(R#; a∞).

    2 1.13 (3)

    3.10. R, {am}m 2 limm−→∞ fpt(R; am)

    1

    4.

    k d ! 1R k[[x1, . . . , xd]]

    4.1. A⇒ . A

    4.1. a ⊆ R t > 0 M ! 1 (at,M) Afpt(R; a+mM ) < t

    {am}m∈N ({am}tm,M) A m (atm,M)A

    4.2. 0 ̸= a ⊆ R t > 0 .(1) b ⊇ a fpt(R; b) ! fpt(R; a). t " fpt(R; a) M

    (at,M) A(2) fpt(R; a) = limM−→∞ fpt(R; a+mM ). fpt(R; a) < t M

    (at,M) A

    4.3. M > 0 FPT(R;⊇ mM ) ACC

    FPT(R;⊇ mM ) := {fpt(R; b) | mM ⊆ b ⊆ m}.

    Proof. [Sat17, Proposition 4.1] M N FPT(R;⊇mM ) ⊆ (1/N)Z ACC . #

    4.4. A{am}m∈N {fpt(R; am)}

    t := limm−→∞ fpt(R; am) M > 0 ({am}tm,M)A m fpt(R; am+mM ) < t

    , 4.2 (1) limm fpt(R; a+mM ) = t Prop4.3

    74

  • 7

    A Mcatapower

    4.5. t > 0 R {am}m a∞ := [am]m ⊆ R#M > 0 (at∞,M) A ({am}tm,M) A

    A catapower

    (1) 4.2 B B ⇒ A . ( 4.11).(2) 4.3 C C ⇒ B . ( 4.16).(3) 4.4 D D ⇒ C 4.20(4) 4.5 a∞ = [am]m D m D

    4.22

    D ⇒ C a∞ D ⇒ m D( 4.21 4.23). [Sat17] D C

    D CA B

    [Sat17, 5 ]

    4.2. B ⇒ A. A B B, a ⊆ R fpt(R; a) t (−→ τ(R, at)

    R!0 −→ P(R) A(t, s) (−→ τ(R, atms) (R!0)2 −→ P(R)

    4.6. a, b ⊆ R (R; a, b) F (F -pure region) FPR(R; a, b) ⊆(R!0)2

    FPR(R; a, b) := Cl({(t, s) ∈ (R!0)2 | (R, atbs) F })= Cl({(t, s) ∈ (R!0)2 | τ(R, atbs) = R}),

    Cl

    4.7 ([Pér13, Example 5.3]). R := F3[[x, y]], a = (xy), b = (x+ y) FPR(R; a, b)1 ( [Pér13, Example 5.3] )

    Figure 1 Figure 2

    R0 := C[x, y], a = (xy), b = (x + y) log canonical region LCR(R; a, b) :={(t, s) | (R0, atbs) lc} X = SpecR0 (X, a, b) log resolution

    LCR(R0; a, b) ⊆ R2 24.8. log canonical region LCR(R0; a, b) log canonical polytopeLCT(R0; a, b) LCR rational polytope

    loc canonical log resolutionF polytope fractal

    75

  • 8

    4.9. a ⊆ R M > 0 (at,M) Bl ⊆ R2 −M (t, 0) l ∩ FPR(R; a,m) = ∅.

    4.10. 4.7 R0 = C[x, y], a = (xy), b = (x+ y) t > 1,t −2 l LCR(R; a, b) ∩ l = ∅

    R = F3[[x, y]], a = (xy), b = (x+ y) 1t > 1 , (t, 0)

    M = −3 FPR(R; a, b)n ! 0 y = −x+ 1

    Pn := (3n − 13n

    ,1

    3n) ∈ R2

    [Pér13, Example 5.3] Pn FQ ∈ R2 n Pn ≺ Q Q ̸∈ FPR(R; a, b)

    P = (x, y), Q = (x′, y′)

    P ≺ Q def⇔ x < x′ y < y′

    t > 1 (t, 0) −3 l l ∩R2!0 Qn Pn ≺ Q l ∩ FPR(R; a, b) = ∅

    4.11. a ⊆ R t > fpt(R; a) M > 0 (at,M)B , (at,M) A

    Proof. ε > 0 lε ⊆ R2 (t − ε, 0) −M BFPR(R; a,m) ε > 0 lε ∩ FPR(R; a,m) = ∅

    1.15 (3)

    τ(R, (a+mM )t−ε) =∑

    u,v∈R!0,u+v=t−ετ(R, aumMv)

    u + v = t − ε u, v (u,Mv) ∈ R2!0 lε(u,Mv) ̸∈ FPR(R; a,m). τ(R, aumMv) ⊆ m.

    τ(R, (a+m)t−ε) ⊆ m A #4.3. C ⇒ B.

    4.12. FPR 4.10 {Pn}B

    Pn = (xn, yn) x xn 1 3

    1 =∞∑

    i=1

    2

    3i

    n+ 1 y

    yn = fpt(R, axn ; b) := inf{y ∈ R!0 | τ(R, axnby) ̸= R}

    76

  • 9

    C q

    4.13. t ∈ R!0 q ∈ Z!2, n ∈ Z t q(1) ⟨t⟩n,q := ⌈tqn − 1⌉/qn ∈ Q!0.(2) t(n,q) = ⌈tqn − 1⌉ − q⌈tqn−1 − 1⌉.

    q ⟨t⟩n, t(n)

    t(n) t q n ⟨t⟩n, q n+ 1

    Lemma 4.14. t, q, n

    (1) 0 " t(n) < q.(2) n

  • 10

    Lemma 4.19. p t ∈ Q>0(1) a, b pa(pb − 1)t ∈ Z(2) e > 0 q = pe q(q − 1)t ∈ Z.(3) (2) q t q n t(n,q) n ! 2

    Proof. (1) s, a > 0 p r > 0 t = s/(par)(Z/rZ)× b pb ≡ 1 (mod .r) (2)e := ab (3) s

    t = s/(q(q− 1)) s q− 1 a, l s = a(q− 1) + l1 " l " q − 1 t = (a/q) + (l/q(q − 1)) n ! 2 t(n) = l

    #4.20. t ∈ Q>0 q = pe q(q − 1)t ∈ Z l := t(2)

    s := ql/(q − 1) ∈ Q>0 a, b ⊆ R n0 (as, q, n0) Dq, n0 N n ! n0 + 2

    fpt(R, a⟨t⟩n+1,q ; b) ! fpt(R, a⟨t⟩n,q ; b)−N/qn.Proof. N := qn0+1 n , yn := fpt(R, a⟨t⟩n,q ; b) ! 0, y′n :=⌈qn−n0−1yn⌉/qn−n0−1 yn " y′n < yn+(1/qn−n0−1) τ(R, a⟨t⟩n,qby

    ′n) ⊆ m

    sα := qn−n0⟨t⟩n,q − ⟨s⟩n0,q

    α = qn−n0⟨t⟩n+1,q − ⟨s⟩n0+1,q

    1.15 (1), (2), D

    m ⊇ τ(R, a⟨t⟩n+1,qby′n+1)

    = Tre(n−n0)(F e(n−n0)∗ τ(R, aqn−n0 ⟨t⟩n+1,qbq

    n−n0y′n+1))

    = Tre(n−n0)(F e(n−n0)∗ aαbq

    n−n0y′n+1τ(R, a⟨s⟩n0+1,q ))

    = Tre(n−n0)(F e(n−n0)∗ aαbq

    n−n0y′n+1τ(R, a⟨s⟩n0,q ))

    = Tre(n−n0)(F e(n−n0)∗ τ(R, aqn−n0 ⟨t⟩n,qbq

    n−n0y′n+1))

    = τ(R, a⟨t⟩n,qby′n+1).

    yn " y′n+1 " yn+1 +N/qn. #4.21. b C

    b m D ⇒ C[Sat17] C D

    4.5. a∞ ⊆ R# D ⇒ {am}m D. D Catapower

    4.22. s > 0 n0 > 0 m am ⊆ Ra∞ := [am]m ⊆ R# (as∞, q, n0) D

    a > 0 Ta ⊆ N m ∈ Taτ(R, a⟨s⟩n0,q ) ⊆ τ(R, a⟨s⟩n0+1,q ) +ma.

    Proof. 1.15 (2) [Sat17, Proposition 2.10 (5)] n

    τ(R#, a⟨s⟩n,q∞ ) = Tr

    en(F en∗ a⌈sqn−1⌉∞ )

    = [Tren(F en∗ a⌈sqn−1⌉m )]m

    = [τ(R, a⟨s⟩n,qm )]m ⊆ R#

    78

  • 11

    3.9 #4.23. D a∞ D ⇒

    {am}m D implication D

    References

    [BMS09] M. Blickle, M. Mustaţă and K. E. Smith, F -thresholds of hypersurfaces, Trans. Amer. Math. Soc. 361 (2009),no. 12, 6549-6565.

    [dFEM10] T. de Fernex, L. Ein and M. Mustaţă, Shokurov’s ACC conjecture for log canonical thresholds on smoothvarieties, Duke Math. J. 152 (2010), no. 1, 93–114.

    [Gol98] R. Goldblatt, Lectures on the hyperreals, An introduction to nonstandard analysis. Graduate Texts in Math-ematics 188, Springer-Verlag, New York, 1998.

    [Har98] N. Hara, Classification of two-dimensional F -regular and F -pure singularities, Adv. Math. 133 (1998), 33–53.[HMX14] C. D. Hacon, J. McKernan and C. Xu. ACC for log canonical thresholds, Ann. of Math. 180 (2014) no. 2,

    523–571.[HT04] N. Hara and S. Takagi, On a generalization of test ideals, Nagoya Math. J. 175 (2004), 59–74.[HW02] N. Hara and K.-i. Watanabe, F -regular and F -pure rings vs. log terminal and log canonical singularities, J.

    Alg. Geom. 11 (2002), 363–392.[KM] J. Kollár and S. Mori, Birational geometry of algebraic varieties, Vol. 134. Cambridge university press, 2008.[Pér13] F. Pérez, On the constancy regions for mixed test ideals, J. Algebra 396 (2013), 82-97.[Sat17] K. Sato, Ascending chain condition for F -pure thresholds on a fixed strongly F -regular germ,

    arXiv:1710.05331, preprint (2017).[Scho10] H. Schoutens, The use of ultraproducts in commutative algebra, Lecture Notes in Mathematics 1999,

    Springer-Verlag, Berlin, 2010.[Sch08] K. Schwede, Generalized test ideals, sharp F -purity, and sharp test elements, Mathematical Research Letters

    15.6 (2008), 1251–1261.[Sch10] K. Schwede, Centers of F -purity, Math. Z. 265 (2010), no. 3, 687–714.[Sho92] V. Shokurov, Three-dimensional log perestroikas, With an appendix by Yujiro Kawamata, Izv. Ross. Akad.

    Nauk Ser. Mat. 56 (1992) no. 1, 105-203.[ST14] K. Schwede and K. Tucker, Test ideals of non-principal ideals: Computations, Jumping Numbers, Alterations

    and Division Theorems, J. Math. Pures. Appl. 102 (2014), no. 05, 891–929.[ST17] K. Sato and S. Takagi, General hyperplane sections of threefolds in positive characteristic, arXiv:1703.00770,

    preprint (2017).[Tak04] S. Takagi, An interpretation of multiplier ideals via tight closure, Journal of Algebraic Geometry 13.2 (2004),

    393–415.[Tak06] S. Takagi, Formulas for multiplier ideals on singular varieties, Amer. J. Math. 128 (2006) no. 6, 1345–1362.

    E-mail address: [email protected]

    79