192
UNIVERSITE TOULOUSE III – PAUL SABATIER U.F.R. Physique-Chimie-Automatique THESE en vue de l’obtention du DOCTORAT DE L'UNIVERSITE DE TOULOUSE délivré par l’Université Toulouse III – Paul Sabatier Discipline : Physique et Ingénierie des Plasmas de Décharge présentée et soutenue par François CAYLA Le 5 Février 2008 Titre : Modélisation de l’interaction entre un arc électrique et une cathode JURY Président : M. Olivier EICHWALD, Professeur de l’Université Paul Sabatier, Toulouse. Rapporteurs : M. Bruno CHERON, Professeur de l’Université de Rouen. M. Pierre PROUX, Professeur de l’Université de Sherbrooke. Examinateurs : M. Christian ARNOUX, Ingénieur de recherche, Schneider Electric, Grenoble. M. Pierre FRETON, Maître de conférences de l’Université Paul Sabatier, Toulouse. M. Jean-Jacques GONZALEZ, Directeur de recherche au C.N.R.S., Toulouse.

Titre : Modélisation de l’interaction entre un arc

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Titre : Modélisation de l’interaction entre un arc

UNIVERSITE TOULOUSE III – PAUL SABATIER U.F.R. Physique-Chimie-Automatique

THESE

en vue de l’obtention du

DOCTORAT DE L'UNIVERSITE DE TOULOUSE délivré par l’Université Toulouse III – Paul Sabatier

Discipline : Physique et Ingénierie des Plasmas de Décharge

présentée et soutenue

par

François CAYLA Le 5 Février 2008

Titre :

Modélisation de l’interaction entre un arc électrique et une cathode

JURY

Président : M. Olivier EICHWALD, Professeur de l’Université Paul Sabatier, Toulouse.

Rapporteurs :

M. Bruno CHERON, Professeur de l’Université de Rouen.

M. Pierre PROUX, Professeur de l’Université de Sherbrooke.

Examinateurs :

M. Christian ARNOUX, Ingénieur de recherche, Schneider Electric, Grenoble.

M. Pierre FRETON, Maître de conférences de l’Université Paul Sabatier, Toulouse.

M. Jean-Jacques GONZALEZ, Directeur de recherche au C.N.R.S., Toulouse.

Page 2: Titre : Modélisation de l’interaction entre un arc
Page 3: Titre : Modélisation de l’interaction entre un arc

A mes parents

A Céline

A Julien

A tous ceux qui me sont chers

Page 4: Titre : Modélisation de l’interaction entre un arc
Page 5: Titre : Modélisation de l’interaction entre un arc

Remerciements

Ce travail a été effectué au sein de l’équipe « Arc Electrique et Procédés Plasmas

Thermiques » du Laboratoire Plasma et Conversion d’Energie de Toulouse.

J’exprime ma profonde gratitude et sympathie à Monsieur Jean-Jacques GONZALEZ,

Directeur de recherche au C.N.R.S., et à Monsieur Pierre FRETON, Maître de conférences de

l’Université Paul Sabatier, qui ont dirigé ce travail de thèse. Leur disponibilité ainsi que les

discussions fructueuses ont permis l’aboutissement de ce manuscrit. Je les prie d’accepter mes

plus vifs remerciements pour l’aide et le soutien qu’ils ont pu apporter à ce travail. Qu’ils

trouvent ici l’expression de ma profonde reconnaissance et de mon estime la plus sincère.

J’exprime ma gratitude à Monsieur Olivier EICHWALD, Professeur de l’Université

Paul Sabatier, pour m’avoir fait l’honneur de présider le jury de ma thèse. Je le prie ici de

trouver ma très sincère reconnaissance.

Je remercie aussi Monsieur Bruno CHERON, Professeur de l’Université de Rouen, et

Monsieur Pierre PROULX, Professeur de l’Université de Sherbrooke, pour m’avoir fait

l’honneur d’examiner ce travail en tant que rapporteur et d’avoir participé au jury. Leurs

critiques ont permis la rédaction finale de ce mémoire.

Je remercie Monsieur Christian ARNOUX, Ingénieur de recherche chez Schneider

Electric à Grenoble, d’avoir participé à mon jury de thèse. Je le remercie pour l’attention qu’il

a su manifester à l’égard de cette étude.

J’exprime toute ma sympathie aux personnes que j’ai pu côtoyer durant ces années de

thèse au sein du laboratoire : Mathieu MASQUERE, Yann CRESSAULT, Philippe TEULET,

Manitra RAZAFINIMANANA, Alain GLEIZES, Benoit ROUFFET, Marie-Emilie

ROUFFET, Julie BENECH, Riadh HANNACHI, Hugh HINGANA, Gaëlle ESCALIER,

Fréderic LAGO, Xavier FRANCERIES et Jacques ROLAND.

Pour terminer ces remerciements, je tiens à remercier mes parents, ma future femme

Céline ainsi que mon petit Julien qui a su me distraire à la fin de ma thèse.

Page 6: Titre : Modélisation de l’interaction entre un arc
Page 7: Titre : Modélisation de l’interaction entre un arc

AUTEUR : François CAYLA

TITRE : Modélisation de l’interaction entre un arc électrique et une cathode

DIRECTEURS DE THESE : Jean-Jacques GONZALEZ et Pierre FRETON

LIEU ET DATE DE SOUTENANCE : Toulouse, le 5 Février 2008

RESUME :

Ce travail est relatif à l’étude et à la mise en place d’un modèle décrivant l’interaction

entre un plasma thermique d’argon à la pression atmosphérique et une cathode en tungstène.

Après une étude bibliographique sur les différents modèles décrivant la zone d’interaction,

la théorie proposée par Benilov a été retenue comme base de nos développements.

Dans une seconde partie, le modèle d’interaction arc/cathode est amélioré notamment par

la prise en compte de l’émission secondaire. Le modèle est ensuite confronté et validé par des

résultats expérimentaux issus de la littérature. Notre objectif était de coupler ce modèle

d’interaction à une modélisation plus globale représentant aussi bien le passage du courant

dans la cathode, la zone d’interaction (gaine et pré-gaine) que la colonne du plasma. Nous

exposons les différents paramètres d’entrée possibles et justifions le choix de la densité de

courant.

Dans une dernière partie, le modèle d’interaction développé est couplé à un modèle

bidimensionnel (2D) de plasma thermique en écoulement. Le passage du courant entre la

cathode et le plasma est assuré grâce à une estimation de la conductivité électrique à deux

températures dans la pré-gaine. L’influence de paramètres physiques (valeurs du coefficient

d’émission secondaire, du travail de sortie,…) et géométriques sur les grandeurs

caractéristiques de la décharge (tension cathodique, champ de température dans le plasma,…)

dans une configuration d’arc libre avec une cathode cylindrique a pu être étudiée.

MOTS-CLEFS : Cathode, modélisation numérique, plasma thermique, 2D, interaction, deux

températures, flux d’énergie, chute de tension cathodique, arc électrique, gaine, pré-gaine.

PHYSIQUE ET INGENIERIE DES PLASMAS DE DECHARGE

LABORATOIRE PLASMA ET CONVERSION D’ENERGIE, UMR 5213

118 ROUTE DE NARBONNE 31026 TOULOUSE CEDEX 9

Equipe Arc Electrique et Procédés Plasma Thermique

Page 8: Titre : Modélisation de l’interaction entre un arc
Page 9: Titre : Modélisation de l’interaction entre un arc

Table des matières

- 11 -

Table des matières

Page 10: Titre : Modélisation de l’interaction entre un arc

Table des matières

- 12 -

Introduction ........................................................................................................ 17

Chapitre 1 : Etat de l’art de différents modèles de zone cathodique .................. 23

I. Introduction............................................................................................. 25

II. Structure de la région cathodique ......................................................... 26 II.A. La cathode ................................................................................................................ 26

II.B. La gaine .................................................................................................................... 27

II.C. La pré-gaine.............................................................................................................. 27

II.D. Le plasma à l’ETL.................................................................................................... 27

II.E. Conclusion................................................................................................................ 28

III. Les modèles monothermes ..................................................................... 29

III.A. La théorie de Lowke et ses modifications............................................................ 29

III.B. Les limites de la théorie de Lowke....................................................................... 30

III.B.1. Calcul des densités de courant ......................................................................... 30

III.B.2. L’absence de zone de charge d’espace............................................................. 31

III.C. Conclusion............................................................................................................ 31

IV. Les modèles à deux températures.......................................................... 33

IV.A. Les modèles à deux températures simplifiés........................................................ 33

IV.A.1. Calcul de la densité de charges à l’interface gaine-pré-gaine ...................... 33

IV.A.2. Le flux d’électrons rétrodiffusés .................................................................. 34

IV.A.3. La chute de tension cathodique .................................................................... 34

IV.A.4. Synthèse ....................................................................................................... 35

IV.B. Les modèles complets .......................................................................................... 35

IV.B.1. La théorie de Hsu ............................................................................................. 36

IV.B.2. Le modèle de Riemann et Schmitz................................................................... 39

IV.B.3. La théorie de Benilov ....................................................................................... 42

IV.B.4. Conclusion sur les modèles complets............................................................... 50

Page 11: Titre : Modélisation de l’interaction entre un arc

Table des matières

- 13 -

V. Synthèse et conclusion ............................................................................ 51

Chapitre 2 : Modèle d’interaction arc-cathode ............................................53

I. Introduction............................................................................................. 55

II. Mise en place du code retranscrivant le modèle de Benilov de 1995 . 56

II.A. Algorithme ............................................................................................................... 56

II.B. Conditions du calcul................................................................................................. 57

II.C. Comparaison............................................................................................................. 57

II.C.1. Calculs avec différentes valeurs de kr fixées.................................................... 63

II.C.2. Etude du kr « inversé » ..................................................................................... 67

II.D. Bilan ......................................................................................................................... 69

III. Construction de notre modèle................................................................ 70

III.A. Modification du flux d’électrons thermoémis ...................................................... 70

III.B. Calcul de composition à la frontière entre le plasma à l’E.T.L. et la pré-gaine... 71

III.C. Ajout d’un bilan énergétique................................................................................ 71

III.C.1. Hypothèses ....................................................................................................... 71

III.C.2. Continuité du flux d’énergie à l’interface gaine/cathode ................................. 71

III.D. Mise en œuvre de notre modèle dans une configuration unidimensionnelle ....... 72

III.D.1. Paramètre d’entrée............................................................................................ 73

III.D.2. Résolution des équations.................................................................................. 73

III.D.3. Paramètres de sortie ......................................................................................... 73

III.E. Choix de la composition à l’interface gaine/pré-gaine......................................... 73

III.E.1. Le calcul de composition à deux températures ................................................ 74

III.E.2. Estimation du coefficient de recombinaison à trois corps kr(Te) ..................... 75

III.E.3. Comparaison des densités de courant............................................................... 76

III.F. Ajout du phénomène d’émission secondaire........................................................ 78

III.F.1. Etude préliminaire ............................................................................................ 78

III.F.2. Modifications des équations............................................................................. 79

III.F.3. Etude de sensibilité........................................................................................... 80

III.F.4. Conclusion........................................................................................................ 84

Page 12: Titre : Modélisation de l’interaction entre un arc

Table des matières

- 14 -

III.G. Bilan ..................................................................................................................... 84

IV. Comparaison avec des résultats expérimentaux et théoriques........... 86

IV.A. Recherche de résultats dans la littérature ............................................................. 86

IV.A.1. Résultats expérimentaux .............................................................................. 86

IV.A.2. Résultats théoriques...................................................................................... 87

IV.B. Comparaison......................................................................................................... 87

IV.B.1. Etude de la puissance P .................................................................................... 87

IV.B.2. Température de surface cathodique Tw ............................................................ 88

IV.B.3. Etude de la chute de tension cathodique .......................................................... 90

IV.C. Conclusion............................................................................................................ 91

V. Etude paramétrique du modèle ............................................................. 92

V.A. Flux d’énergie vers la cathode ................................................................................. 92

V.B. Les densités de courant ............................................................................................ 94

V.C. Température de surface de la cathode ...................................................................... 96

V.D. La chute de tension cathodique U ............................................................................ 97

V.E. Bilan de cette étude paramétrique ............................................................................ 99

VI. Vers une adaptation du modèle d’interaction arc cathode............... 100

VI.A. La conservation du courant ................................................................................ 100

VI.B. Paramètre d’entrée : j ......................................................................................... 101

VI.C. Résultats ............................................................................................................. 101

VII. Bilan........................................................................................................ 104

Chapitre 3 : Modélisation à deux dimensions ................................................... 105

I. Introduction........................................................................................... 107

II. Le modèle 2D ......................................................................................... 108

II.A. Les hypothèses ....................................................................................................... 108

Page 13: Titre : Modélisation de l’interaction entre un arc

Table des matières

- 15 -

II.B. Equations de conservation...................................................................................... 109

II.C. Résolution des équations aux dérivés partielles stationnaires................................ 111

II.C.1. Résolution des équations de diffusion pure.................................................... 112

II.C.2. Résolution des équations de Convection-diffusion........................................ 114

II.C.3. Résolution du couplage pression-vitesses ...................................................... 116

III. Interaction corps de l’arc/cathode....................................................... 117

III.A. Développements physiques spécifiques ............................................................. 117

III.B. Résolution des équations décrivant la zone d’interaction .................................. 120

IV. Définition du cas de référence.............................................................. 122

V. Résultats ................................................................................................. 126

V.A. Passage du courant à l’interface cathode/plasma ................................................... 127

V.A.1. Etude du cas de référence............................................................................... 128

V.A.2. Etudes paramétriques ..................................................................................... 134

V.A.3. Bilan ............................................................................................................... 148

V.B. Chute de tension cathodique .................................................................................. 149

V.B.1. Cas de référence ............................................................................................. 150

V.B.2. Paramètres influençant la chute de tension cathodique.................................. 153

V.B.3. Bilan ............................................................................................................... 158

V.C. Etude du transfert thermique .................................................................................. 158

V.C.1. Calcul de référence......................................................................................... 159

V.C.2. Etude de différents paramètres ....................................................................... 161

V.C.3. Bilan ............................................................................................................... 166

VI. Conclusion.............................................................................................. 167

Conclusion ......................................................................................................... 169

Annexes.............................................................................................................. 175

Bibliographie ..................................................................................................... 183

Page 14: Titre : Modélisation de l’interaction entre un arc

Table des matières

- 16 -

Page 15: Titre : Modélisation de l’interaction entre un arc

Introduction

- 17 -

Introduction

Page 16: Titre : Modélisation de l’interaction entre un arc

Introduction

- 18 -

Page 17: Titre : Modélisation de l’interaction entre un arc

Introduction

- 19 -

Les plasmas forment un domaine de la physique peu connu du grand public alors que

cet état de la matière est omniprésent autour de nous. On peut aussi bien le trouver à l’état

naturel dans l’espace au niveau des étoiles, sur terre dans l’ionosphère, ou bien encore lors

d’une décharge de foudre, qu’au niveau de notre vie de tous les jours comme par exemple en

allumant une lampe fluorescente ou lorsqu’un interrupteur ou un disjoncteur commutent.

L’évolution vers la maîtrise et la compréhension du milieu plasma est le fruit d’études

qui ont débuté il y a deux siècles grâce à l’apparition et au développement de l’énergie

électrique. Une des premières formes de plasma entretenu, à avoir été créée en laboratoire, est

celle d’un arc électrique établi entre deux électrodes de carbone [Vac-1]. Cette expérience fut

menée au début du XIXème siècle par Davy [Vac-1]. C’est ainsi que commença l’étude des

plasmas thermiques. Les travaux menés par la suite furent principalement empiriques et ce

n’est seulement qu’au XXème siècle que les progrès les plus significatifs furent établis. Tout

d’abord la physique fondamentale, durant la première moitié du XXème siècle, apporta les

connaissances en physique atomique et en physique du solide nécessaires à une meilleure

compréhension des phénomènes constitutifs de la décharge d’arc. Par la suite, dans les années

quatre-vingt, la modélisation et l’expérimentation ont fait de nombreux progrès notamment

grâce au développement rapide de l’informatique qui constitue un outil indispensable

permettant d’avoir une connaissance de plus en plus précise des plasmas thermiques. Ainsi

des modèles d’arc bidimensionnel puis tridimensionnel [Fre-1] ont été développés, basés sur

des programmes multi-physiques de plus en plus performants. Parallèlement à cela, les

moyens de validation tels que la mesure de flux d’énergie vers les matériaux par méthode

inverse [Gon-1] ou bien la tomographie [Spe-1] ont pu être mis en place afin de pouvoir

valider de manière plus fiable les modèles existants.

Les modèles ainsi établis ont pu être appliqués afin d’optimiser des procédés tels que

la projection ou bien de maîtriser le comportement de l’arc dans des installations telles que les

disjoncteurs. Ainsi les intérêts des industriels et des chercheurs convergent vers la volonté

d’une connaissance toujours plus approfondie des mécanismes régissant le comportement du

milieu en présence d’un arc électrique. Malgré les performances avérées des modèles actuels,

certaines zones d’ombre subsistent notamment au niveau de la description des pieds d’arc. En

effet, ces régions situées à l’interface entre le plasma thermique et les électrodes nécessitent

des connaissances plus approfondies pour une meilleure description (modèles hors-équilibres,

Page 18: Titre : Modélisation de l’interaction entre un arc

Introduction

- 20 -

phénomènes émissifs, …). Cependant, les moyens expérimentaux de validation sont rares et

bien souvent très indirects dans ces zones de plasma proches des électrodes. Pour palier à

cette lacune et dans le but d’accroître la connaissance de ces zones hors-équilibres présentes

aux voisinages des électrodes, des modèles ont été développés. La plupart offrent seulement

une description locale du pied d’arc sans prendre en compte la problématique dans sa

globalité, à savoir, les électrodes, les zones de gaine et de pré-gaine et la colonne.

Actuellement, les travaux relatifs à la description de la zone anodique ont pu être

couplés à la modélisation de la colonne d’arc. Citons à titre d’exemple le modèle de Lago

[Lag-2], validé par des mesures expérimentales obtenues par Masquère [Mas-1], qui permet

une description du plasma en écoulement et de son interaction avec une électrode ainsi qu’une

continuité du passage du courant depuis la pointe de la cathode jusqu’à son évacuation en

fond d’anode. Le parallèle de ces travaux côté cathodique n’a jamais été réellement réalisé.

En effet les modèles existants ne prennent pas vraiment en compte la conservation du courant

dans tout le domaine, en particulier à l’interface cathode/plasma où généralement une tache

d’accrochage, de dimension prédéterminée est imposée [Pau-1].

Ainsi la motivation de cette thèse va être de développer un modèle auto-cohérent

d’interaction entre le plasma thermique créé par un arc électrique et le corps de la cathode en

conservant le courant depuis son entrée dans la cathode jusqu’à la surface de l’anode. Pour

cela notre étude s’articulera en trois temps correspondant chacun à un chapitre de ce

manuscrit.

Le chapitre I présentera une synthèse des principales théories existantes pour la

description de la zone cathodique. L’objectif de ce chapitre ne sera pas de faire une liste

exhaustive des modèles existants et de leurs variantes mais d’avoir une vue d’ensemble des

principales théories et des concepts fondamentaux que l’on peut trouver dans la littérature sur

l’interaction arc/cathode à la pression atmosphérique. Ainsi deux familles de modèles vont

être présentées : celle à l’équilibre et celle hors équilibre thermodynamique. Ces deux familles

rassemblent les modèles développés depuis une trentaine d’années. Leurs spécificités vont

être décrites dans les grandes lignes. De cette étude vont découler les bases de notre modèle

d’interaction présenté dans le chapitre II.

Le chapitre II va permettre de construire le modèle d’interaction qui se basera sur les

concepts mis en avant dans le premier chapitre. Ce travail sera mené dans l’optique d’une

Page 19: Titre : Modélisation de l’interaction entre un arc

Introduction

- 21 -

application de ce modèle à une description globale de l’arc. On entend par description

globale, une modélisation qui englobe aussi bien la circulation du courant dans l’électrode

depuis son entrée jusqu’à la circulation dans la colonne du plasma en passant par une

description physique de l’interface. Le point de départ de notre modèle sera celui de Benilov

et al [Ben-2]. Des modifications, permettant de prendre en compte les autres travaux cités

dans le chapitre I, seront ensuite effectuées. Ainsi l’introduction du phénomène d’émission

secondaire et son influence sur les grandeurs physiques de la zone d’interaction cathodique

vont être présentées. Les résultats du modèle 1D seront ensuite comparés à des mesures

expérimentales issues de la littérature et une étude paramétrique sera présentée. Enfin l’étude

de notre modèle d’interaction arc/cathode se poursuivra par l’utilisation de la densité de

courant comme seul paramètre d’entrée afin de préparer l’implantation de notre description de

la zone cathodique dans le modèle 2D d’arc présenté dans le chapitre suivant.

Le chapitre III présentera, dans un premier temps, les grandes lignes du modèle

décrivant la colonne du plasma ainsi que les spécificités pour effectuer son couplage avec la

description de la cathode et de son proche voisinage. Nous exposerons ensuite les principaux

résultats qui peuvent être obtenus à partir d’un cas de référence. Notre modèle de couplage

entre la cathode et la colonne du plasma, bien qu’auto-cohérent, est tributaire de grandeurs

physiques plus ou moins connues. Nous présenterons donc une étude paramétrique sur les

principales grandeurs gouvernant la représentation de la zone cathodique. Une des grandeurs

obtenue par notre modèle et qui pose souvent problème est la valeur de la chute de tension

cathodique. Nous proposerons donc une étude de sensibilité de cette valeur à différents

paramètres. Enfin une discussion et une présentation des résultats relatifs au transfert

thermique vers la cathode seront exposées avant de conclure.

Page 20: Titre : Modélisation de l’interaction entre un arc

Introduction

- 22 -

Page 21: Titre : Modélisation de l’interaction entre un arc

Chapitre 1 : Etat de l’art de différents modèles de zone cathodique

- 23 -

Chapitre 1 : Etat de l’art de

différents modèles de zone

cathodique

Page 22: Titre : Modélisation de l’interaction entre un arc

Chapitre 1 : Etat de l’art de différents modèles de zone cathodique

- 24 -

Page 23: Titre : Modélisation de l’interaction entre un arc

Chapitre 1 : Etat de l’art de différents modèles de zone cathodique

- 25 -

I. Introduction

La modélisation de la zone cathodique est un sujet qui anime « la communauté

scientifique » depuis le début du XXème siècle. Les premières personnes ayant travaillé sur ce

sujet sont Tonks et Langmuir [Ton-1] et Mackeown [Mac-1]. Ceux-ci ont publié leurs

travaux en 1929. Cependant, cela fait seulement 30 ans que le sujet est activement étudié

notamment dans les arcs à des pressions proches de la pression atmosphérique. Pendant cette

dernière période, de nombreux modèles sont apparus mais manquent de validations

expérimentales. Il est en effet difficile d’effectuer un diagnostic au proche voisinage de la

surface de la cathode. Néanmoins de récentes études expérimentales [Nan-2] ont permis de

valider partiellement certains modèles décrivant la région cathodique.

Ce premier chapitre a pour objectif de donner une vue d’ensemble des principaux

modèles de zone cathodique. Dans notre étude nous n’avons pas pris en compte les modèles

de spots cathodiques décrits par certains auteurs comme Jüttner [Jüt-1]. En effet, la durée de

vie du spot est négligeable (≈ 10 ns) devant les constantes de temps caractéristiques de la

décharge (≈ ms). Ainsi nous nous sommes focalisés sur les modèles prenant en compte les

effets moyens dans le temps de l’interaction entre le plasma et la cathode.

Notre étude nous amène tout d’abord à présenter le point commun de tous ces

modèles : la structure de la région cathodique. Par la suite, deux grandes familles de modèles

vont être présentées :

Les modèles monothermes, décrits principalement par la théorie de Lowke et ses

variantes, considèrent la zone cathodique comme une région dont la température des

électrons est égale à la température des lourds (ions et neutres).

Les modèles à deux températures, plus ou moins complexes, considèrent que le

plasma proche de la cathode a une température électronique différente de la

température des lourds. Parmi ces modèles à deux températures celui de Benilov et al

[Ben-2] va être décrit de manière plus détaillée car il va constituer la base de notre

modèle d’interaction arc-cathode présenté dans le chapitre 2.

Page 24: Titre : Modélisation de l’interaction entre un arc

Chapitre 1 : Etat de l’art de différents modèles de zone cathodique

- 26 -

II. Structure de la région cathodique

Il est reconnu que la région cathodique peut être structurée principalement en quatre

zones lorsque le plasma est à la pression atmosphérique. Celles-ci sont très bien décrites par

Benilov [Ben-2]. La figure (FI-01) illustre cette structure qui est constituée de la cathode, de

la gaine, de la pré-gaine et du plasma.

cathode

Gaine

(Zone de charge d’espace)

Pré-gaine

(Zone d’ionisation)

Plasma

≈ 0.01 µm

≈ 100 µm

Figure (FI-01) : Structure de zone cathodique généralement admise

II.A. La cathode

La première région de la figure (FI-01), que nous décrirons, est la cathode qui est

caractérisée par sa conductivité thermique, sa conductivité électrique et par le travail de sortie

du matériau. Ces trois grandeurs sont déterminantes : la première va permettre de prendre en

compte l’évacuation de l’énergie par conduction thermique, la seconde la capacité à conduire

le courant et la troisième la capacité à émettre des électrons.

La surface de la cathode en contact avec le plasma va interagir très fortement avec la

gaine en recevant un flux d’énergie dont les valeurs moyennes dans le temps peuvent être

supérieures à 108 W.m-2 [Ben-2]. De plus c’est de la cathode que sont émis les électrons

entrant dans le plasma.

Page 25: Titre : Modélisation de l’interaction entre un arc

Chapitre 1 : Etat de l’art de différents modèles de zone cathodique

- 27 -

II.B. La gaine

La gaine est une région aussi appelée « zone de charge d’espace » car il y règne une

charge d’espace positive. C’est une région dont la taille est de l’ordre de la longueur de Debye

(λd) qui traduit la distance maximale pour laquelle il peut exister un déséquilibre de charge

électrique. Cette longueur s’exprime de la manière suivante :

21

2e0

d nekT

⎥⎦⎤

⎢⎣⎡ε=λ (EI-01)

Où ε0 correspond à la permittivité du vide, k la constante de Boltzmann, Te la température des

électrons à l’interface gaine/pré-gaine, e la charge élémentaire et n la densité de charge à

l’interface gaine/pré-gaine. Typiquement, ce déséquilibre de charge s’étend de 0.01 à 0.1 µm

pour des températures de l’ordre de 10000 K.

Dans cette région il existe un champ électrique très intense qui va accélérer les

électrons émis par la cathode entretenant ainsi l’excitation et l’ionisation du gaz dans la pré-

gaine. De la même manière, les ions créés dans la pré-gaine vont être accélérés du plasma

vers la cathode par ce champ électrique.

II.C. La pré-gaine

La pré-gaine est aussi appelée « zone d’ionisation ». Ce nom vient du fait que c’est

dans cette région que l’ionisation va être prépondérante. En effet les électrons venant de la

cathode vont entrer en contact avec le gaz et effectuer une multitude de collisions (élastiques

et inélastiques) qui vont permettre à la décharge de s’entretenir. Par conséquent cette région

est dite « collisionnelle » et peut être décrite par les équations de la mécanique des fluides

dans le cas d’un plasma à la pression atmosphérique. L’ordre de grandeur de la taille de cette

région est de plusieurs dizaines de microns.

II.D. Le plasma à l’ETL

Cette région est considérée à l’équilibre thermodynamique local [San-1]. En effet, les

électrons qui proviennent de la cathode ont échangé la majorité de leur énergie dirigée par

Page 26: Titre : Modélisation de l’interaction entre un arc

Chapitre 1 : Etat de l’art de différents modèles de zone cathodique

- 28 -

l’intermédiaire des collisions élastiques et inélastiques. Par conséquent, c’est à partir de cette

région que l’on peut dans la majorité des cas décrire le plasma avec une seule température.

II.E. Conclusion

Nous venons de montrer que la structure générale de la zone cathodique peut être

articulée autour de quatre zones étroitement liées. Au cours de ce mémoire, cette structure va

être conservée.

Malgré le fait que l’on puisse avoir en point commun des modèles existants la

structure que l’on vient de décrire, des différences notables peuvent être observées dans les

approches proposées dans la littérature pour décrire la zone cathodique. Ainsi il ressort deux

grandes familles : les modèles à une température (monothermes) et les modèles à deux

températures.

Page 27: Titre : Modélisation de l’interaction entre un arc

Chapitre 1 : Etat de l’art de différents modèles de zone cathodique

- 29 -

III. Les modèles monothermes

Les modèles monothermes existants sont principalement basés sur la théorie de Lowke

publiée en 1992 [Low-1]. Celle-ci a subi quelques modifications au cours des années [Zhu-

1][Mor-1][Low-2][Low-3] pour aboutir à la version proposée par Sansonnens et al [San-1]

dans le cadre d’un modèle de cathode réfractaire.

III.A. La théorie de Lowke et ses modifications

La théorie de Lowke ne prend pas en compte la zone de charge d’espace. La pré-gaine

est considérée comme une région monotherme dont la composition est modifiée par la

diffusion ambipolaire créée par les ions qui migrent vers la cathode. Ainsi la densité

électronique proche de la cathode est plus importante que celle à l’Equilibre

Thermodynamique Local (E.T.L.) favorisant le passage du courant de la cathode au plasma.

Ce phénomène d’enrichissement électronique revient à considérer un déséquilibre chimique

au sein de la zone d’ionisation.

Ainsi pour obtenir la densité électronique à proximité de la cathode, l’équation de

continuité de la densité électronique est utilisée afin de tenir compte des phénomènes de perte

et de création de charges.

Grâce au calcul de la distribution de densité électronique à proximité de la cathode, la

conductivité électrique peut être calculée et ainsi le passage du courant entre la cathode et le

plasma est assuré de manière auto cohérente. Il est à noter que la définition de la conductivité

électrique diffère entre l’article de Lowke et al [Low-2] et l’article de Sansonnens et al [San-

1]. En effet dans le premier, le champ électrique proche de la cathode intervient ce qui n’est

pas le cas dans le second article. L’approche de Lowke et al [Low-2] permet de tenir compte

du champ électrique important en surface de la cathode qui va favoriser l’ionisation du gaz à

son proche voisinage. Celle de Sansonnens et al [San-1] quant à elle est plus classique et

plus rigoureuse car elle utilise la formulation de la conductivité électrique proposée par

Mitchner et Kruger [Mit-1].

Page 28: Titre : Modélisation de l’interaction entre un arc

Chapitre 1 : Etat de l’art de différents modèles de zone cathodique

- 30 -

Pour pouvoir calculer la densité de charges proche de la cathode il est nécessaire de

résoudre l’équation d’énergie. Afin d’avoir la température à la surface qui constitue une

condition aux limites de l’équation d’énergie, Sansonnens et al [San-1] décomposent le flux

d’énergie à la surface de la cathode en trois contributions :

La première contribution provient du rayonnement du matériau de cathode. Elle est

prise en compte au travers de la loi d’émission du corps gris :

4rad Tq εσ−= (EI-02)

Où ε est l’émissivité de la surface, σ la constante de Stefan-Boltzmann et T la

température de la surface.

La seconde contribution est donnée par le flux d’énergie créé par les électrons quittant

la surface de la cathode qui emportent une énergie égale à celle du travail de sortie des

électrons.

La troisième contribution est constituée par l’énergie d’ionisation apportée par le flux

d’ions se neutralisant à la surface de la cathode.

La définition du flux d’énergie vers la cathode nécessite de connaître le flux d’ions qui

arrive à la cathode et le flux d’électrons qui la quitte. Ces deux flux de particules sont

déterminés à partir des densités de courant. La détermination de ces flux constitue une des

limites de la théorie de Lowke, l’autre limite étant l’absence de prise en compte de la zone de

charge d’espace.

III.B. Les limites de la théorie de Lowke

III.B.1. Calcul des densités de courant

Dans son modèle, Lowke définit la densité de courant ionique ji de la manière

suivante :

⎩⎨⎧

=

≤−=

sinon0i

ememi

jjjsijjj

(EI-03)

Où jem est la densité de courant thermoémis et j la densité de courant totale.

La densité de courant électronique je est définie de telle manière que ie jjj += .

La formulation (EI-03) pose alors un problème car le lien entre la densité de courant

électronique totale je et jem n’est pas explicité dans les articles basés sur la théorie de Lowke.

Par conséquent, dans le cas où jem est supérieur à j, la conservation de la densité de courant

Page 29: Titre : Modélisation de l’interaction entre un arc

Chapitre 1 : Etat de l’art de différents modèles de zone cathodique

- 31 -

totale ne sera pas assurée car la densité de courant thermoémise est due à un phénomène

thermique alors que la densité de courant totale traduit un phénomène électromagnétique de

transport de charges. Il manque donc une composante électronique qui permettrait

d’équilibrer l’équation de conservation de la densité de courant totale j. Cette composante

pourrait être la densité de courant provenant des électrons rétrodiffusés qui vont du plasma à

la cathode. Cependant cette hypothèse n’est pas avancée dans la théorie de Lowke.

III.B.2. L’absence de zone de charge d’espace

La théorie de Lowke ne prend pas en compte la zone de charge d’espace négligeant

ainsi le phénomène d’accélération des charges dans cette région. Cela pose alors le problème

de l’entretien de la décharge sur le plan microscopique. En effet, l’énergie thermique des

électrons venant de la cathode est de l’ordre de 0.1eV ce qui est très loin de l’énergie

permettant d’ioniser l’argon neutre (celle-ci est de 15.9 eV). Cependant sur le plan

macroscopique la décharge est entretenue grâce au chauffage du gaz par effet Joule qui est

créé par le passage du courant. Ce passage à l’interface gaine/pré-gaine est favorisé grâce à la

conductivité électrique corrigée à proximité de la cathode.

III.C. Conclusion

Les avantages et les inconvénients des modèles basés sur la théorie de Lowke sont

résumés dans le tableau (TI-01).

Avantages Inconvénients

Théorie intégrée dans une description bidimensionnelle de l’arc.

La conductivité électrique à proximité de la surface de la cathode tient compte des propriétés physiques de la zone cathodique.

La densité de courant à la surface de la cathode est utilisée comme paramètre d’entrée du modèle d’interaction cathodique.

Modèle à une température non approprié pour décrire la zone d’interaction [Hai-2]

Incohérences dans l’expression des densités de courant dans la zone d’interaction.

Pas de description de la zone de charge d’espace.

Tableau (TI-01) : Avantages et inconvénients des modèles basés sur la théorie de Lowke

Page 30: Titre : Modélisation de l’interaction entre un arc

Chapitre 1 : Etat de l’art de différents modèles de zone cathodique

- 32 -

Malgré les inconvénients cités ci-dessus, la théorie de Lowke est une des rares à avoir

été intégrée dans une configuration d’arc libre dans un modèle 2D axisymétrique [Low-

1][Low-2][San-1][Zhu-1][Fle-1].

Le résultat principal qui peut être retenu de cette théorie est que la conductivité

électrique à proximité de la cathode doit tenir compte des phénomènes physiques intervenant

dans la description de la zone cathodique. Ainsi, le passage du courant est conditionné d’une

part par l’état du gaz à proximité de la cathode et d’autre part par l’émission électronique.

La deuxième grande famille, qui utilise une approche très différente de celle de

Lowke, qui est monotherme, est celle des modèles à deux températures. Contrairement aux

modèles monothermes, les modèles à deux températures sont nombreux et très variés. Nous

allons exposer maintenant les principaux modèles que nous avons retenus allant des plus

simples aux plus complexes.

Page 31: Titre : Modélisation de l’interaction entre un arc

Chapitre 1 : Etat de l’art de différents modèles de zone cathodique

- 33 -

IV. Les modèles à deux températures

L’idée centrale des modèles à deux températures consiste à considérer l’existence d’un

déséquilibre thermodynamique dans le plasma proche de la cathode dû à une différence de

température entre les lourds et les électrons. A partir, de cette hypothèse les modèles

d’interactions se déclinent sous des formes diverses.

IV.A. Les modèles à deux températures simplifiés

Des modèles simplifiés, à deux températures, ont été proposés par Zhou et al [Zho-1]

[Zho-2] et Coulombe et al [Cou-1]. Trois points importants de leurs approches vont être

présentés :

La manière de calculer la densité de charges à l’interface gaine/pré-gaine

L’introduction et le calcul du flux d’électrons rétrodiffusés

La manière de déterminer la chute de tension cathodique

IV.A.1. Calcul de la densité de charges à l’interface gaine-pré-gaine

L’appellation « simplifiée » vient du fait que ces auteurs n’effectuent pas de calculs

hydrodynamiques dans la zone d’ionisation afin de déterminer la densité de charge à

l’interface gaine/pré-gaine (figure (FI-01)). A la place de ce calcul, qui peut rapidement être

complexe à cause du déséquilibre thermodynamique, Zhou et al [Zho-1] [Zho-2] et

Coulombe et al [Cou-1] préfèrent utiliser un calcul de composition à deux températures basé

sur l’approche de Richley et al [Ric-1].

La température des particules lourdes est égale à la température de surface dans les

modèles de Zhou et al [Zho-1] et Coulombe et al [Cou-1]. Cette hypothèse semble légitime

car les particules lourdes ne peuvent pas échanger d’énergie avec les électrons du fait de

l’absence de collisions dans la gaine. Néanmoins, les particules lourdes, se trouvant dans la

gaine, ont leur température qui atteint celle de la surface de la cathode lors du contact avec

celle-ci.

Page 32: Titre : Modélisation de l’interaction entre un arc

Chapitre 1 : Etat de l’art de différents modèles de zone cathodique

- 34 -

La détermination de la température électronique par contre diffère entre les deux

modèles.

Dans le modèle de Zhou et al [Zho-1] la température électronique à l’interface gaine/pré-

gaine est déterminée à partir du principe de minimisation de Steenbeck [Pai-1][Li-1].

Coulombe et al [Cou-1] ne considèrent pas l’équation d’énergie à l’interface gaine/pré-gaine

et effectuent une étude paramétrique suivant la température électronique.

IV.A.2. Le flux d’électrons rétrodiffusés

Zhou et al [Zho-1] et Coulombe et al [Cou-1] considèrent tous deux que le flux

d’électrons susceptible de revenir à la cathode peut être calculé à partir d’une densité

électronique réduite. Cela signifie qu’ils utilisent la densité électronique trouvée à partir du

calcul de composition à laquelle est retranchée une contribution électronique apportée par les

électrons thermoémis. La formulation du flux d’électrons apparaissant à la frontière gaine/pré-

gaine et pouvant revenir à la cathode est alors la suivante :

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛−−=φ

eseemT2erd kT

eUexpvnn (EI-04)

Où Φrd est le flux d’électrons rétrodiffusés, e est la charge élémentaire, ne2T correspond à la

densité électronique du calcul de composition à deux températures, nem correspond à la

densité électronique apportée par les électrons venant de la cathode, ve est la vitesse

thermique des électrons provenant de la zone d’ionisation, U est la chute de tension dans la

gaine, k est la constante de Boltzmann et Tes est la température électronique à l’interface

gaine/pré-gaine.

IV.A.3. La chute de tension cathodique

Coulombe et al [Cou-1] fixent la chute de tension cathodique afin d’avoir le bilan

énergétique à l’interface zone de charge d’espace/cathode. Par contre, Zhou et al [Zho-2] ont

pour objectif de se fixer un minimum de paramètres : pression, courant total et température

électronique. La chute de tension dans la gaine est déterminée grâce aux bilans d’énergie à

l’interface gaine/pré-gaine.

Page 33: Titre : Modélisation de l’interaction entre un arc

Chapitre 1 : Etat de l’art de différents modèles de zone cathodique

- 35 -

IV.A.4. Synthèse

Les avantages et les inconvénients des modèles à deux températures simplifiés sont regroupés

dans le tableau (TI-02).

Avantages Inconvénients

La composition à l’interface gaine/pré-gaine est déterminée à partir d’un calcul de composition à deux températures.

Le flux d’électrons rétrodiffusés dans la gaine est pris en compte.

La température des particules lourdes dans la gaine est égale à celle de la surface de la cathode

Modèles non introduits dans une description bidimensionnelle de l’arc.

Nécessité de fixer plusieurs paramètres tels que la chute de tension cathodique et la température électronique.

Tableau (TI-02) : Avantages et inconvénients des modèles à deux températures simplifiés

Deux points sont à retenir de ces modèles :

L’idée d’un calcul de composition à l’interface gaine/pré-gaine est intéressante

car elle permet de déterminer la densité de charges à cette interface sans passer

par un modèle hydrodynamique à deux températures.

L’hypothèse qui consiste à supposer la température des ions à l’interface

gaine/pré-gaine égale à celle de la surface de la cathode.

IV.B. Les modèles complets

Dans la partie précédente, les modèles « simplifiés », ne tenant pas compte de ce qui

se passe dans la zone d’ionisation, ont été présentés dans leurs grandes lignes. Dans la famille

des théories à deux températures, il existe des modèles plus complets qui sont souvent cités

par la communauté. Par le terme « complet » nous entendons une description prenant en

compte la gaine et la pré-gaine et plus particulièrement l’hydrodynamique de la pré-gaine. Les

plus aboutis sont les modèles de Hsu et al [Hsu-1], de Schmitz et al [Sch-2] et de Benilov et

al [Ben-2]. Cette partie va permettre de comprendre les principales idées directrices de ces

modèles.

Page 34: Titre : Modélisation de l’interaction entre un arc

Chapitre 1 : Etat de l’art de différents modèles de zone cathodique

- 36 -

IV.B.1. La théorie de Hsu

Le modèle de Hsu et al [Hsu-1] est très élaboré au niveau de la description de la zone

de charge d’espace et de la zone d’ionisation. Cette partie a pour objectif de montrer les idées

directrices de ce modèle pour chaque région de la zone cathodique traitée par cette théorie.

Le plasma à l’ETL

Le plasma à l’E.T.L. apparaît dans le modèle au travers des conditions aux limites

suivantes :

• la densité de courant (j = 1.2 108 A.m-2)

• la température du plasma à l’ETL (Télectrons=Tlourds=21000 K)

• Le gradient de température (-4 107 K/m)

• Le champ électrique (-1.45 104 V/m)

• La densité électronique (1.727 1023 m-3)

• Le gradient de densité électronique (1.692 1024 m-4)

Les conditions aux limites à l’interface pré-gaine/plasma à l’E.T.L. permettent de résoudre les

équations de conservation du flux électronique et ionique dans la zone de charge d’espace et

dans la zone d’ionisation. La chute de tension dans la zone cathodique est déduite de mesures

expérimentales et fixée à 8.5V.

La zone de charge d’espace

La zone de charge d’espace est considérée comme non collisionnelle c'est-à-dire que

les électrons et les ions vont être en chute libre soumis à un champ électrique intense. Dans

cette région Hsu résout l’équation de Poisson permettant ainsi d’assurer la conservation de la

charge électrique. A la différence des modèles monothermes, il considère trois contributions

de charge dans cette région : le flux d’ions, le flux d’électrons provenant de la cathode et le

flux d’électrons rétrodiffusés comme le montre la figure (FI-02).

Page 35: Titre : Modélisation de l’interaction entre un arc

Chapitre 1 : Etat de l’art de différents modèles de zone cathodique

- 37 -

Cathode

Gaine (zone de charge d’espace)

Pré-gaine (zone d’ionisation)

Plasma à l’E.T.L.

Φi Φrd Φcath

Figure (FI-02) : Représentation schématique du flux d’ions (Φi), du flux d’électrons

rétrodiffusés (Φrd) et du flux d’électrons provenant de la cathode (Φcath)

Il est à noter que le flux d’électrons provenant de la cathode n’est pas défini par une

loi telle que celle de Richardson-Duschmann. Par contre, Rethfeld et al [Ret-1], qui appuient

leurs travaux sur ceux de Hsu, définissent explicitement le flux d’électrons thermoémis par la

loi de Richardson-Duschmann [Ash-1] :

⎟⎟⎠

⎞⎜⎜⎝

⎛−

π=φ

w

2w3

e2

cath kTWexpT

hmk4

(EI-05)

La zone d’ionisation

Dans le modèle de Hsu, cette région est collisionnelle et à deux températures. Hsu

considère deux équations de conservation de la charge et deux équations de l’énergie afin de

dissocier les phénomènes relatifs aux électrons et aux ions.

Les équations de conservation de la charge considèrent l’ionisation et la

recombinaison à trois corps. Pour obtenir le taux d’ionisation, Hsu utilise la formulation de

Potapov [Pot-1] qui généralise la loi de Saha permettant ainsi d’avoir la composition du

plasma à deux températures. Il est à noter que la formulation de Potapov n’est plus utilisée à

l’heure actuelle car il a été montré que celle-ci était erronée sur le plan thermodynamique

[Van-1].

Page 36: Titre : Modélisation de l’interaction entre un arc

Chapitre 1 : Etat de l’art de différents modèles de zone cathodique

- 38 -

L’équation de conservation de l’énergie électronique considère le flux de conduction

thermique, le flux enthalpique des électrons, les pertes dues aux collisions inélastiques et

élastiques avec les lourds et les pertes radiatives et l’énergie électrostatique.

Enfin l’équation de conservation de l’énergie ionique prend en compte l’énergie

électrostatique, l’énergie due aux collisions élastiques ainsi que l’énergie due à la conduction

thermique.

Conclusions

Le modèle de Hsu décrit la zone d’ionisation avec un formalisme hydrodynamique à

deux températures. Si une description de la zone d’ionisation devait être faite, le modèle de

Hsu semblerait être une bonne alternative.

Cette approche est cependant limitée actuellement par le manque de données de base

notamment au niveau du calcul des coefficients de transport à deux températures. D’autre part

le modèle mis en place dans les articles [Hsu-1] et [Ret-1] est mis en application pour une

seule valeur de la densité de courant (1.2 108 A.m-2). Ces articles ne permettent pas de savoir

si la théorie de Hsu est applicable à d’autres valeurs de densités de courant.

Les avantages et les inconvénients des modèles basés sur la théorie de Hsu sont

regroupés dans le tableau (TI-03).

Avantages Inconvénients

Modèle fluide à deux températures pour décrire la pré-gaine.

Le paramètre d’entrée du modèle est la densité de courant

Prise en compte du flux d’électrons rétrodiffusés

Couplage avec la cathode jamais réellement réalisé.

Calcul des coefficients de transport utilisant un calcul de composition obsolète [Pot-1]

Théorie testée seulement pour des valeurs de la densité de courant élevées (supérieurs à 108 A.m-2).

Tableau (TI-03) : Avantages et inconvénients des modèles basés sur la théorie de Hsu

Le point que nous pouvons retenir de cette théorie est que la densité de courant à la

surface de la cathode peut constituer un paramètre d’entrée du modèle d’interaction

arc/cathode.

Page 37: Titre : Modélisation de l’interaction entre un arc

Chapitre 1 : Etat de l’art de différents modèles de zone cathodique

- 39 -

IV.B.2. Le modèle de Riemann et Schmitz

Le modèle de Riemann et Schmitz [Sch-1][Sch-2] est original de par son approche

pour traiter la zone cathodique. En effet, il utilise une description fine sur le plan structurel

mais aussi sur le plan du formalisme, allant jusqu'à l’utilisation de l’équation de Boltzmann

collisionnelle pour la description d’une partie de la zone d’ionisation appelée milieu de

Knudsen (cf. figure (FI-03)).

Cathode

Gaine (zone de charge d’espace)

Pré-gaine (zone d’ionisation)

Plasma à l’E.T.L.

Zone de Zone de KnudsenKnudsen

Figure (FI-03) : Représentation schématique de la zone cathodique prenant en compte la

subdivision de la pré-gaine appelée milieu de Knudsen

La structure de la zone cathodique

Cette théorie décrit plus précisément la zone cathodique, qui est subdivisée en quatre

parties représentées sur la figure (FI-03) :

• Le plasma à l’ETL apparaît au travers de conditions aux limites de la pré-gaine.

• La pré-gaine est subdivisée en deux régions : la zone d’ionisation aussi appelée zone

de transition et le milieu de Knudsen dans lequel il peut y avoir des collisions mais pas

d’ionisation.

• La zone de charge d’espace qui est considérée comme non collisionnelle.

• Le corps de la cathode

Page 38: Titre : Modélisation de l’interaction entre un arc

Chapitre 1 : Etat de l’art de différents modèles de zone cathodique

- 40 -

Le plasma à l’E.T.L.

Le plasma à l’E.T.L. intervient au travers d’un calcul de composition pour un plasma

d’argon ionisé une fois.

La pré-gaine

Cette région est étudiée en détail dans l’article Schmitz et al [Sch-1]. Comme évoqué

ci-dessus, cette zone est divisée en deux sous régions :

• La zone d’ionisation est décrite macroscopiquement par une approche

hydrodynamique simplifiée permettant de trouver le profil de densité de charge

dans cette région.

• Le milieu de Knudsen quant à lui est décrit par l’équation de Boltzmann

collisionnelle où les ions créés dans la zone d’ionisation peuvent entrer en

collision avec des neutres.

L’article de Schmitz et al [Sch-2] présente le lien entre la densité de charge à l’interface

gaine/pré-gaine et la densité de charge à l’interface pré-gaine/plasma grâce à une formule

provenant du travail présenté dans un précédent article.

La chute de tension dans la pré-gaine est donnée par le facteur de Boltzmann qui est

aussi utilisé par Benilov et al [Ben-2].

La zone de charge d’espace

Dans cette région la densité électronique est décrite par une loi exponentielle

dépendante de la température des électrons et de la chute de tension dans la gaine. Cette

formulation est classique dans le cadre d’un plasma ionisé en contact avec une paroi. Celle-ci

est donnée par la formule suivante :

⎟⎟⎠

⎞⎜⎜⎝

⎛−=

e

sese kT

eUexpnn (EI-06)

Où nes est la densité électronique à l’interface gaine/pré-gaine, Us est la chute de tension dans

la gaine, k est la constante de Boltzmann et Te est la température électronique à l’interface

gaine/pré-gaine.

Page 39: Titre : Modélisation de l’interaction entre un arc

Chapitre 1 : Etat de l’art de différents modèles de zone cathodique

- 41 -

La densité de courant ionique dans cette région est constante car c’est une région non

collisionnelle. Elle est donnée par la résolution du courant ionique dans le milieu de Knudsen

qui juxtapose la zone de charge d’espace.

La condition aux limites concernant la vitesse des ions à l’interface gaine/pré-gaine est

intéressante. Cette notion vient de la physique des plasmas hors équilibre : c’est le critère de

Bohm. Ce critère donne la vitesse minimale que doivent atteindre les ions dans la pré-gaine

afin de rompre l’équilibre de charge et par la suite rejoindre la cathode. Riemann a étudié ce

critère [Rie-1] formulé de la manière suivante :

i

es m

kTv = (EI-07)

Où k est la constante de Boltzmann, Te la température électronique à l’interface gaine/pré-

gaine et mi la masse de l’ion. Cette formule a été généralisée par Benilov [Ben-4], Valentini

et al [Val-1] et Riemann [Rie-3] pour pouvoir être appliquée à n’importe quel gaz.

La cathode

La cathode intervient dans ce modèle grâce à un bilan de puissance à l’interface zone

de charge d’espace/cathode. Celui-ci prend en compte différentes composantes :

• L’énergie apportée par les ions sous formes enthalpique, cinétique, sans oublier

l’énergie apportée par les ions lors de la recombinaison à la surface de la cathode.

• L’énergie perdue par thermoémission et par rayonnement.

• L’énergie que peut absorber la cathode au travers d’un terme de conduction.

Conclusion

Le modèle de Riemann et Schmitz, développé dans l’argon, semble plus précis que les

autres modèles, présentés dans la littérature, relatifs à la description de la zone d’ionisation.

Le problème est que la synthèse de celui-ci [Sch-2] comporte de nombreuses formules

présentant des valeurs numériques rendant difficile une adaptation du modèle à d’autres gaz.

De plus la description plus précise apportée par ce modèle donne des résultats proches du

modèle de Benilov [Nan-2] qui lui ne modélise pas le milieu de Knudsen.

Enfin dans le bilan d’énergie à l’interface zone de charge d’espace/cathode, le fait de tenir

compte du flux d’énergie perdu par rayonnement de corps noir est discutable si on ne tient pas

compte du rayonnement provenant du plasma.

Page 40: Titre : Modélisation de l’interaction entre un arc

Chapitre 1 : Etat de l’art de différents modèles de zone cathodique

- 42 -

Les avantages et les inconvénients des modèles basés sur les travaux de Riemann et

Schmitz sont regroupés dans le tableau (TI-04).

Avantages Inconvénients

Le modèle de la zone d’interaction cathodique fait intervenir une description du milieu de Knudsen permettant ainsi d’avoir une transition entre la zone d’ionisation et la gaine.

Le flux d’électrons rétrodiffusés est pris en compte dans la gaine.

Ces travaux sont difficilement adaptables à d’autres gaz (coefficients numériques)

La complexité apportée par ces travaux est inutile (résultats proches de ceux obtenus par Benilov présentés dans article de Nandelstädt et al [Nan-2])

Tableau (TI-04) : Avantages et inconvénients des modèles basés sur la théorie de Riemann et Schmitz

IV.B.3. La théorie de Benilov

Au cours des dix dernières années cet auteur a été très prolifique dans le domaine de

l’étude de l’interaction arc-cathode. Sa théorie a beaucoup évolué depuis celle présentée en

1993 [Ben-1]. C’est son article de 1995 [Ben-2] qui pose les bases du modèle qu’il a modifié

au fil des années [Ben-2]-[Ben-13]. Nous allons nous baser sur le modèle de 1995 pour

exposer les idées qui structurent le modèle encore en 2005 [Ben-12].

Dans son modèle, Benilov considère les phénomènes aux frontières de chaque région

de la zone cathodique (cf. figure (FI-04)) :

• A l’interface zone de charge d’espace/cathode, le flux d’énergie qui va du plasma vers

la cathode est défini.

• A l’interface zone d’ionisation/zone de charge d’espace l’équation de conservation de

l’énergie électronique est considérée.

Page 41: Titre : Modélisation de l’interaction entre un arc

Chapitre 1 : Etat de l’art de différents modèles de zone cathodique

- 43 -

Cathode

Gaine (zone de charge d’espace)

Pré-gaine (zone d’ionisation)

Plasma à l’E.T.L.

Bilan énergétique 2 :

Conservation de l’énergie électronique

Bilan énergétique 1

Calcul du flux d’énergie provenant du plasma allant vers la cathode

Figure (FI-04) : Schéma du positionnement des bilans énergétiques

Les grandeurs qui font le lien entre ces trois régions sont les flux de particules dans la

zone de charge d’espace qui, dans ce modèle, est considérée comme non-collisionnelle.

Notons qu’il existe une version du modèle avec une gaine collisionnelle pour les plasmas

haute pression (de l’ordre de la dizaine d’atmosphères) [Ben-5] .

Les flux de particules

Les flux de particules sont au nombre de trois :

• le flux d’électrons thermoémis emφ , défini à partir de la loi de Richardson

Schottky par la forme suivante :

0

c3

w

2wem 4

EeWavec

kTWWexpT

eA

πε=Δ⎟⎟

⎞⎜⎜⎝

⎛ Δ−−=φ (EI-08)

• le flux d’électrons rétrodiffusés bdφ , donné grâce au facteur de Boltzmann :

e

ee

e

e

seseebd m

kT8Cavec

4C

kTeU

expnvnπ

=⎥⎦

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−==φ (EI-09)

• le flux d’ions iφ , déterminé à partir de la densité d’ions à l’interface gaine/pré-

gaine et à une reformulation du critère de Bohm prenant en compte la

température électronique, la température ionique et la charge moyenne des

ions :

( )

i

eisisisisi m

ZTTknvn

+==φ (EI-10)

Page 42: Titre : Modélisation de l’interaction entre un arc

Chapitre 1 : Etat de l’art de différents modèles de zone cathodique

- 44 -

La légende de chacune des grandeurs est donnée par le tableau (TI-05) ci-

dessous.

nis Densité d’ions à l’interface gaine/pré-gaine

Z Charge moyenne des ions

Te Température électronique

Tis Température des ions à l’interface gaine/pré-gaine

Us Chute de tension dans la gaine

nes Densité électronique à l’interface gaine/pré-gaine

Tw Température de la surface de la cathode

W Travail de sortie des électrons

ΔW Réduction Schottky

k Constante de Boltzmann

ε0 Permittivité du vide

e Charge élémentaire

me Masse de l’électron

mi Masse des ions

A Facteur pré-exponentiel dépendant du matériau

Ec Champ électrique à la surface de la cathode

Tableau (TI-05) : Notations utilisées dans les formules (EI-08)-(EI-10)

Ces flux sont représentés sur la figure (FI-05).

Cathode

Gaine (zone de charge d’espace)

Pré-gaine (zone d’ionisation)

Plasma à l’E.T.L.

Φi Φbd Φem

Figure (FI-05) : Représentation des flux dans la gaine

Page 43: Titre : Modélisation de l’interaction entre un arc

Chapitre 1 : Etat de l’art de différents modèles de zone cathodique

- 45 -

La zone d’ionisation (pré-gaine)

Pour décrire cette zone, Benilov considère les électrons, les ions et les atomes comme

plusieurs fluides [Ben-3] dont la densité et le mouvement sont déterminés par un modèle

hydrodynamique à deux températures.

Ainsi à partir de ce calcul, l’auteur obtient une expression condensée permettant de

connaitre la densité d’ions à partir de celle calculée au niveau de l’interface pré-gaine/plasma

à l’E.T.L. [Ben-3] :

21

2ir0ii

isiis nkDm

kT avec

28.0nn ⎟⎟

⎞⎜⎜⎝

⎛=α

α+=

∞∞∞ (EI-11)

Où ni∞ correspond à la densité d’ions dans le plasma à l’E.T.L.. Tis est la température ionique

à la frontière gaine/pré-gaine, Di0∞ est le coefficient de diffusion ion/neutre dans le plasma, kr

est le coefficient de recombinaison à trois corps et mi est la masse de l’ion. Cette expression a

évolué vers une forme plus élaborée donnée dans l’article de Benilov [Ben-8].

A partir de l’équation (EI-11) exprimant nis et de la prise en compte de la neutralité électrique,

la densité électronique nes à l’interface gaine/pré-gaine est déduite grâce au produit isZn .

La chute de tension de la zone d’ionisation est alors définie de la manière suivante :

es

eei n

nln

ekT

U ∞= (EI-12)

Dans l’égalité (EI-12), Te et nes correspondent respectivement à la température

électronique et à la densité électronique à la frontière de la zone d’ionisation. ne∞ est la densité

électronique dans le plasma à l’E.T.L.. On remarquera que la chute de tension Ui est exprimée

à partir du facteur de Boltzmann qui est déduit de l’équation de Boltzmann unidimensionnelle

et non collisionnelle avec champ électrique constant. Par conséquent, cette équation est une

estimation de la chute de tension dans la zone d’ionisation qui est collisionnelle.

La zone de charge d’espace (Gaine)

La modélisation de la zone de charge d’espace est nécessaire car elle permet d’obtenir

la condition aux limites au niveau de la vitesse des ions à l’interface gaine/pré-gaine et du

champ électrique à la surface de la cathode. Ce champ électrique Ec est utilisé dans le calcul

de la correction Schottky (EI-08).

Page 44: Titre : Modélisation de l’interaction entre un arc

Chapitre 1 : Etat de l’art de différents modèles de zone cathodique

- 46 -

Pour pouvoir déterminer Ec, l’équation de Poisson est nécessaire :

( )ie2

2

0 Znnedzd

−=ϕε (EI-13)

La résolution de cette équation nécessite d’expliciter la densité de charge électronique ne et la

densité d’ion ni dans la zone de charge d’espace. Pour cela l’équation de Boltzmann est

nécessaire. La gaine étant non collisionnelle pour des pressions de l’ordre de 1 atm, l’équation

de Boltzmann sans terme de collision peut être utilisée. Pour des ions accélérés par un champ

électrique celle-ci s’écrit :

0vf

dzd

mZe

zfv

ziz =

∂∂ϕ

−∂∂ (EI-14)

Avec, vz la vitesse moyenne selon l’axe z, ϕ le potentiel électrostatique, Z la charge moyenne

d’un ion fictif et f la fonction de distribution des ions. Z est calculée grâce à la moyenne des

charges de chaque ion pondérée par leur densité respective. On notera que le potentiel

électrostatique ϕ est nul à l’interface gaine/pré-gaine.

Pour résoudre l’équation (EI-14), il faut connaître la fonction de distribution des

vitesses des ions à l’entrée de la gaine. Pour cela Benilov ne modélise pas le milieu de

Knudsen contrairement à Schmitz et al [Sch-1], néanmoins il retranscrit ses effets en

supposant que la distribution des vitesses des ions sortant de la zone d’ionisation est une

fonction « porte ». Cela se traduit par la condition aux limites suivante :

( ) ( )

⎪⎩

⎪⎨

⎧ −−<<+−=∞

contrairecasledans0

uvvuvpouru2

n)v,(f isis

i

is

(EI-15)

iii mkTu = est la vitesse d’agitation thermique avec k la constante de Boltzmann, mi la

masse de l’ion et Ti sa température. vs est une vitesse limite dirigée qui va être définie par la

suite. La représentation graphique de cette fonction est reportée sur la figure (FI-06).

0-vs

i

is

u2nui

f(∞,v)

v

Figure (FI-06) : Fonction de distribution des vitesses des ions à l’interface gaine/pré-gaine

Page 45: Titre : Modélisation de l’interaction entre un arc

Chapitre 1 : Etat de l’art de différents modèles de zone cathodique

- 47 -

On calcule ensuite la fonction de distribution des ions f(z ,v) :

( )⎪⎩

⎪⎨

⎧ −<<−= −+

contrairecasledans0

vvvpouru2

nv,zf i

is

(EI-16)

v+ et v- les vitesses maximale et minimale pour un point donné dans la zone de charge

d’espace. Ces vitesses sont obtenues grâce à l’équation de conservation de l’énergie

mécanique dans le cas de particules en chute libre dans un champ électrique :

( )i

2is m

Ze2uv)z(v ϕ−±=± (EI-17)

La densité ni(z) est déduite de f : ( )∫∞−

=0

zzi dvv,zf)z(n . La part d’ions allant de la cathode

vers la zone d’ionisation est négligeable ainsi l’intégrale n’est calculée que suivant les

vitesses vz négatives.

On en déduit la valeur de ni :

( )i

isi u2vv

nzn −+ −= (EI-18)

Dans la zone de charge d’espace, la fonction de distribution électronique est supposée

Maxwellienne. Par conséquent, comme les électrons sont soumis à la force conservative

provenant du champ électrique présent dans cette région, la densité électronique dans cette

région s’écrit après intégration de l’équation de Boltzmann non-collisionnelle pour les

électrons :

( )e

ese kTeexpnzn ϕ

= (EI-19)

L’équation (EI-13) devient après substitution de ni et de ne par les relations (EI-18) et (EI-19)

et intégration :

21

ee

2i2

si

33

i0

is

kTeexp1ZkT

3uv

u6vvm

n2)(E

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−−⎟⎟

⎞⎜⎜⎝

⎛−−

−= −+ ϕ

εϕ (EI-20)

Lorsque ϕ tend vers 0 dans l’équation (EI-20), la vitesse vs pour laquelle il y a rupture

de neutralité électrique est similaire à la vitesse de Bohm couramment utilisée [Rie-1]:

Page 46: Titre : Modélisation de l’interaction entre un arc

Chapitre 1 : Etat de l’art de différents modèles de zone cathodique

- 48 -

( )

i

eiss m

ZTTkv

+= (EI-21)

vs est la vitesse que les ions doivent dépasser pour créer une zone de charge d’espace

positive formant ainsi la gaine. Cette vitesse des ions à la frontière gaine/pré-gaine permet

d’obtenir le flux d’ions défini par l’équation (EI-10).

Si on pose Us la chute de tension au niveau de la zone de charge d’espace, on trouve le

champ électrique au niveau de la cathode Ec=E(-Us). Cette grandeur va nous permettre par la

suite de calculer la correction Schottky utilisée dans l’équation (EI-08).

La densité de courant totale et le flux d’énergie à la cathode

Les trois flux de particules ((EI-08), (EI-09) et (EI-10)) permettent de calculer la

densité de courant dans la zone de charge d’espace et le flux d’énergie vers la cathode :

• La densité de courant :

( )bdemiZej φ−φ+φ= (EI-22)

Pour plus de détail sur cette équation on pourra se reporter au tableau (TI-01)

• Le flux d’énergie à la cathode :

( )

( )( )( )( )WWkT2

WWkT2

WWZEZeUT22

ZTT2kq

wem

ebd

iswe

isi

Δ−+φ−Δ−+φ+

⎥⎦

⎤⎢⎣

⎡Δ−−++⎟

⎠⎞

⎜⎝⎛ −+φ=

(EI-23)

Le premier terme correspond à l’énergie apportée par les ions, le second terme

correspond à celle apportée par les électrons rétrodiffusés et le troisième à celle des électrons

thermoémis. Notons que dans l’article de Benilov et al [Ben-10] un flux d’énergie simplifié

fonction de la température de la surface et de la chute de tension dans la zone de charge

d’espace est déterminé grâce au bilan d’énergie à l’interface gaine/pré-gaine défini par la

suite.

Page 47: Titre : Modélisation de l’interaction entre un arc

Chapitre 1 : Etat de l’art de différents modèles de zone cathodique

- 49 -

Conservation de l’énergie à l’interface gaine/pré-gaine

Dans le modèle de Benilov une équation de conservation de l’énergie électronique à

l’interface gaine/pré-gaine est utilisée. Celle-ci est formulée de la manière suivante :

⎥⎦

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−+φ+

⎥⎦

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−+φ=⎥

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−++φ

∞∞

es

eeii

es

eesbd

es

eewsem

nn

ln5.02.3ZkTE

2.1nn

lnkTeU2.3nn

lnkTkT2eU

(EI-24)

Dans le premier membre on reconnaît l’énergie apportée par les électrons thermoémis

sous forme électrique et thermique. Dans le second membre on a l’énergie emportée par les

électrons rétrodiffusés et l’énergie prise par les ions.

Paramètres d’entrée

Les paramètres d’entrée utilisés dans la théorie de Benilov dans les articles traitant de

l’interaction arc/cathode écrits ou coécrits par Benilov sont : la chute de tension cathodique

totale et la température de surface thermoémissive de la cathode. Seuls les articles de Nielsen

et al [Nie-1] et Benilov et al [Ben-02] utilisent une étude paramétrique en fonction de la

température électronique et de la pression du gaz en couplant le modèle à un modèle

unidimensionnel de conduction thermique dans la cathode.

Bilan

Les avantages et les inconvénients des modèles basés sur les travaux de Benilov sont

regroupés dans le tableau (TI-06).

Avantages Inconvénients

Travaux facilement transposables Validés expérimentalement pour de

faibles ampérages en ce qui concerne la chute de tension cathodique [Nan-2]

Prise en compte du flux d’électrons rétrodiffusés

Pas réellement appliqués dans une configuration 2D/3D

Tableau (TI-06) : Avantages et inconvénients des modèles basés sur la théorie de Benilov

Page 48: Titre : Modélisation de l’interaction entre un arc

Chapitre 1 : Etat de l’art de différents modèles de zone cathodique

- 50 -

IV.B.4. Conclusion sur les modèles complets

La théorie de Benilov est directement utilisable sans avoir recours à un modèle

hydrodynamique complexe comme cela peut être le cas pour le modèle de Hsu. La théorie de

Riemann et Schmitz ajoute une description plus fine de la zone d’ionisation qui en fait s’avère

inutile aux vues des résultats de l’article de Nandelstädt et al [Nan-2]. Enfin le modèle de

Hsu est rigoureux au niveau de la description de la gaine et de la pré-gaine cependant il doit

être mis de côté à cause du manque de coefficients de transports à deux températures mais

aussi à cause du nombre important de paramètres d’entrée utilisés.

Page 49: Titre : Modélisation de l’interaction entre un arc

Chapitre 1 : Etat de l’art de différents modèles de zone cathodique

- 51 -

V. Synthèse et conclusion

Ce chapitre a montré qu’il existait une grande diversité de modèles décrivant la zone

cathodique. Ceux-ci ont été regroupés en deux familles : celle à une température et celle à

deux températures constituée des modèles simplifiés et complets, ce qui permet d’avoir d’une

part une vue d’ensemble et d’autre part de faciliter par la suite le choix du modèle qui sera

utilisé. Une synthèse des principales caractéristiques des modèles cités ainsi que des points

que nous allons garder pour élaborer notre modèle est donnée dans l’annexe I.

Cette synthèse nous amène à nous poser la question fondamentale suivante : est-il

judicieux d’utiliser uniquement un des modèles présentés ou faut-il plutôt construire un

nouveau modèle en sélectionnant les parties les plus pertinentes de chacun d’eux ?

La seconde solution est intéressante car certaines idées vont pouvoir être agencées

dans un modèle cohérent. Les principales idées sont les suivantes :

L’utilisation de trois flux de particules chargés (électrons thermoémis et

rétrodiffusés, ions) équilibrés par le bilan d’énergie à l’interface gaine/pré-

gaine proposé par Benilov et al [Ben-2]. L’utilisation de ce bilan permettra de

tenir compte de l’ionisation du gaz à l’interface gaine/pré-gaine.

Le calcul de la densité de charges à l’interface gaine/pré-gaine par un calcul de

composition à deux températures comme le proposent Zhou et al [Zho-1] et

Coulombe et al [Cou-1]. Ce calcul permettra d’obtenir la densité de charge à

l’interface gaine/pré-gaine sans avoir à modéliser complètement la zone

d’ionisation.

L’utilisation d’une conductivité électrique tenant compte des phénomènes

cathodiques entre la cathode et le plasma à l’Equilibre Thermodynamique

Local comme le suggère la théorie de Lowke [Low-2].

La densité de courant à la surface de la cathode doit être un paramètre d’entrée

du modèle d’interaction arc/cathode [Low-2] [Hsu-1].

Page 50: Titre : Modélisation de l’interaction entre un arc

Chapitre 1 : Etat de l’art de différents modèles de zone cathodique

- 52 -

Page 51: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 53 -

Chapitre 2 : Modèle d’interaction

arc-cathode

Page 52: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 54 -

Page 53: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 55 -

I. Introduction

Le modèle de Benilov [Ben-2] va constituer la base de nos développements. Par

conséquent dans une première partie les résultats obtenus en codant son modèle vont être

comparés à ceux trouvés dans l’un de ses articles [Ben-2].

Une seconde partie va permettre de présenter les étapes de construction de notre

modèle dont le point de départ est le modèle de Benilov et al [Ben-2]. Ces étapes vont

permettre d’améliorer ce modèle et de lever l’incertitude existante au niveau du calcul de

composition à l’interface gaine/pré-gaine.

Dans une troisième partie les résultats de nos développements seront comparés avec

des résultats expérimentaux [Dab-02] et théoriques trouvés sur internet [Ben-14] ou bien

trouvés dans la littérature [Sch-2]. Cette étape permettra de valider notre modèle d’interaction

pour des ampérages faibles (quelques Ampères).

Dans une quatrième partie les grandeurs principales de la zone cathodique telles que la

densité de courant, le flux d’énergie à la cathode, la chute de tension cathodique et la

température de surface de la cathode vont être étudiées par le biais d’une étude paramétrique

suivant la température électronique.

Une dernière partie nous permettra de poser les bases du couplage de notre modèle

d’interaction à celui de la colonne dans une configuration d’arc électrique à deux dimensions.

Pour cela, nous allons choisir le paramètre d’entrée le plus judicieux pour réaliser cette

adaptation.

Page 54: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 56 -

II. Mise en place du code retranscrivant le modèle de Benilov de 1995

Une première étape de notre travail a consisté à retranscrire sous la forme d’un

programme le modèle de Benilov et al [Ben-2] à partir des informations trouvées dans cet

article. L’algorithme de résolution va tout d’abord être présenté, puis les résultats obtenus à

partir de notre programme seront confrontés à ceux de Benilov et al [Ben-2].

II.A. Algorithme

Afin de déterminer les différentes grandeurs au sein de la région cathodique, nous

allons adopter les étapes de résolution proposées par Benilov :

1. La température des « lourds », des électrons et de la surface de la cathode sont

données. Les deux premières températures sont supposées constantes dans

toute la zone cathodique.

2. La densité d’ions à l’interface gaine/pré-gaine nis est ensuite déterminée en

utilisant la formule (EI-11). Un calcul de composition à deux températures

[Van-1] permet de calculer la densité de charges à l’interface pré-

gaine/plasma.

3. Le calcul des flux de particules chargées défini par les équations (EI-08), (EI-

09) et (EI-10) est effectué.

4. Le bilan d’énergie à l’interface gaine/pré-gaine (EI-24) permet de trouver la

chute de tension Us dans la gaine

5. La chute de tension Ui dans la zone d’ionisation (EI-12), la densité de courant

totale (EI-22), le flux d’énergie q vers la cathode sont calculés (EI-23)

6. Enfin la température électronique Te est modifiée en gardant la température des

lourds et la température de surface de la cathode fixe puis la démarche est

reprise à partir de l’étape 2.

Page 55: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 57 -

II.B. Conditions du calcul

Une étude paramétrique utilisant la température électronique Te comme grandeur d’entrée

va être mise en œuvre. Les autres conditions du calcul sont les suivantes :

La cathode est en tungstène

Le gaz plasmagène est constitué d’argon à la pression atmosphérique

La température des « lourds » est prise constante à 10000 K à l’interface gaine/pré-

gaine et à l’interface pré-gaine/cathode

Les grandeurs de la zone cathodique sont calculées pour trois valeurs de la

température de surface de cathode Tw : 3000 K, 4000 K et 5000 K. Notons que cette

dernière température n’est pas réaliste. Cependant elle permet d’étudier le

comportement de notre code lorsque la thermoémission est dominante.

Les valeurs utilisées pour le coefficient de recombinaison à trois corps kr (cf. (EI-11))

n’étant pas présentées dans l’article de Benilov et al [Ben-2] nous avons utilisé les

résultats d’un calcul trouvé dans l’article postérieur de Benilov [Ben-8] basé sur la

théorie de Hinnov et al [Hin-1].

La valeur du coefficient de diffusion ions-neutres Dio (cf. (EI-11)) utilisée est de 10-2

m2.s-1. Celle-ci est trouvée dans l’article de Benilov et al [Ben-2].

La valeur prise pour le facteur pré-exponentiel A, utilisé dans la formule définissant le

flux d’électrons thermoémis (cf. (EI-08)), est de, 6.02.105 A.m-2K-2 pour le tungstène

[Ben-2].

II.C. Comparaison

Les résultats obtenus avec des températures de surface de 3000 K, 4000 K et 5000 K

vont être présentés. Ces températures ont été choisies d’une part afin de pouvoir effectuer une

comparaison avec les résultats de Benilov et d’autre part afin de correspondre à deux

régimes : avec 3000 K la thermoémission est modérée alors qu’avec une température de

surface de 5000 K elle sera dominante. La température de surface de 4000 K est proche de

celle mesurée à la surface de cathodes en tungstène pur [Hai-1].

Page 56: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 58 -

Tw = 3000K

Les densités de courant totales et les chutes de tension dans la gaine obtenues par

Benilov et al [Ben-2] et celles obtenues grâce à notre programme sont présentées

respectivement sur les figures (FII-01) et (FII-02).

10 15 20 25 30105

106

107

108

109

1010

calcul Benilov et al [Ben-02]

j (A.

m-2)

Te (kK) Figure (FII-01) : Densité de courant j en fonction de la température électronique Te

(croix : [Ben-2], carrés : nos résultats)

10 15 20 25 3010-3

10-2

10-1

100

101

102

103

calcul Benilov et al [Ben-02]

U s (V)

Te (kK)

Figure (FII-02) : Chute de tension Us en fonction de la température électronique Te

(croix : [Ben-2], carrés : nos résultats)

Ces deux figures montrent qu’il existe une différence d’environ un ordre de grandeur,

à haute et à basse température électronique Te, entre les densités de courant et les chutes de

Page 57: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 59 -

tension Us données par notre modèle et les résultats présentés par Benilov. Nous pouvons

remarquer que les courbes obtenues par nos calculs, aussi bien pour la densité de courant que

pour la chute de tension, passent par un maximum alors que celles obtenus par Benilov et al

[Ben-02] croissent avec la température.

Voyons si ces différences apparaissent avec une température de surface de cathode de

4000 K et 5000 K.

Tw = 4000 K

Les densités de courant totales et les chutes de tension dans la gaine obtenues par

Benilov et al [Ben-2] et celles obtenues grâce à notre programme sont présentées

respectivement sur les figures (FII-03) et (FII-04) pour une température de cathode de

4000K.

Les figures (FII-03) et (FII-04) présentent les mêmes tendances que les figures (FII-

01) et (FII-02).

La densité de courant et la chute de tension dans la gaine sont croissantes avec la

température électronique dans le cas des résultats de Benilov alors que nous obtenons encore

des courbes en « cloche » avec nos calculs.

Les différences entre nos résultats et ceux de Benilov et al [Ben-02] sont toujours d’un

ordre de grandeur pour les hautes températures électroniques dans le cas de la densité de

courant. En ce qui concerne la chute de tension, cet écart se trouve au niveau des basses et des

hautes températures électroniques.

10 15 20 25 30105

106

107

108

109

1010

calcul Benilov et al [Ben-02]

j (A.

m-2)

Te (kK) Figure (FII-03) : Densité de courant j en fonction de la température électronique Te

(croix : [Ben-2], carrés : nos résultats)

Page 58: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 60 -

10 15 20 25 3010-3

10-2

10-1

100

101

102

103

calcul Benilov et al [Ben-02]

U s (V)

Te (kK)

Figure (FII-04) : Chute de tension Us en fonction de la température électronique Te

(croix : [Ben-2], carrés : nos résultats)

Tw= 5000 K

La densité de courant totale et la chute de tension dans la gaine obtenues par Benilov

et al [Ben-2] et par notre programme sont présentées respectivement sur les figures (FII-05)

et (FII-06).

10 15 20 25 30105

106

107

108

109

1010

calcul Benilov et al [Ben-02]

j (A.

m-2)

Te (kK) Figure (FII-05) : Densité de courant j en fonction de la température électronique Te

(croix : [Ben-2], carrés : nos résultats)

Page 59: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 61 -

10 15 20 25 3010-3

10-2

10-1

100

101

102

103

calcul Benilov et al [Ben-02]

U s (V)

Te (kK) Figure (FII-06) : Chute de tension Us en fonction de la température électronique Te

(croix : [Ben-2], carrés : nos résultats)

Pour une température de surface de 5000 K, les résultats de la figure (FII-05)

montrent une différence un peu moins importante entre nos résultats et ceux de Benilov et al

[Ben-2] au niveau de la densité de courant. Cependant la figure (FII-06) présentant la chute

de tension dans la gaine indique qu’il y a une différence de plusieurs ordres de grandeur entre

nos résultats et ceux de Benilov à basse température électronique ce qui ne semble pas

acceptable.

Enfin, de même que pour les températures de surface 3000 K et 4000 K, les courbes

obtenues avec nos résultats ne sont pas monotones contrairement à celles de Benilov et al

[Ben-2].

Discussion

L’étude comparative, que nous avons réalisée, a montré que la transcription faite du

modèle de Benilov de 1995 donnait des résultats très différents de ceux présentés par Benilov

et al [Ben-2]. Cependant des incertitudes demeurent sur la théorie présentée dans cet article

du fait du manque de clarté sur certaines grandeurs utilisées dans le modèle.

Nous avons donc étudié de plus près l’expression des flux de particules chargées

définis par les équations (EI-08), (EI-09) et (EI-10).

La formulation du flux d’électrons thermoémis (EI-08) ne présente pas de doute

concernant la forme globale car l’auteur fait référence à l’article de Morrow et al [Mor-1]. La

Page 60: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 62 -

seule incertitude sur cette expression peut se trouver au niveau de la correction Schottky qui

n’est pas clairement explicitée. Cependant celle-ci ne peut pas faire varier drastiquement le

flux d’électrons thermoémis au point d’avoir un ordre de grandeur de différence sur la densité

de courant et sur la chute de tension cathodique.

La seule grandeur susceptible de faire varier sensiblement les flux d’ions et d’électrons

rétrodiffusés est la densité de charge à l’interface gaine/pré-gaine. En effet la formule (EI-11),

exprimant la densité d’ions à l’interface gaine/pré-gaine, présente des incertitudes au niveau

des valeurs prises par Benilov pour le coefficient de diffusion ion-neutre Dio, le coefficient de

recombinaison à trois corps kr et la méthode de calcul de composition à deux températures à

l’interface pré-gaine/cathode :

• Le coefficient Dio dépend de la température des lourds qui est constante et

égale à 10000K. Comme les différences entre nos résultats et ceux de Benilov

et al [Ben-2] varient avec la température électronique, on peut supposer que ce

coefficient de transport n’est pas la source des désaccords.

• Le coefficient de recombinaison à trois corps kr peut quant à lui varier de

quatre ordres de grandeur (10-38 à 10-42 m6.s-1) suivant la théorie utilisée [Ben-

8][Alm-1].

• La composition à deux températures permettant d’obtenir la densité d’ions à

l’interface pré-gaine/cathode ni∞ (cf. (EI-11)) ne peut pas varier d’un ordre de

grandeur sachant que les températures électroniques et ioniques sont bien

définies pour cette étude paramétrique.

Nous pouvons donc naturellement penser de cette analyse que le problème vient très

probablement de la valeur de kr prise pour le calcul de la densité de charges à l’interface

gaine/pré-gaine.

Page 61: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 63 -

II.C.1. Calculs avec différentes valeurs de kr fixées

Pour étudier l’influence du coefficient de recombinaison à trois corps sur la densité de

courant et sur la chute de tension dans la gaine, deux valeurs extrêmes tirées de l’article de

Benilov [Ben-8] ont été choisies (kr= 10-38 m6.s-1, kr = 10-40 m6.s-1). Ces valeurs sont données

par la courbe représentant les kr en fonction de la température électronique que l’on retrouve

sur la figure (FII-07).

A partir de chacune de ces valeurs de kr, les grandeurs de la zone cathodique ont été

calculées pour une température de surface Tw de 3000 K et de 5000 K.

10 15 20 25 3010-41

10-40

10-39

10-38

k r (m

6 .s-1)

Te (kK) Figure (FII-07) : Coefficient de recombinaison à trois corps kr en fonction de la température

électronique [Ben-8].

II.C.1.a) Tw = 3000 K

Les densités de courant totales obtenues en utilisant les deux valeurs de kr sont

présentées sur la figure (FII-08) et comparées à celles calculées par Benilov et al [Ben-02].

La courbe indique que la densité de courant est fortement influencée par la valeur du

coefficient de recombinaison à trois corps kr. Cette étude montre qu’à basse température

électronique l’utilisation de kr = 10-40 m6.s-1 permet d’avoir des résultats très proches de ceux

obtenus par Benilov et al [Ben-02].

Néanmoins, au dessus de Te = 15 kK, l’écart entre la densité de courant obtenue avec

kr = 10-38 m6.s-1 et celle calculée par Benilov et al [Ben-02] reste le plus faible.

Page 62: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 64 -

10 15 20 25 30105

106

107

108

109

1010

kr = 10-38 m6.s-1

kr = 10-40 m6.s-1

[Ben-02]

j (A.

m-2)

Te (kK) Figure (FII-08) : Densités de courant totales en fonction de la température électronique, Tw=3000K

(carrés : calcul kr= 10-38 m6.s-1, ronds : calcul kr= 10-40 m6.s-1, croix : [Ben-02])

La figure (FII-09) présente les chutes de tensions dans la gaine calculées à partir des

deux valeurs de kr et celle déterminée par Benilov et al [Ben-2]. Cette figure montre que la

chute de tension cathodique est sensible à la valeur du coefficient kr choisie. De même que

pour la densité de courant totale, en dessous de 15 kK, la chute de tension dans la gaine est

plus proche de celle calculée par Benilov et al [Ben-2] avec kr = 10-40 m6.s-1. Au dessus de Te

= 15 kK, la chute de tension déterminée avec kr =10-38 m6.s-1 est plus proche du résultat de

Benilov et al [Ben-2].

10 15 20 25 3010-3

10-2

10-1

100

101

102

103

kr = 10-38 m6.s-1

kr = 10-40 m6.s-1

[Ben-02]

U s (V)

Te (kK) Figure (FII-09) : Chute de tension dans la gaine Us en fonction de la température électronique,

Tw=3000 K (carrés : calcul kr= 10-38 m6.s-1, ronds : calcul kr= 10-40 m6.s-1, croix : [Ben-02])

Page 63: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 65 -

II.C.1.b) Tw = 5000K

Les figures (FII-10) et (FII-11) présentent respectivement les densités de courant et

les chutes de tension dans la gaine en fonction de la température électronique pour deux

valeurs de kr : 10-38 m6.s-1 et 10-40 m6.s-1.

10 15 20 25 30105

106

107

108

109

1010

kr = 10-38 m6.s-1

kr = 10-40 m6.s-1

[Ben-02]

j (A.

m-2)

Te (kK) Figure (FII-10) : Densités de courant totales en fonction de la température électronique, Tw=3000 K

(carrés : kr= 10-38 m6.s-1, ronds : kr= 10-40 m6.s-1, croix : [Ben-02])

10 15 20 25 3010-3

10-2

10-1

100

101

102

103

kr = 10-38 m6.s-1

kr = 10-40 m6.s-1

[Ben-02]

U s (V)

Te (kK) Figure (FII-11) : Chute de tension dans la gaine Us en fonction de la température électronique,

Tw=3000 K (carrés : kr= 10-38 m6.s-1, ronds : kr= 10-40 m6.s-1, croix : [Ben-02])

Page 64: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 66 -

On constate les mêmes tendances avec Tw =5000 K qu’avec Tw = 3000 K. Nos

résultats obtenus avec kr = 10-40 m6.s-1 se rapprochent de ceux obtenus par Benilov et al [Ben-

02] à basse température électronique. A haute température électronique ce sont les résultats

avec kr = 10-38 m6.s-1 qui sont en meilleur accord.

II.C.1.c) Conclusion

Les valeurs de kr utilisées dans cette partie ont permis d’encadrer les résultats obtenus

avec Benilov et al [Ben-02]. Ainsi pour chacune des grandeurs j et Us nous avons pu constater

un meilleur accord en utilisant kr =10-40 m6.s-1 pour les basses températures et kr =10-38 m6.s-1

pour les hautes températures. La figure (FII-07) montre que les valeurs réelles de kr sont en

contradiction avec nos constatations car physiquement à basse température électronique kr est

de l’ordre de 10-38 m6.s-1 alors qu’à haute température électronique ce coefficient est de

l’ordre de 10-40 m6.s-1. Nous pouvons donc supposer que dans l’article de Benilov et al [Ben-

02] une erreur a été commise en prenant les valeurs de kr au niveau des hautes températures

pour celles des basses températures et inversement. Cette hypothèse va être vérifiée dans la

partie suivante.

Page 65: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 67 -

II.C.2. Etude du kr « inversé »

Pour vérifier cette hypothèse d’ « inversion » des données concernant le coefficient de

recombinaison à trois corps kr, nous avons modifié les valeurs de celui-ci en inversant

l’échelle des températures électroniques associées aux valeurs de kr. Ces nouvelles données,

sont représentées sur la figure (FII-12).

10 15 20 25 3010-41

10-40

10-39

10-38

k r inv

ersé

(m6 .s

-1)

Te (kK)

Figure (FII-12) : Coefficient de recombinaison à trois corps kr « inversé » en fonction de la

température électronique.

Des calculs effectués avec ces nouvelles données, seuls les plus représentatifs de par

leur éloignement par rapport aux résultats de Benilov et al [Ben-02] seront présentés. Ainsi la

densité de courant calculée avec Tw = 3000 K et la chute de tension cathodique avec Tw =

5000 K ont été choisies.

La figure (FII-13) représente la densité de courant, obtenue avec les données de kr

« inversées » et une température de surface Tw de 3000 K, en fonction de la température

électronique. Celle-ci tend à confirmer notre hypothèse car la densité de courant obtenue avec

le calcul est maintenant en bon accord avec les résultats de Benilov.

Page 66: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 68 -

10 15 20 25 30105

106

107

108

109

1010

calcul [Ben-02]

j (A.

m-2)

Te (kK) Figure (FII-13) : Densité de courant j en fonction de la température électronique Te,

Tw = 3000 K (croix : [Ben-02], carrés : nos résultats)

Concernant la chute de tension dans la gaine calculée pour Tw = 5000 K, la figure

(FII-14) montre un bon accord entre nos résultats et ceux obtenus par Benilov et al [Ben-2].

10 12 14 16 18 20 22 24 26 28 3010-3

10-2

10-1

100

101

102

103

calcul [Ben-02]

U s (V)

Te (kK)

Figure (FII-14) : Chute de tension Us en fonction de la température électronique Te,

Tw = 5000 K (croix : [Ben-02], carrés : nos résultats)

Page 67: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 69 -

II.D. Bilan

Le programme permettant d’utiliser le modèle de Benilov et al [Ben-2] a été mis en

place avec la température électronique en paramètre d’entrée. La comparaison des résultats

obtenus avec notre première interprétation du modèle de Benilov de 1995 a montré des

désaccords importants avec ceux obtenus dans l’article de Benilov et al [Ben-2]. Ces

différences sembleraient provenir d’une erreur de l’auteur dans l’utilisation des valeurs du

coefficient de recombinaison à trois corps kr.

Cette étude a montré également que le coefficient de recombinaison kr a une influence

non négligeable sur les grandeurs de la zone cathodique car il peut varier de plusieurs ordres

de grandeur. Notons que l’article de Benilov [Ben-8] montre que deux jeux de données pour

kr existent : celui basé sur la théorie de Hinnov et al [Hin-1] et celui calculé par Benilov

[Ben-8]. Ainsi il subsiste une incertitude concernant le choix du jeu de kr à utiliser. Ce

problème va être résolu dans la partie suivante.

Afin de s’affranchir de certains paramètres d’entrée et de nous diriger vers un modèle

auto-cohérent, nous allons construire notre modèle en apportant des améliorations à celui de

Benilov et al [Ben-02].

Page 68: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 70 -

III. Construction de notre modèle

Cette partie a pour objectif de poser les bases de notre modèle d’interaction

arc/cathode. Ce dernier s’appuie sur la théorie de Benilov que nous avons améliorée et

couplée à un modèle de conduction dans une cathode. Comme dans le cas de Benilov, le gaz

plasmagène sera de l’argon.

III.A. Modification du flux d’électrons thermoémis

Pour construire notre modèle, l’équation (EI-08) utilisée par Benilov et al [Ben-2] est

remplacée par celle, plus rigoureuse, provenant d’un calcul de mécanique quantique que l’on

retrouve dans la littérature [Vac-1][Cou-3] :

0

c3

w

2w3

e2

em 4Ee

WaveckT

WWexpTh

mk4πε

=Δ⎟⎟⎠

⎞⎜⎜⎝

⎛ Δ−−

π=φ (EII-01)

La légende de cette formule est reportée dans le tableau (TII-01).

k Constante de Boltzmann

me Masse des électrons

h Constante de Planck

Tw Température de la surface de la cathode

W Travail de sortie des électrons

∆W Correction Schottky

e Charge élémentaire

Ec Champ électrique de surface de la cathode

ε0 Permittivité du vide

Tableau (TII-01) : Notations utilisées dans la formule (EII-01)

La différence entre les formules (EI-08) et (EII-01) se situe au niveau du facteur pré-

exponentiel qui dans la première formule dépend du matériau alors qu’il est exprimé

uniquement à partir de constantes physiques dans la seconde et égal à 1.2.106 A.m-2.K-2.

Page 69: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 71 -

III.B. Calcul de composition à la frontière entre le plasma à

l’E.T.L. et la pré-gaine

Dans notre modèle, pour effectuer le calcul de la composition à l’interface pré-

gaine/plasma à l’E.T.L. nous avons préféré utiliser un calcul de composition monotherme car

à cette interface le plasma est à l’Equilibre Thermodynamique Local [God-1]. Dans ce calcul

nous avons considéré cinq espèces : Ar, Ar+, Ar2+, Ar3+ et e-.

III.C. Ajout d’un bilan énergétique

III.C.1. Hypothèses

Le rayonnement absorbé et émis par la cathode est supposé négligeable dans le bilan

énergétique à l’interface gaine/cathode.

Nous supposons que la cathode ne s’évapore pas. Cela semble légitime si on considère

une cathode en tungstène dont la température d’ébullition est élevée : 5933K [Stö-1].

III.C.2. Continuité du flux d’énergie à l’interface gaine/cathode

Le modèle de conduction vers l’électrode est nécessaire afin que la description de cette

zone prenne en compte la capacité de la cathode à absorber l’énergie. Ainsi la température de

la surface de la cathode ne sera plus un paramètre. Grâce à cette approche, on peut même ne

plus imposer la température ionique Tis et la prendre égale à Tw comme peuvent le faire

Coulombe et al [Cou-1] et Zhou et al [Zho-2]. Cette hypothèse semble légitime car

l’épaisseur de gaine est très faible et les particules lourdes ne font que peu de collisions. De

plus, lors de nos travaux nous avons pu constater que les grandeurs de la zone cathodique ne

sont pas sensibles au choix de la valeur de Tis.

Le flux d’énergie à la surface de la cathode est donné par la loi de Fourier :

Tqcathode ∇κ−=rr (EII-02)

Page 70: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 72 -

Pour cette étude unidimensionnelle, la conductivité thermique κ de la cathode est

supposée constante et égale à 174 W.m-1.K-1 ce qui correspond à la conductivité du tungstène

à 300K.

En prenant T0 comme température de fond de cathode, Δz son épaisseur et Tw la

température à son interface avec la gaine, on obtient :

( )

zTT

q 0wcathode Δ

κ−

= (EII-03)

Ainsi le modèle de conduction dans la cathode ajoute deux paramètres : T0 la température de

fond de cathode et Δz l’épaisseur de la cathode.

Grâce à l’expression du flux transmis à la cathode (qgaine) donné par l’équation (EI-

23), le deuxième bilan énergétique à la frontière gaine/cathode peut être défini :

qgaine = qcathode (EII-04)

III.D. Mise en œuvre de notre modèle dans une configuration

unidimensionnelle

La Figure (FII-15) permet d’avoir une vue d’ensemble des grandeurs de la zone

cathodique. Côté droit, elle présente l’algorithme de notre programme qui permet de résoudre

les bilans énergétiques de manière couplée.

Figure (FII-15) : Schémas de l’algorithme de résolution et du modèle de la zone cathodique

Page 71: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 73 -

Nous allons voir comment nous abordons la résolution du problème afin de déterminer les

grandeurs de la zone cathodique.

III.D.1. Paramètre d’entrée

Afin de poursuivre notre travail sur la base de l’étude paramétrique effectuée dans la

partie II, la température électronique Te a été choisie comme paramètre d’entrée. Celle-ci est

comprise entre 5 kK et 30 kK.

III.D.2. Résolution des équations

Dans un premier temps la densité de charges à l’interface plasma/pré-gaine est

calculée à l’aide de la formule (EI-11). Ensuite les flux de particules chargées (cf. (EI-09),

(EI-10) et (EII-01)) sont déterminés. Les bilans énergétiques donnés par les équations (EI-

23) et (EII-04) forment alors un système d’équations non linéaires que nous avons résolu par

la méthode de Newton-Raphson. Les inconnues de ce système sont la température Tw et la

chute de tension dans la gaine Us. Le module suivant permet de trouver une solution à ce

système.

III.D.3. Paramètres de sortie

Les paramètres de sortie de notre code sont : la chute de tension cathodique U, la chute

de tension dans la zone de charge d’espace Us, la chute de tension dans la zone d’ionisation Ui

(cf. (EI-12)), le champ électrique au niveau de la cathode Ec (cf. (EI-20)), la température de

cathode Tw, la densité de courant j (cf. (EI-22)) et le flux d’énergie vers la cathode q (cf. (EI-

23)).

III.E. Choix de la composition à l’interface gaine/pré-gaine

Le but de cette partie est d’améliorer le calcul de la densité de charges à l’interface

gaine/pré-gaine afin de prendre en compte le travail de Zhou et al [Zho-2] et de Coulombe et

al [Cou-1]. A la différence de Benilov, les auteurs de ces deux articles utilisent un calcul de

composition à deux températures utilisant la formulation des équations de Saha mise en place

par Van de Sanden et al [Van-1].

Afin de voir si cette approche est légitime, nous avons comparé les résultats obtenus avec

notre modèle en utilisant la formule (EI-11) et un calcul de composition à deux températures.

Page 72: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 74 -

Tout d’abord le calcul de composition basé sur la théorie de Van de Sanden et al [Van-1] va

être présenté. Ensuite les valeurs de kr trouvées dans la littérature vont être données. Enfin les

résultats obtenus pour la densité de courant avec les différents jeux de kr et la composition

utilisant la théorie de Van de Sanden vont être comparés.

III.E.1. Le calcul de composition à deux températures

Le calcul de composition de l’argon prend en compte quatre espèces : Ar, Ar+, Ar2+,

Ar3+, e-. La théorie de Van de Sanden et al [Van-1] se traduit par quatre équations :

la loi de Saha pour laquelle on utilise la température électronique :

( )( )

( )⎟⎟⎠

⎞⎜⎜⎝

⎛ Δ−−

π=

++

e

Ar,i3

23ee

eAr

eAr

Ar

Are

kTEE

exphkTm2

TQTQ2

nnn

(EII-05)

( )( )

( )⎟⎟⎠

⎞⎜⎜⎝

⎛ Δ−−

π=

+

+

+

+

+

e

Ar,i3

23ee

eAr

eAr

Ar

Are

kT

EEexp

hkTm2

TQTQ2

nnn 22

(EII-06)

( )( )

( )⎟⎟⎠

⎞⎜⎜⎝

⎛ Δ−−

π=

+

+

+

+

+

e

Ar,i3

23ee

eAr

eAr

Ar

Are

kT

EEexp

hkTm2

TQTQ2

nnn 2

2

3

2

3 (EII-07)

la loi de Dalton à deux températures :

eelArlArlArlArkTnkTnkTnkTnkTnp 32 ++++= +++ (EII-08)

Les variables de ces deux équations sont reportées dans le tableau (TII-02).

p Pression du gaz

in Densité de l’espèce considérée

( )ei TQ Fonction de partition de l’espèce

considérée

me Masse de l’électron

h Constante de Planck

k Constante de Boltzmann

Tl Température des particules lourdes

Te Température des électrons

Ei,Ar Energie d’ionisation de l’argon neutre

ΔE Abaissement du potentiel d’ionisation

Tableau (TII-02) : Grandeurs utilisées pour le calcul de composition

Page 73: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 75 -

A ces quatre équations il faut ajouter l’équation de conservation de la charge et la loi d’action

de masse afin d’avoir un système d’équations fermé.

III.E.2. Estimation du coefficient de recombinaison à trois corps kr(Te)

Deux jeux de coefficients de recombinaison à trois corps kr(Te) ont été trouvés dans

l’article de Benilov [Ben-08]. Le premier, noté krB, est calculé par Benilov [Ben-8], le second,

noté krH, est déterminé à partir de la théorie de Hinnov et al [Hin-1]. Ces données sont

reportées sur la figure (FII-16). Celle-ci montre que les valeurs de kr(Te) diffèrent de deux

ordres de grandeurs l’une de l’autre. Au vue des résultats de la partie II, on peut penser que

cette différence va se répercuter sur la densité de courant totale qui dépend fortement des flux

de particules chargées (cf. (EI-22)).

10 15 20 25 3010-43

10-42

10-41

10-40

10-39

10-38

10-37

10-36

Benilov [Ben-08] Hinnov et al [Hin-1]

k r (m

6 .s-1)

Te (kK)

Figure (FII-16) : Coefficient de recombinaison à trois corps kr en fonction de la température

électronique (carrés : Théorie de Hinnov et al [Hin-1], ronds : Benilov [Ben-08])

Page 74: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 76 -

III.E.3. Comparaison des densités de courant

La figure (FII-17) présente les densités de courant calculées grâce aux deux jeux de

kr(Te) et avec la composition de type Van de Sanden. Cette figure montre que la densité de

courant calculée à partir de krB est de plus d’un ordre de grandeur inférieure à celle calculée à

partir du krH, et, de plus de deux ordres de grandeur inférieure à celle que nous avons calculé à

partir de la théorie de Van de Sanden. Ces différences se retrouvent au niveau des densités

d’ions à l’interface gaine/pré-gaine comme peut le montrer la figure (FII-18).

La densité de courant obtenue avec le calcul de composition de type Van de Sanden

est la seule à dépasser les 108 A.m-2. Or cet ordre de grandeur est retrouvé dans la littérature

[Hsu-2].

10 15 20 25 30105

106

107

108

109

Hinnov et al [Hin-01] Benilov [Ben-08] Van de Sanden

j (A

.m-2)

Te (kK) Figure (FII-17) : Densité de courant en fonction de la température électronique

(carrés : kr Théorie de Hinnov et al [Hin-1], ronds : kr Benilov [Ben-08], triangles : notre calcul à

deux températures)

Page 75: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 77 -

10 15 20 25 301020

1021

1022

1x1023

1024

Hinnov et al [Hin-1] Benilov [Ben-08] Van de Sanden

n is (m

-3)

Te (kK)

Figure (FII-18) : Densité d’ions en fonction de la température électronique

(carrés : kr Théorie de Hinnov et al [Hin-1], ronds : kr Benilov [Ben-08], triangles : notre calcul à

deux températures)

Afin de voir si la direction que nous prenons avec la composition de type Van de

Sanden est la bonne nous avons comparé les puissances obtenues avec le programme

actuellement en ligne de Benilov [Ben-14] et celles déduites des valeurs de flux d’énergie

vers la cathode trouvées dans l’article de Benilov et al [Ben-2] pour deux valeurs de chute de

tension cathodique (cf. figure (FII-19)).

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.010-1

100

101

102

103

104

25 V17 V

17 V

25 V

P (W

)

Tw (kK) Figure (FII-19) : Puissance vers la cathode en fonction de la température de surface cathodique (trait

continu : [Ben-2], Carrés/croix : [Ben-14])

Page 76: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 78 -

On peut constater qu’il existe une différence de quasiment un ordre de grandeur entre

les puissances allant vers la cathode trouvées en 1995 et celles données par le programme en

ligne de Benilov [Ben-14].

Aux vues de ces différences, notre modèle va utiliser dans toute la suite de ce chapitre

un calcul de composition de type Van de Sanden pour calculer la densité de charge à

l’interface gaine/pré-gaine.

III.F. Ajout du phénomène d’émission secondaire

III.F.1. Etude préliminaire

Afin de montrer la légitimité de l’introduction du phénomène d’émission secondaire,

une estimation du courant créé par ce phénomène a été effectuée. Pour cela le flux d’électrons

créés par émission secondaire est nécessaire. Celui-ci est donné par la formule (EII-09) :

sArems vn +γ−=φ (EII-09)

Où γ représente le coefficient d’émission secondaire, +Arn est la densité d’ions Ar+ à

l’interface gaine/pré-gaine et vs est la vitesse des ions définie par la formule (EI-21). Le

coefficient d’émission secondaire est estimé à 0.1 pour une température de surface de 2000 K

avec des ions Ar+ dont l’énergie est comprise entre 10 et 600 eV [Phe-1].

Le flux d’électrons Φems produit permet ainsi de calculer la densité de courant créée par

émission secondaire jems :

emsems ej φ−= (EII-10)

La densité de courant jems a été évaluée grâce au modèle utilisant la température électronique

Te comme paramètre d’entrée. Elle a été comparée à la densité de courant thermoémis jem. Ces

résultats sont reportés sur la figure (FII-20) et sont donnés en fonction de la température

électronique Te.

La figure (FII-20) montre que la densité de courant produite par émission secondaire

devient supérieure à la densité de courant thermoémis pour des températures électroniques

inférieures à 7000 K. La densité de courant thermoémis décroit de manière plus importante

que la densité de courant jems. Ainsi il semble que la prise en compte de l’émission secondaire

Page 77: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 79 -

soit nécessaire pour assurer l’équilibre dans le bilan d’énergie à l’interface gaine/pré-gaine

(EI-24).

5 10 15 20 25 30100

101

102

103

104

105

106

107

108

109

jem jems

j em, j

ems (

A.m

-2)

Te (kK)

Figure (FII-20) : Densités de courant thermoémis jem et secondaire jems en fonction de la température

électronique Te.

III.F.2. Modifications des équations

L’ajout du phénomène d’émission secondaire implique la modification des bilans

d’énergie et de densité de courant.

Ainsi l’équation de conservation de l’énergie à l’interface gaine/pré-gaine (EI-24) devient :

( )

⎥⎦

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−+φ+

⎥⎦

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−+φ=⎥

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−++φ+φ

∞∞

es

eeii

es

eesbd

es

eewsemsem

nn

ln5.02.3ZkTE

2.1nn

lnkTeU2.3nn

lnkTkT2eU

(EII-11)

L’équation de conservation du courant (EI-10) devient :

( )emsbdemiZej φ+φ−φ+φ= (EII-12)

Page 78: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 80 -

Enfin le flux d’énergie vers la cathode intervenant dans le bilan d’énergie à l’interface gaine-

cathode devient :

( )

( )( )( )( )( )( )WWkT2

WWkT2WWkT2

WWZEeZU2

ZTkq

wems

wem

ebd

ise

ipems

Δ−+φ−Δ−+φ−Δ−+φ+

⎥⎦

⎤⎢⎣

⎡Δ−−++⎟

⎠⎞

⎜⎝⎛φ=

(EII-13)

Ce flux permet de remplacer l’équation de continuité de l’énergie à l’interface gaine/cathode

(EII-04) par un bilan utilisant le flux d’énergie qpems définit précédemment et le flux de

conduction qcond décrit par la formule (EII-03):

condpems qq = (EII-14)

III.F.3. Etude de sensibilité

A partir des modifications de notre modèle, présentées dans la partie précédente, les

grandeurs caractéristiques (densité de courant de la zone cathodique, chute de tension,

température de surface et flux d’énergie vers la cathode) ont été calculées.

III.F.3.a) Densité de courant

Les composantes de la densité de courant totale sont présentées sur la figure (FII-21)

en fonction de la température électronique.

5 10 15 20 25 30100

101

102

103

104

105

106

107

108

109

j em, j

ems (

A.m

-2)

Te (kK)

jem jems

Figure (FII-21) : Densités de courant thermoémis jem et secondaire jems en fonction de la température

électronique Te (Carrés : jem , ronds : jems)

Page 79: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 81 -

Cette figure confirme les résultats obtenus dans l’étude préliminaire de la partie III.F.1.

En effet en dessous d’une température de 7100 K la contribution apportée par les électrons

provenant de l’émission secondaire devient supérieure à celle des électrons thermoémis.

La comparaison des figures (FII-20) et (FII-21) montre que la décroissance de la

densité de courant d’électrons thermoémis en dessous de 7000 K est accentuée dans le cas de

la prise en compte de l’émission secondaire dans les bilans. Ce phénomène est dû à une forte

décroissance de la température de surface comme nous le verrons dans la partie III.F.3.C.

III.F.3.b) Chute de tension cathodique

La figure (FII-22) représente la chute de tension cathodique avec et sans la prise en

compte du phénomène d’émission secondaire en fonction de la température électronique.

La figure (FII-22) montre que la chute de tension cathodique ne diverge pas lorsque la

température électronique passe en dessous de 7500 K dans le cas de la prise en compte de

l’émission secondaire. Ce point démontre que la divergence de la chute de tension cathodique

lorsque l’émission secondaire n’est pas prise en compte est bien due à un déséquilibre de

l’équation de conservation de l’énergie à l’interface gaine/pré-gaine (cf. (EII-11)).

5 10 15 20 25 30100

101

102

103

104

105

γ = 0. γ = 0.1

U (V

)

Te (kK)

Figure (FII-22) : Chute de tension cathodique en fonction de la température électronique (carré :

sans émission secondaire ; rond : avec émission secondaire)

Dans le cas de la prise en compte de l’émission secondaire, la chute de tension

plafonne autour de 174 V. Ce résultat s’explique en étudiant l’équation (EII-11) dans le cas

Page 80: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 82 -

où la température électronique et la température de surface de la cathode sont faibles. En effet

la contribution des électrons thermoémis devient vite négligeable lorsque la température de

cathode diminue. La contribution des électrons rétrodiffusés décroît également très vite du fait

de l’augmentation de la chute de tension dans la gaine lorsque la température électronique

décroît. Ainsi dans le bilan (EII-11) il ne reste plus que la contribution apportée par les

électrons produits par émission secondaire et la contribution emportée par le flux d’ions. Par

conséquent, dans le cas où la température de surface de la cathode est faible et lorsque la

température électronique passe en dessous de 6500 K, l’équation d’énergie (EII-11) peut être

approximée de la manière suivante :

iisems EeU φ≈φ (EII-15)

En utilisant le lien entre le flux d’émission secondaire et le flux d’ions présenté dans

l’équation (EII-09) l’équation (EII-15) devient :

γ≈ is EeU (EII-16)

Comme Ei est de 15.75 eV et γ est de l’ordre de 0.1, la chute de tension sera de l’ordre d’une

centaine de volts. Ainsi il est important de connaître le coefficient d’émission secondaire car

il va déterminer le maximum de la chute de tension. Si on augmente d’un facteur 5 le

coefficient secondaire, la figure (FII-23) montre que la chute de tension maximum est

d’environ 40 V.

5 10 15 20 25 300

20406080

100120140160180200

γ = 0.1 γ = 0.5

U (V

)

Te (kK) Figure (FII-23) : Chute de tension cathodique U en fonction de la température électronique Te

(ronds : γ = 0.5 ; carrés : γ = 0.1)

Page 81: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 83 -

III.F.3.c) Température de surface

La température de surface de la cathode a également été calculée avec et sans le

phénomène d’émission secondaire. Les résultats sont reportés sur la figure (FII-24). Celle-ci

reporte la température de surface de la cathode en fonction de la température électronique.

Cette figure montre que le couplage utilisant l’émission secondaire influence de

manière importante la température de surface de la cathode lorsque la température

électronique passe en dessous de 7500 K. Comme la chute de tension passe par un palier, le

flux d’énergie apporté par les ions diminue avec la baisse de la densité de charge à l’interface

gaine/pré-gaine. Cela explique la baisse de la température de surface.

5 10 15 20 25 301.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

γ = 0. γ = 0.1

T w (k

K)

Te (kK) Figure (FII-24) : Température de surface Tw en fonction de la température électronique (carrés : sans

émission secondaire ; ronds : avec émission secondaire)

III.F.3.d) Flux d’énergie

La dernière grandeur caractéristique de la zone cathodique est le flux d’énergie vers la

cathode q. Ce flux est présenté par la figure (FII-25) en fonction de Te avec et sans émission

secondaire. Cette figure montre bien que l’introduction du phénomène d’émission secondaire

provoque une baisse du flux d’énergie vers la cathode donc une chute de la température de

surface.

Page 82: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 84 -

5 10 15 20 25 30104

105

106

107

108

γ = 0. γ = 0.1

q (W

.m-2)

Te (kK)

Figure (FII-25) : Flux d’énergie vers la cathode q en fonction de la température électronique Te

(ronds : avec émission secondaire ; carrés : sans émission secondaire)

III.F.4. Conclusion

L’étude de l’influence de l’émission secondaire sur les grandeurs cathodiques a

montré que celle-ci est non négligeable devant la thermoémission lorsque la température

électronique est inférieure à 7500 K. Ce phénomène permet d’assurer la continuité de

l’énergie à l’interface gaine/pré-gaine. Ainsi il semble nécessaire d’inclure ce phénomène

d’émission électronique dans notre modèle afin de pouvoir l’utiliser même lorsque la

thermoémission devient négligeable.

III.G. Bilan

Dans la suite de ce chapitre et de ce manuscrit notre modèle va utiliser les points suivants :

La thermoémission va être formulée à l’aide de l’équation (EII-01)

La densité de charge à l’interface pré-gaine/plasma va être calculée grâce à un

calcul de composition à une température

La densité de charge à l’interface gaine/pré-gaine est déterminée en utilisant

les équations de Saha formulées par Van de Sanden et al [Van-1]

Page 83: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 85 -

L’émission secondaire va être prise en compte avec un coefficient d’émission

secondaire de 0.1 qui correspond à la valeur expérimentale trouvée dans

l’article de Phelps et al [Phe-1] dans le cas d’une électrode en tungstène et

avec un gaz plasmagène d’argon.

Les bilans d’énergie (EI-24) et (EII-04) sont respectivement remplacés par les

équations (EII-11) et (EII-14)

L’expression du flux vers la cathode utilisée est celle exposée par l’équation

(EII-13)

La densité de courant s’exprime avec l’expression (EII-12)

Page 84: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 86 -

IV. Comparaison avec des résultats expérimentaux et théoriques

Cette partie présente la comparaison des résultats du modèle décrit dans le bilan III.G.

avec des résultats théoriques et expérimentaux issus de la littérature.

IV.A. Recherche de résultats dans la littérature

IV.A.1. Résultats expérimentaux

Pour valider notre modèle il a fallu trouver dans la littérature une configuration

expérimentale dont le rayon de la cathode était suffisamment petit devant sa longueur pour

pouvoir décrire les phénomènes thermiques dans celle-ci de manière unidimensionnelle. Nous

avons trouvé que la configuration expérimentale de lampe haute pression du groupe Allemand

de l’université de Bochum se prêtait bien à cette étape de validation.

En effet, ce groupe a publié une série d’articles portant sur l’interaction arc-cathode [Dab-

1]-[Dab-3][Luh-1][Luh-2][Nan-1][Nan-2]. De leurs travaux nous avons retenu les mesures

par pyrométrie couplées à un système de calorimétrie [Dab-2] (cf. figure (FII-26)).

La température de surface, l’énergie absorbée par la cathode et la chute de tension

cathodique ont été confrontées aux résultats expérimentaux trouvés dans les articles de

Dabringhausen et al [Dab-2] comme on va le voir dans la partie IV.B.

anode

Électrode de fixation refroidie

Arc d’argon

Cathode

Système de refroidissement (huile silicone), T=cst

Tube de quartz

sortie

entrée

Pyromètre

Pc

Prad

Prefroidissement

Δz

Figure (FII-26) : Schéma du dispositif expérimental pour la méthode pyrométrique/calorimétrique

Page 85: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 87 -

IV.A.2. Résultats théoriques

Les premiers résultats théoriques à avoir servi de point de comparaison sont obtenus à

partir du logiciel en ligne de Benilov [Ben-14]. Pour cela les conditions de l’expérience de

Dabringhausen et al [Dab-2] ont été intégrées au programme via internet.

Les résultats de Schmitz et al [Sch-2] ont également été utilisés et comparés à nos

résultats.

IV.B. Comparaison

Notre modèle a été adapté afin de pouvoir être confronté aux résultats expérimentaux.

Pour se placer dans les mêmes conditions que dans ces expériences, la composition a été

calculée pour une pression de 0.26 MPa, la longueur de la cathode Δz est de 2 cm et la

température de fond de cathode T0 est de 300K.

Pour ce qui est de la comparaison avec les résultats théoriques de Schmitz et al [Sch-

2], la pression utilisée pour nos calculs est de 2 bars et le rayon de la cathode est de 0.75 mm.

Les autres caractéristiques sont inchangées.

Comme la section des électrodes utilisées dans ces articles expérimentaux est faible,

de l’ordre de 1mm de diamètre, nous avons supposé que la densité de courant à la surface de

la cathode et le flux d’énergie vers la cathode sont uniformes sur la surface en contact avec le

plasma. Cette hypothèse va permettre d’obtenir la température de surface de la cathode Tw, la

chute de tension cathodique U et la puissance transmise à la cathode en fonction du courant de

la décharge.

IV.B.1. Etude de la puissance P

Les résultats expérimentaux relatifs à la puissance P de l’article de Dabringhausen et

al [Dab-2] sont reportés sur la figure (FII-27) avec les résultats obtenus par notre modèle et

par le programme en ligne de Benilov [Ben-14].

La figure (FII-27) nous montre que la puissance totale calculée est en bon accord avec

celle obtenue par la mesure pour un diamètre d=1 mm. On peut constater que ce n’est pas le

cas pour les résultats obtenus à partir du programme en ligne de Benilov [Ben-14].

La variation importante des puissances en dessous de 1 A provient de l’ionisation qui

va créer des charges de manière exponentielle augmentant ainsi le flux d’ions vers la cathode.

Page 86: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 88 -

Au dessus de 1 A, le flux d’énergie est régulé par la limitation de l’ionisation mais aussi par le

refroidissement de la cathode par thermoémission.

Cette interprétation peut apporter une explication à la puissance insuffisante obtenue

avec le programme de Benilov. En effet on peut penser que la densité de charge à l’interface

gaine/pré-gaine, et donc le flux d’ions calculé est insuffisant pour obtenir des puissances de

l’ordre de celles mesurées.

0 1 2 3 4 5 6 70

5

10

15

20

25

[Dab-2] [Ben-14] calcul

P (W

)

I (A) Figure (FII-27) : Puissance P transmise à la cathode par le plasma en fonction de l'intensité de

courant I pour un diamètre de cathode de 1mm. p=0,26 MPa, dans l'argon.

(Ronds : notre modèle ; croix : expérience [Dab-2], Triangles : [Ben-14])

IV.B.2. Température de surface cathodique Tw

La figure (FII-28) présente les températures de surface obtenues par notre code, par le

programme en ligne de Benilov [Ben-14] et par l’expérience [Dab-2]. Celle-ci montre qu’il y

a une différence d’environ 250 K entre la température de surface de cathode mesurée et celle

calculée grâce à notre modèle. Par contre celles obtenues à partir du programme en ligne sont

plus proches des mesures. Cependant nos résultats sont acceptables compte tenu des barres

d’erreur expérimentales existantes et non reportées sur cette figure. Ces écarts de température

par rapport à l’expérience peuvent provenir des hypothèses de notre modèle. En effet, nous

avons considéré que les profils de densité de courant et de flux d’énergie étaient constants.

Page 87: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 89 -

0 1 2 3 4 5 6 70.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

[Dab-2] [Ben-14] calcul

T w (k

K)

I (A) Figure (FII-28) : Température de surface de cathode en fonction de l'intensité de courant I pour un

diamètre de cathode de 1mm. p=0,26 MPa, dans l'argon.

(ronds : notre modèle, croix : expérience [Dab-2], triangles : [Ben-14])

La température de surface obtenue par notre code a également été comparée aux

résultats théoriques obtenus par Schmitz et al [Sch-1]. Ces résultats sont reportés sur la figure

(FII-29). Cette figure permet de constater que les températures que nous obtenons sont

légèrement surévaluées. Cette tendance qu’a notre modèle à donner une température de

surface trop élevée devra être vérifiée après l’adaptation de notre modèle à une configuration

bidimensionnelle prenant en compte l’arc et son interaction avec la cathode.

0 1 2 3 4 5 6 70

1

2

3

4

T w (k

K)

I (A) Figure (FII-29) : Température de surface de cathode en fonction de l'intensité de courant I pour un

diamètre de cathode de 1.5 mm. p=2 bar, dans l'argon.(carrés : [Sch-2]; ronds : nos résultats)

Page 88: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 90 -

IV.B.3. Etude de la chute de tension cathodique

Pour l’étude de la chute de tension, nos résultats sont tout d’abord comparés avec les

résultats expérimentaux [Dab-2] et avec ceux obtenus en ligne avec le programme de Benilov

[Ben-14]. Ces résultats sont reportés sur la figure (FII-30).

La figure (FII-30) montre un bon accord entre la chute de tension calculée par le

modèle et celle obtenue par l’expérience. Par contre il subsiste toujours un désaccord entre

nos résultats et ceux obtenus grâce au programme en ligne [Ben-14].

0 1 2 3 4 5 6 70

10

20

30

40

50 [Dab-2] [Ben-14] calcul

U (V

)

I (A) Figure (FII-30) : Chute de tension cathodique U en fonction de l’intensité I pour un diamètre de

cathode de 1mm. p=0,26 MPa, dans l'argon.

(ronds : modèle ; croix : méthode [Dab-2], triangles : [Ben-14] )

Afin de valider notre modèle de manière sûre, la chute de tension a été comparée à

celle obtenue par Schmitz et al [Sch-2]. Le résultat de cette comparaison est reporté sur la

figure (FII-31). Cette figure montre un très bon accord entre nos calculs et ceux de Schmitz et

al [Sch-2] permettant ainsi de valider notre modèle.

Concernant les variations des chutes de tensions, elles ont toutes tendances à

augmenter à bas courant. Cela est dû au fait que le système a besoin d’augmenter l’énergie

dirigée des électrons émis à la cathode pour entretenir l’ionisation dans la décharge.

Page 89: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 91 -

0 1 2 3 4 5 6 7 8 9 100

10

20

30

40

50

U (V

)

I (A) Figure (FII-31) : Chute de tension cathodique U en fonction de l’intensité I pour un diamètre de

cathode de 1.5 mm. P = 2 Bars, dans l'argon. (ronds : modèle ; carrés : [ Sch-2] )

IV.C. Conclusion

Cette partie a montré que les résultats obtenus grâce à notre modèle sont en assez bon

accord avec les mesures expérimentales bien que les articles expérimentaux utilisés

n’indiquent pas les barres d’erreurs. Nos résultats et ceux obtenus par Schmitz et al [Sch-2]

sont en bon accord. Néanmoins la température de surface trouvée par notre modèle devra être

validée lorsque le modèle aura été appliqué à deux dimensions.

La description de l’interaction arc/cathode est donc partiellement validée par les

résultats expérimentaux pour des intensités de quelques ampères. Il serait intéressant

d’effectuer des mesures par pyrométrie/calorimétrie pour des intensités de courant de l’ordre

de 100A pour une cathode cylindrique.

Page 90: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 92 -

V. Etude paramétrique du modèle

Les calculs présentés dans cette partie ont été établis pour un gaz plasmagène d’argon

à la pression atmosphérique. La cathode est en tungstène. Sa longueur est de 1cm et la

température de refroidissement est fixée de manière arbitraire à 1000 K. La température

électronique est comprise entre 5000 K et 30000 K.

V.A. Flux d’énergie vers la cathode

Le flux d’énergie vers la cathode q en fonction de Te est présenté sur la figure (FII-32)

pour des températures électroniques comprises entre 5000 K et 30000 K.

La figure (FII-32) montre que le flux d’énergie vers la cathode croit de manière

importante entre 5000 K et 10000 K. Ensuite il se stabilise autour de 6.107 W.m-2.

5 10 15 20 25 30105

106

107

108

q (W

.m-2)

Te (kK)

Figure (FII-32) : Flux d'énergie q en fonction de la température électronique Te

Afin de mieux interpréter cette courbe, le flux d’énergie q a été décomposé en

plusieurs contributions, une ionique (qi) et trois électroniques en séparant la part des électrons

rétrodiffusés (qbd), celle des électrons thermoémis (qem) et celle des électrons émis

secondairement (qems). Ces résultats ont été reportés sur le graphique de la figure (FII-33).

Page 91: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 93 -

5 10 15 20 25 30-4x109

-3x109

-2x109

-1x109

0

1x109

2x109

3x109

4x109

q i, qem

, qem

s, q bd

, q (W

.m-2)

Te (kK)

qi qem qems qbd q

Figure (FII-33) : Composantes et flux d'énergie vers la cathode en fonction de la température

électronique Te

La composante ionique du flux d’énergie qi croit entre 5000 K et 15000 K puis se

stabilise entre 4x108 W.m-2 et 5x108 W.m-2. Cela vient de la stabilisation de la densité de

charges à partir de 15000 K.

La composante des électrons rétrodiffusés qbd augmente avec la température

électronique. Ce phénomène s’explique par l’augmentation de l’énergie cinétique des

électrons rétrodiffusés avec la température. Ce gain d’énergie va leur permettre de franchir

plus facilement la barrière de potentiel que constitue la chute de tension dans la gaine. On

verra dans la partie V.D que la chute de tension dans la gaine diminue avec l’augmentation de

la température électronique. Ainsi, la baisse de la chute de tension cathodique couplée à

l’augmentation de l’énergie cinétique des électrons contribue donc à l’augmentation du flux

d’électrons rétrodiffusés avec la température électronique.

La composante des électrons thermoémis est négative. En effet, lorsque les électrons

quittent la cathode, ils emportent de l’énergie correspondant principalement au travail de

sortie réduit par la correction Schottky. Ce phénomène va produire un refroidissement de

l’électrode. L’augmentation de la température du plasma va provoquer une élévation de la

température de la surface de la cathode Tw et donc une augmentation du flux d’électrons

Page 92: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 94 -

thermoémis d’après la formule (EII-01). Cette augmentation de la température Tw est

confirmée par le résultat du calcul de cette température présenté dans la partie V.C..

Ainsi, la somme de qi et qbd est compensée par la valeur importante du flux d’énergie

des électrons thermoémis. Cette compensation permet d’avoir un flux global de l’ordre de 107

W.m-2.

Enfin le flux d’énergie emportée par les électrons émis secondairement est négligeable

au dessus de 7500 K devant le flux d’énergie prélevé par les électrons thermoémis comme le

montre la figure (FII-34) représentant les valeurs absolues des flux d’énergie transportés par

les électrons thermoémis et émis secondairement en fonction de la température électronique.

5 6 7 8 9 10 11 12100

101

102

103

104

105

106

107

108

109

1010

|qem| |qems|

|qem

|, |q

ems|

(W.m

-2)

Te (kK)

Figure (FII-34) : Valeurs absolues des flux d’énergie emportés par les électrons thermoémis et émis

secondairement en fonction de la température électronique Te

V.B. Les densités de courant

De même que pour les flux d’énergie, la densité de courant totale provenant de la

cathode a été décomposée en quatre contributions : la densité de courant ionique ji, la densité

de courant des électrons rétrodiffusés jbd, la densité de courant des électrons thermoémis jem et

la densité de courant provenant des électrons secondaires jems. Ces densités de courant sont

représentées en fonction de la température électronique Te sur les figures (FII-35)(a) et (b).

Deux échelles de représentation ont été choisies afin de pouvoir observer les phénomènes qui

se produisent entre 5000 K et 12000 K.

Page 93: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 95 -

5 10 15 20 25 30-2.0x108

0.0

2.0x108

4.0x108

6.0x108

8.0x108

1.0x109

j i, jem

, jem

s, j bd

, j (A

.m-2)

Te (kK)

ji jem jems jbd j

Figure (FII-35) (a) : Densité de courant totale j et ses composantes ji, jbd, jem et jems en fonction de la

température électronique Te

La figure (FII-35) (a) nous montre que la densité de courant ionique est quasi

constante à partir de Te=15000 K. Cela confirme l’idée que la stabilisation de la densité

électronique dans le corps du plasma entraîne une stagnation de la densité de courant ionique.

La densité de courant ionique va dans le même sens que la densité de courant due aux

électrons thermoémis. Cela se comprend car les ions en se recombinant au niveau de la

cathode vont créer une densité de courant d’électrons dans la cathode qui va dans le même

sens que la densité de courant des électrons thermoémis.

5 6 7 8 9 10 11 12100

101

102

103

104

105

106

107

108

109

j i, jem

, jem

s, j (

A.m

-2)

Te (kK)

ji jem jems j

Figure (FII-35) (b) : Densité de courant totale j et ses composantes ji, jem et jems en fonction de la

température électronique Te

Page 94: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 96 -

Concernant la densité de courant relative aux électrons rétrodiffusés, sa valeur est

négative car ces électrons vont vers la cathode.

On constate sur la figure (FII-35) (b) que la densité de courant des électrons

thermoémis est la composante principale de la densité de courant totale à partir de 8500 K. En

dessous de cette température, la densité de courant ionique est dominante. Cela s’explique

grâce à la température de la surface de la cathode qui n’est pas encore assez élevée (cf. V.C.)

pour que la densité de courant thermoémise soit majoritaire. Enfin en dessous de 7000 K la

densité de courant thermoémis devient inférieure à celle due aux électrons émis

secondairement.

V.C. Température de surface de la cathode

La température de surface de la cathode Tw, a également été calculée en fonction de la

température électronique Te. Ce résultat est présenté sur la figure (FII-36). Cette figure nous

montre que Tw évolue de la même manière que le flux de puissance total à la cathode q. Cela

est normal car q et Tw sont reliés linéairement par la relation (EII-03) avec κ pris constant.

La température de la surface ne dépasse pas la température d’évaporation du tungstène

qui est de 5933 K. Cependant à partir de Te = 10000 K, le métal de la cathode va dépasser la

température de fusion du tungstène qui est de 3680 K. Ce point peut constituer une limite du

modèle car nous n’avons pas considéré les pertes d’énergie dues au changement d’état et les

changements de propriétés relatives à l’émission électronique du tungstène liquide.

Néanmoins, les mesures de température de surface sur des cathodes en tungstène ont montré

que celle-ci peut monter au dessus de 3680 K [Hai-1].

5 10 15 20 25 301.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

T w (k

K)

Te (kK) Figure (FII-36) : Température de la cathode Tw en fonction de la température électronique Te

Page 95: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 97 -

Cette limitation est relative car la plupart du temps les cathodes sont en tungstène

thorié ce qui abaisse fortement la température de surface de la cathode comme le montre la

figure (FII-37) en prenant le travail de sortie de l’alliage à 3 eV.

Ce changement va se répercuter sur les bilans d’énergies (EI-23) et (EII-04) au travers

du flux d’électrons thermoémis mais aussi au niveau des coefficients où apparaît le travail de

sortie W traduisant l’absorption ou l’ « évaporation » d’électrons.

5 10 15 20 25 301.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

W = 4.5 eV W = 3 eV

T w (k

K)

Te (kK) Figure (FII-37) : Température de surface Tw en fonction de la température électronique Te dans

l’argon à la pression atmosphérique (Ronds : Tungstène pur, Carrés : Tungstène thorié)

V.D. La chute de tension cathodique U

La valeur de la chute de tension cathodique U en fonction de la température

électronique Te est donnée par la figure (FII-38) (a). Sur cette figure, la température

électronique est comprise entre 5000 K et 30000 K.

La figure (FII-38) (b) représente les chutes de tension U, Ui et Us respectivement

totale, de la zone d’ionisation et de la zone de charge d’espace en fonction de la température

électronique Te. La température électronique est prise entre 5000 K et 30000 K.

Page 96: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 98 -

5 10 15 20 25 301

10

100

U (V

)

Te (kK)

Figure (FII-38) (a) : Chute de tension cathodique U en fonction de la température électronique Te

5 10 15 20 25 300

20406080

100120140160180200

U Us Ui

U, U

s, U i (

V)

Te (kK)

Figure (FII-38) (b) : chute de tension cathodique U et ses composantes Ui et Us en fonction de la

température électronique Te

La figure (FII-38) (a) nous montre que la chute de tension cathodique U croit de

manière importante pour des températures électroniques inférieures à 10000 K. Ce

phénomène peut être mis en relation avec la température de la surface de la cathode Tw qui

comme on l’a vu dans la partie précédente est encore faible pour des températures

Page 97: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 99 -

électroniques inférieures à 10000 K. Par conséquent, la densité de courant thermoémis est

encore trop faible pour entretenir l’arc. Le système doit alors compenser ce manque

d’électrons thermoémis par une chute de tension cathodique plus importante. Cette

compensation va permettre au système d’accélérer plus efficacement les électrons et ainsi

d’augmenter l’ionisation dans la pré-gaine.

Au-delà de 10000 K, la figure (FII-38) (b) montre que la chute de tension cathodique

reste aux alentours de 10V et augmente légèrement avec la température électronique. D’autre

part on peut constater que la chute de tension dans la zone d’ionisation Ui est négligeable

devant celle calculée au niveau de la zone de charge d’espace.

V.E. Bilan de cette étude paramétrique

Les points que nous pouvons retenir de cette étude sont les suivants :

Le flux d’énergie augmente lorsque la température électronique croit. Il est de

l’ordre de 107 W.m-2. Il est limité grâce à la thermoémission qui provoque deux

phénomènes antagonistes : plus la température de surface est grande plus le

refroidissement dû aux électrons émis est important. Le flux d’ions est limité

par l’ionisation du plasma.

La densité de courant obtenue par notre modèle est de l’ordre de 108 A.m-2

pour des températures électroniques de plus de 11000 K ce qui est l’ordre de

grandeur de ce qui est trouvé dans la littérature [Hsu-2]. Celle-ci est dominée

par la thermoémission au dessus de 8500 K. Pour des températures

électroniques inférieures, la contribution apportée par les ions n’est plus

négligeable.

La température de surface de la cathode en tungstène est comprise entre 1000

K et 4500 K pour une température électronique comprise entre 5000 K et

30000 K. Cette température de surface est fortement influencée par le travail

de sortie du matériau constituant la cathode.

La chute de tension cathodique est de l’ordre de 10 V pour une température

électronique supérieure à 10000 K. En dessous de cette valeur elle croit

fortement mais reste limitée par l’émission secondaire.

Page 98: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 100 -

VI. Vers une adaptation du modèle d’interaction arc cathode

Pour pouvoir coupler notre modèle d’interaction à un modèle global d’arc avec la

cathode il est nécessaire de respecter deux contraintes :

Il devra permettre d’assurer la conservation du courant sans imposer la taille du

pied d’arc.

Il doit être applicable sur toute la surface de la cathode en contact avec le

plasma thermique.

Le choix des paramètres d’entrée du modèle est fondamental car il conditionne le

« bon couplage » entre la zone cathodique et la colonne de l’arc. Pour pouvoir réfléchir à ce

problème, il faut se projeter dans une adaptation du modèle en prenant en compte le plasma

thermique et son interaction avec la cathode.

VI.A. La conservation du courant

La figure (FII-39) illustre le passage du courant qui devra être assuré par notre modèle

entre la cathode et le plasma. L’objectif est de fixer le courant de la décharge, loin de la partie

de l’électrode qui est en contact avec le plasma, grâce, par exemple, à l’application d’un profil

de densité de courant sur une section de cathode. Il faudra ensuite conserver ce courant au

passage entre la cathode et le plasma à l’ETL. Etant donné que la gaine est une région où les

phénomènes physiques peuvent être décrits de manière unidimensionnelle, cela revient à

conserver localement la densité de courant j. Autrement dit, le paramètre principal qui devra

être considéré n’est pas la température électronique mais plutôt la densité de courant. Ainsi il

va falloir tester si notre modèle permet de résoudre le problème avec j comme grandeur

d’entrée. Ce point constitue une des principales différences entre ce travail et celui de Benilov

et al [Ben-10]-[Ben-13] qui fixe comme paramètres d’entrée du modèle la chute de tension

cathodique U et la température de surface de cathode Tw.

Page 99: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 101 -

I

JM(r)Gaine

Pré-gaine

Figure (FII-39) : Schéma du passage du courant dans la configuration d’arc libre avec une cathode

cylindrique.

VI.B. Paramètre d’entrée : j

Le couplage de « type j » vise à fixer la densité de courant totale j afin d’obtenir en sortie

la température électronique Te correspondante, la température de surface de la cathode Tw, la

chute de tension dans la gaine Us. Ces trois grandeurs de sortie sont indépendantes. Par

conséquent, il faut trois équations afin d’avoir un système fermé d’équations. Ces trois

équations vont être :

L’équation de conservation de l’énergie électronique à l’interface gaine/pré-gaine

(EII-11)

L’équation de l’énergie à l’interface gaine/cathode (EII-14)

L’équation de la conservation du courant (EII-12)

La résolution de ce système d’équations va permettre de comparer les résultats obtenus

dans la partie V avec ceux utilisant j comme grandeur d’entrée. Ce type de couplage est plus

acceptable conceptuellement car celui-ci considère que c’est le courant qui sort de la cathode

qui va exciter le gaz se trouvant à proximité.

VI.C. Résultats

Les calculs ont été obtenus pour un gaz plasmagène d’argon à la pression atmosphérique. La

cathode est en tungstène. Sa longueur est de 1cm et la température de refroidissement est de

1000 K. Les valeurs tests de j vont de 5.103 à 5.108 A.m-2.

Page 100: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 102 -

La densité de courant totale, la température de surface et la chute de tension cathodique sont

représentées respectivement par les figures (FII-40) (a), (b) et (c) pour des températures

électroniques comprises entre 5000 K et 15000 K.

5 6 7 8 9 10 11 12 13 14 15102

103

104

105

106

107

108

109j (

A.m

-2)

Te (kK)

Figure (FII-40) (a) : Densité de courant en fonction de la température électronique Te (étoiles : j

paramètre d’entrée ; ligne continue : Te paramètre d’entrée)

5 6 7 8 9 10 11 12 13 14 151.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

T w (k

K)

Te (kK) Figure (FII-40) (b) : Température de surface de la cathode Tw en fonction de la température

électronique Te (étoiles : j paramètre d’entrée ; ligne continue : Te paramètre d’entrée)

Page 101: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 103 -

5 6 7 8 9 10 11 12 13 14 151

10

100

U (V

)

Te (kK)

Figure (FII-40) (c) : Chute de tension cathodique en fonction de la température électronique Te

(étoiles : j paramètre d’entrée ; ligne continue : Te paramètre d’entrée)

Ces trois figures montrent que notre modèle peut aussi bien fonctionner avec j comme

paramètre d’entrée qu’avec Te car il donne les mêmes résultats dans les deux cas. La figure

(FII-40) (a) permet de voir que la température électronique est bien croissante avec la densité

de courant. La même remarque peut être faite en ce qui concerne la température de surface de

la cathode présentée par la figure (FII-40) (b). Enfin avec le couplage de type j le palier de la

chute de tension à basse température électronique est encore présent.

Page 102: Titre : Modélisation de l’interaction entre un arc

Chapitre 2 : Modèle d’interaction arc-cathode

- 104 -

VII. Bilan

Ce deuxième chapitre a montré la construction de notre modèle d’interaction entre le

plasma thermique et la cathode.

Une première étape de notre étude a consisté à essayer de reproduire le modèle de

Benilov et al [Ben-2]. Celle-ci a permis de se rendre compte de l’importance du calcul de la

densité de charge à l’interface gaine/pré-gaine grâce à une erreur probable faite par les auteurs

de cet article au niveau des données de base concernant le coefficient de recombinaison à 3

corps kr.

Afin de prendre en compte les concepts mis en avant à la fin de la synthèse

bibliographique présentée dans chapitre 1, nous avons apporté des améliorations au modèle de

Benilov au niveau :

Du flux d’électrons thermoémis

Du calcul de la densité de charge à l’interface gaine/pré-gaine qui est

maintenant effectué à partir d’un calcul de composition à deux températures

basé sur la théorie de Van de Sanden et al [Van-1]

Des bilans d’énergie et de la densité de courant en y ajoutant un flux

d’électrons générés par émission secondaire avec un coefficient d’émission de

0.1.

De la densité de charge à l’interface pré-gaine/plasma à l’E.T.L. qui est

maintenant déterminée à partir d’un calcul de composition monotherme.

Une fois construit, notre modèle a été validé à partir de résultats théoriques et

expérimentaux issus de la littérature portant sur la chute de tension cathodique et le flux de

puissance à la cathode. Le seul point qui n’est pas encore validé se situe au niveau du calcul

de la température de surface de la cathode. Ce dernier sera réexaminé dans le chapitre suivant.

Afin d’étudier la possible adaptation de notre modèle d’interaction à un modèle plus

général d’arc interagissant avec la cathode, nous avons montré que l’on pouvait utiliser

comme paramètre d’entrée la densité de courant permettant ainsi la conservation naturelle du

courant total entre le plasma et la cathode.

Page 103: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 105 -

Chapitre 3 : Modélisation à deux

dimensions

Page 104: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 106 -

Page 105: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 107 -

I. Introduction

Plusieurs travaux portant sur la modélisation de l’interaction arc/cathode à deux

dimensions peuvent être trouvés dans la littérature. Certains ne résolvent pas le potentiel dans

la cathode [Li-2][Ben-11][Pau-1][Del-1]. D’autres considèrent la conservation du courant à

l’interface plasma/cathode en conservant la densité de courant locale [Zhu-1][San-1] sans

prendre réellement en compte le fait que la thermoémission est principalement dépendante de

phénomènes thermiques.

Le chapitre 2 a donné les bases du modèle d’interaction arc/cathode que nous

proposions dans une configuration unidimensionnelle de zone cathodique. Nous allons à

présent adapter cette description de l’interaction plasma/cathode dans un modèle d’arc à deux

dimensions précédemment mis au point dans l’équipe [Lag-1]. Nous ne modéliserons pas

l’interaction avec l’anode afin de limiter le temps de calcul. Les développements devront

permettre d’assurer la conservation du courant total de la décharge en tenant compte des

propriétés de la zone d’interaction.

Le chapitre 3 va être structuré de la manière suivante :

Les bases du modèle 2D utilisé vont être posées

Les développements complémentaires pour la description de la zone cathodique dans

le cas du couplage seront présentés

Le cas de référence utilisé pour nos calculs va être défini

Les résultats obtenus grâce à notre modèle vont être exposés. Le passage du courant

entre la cathode et le plasma sera tout d’abord étudié dans la partie V.A.. Ensuite, une

analyse du profil radial de la chute de tension dans la gaine va être proposée dans la

partie V.B.. Enfin la partie V.C. va permettre de comprendre comment s’effectue le

transfert thermique entre la cathode et le plasma. Nous effectuerons pour chacune de

ces parties une étude du cas de référence puis les influences de différents paramètres

tels que la taille de la zone d’ionisation, la valeur de la température de refroidissement,

la valeur du travail de sortie et la largeur de la cathode seront étudiées. Les résultats

obtenus seront confrontés à ceux établis dans le cas de référence.

Page 106: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 108 -

II. Le modèle 2D

Dans la configuration étudiée, l’arc n’est soumis à aucune force extérieure. Par force

extérieure, nous entendons par exemple celle qui pourrait être créée par un champ magnétique

extérieur ou un soufflage externe. L’étude sera donc faite sur un arc libre qui se prête bien à

une étude à deux dimensions axisymétrique.

II.A. Les hypothèses

Pour pouvoir modéliser l’arc et son interaction avec la cathode des hypothèses portant

sur chacune des parties (colonne du plasma, électrodes et zones d’interactions) doivent être

posées.

La colonne du plasma

Les hypothèses portant sur la colonne du plasma sont les suivantes :

Le plasma dans la colonne sera supposé être à l’Equilibre Thermodynamique

Local (E.T.L.).

Le plasma créé par l’arc sera considéré comme un fluide Newtonien (les

contraintes de viscosité ont un comportement linéaire).

Le phénomène de gravité sera négligeable.

Les équations décrivant le plasma seront considérées en régime stationnaire.

Les électrodes et leur interaction avec le plasma

Les hypothèses proposées pour décrire les électrodes et leur interaction avec le plasma

sont les suivantes :

La zone anodique ne sera pas modélisée

Les effets d’érosion aux électrodes et de bain liquide ne vont pas être pris en

compte (électrodes indéformables)

L’effet Joule dans la cathode va être supposé négligeable

Les équations décrivant la cathode et son interaction avec le plasma seront

considérées comme stationnaires.

Page 107: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 109 -

II.B. Equations de conservation

Equations décrivant le corps de l’arc

Les équations magnétohydrodynamiques stationnaires sont mises sous la forme

généralisée proposée par Patankar [Pat-1] :

( ) ( ) φφ +φ∇Γ∇=φαρ∇ Svrrrr

(EIII-01)

α est un coefficient prenant la valeur 0 dans le cas où l’équation ne possède pas de terme

convectif et 1 dans le cas contraire.ρ correspond à la densité de masse, vr est le vecteur

vitesse, φΓ est le coefficient de diffusion, φS constitue le terme source et enfin φ correspond

au scalaire considéré. Pour décrire la colonne de l’arc sept équations de conservation sont

nécessaires. Celles-ci sont définies et regroupées dans le tableau (TIII-01) [Lag-1].

Equations de

conservation

Φ α ΓΦ SΦ

Masse 1 1 0 0 (EIII-02)

Moment axial u 1 μ

( ) θ+⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛

∂∂

+∂∂

μ∂∂

⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛

∂∂

+∂∂

μ∂∂

+⎟⎠⎞

⎜⎝⎛

∂∂

μ∂∂

+∂∂

Bjrvrr

1zu

z32

zv

rur

rr1

zu

z2

zP

r

(EIII-03)

Moment radial v 1 μ

( ) θ−μ−⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛

∂∂

+∂∂

μ∂∂

⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛

∂∂

+∂∂

μ∂∂

+⎟⎠⎞

⎜⎝⎛

∂∂

μ∂∂

+∂∂

Bjrv2rv

rr1

zur

rr1

32

ru

zv

zrvr

rr2

rP

z2

(EIII-04)

Energie T 1 κ ⎟⎠⎞

⎜⎝⎛

∂∂

+∂∂

+−σ+

rTj

zTj

ek

25Ujj

rzB

2z

2r

(EIII-05)

Potentiel

électrique

V 0 σ 0 (EIII-06)

Potentiel

vecteur axial

Az 0 1 z0 jμ (EIII-07)

Potentiel

vecteur radial

Ar 0 1 2r

r0 rAj −μ

(EIII-08)

Tableau (TIII-01) : Equations de conservation mises sous la forme généralisée de Patankar

Page 108: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 110 -

μ Viscosité

κ Conductivité thermique

σ Conductivité électrique

P Pression

u Composante axiale de la vitesse

v Composante radiale de la vitesse

U Pertes par rayonnement

V Potentiel électrique

Ar Composante radiale du potentiel vecteur

Az Composante axiale du potentiel vecteur

jr Composante radiale de la densité de courant

jz Composante axiale de la densité de courant

Tableau (TIII-02) : Notations utilisées dans le tableau (TIII-01)

Les équations de conservation de la quantité de mouvement utilisent la composante

azimutale du champ magnétique θB et les composantes de la densité de courant afin de

prendre en compte la force de Lorentz.

Le calcul du champ magnétique est donné par l’équation liant celui-ci au potentiel

vecteur Ar

:

ABrrr

×∇= (EIII-09)

Ainsi, à partir de cette équation, la composante azimutale du champ magnétique s’écrit en

coordonnées cylindriques :

r

Az

AB zr

∂∂

−∂∂

=θ (EIII-10)

Le calcul des composantes de la densité de courant jr

s’effectue à partir de la loi

d’ohm microscopique :

Vj ∇σ−=rr

(EIII-11)

Cette équation s’écrit en coordonnées cylindriques :

zVjz ∂∂

σ−= (EIII-12)

rVjr ∂∂

σ−= (EIII-13)

Page 109: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 111 -

Dans l’équation d’énergie, le terme U correspondant aux pertes par rayonnement est

explicité en utilisant le coefficient d’émission net Nε :

N4U πε= (EIII-14)

Equations de conservation dans la cathode

Dans la cathode, les équations résolues traduisent la conduction électrique, la

conservation du potentiel vecteur et la conduction thermique. De la même manière que pour la

représentation de l’arc, les équations sont mises sous la forme généralisée de Patankar [Pat-

1]. Les grandeurs φ , α, φΓ et φS sont définies dans le tableau (TIII-03).

Equations de conservation Φ α ΓΦ SΦ

Potentiel électrique V 0 σ 0 (EIII-15)

Potentiel vecteur axial Az 0 1 z0 jμ (EIII-16)

Potentiel vecteur radial Ar 0 1 2r

r0 rAj −μ

(EIII-17)

Energie T 0 κ 0 (EIII-18)

Tableau (TIII-03) : Equations de conservation dans le matériau mises sous la forme de Patankar

Les équations de conservation utilisées pour décrire le corps de la cathode et celui du

plasma sont maintenant posées. La partie suivante va permettre de voir de quelle manière

nous avons résolu ces équations.

II.C. Résolution des équations aux dérivés partielles

stationnaires

Le système d’équations présenté dans les tableaux (TIII-01) et (TIII-03) est résolu par

la méthode des volumes finis [Pat-1]. Pour pouvoir comprendre sur un cas simple cette

méthode, celle-ci va tout d’abord être présentée dans le cas de phénomènes diffusifs purs que

l’on retrouve, par exemple, dans l’équation (EIII-15). Ensuite, la résolution des équations de

Page 110: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 112 -

convection-diffusion va être décrite. Le couplage pression-vitesse utilisé sera également

explicité.

II.C.1. Résolution des équations de diffusion pure

Lorsque la partie convective de l’équation (EIII-01) est négligeable devant les autres

termes, cette équation peut se mettre sous la forme :

( ) 0S =+φ∇Γ∇ φφ

rr (EIII-19)

La méthode des volumes finis a pour objectif de discrétiser cette équation afin de la résoudre

sur chaque volume de contrôle défini par le maillage.

Pour expliquer le principe de base de la méthode, l’équation (EIII-19) va être

considérée dans le cas unidimensionnel. Ainsi, à une dimension, l’équation (EIII-19) s’écrit :

0Sdxd

dxd

=+⎟⎠⎞

⎜⎝⎛ φΓ φφ (EIII-20)

La figure (FIII-01) permet de représenter les paramètres nécessaires à l’intégration de

l’équation (EIII-20). δxwe correspond à la taille du volume de contrôle noté ΔV centré sur le

point P. Les points W et E correspondent aux centres des mailles adjacentes au volume de

contrôle considéré. Les limites e et w représentent les faces de ΔV. Les variables ΔxWP et ΔxPE

sont les longueurs respectives des segments WP et PE. Enfin Ae et Aw sont les aires

respectives des faces e et w.

P EW

Aw

ΔxWP ΔxPE

w

x

Ae

e

δxwe

Figure (FIII-01) : Schéma d’un volume de contrôle accompagné des paramètres le caractérisant

Page 111: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 113 -

L’équation (EIII-20) devient après intégration :

0VSAdxdA

dxddVSdV

dxd

dxd

w

2

we

1

eVV

=Δ+⎟⎠⎞

⎜⎝⎛ φΓ−⎟

⎠⎞

⎜⎝⎛ φΓ=+⎟

⎠⎞

⎜⎝⎛ φΓ ΦΦ

Δφ

Δφ ∫∫

4342143421

(EIII-21)

Où S est la valeur moyenne du terme source S sur le volume de contrôle. Ae et Aw sont les

aires respectives de la face e et w du volume. Celles-ci sont hachurées sur la figure (FIII-01).

Les flux diffusifs 1 et 2 de l’équation (EIII-21) sont ensuite exprimés en fonction des points

adjacents à P :

⎟⎟⎠

⎞⎜⎜⎝

⎛Δ

φ−φΓ=⎟

⎠⎞

⎜⎝⎛ φΓ φφ

EP

PEe,

e xdxd (EIII-22)

⎟⎟⎠

⎞⎜⎜⎝

⎛Δ

φ−φΓ=⎟

⎠⎞

⎜⎝⎛ φΓ φφ

PW

WPw,

w xdxd (EIII-23)

Le terme source moyen est mis sous la forme linéaire :

PPU SSVS φ+=Δ (EIII-24)

Où SU est la partie constante du terme source moyen et SP est le coefficient directeur qui doit

être négatif.

La dernière étape consiste à mettre l’équation (EIII-21) sous la forme linéaire suivante :

uWWEEPP Saaa +φ+φ=φ (EIII-25)

D’après les règles énoncées par la méthode de Patankar, les coefficients aP, aE et aW doivent

être positifs.

La méthode de discrétisation présentée dans cette partie permet de transformer un

système d’équations différentielles en un système d’équations linéaires dont les inconnues

sont les grandeurs scalaires locales φN. La résolution se fait de manière itérative suivant la

méthode TDMA (Tridiagonal Matrix Algorithm) [Pat-1].

Cette partie a permis de comprendre l’idée générale de la méthode des volumes finis

dans le cas de la résolution d’équations de diffusion. La partie suivante va permettre

d’exposer les notions à ajouter à l’approche présentée dans le cas d’équations de convection-

diffusion.

Page 112: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 114 -

II.C.2. Résolution des équations de Convection-diffusion

En présence d’écoulements, l’équation utilisée est celle de convection-diffusion dont

la forme stationnaire généralisée est définie par l’équation (EIII-01) que l’on rappelle ici :

( ) ( ) φφ +φ∇Γ∇=φρ∇ Svrrrr

Dans le cas unidimensionnel, si on reprend les notations de la figure (FIII-01) l’intégration de

l’équation (EIII-01) dans le volume de contrôle centré sur P donne :

( ) ( ) VSAdxdA

dxdAvAv w

we

ewwee Δ+⎟

⎠⎞

⎜⎝⎛ φΓ−⎟

⎠⎞

⎜⎝⎛ φΓ=φρ−φρ (EIII-26)

Dans le cas où la moyenne du terme source est nulle, l’équation (EIII-26) peut être mise sous

la forme suivante :

( ) ( )WPwPEewwee DDFF φ−φ−φ−φ=φ−φ (EIII-27)

Où vF ρ= et xD ΔΓ= .

L’équation (EIII-27) permet de voir que les valeurs du scalaire φ aux faces e et w du volume

de contrôle sont nécessaires. Pour déterminer ces valeurs plusieurs méthodes, appelées aussi

schémas, existent.

Différences centrées (Schéma du premier ordre)

Pour un maillage uniforme la méthode des différences centrées permet de trouver la

valeur du scalaire au niveau d’une face grâce à la moyenne des valeurs du scalaire aux nœuds

adjacents :

( ) 2EPe φ+φ=φ (EIII-28)

( ) 2PWw φ+φ=φ (EIII-29)

La limite de ce schéma numérique est qu’il ne tient pas compte de la direction de

l’écoulement contrairement aux autres schémas présentés dans les paragraphes suivants.

Page 113: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 115 -

Upwind (Schéma du premier ordre)

Ce schéma tient compte du sens de l’écoulement en prenant comme valeurs aux faces celles

se trouvant en amont de l’écoulement comme le montre la figure (FIII-02).

W P E

w e

Fw > 0 Fe > 0

φw = φW φe = φP

Fw < 0 Fe < 0

φw = φP φe = φE

Figure (FIII-02) : Illustration du schéma upwind

Les valeurs des scalaires aux faces sont données par les relations suivantes :

Cas 1 : Fw>0 et Fe>0 :

⎩⎨⎧

φ=φ

φ=φ

Pe

Ww (EIII-30)

Cas 2 : Fw<0 et Fe<0 :

⎩⎨⎧

φ=φ

φ=φ

Ee

Pw (EIII-31)

De préférence ce schéma doit être utilisé pour un écoulement parallèle à la direction

principale du maillage.

Power-law (Schéma du premier ordre)

Le schéma Power-law est le schéma de discrétisation élaboré par Patankar [Pat-1].

Celui-ci utilise la solution exacte de l’équation de convection-diffusion à une dimension pour

trouver la valeur du scalaire φ aux faces. Pour illustrer cela, prenons le cas de la face e (cf.

figure (FIII-01)).

Page 114: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 116 -

L’expression permettant de trouver la valeur du scalaire sur cette face est donnée par :

( ) 1Peexp

1xx

PeexpPE

e

PE

Pe

−⎟⎟⎠

⎞⎜⎜⎝

⎛Δ

=φ−φφ−φ

(EIII-32)

Où DFPe = est le nombre de Péclet traduisant le rapport entre les forces de convection et

celles de diffusion et xe est la distance de la face e par rapport au nœud P.

Cette expression est intermédiaire aux précédents schémas qu’elle permet de

retrouver :

Dans le cas où Pe>>1 si le sens de l’écoulement est positif on retrouve φe = φP et si le

sens de l’écoulement est négatif on a φe = φE.

Dans le cas où Pe<<1 et que le maillage est uniforme, la méthode Power law permet

de retrouver la différence centrée.

II.C.3. Résolution du couplage pression-vitesses

Les grandeurs hydrodynamiques telles que les vitesses, la densité de masse et la

température sont résolues à partir des équations de conservation. La pression est déterminée

grâce à l’équation de correction de la pression déduite de l’équation de conservation de la

masse.

Les vitesses sont calculées au niveau des faces e et w. Les autres scalaires ainsi que la

pression sont calculés aux nœuds. Ainsi la pression et les vitesses ne seront pas calculées sur

un même maillage.

Les champs de vitesse et de pression sont calculés à partir de l’algorithme SIMPLE

[Pat-1]. Celui-ci se déroule de la manière suivante :

1. Le champ de pression est estimé

2. Les équations de conservation de la quantité de mouvement sont résolues afin

d’obtenir les champs de vitesses

3. La correction des vitesses est donnée par l’équation de correction de la pression

déduite de l’équation de conservation de la masse.

4. Le champ initial de pression est corrigé.

5. Les valeurs des vitesses estimées au niveau de l’étape 2. sont corrigées.

6. Les autres scalaires sont résolus

Cette procédure est réitérée à partir de la deuxième étape jusqu’à convergence

Page 115: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 117 -

III. Interaction corps de l’arc/cathode

L’objectif novateur de la modélisation arc/cathode que nous présentons ici est

d’assurer une réelle interaction entre le plasma thermique et le matériau. Pour cela, l’état du

plasma, se trouvant à proximité de la cathode, et celui de la surface de la cathode doivent

conditionner le passage naturel du courant.

Le modèle unidimensionnel, présenté dans le chapitre II, a été mis en place avec la

densité de courant comme seul paramètre d’entrée afin de préparer son adaptation à un

modèle plus global de plasma thermique en 2D prenant en compte la cathode. Cependant, il

est nécessaire d’ajouter des développements spécifiques à cette adaptation comme on va le

voir ci-dessous.

III.A. Développements physiques spécifiques

Le premier point consiste à assurer la conservation du courant, qui est une loi de

l’électromagnétisme, en prenant en compte l’émission électronique à la surface de la cathode

(thermoémission et émission secondaire) qui est principalement due à des effets thermiques à

la surface du matériau.

L’idée qui va permettre d’assurer la conservation du courant, en prenant en compte

l’interaction entre le corps du plasma et la cathode, consiste à considérer une conductivité

électrique à deux températures au niveau de la pré-gaine. Son calcul doit tenir compte de

l’état local du plasma et de la surface de la cathode au travers de la température électronique

et de l’écart à l’équilibre noté θ défini comme étant le rapport de la température des électrons

Te sur celle des lourds notée Tl. Une estimation de la conductivité électrique à deux

températures dans la pré-gaine peut être donnée à l’aide de la formule suivante [Gir-1] :

( ) ( )( )ee

eeeT1T2 Tn

,TnT

θσ=σ (EIII-33)

σ1T(Te) est la conductivité électrique à l’E.T.L., ne (Te) est la densité électronique

calculée dans des conditions d’E.T.L. et ne (Te,θ) correspond à la densité électronique à deux

températures calculée pour une température électronique Te et un écart à l’équilibre θ.

Page 116: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 118 -

L’expression (EIII-33) provient du fait que la conductivité électrique peut être

considérée dans une première approximation comme proportionnelle à la densité électronique.

Pour pouvoir déterminer la densité électronique dans la zone d’ionisation une

interpolation des températures des électrons et des lourds a été mise en œuvre dans la pré-

gaine. Afin d’illustrer cette interpolation, la figure (FIII-03) donne une représentation

schématique des profils axiaux des températures des électrons et des lourds que nous avons

considérés dans la gaine et dans la pré-gaine.

z

Tl

Te

T

Tl gaine=Tw

Te gaine

Te =Tl

zc

≈ 0.01 µm

d ≈ 100 µm

Figure (FIII-03) : Représentation schématique des profils axiaux des températures des électrons et

des lourds dans la pré-gaine et dans la gaine.

Au niveau de l’interface gaine/pré-gaine, le modèle d’interaction, présenté dans le

chapitre II, va permettre d’obtenir la température électronique et la température des lourds

respectivement notées Te gaine et Tl gaine sur la figure (FIII-03). La température à l’interface

pré-gaine/plasma est donnée par le calcul magnétohydrodynamique dont les équations ont été

définies dans la partie II.B.. Les températures à l’interface gaine/pré-gaine et à l’interface pré-

gaine/plasma étant connues, une interpolation de la température des électrons Te et des lourds

Tl peut être effectuée au niveau de la côte zc (cf. (FIII-03)) donnant ainsi la valeur de la

Page 117: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 119 -

température électronique Te et celle du rapport θ = Te/Tl. La connaissance de Te et θ permet

d’obtenir la densité électronique au niveau de la position axiale zc grâce au calcul de la

composition à deux températures préalablement établi.

Le calcul des températures Te et Tl au niveau de la zone d’ionisation a été fait dans un

premier temps grâce à une interpolation linéaire. Dans un second temps, au vue des profils

présentés par Hsu et al [Hsu-1] nous avons utilisé une interpolation linéaire pour la

température électronique et une interpolation logarithmique pour la température des lourds:

( ) ( ) ( )( )[ ] ( )( ) ( )cathlcath

cathp

cathlpll zT1dzzln

1dzzlnzTzT

zT ++−+−

−= (EIII-34)

Avec ( )zTl la température des lourds pour une cote z, zp la côte correspondante à l’interface

entre le plasma à l’E.T.L. et la zone d’ionisation, zcath la côte de la surface de la cathode et d la

taille de la zone d’ionisation choisie.

Le second point a consisté à améliorer notre modèle d’interaction en incluant dans la

balance d’énergie le transfert thermique entre les neutres du plasma et la surface de la

cathode. Le modèle 2D permet d’avoir accès à la température du plasma à l’E.T.L. à

l’interface pré-gaine/plasma. Par conséquent la formule (EII-11) définissant le bilan d’énergie

à l’interface gaine/pré-gaine peut être améliorée en prenant la température donnée par le

calcul dans le plasma à l’E.T.L. pour déterminer la densité électronique à l’équilibre ne∞.

Le flux thermique venant du plasma, apporté par les neutres en contact avec la cathode, va

être ajouté au flux d’énergie provenant du plasma (EII-13) donnant ainsi la condition aux

limites à la surface de la cathode en contact avec le plasma pour le scalaire température (EIII-

35).

( )

( )( )( )( )( )( )

...

222

2

LTPlasmaEPlasma

wems

wem

ebd

ise

iCathode

Matériau

zT

WWkTWWkT

WWkT

WWZEeZUZT

kzT

⎥⎦⎤

⎢⎣⎡

∂∂

Δ−++Δ−++Δ−+−

⎥⎦

⎤⎢⎣

⎡Δ−−++⎟

⎠⎞

⎜⎝⎛−=⎥⎦

⎤⎢⎣⎡

∂∂

κ

φφφ

φκ

(EIII-35)

Page 118: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 120 -

III.B. Résolution des équations décrivant la zone d’interaction

Schéma de calcul du gradient de potentiel

La différence entre la conductivité électrique du plasma et celle de la cathode est au

minimum de trois ordres de grandeur. Par conséquent, des problèmes numériques relatifs au

calcul de la densité de courant à l’interface plasma/cathode peuvent intervenir compromettant

le couplage entre la cathode et le plasma.

Le calcul de la dérivée est normalement pondéré par la grandeur notée FX(L) qui est

un facteur permettant de prendre en compte la non-uniformité du maillage. Ce facteur est

défini par la formule suivante :

( )PM

M

xxx

LFXΔ+Δ

Δ= (EIII-36)

Les longueurs ΔxM et ΔxP sont représentées sur la figure (FIII-04).

LM L LP

∆xM ∆xP Figure (FIII-04) : Représentation schématique d’un maillage non-uniforme

Afin de résoudre le problème engendré par la forte variation de la conductivité

électrique, une interpolation inspirée de celle proposée par Lago [Lag-2] a été mise en place

en effectuant une pondération de la dérivée grâce à la conductivité électrique et l’épaisseur

des mailles. Le nouveau facteur de pondération, noté AX(L), peut s’exprimer de la manière

suivante grâce à FX(L) :

( ) ( )( )

1

1)(

1−

⎥⎦

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−+=

LFXLL

LAX M

σσ (EIII-37)

Où σ(LM) et σ(L) correspondent respectivement aux conductivités électriques calculées au

centre des mailles LM et L.

Page 119: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 121 -

Cette pondération remplace l’expression du facteur de pondération FX(L) (EIII-36) dans le

calcul du gradient du potentiel électrique. On remarquera que si les conductivités électriques

sont égales, on retrouve FX(L).

Résolution du couplage cathode/zone d’interaction/plasma

La résolution du modèle d’arc et de son interaction avec la cathode est effectuée de

manière itérative. Les étapes du calcul sont les suivantes :

1. Le champ de température dans la cathode est initialisé.

2. Les grandeurs électromagnétiques sont calculées dans l’ensemble du domaine.

3. Les grandeurs hydrodynamiques dans le plasma sont calculées.

4. Les grandeurs de la zone d’interaction sont calculées donnant ainsi le flux d’énergie

vers la cathode.

5. La température dans la cathode est corrigée grâce au profil de flux d’énergie vers la

cathode déterminé à l’étape précédente.

6. La conductivité à deux températures est calculée dans la pré-gaine lorsque la balance

des flux à l’interface cathode/plasma peut être équilibrée. Dans le cas contraire la

conductivité électrique du gaz à l’équilibre est prise en compte.

7. La démarche est réitérée à partir de l’étape 2 jusqu’à convergence du calcul

Cette partie a décrit les développements spécifiques à l’introduction de notre modèle

d’interaction arc/cathode. La partie suivante va présenter la configuration de référence qui va

nous permettre de mettre en application notre modèle.

Page 120: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 122 -

IV. Définition du cas de référence

Afin de pouvoir tester notre modèle, nous avons choisi une géométrie d’arc libre avec

une cathode cylindrique comme le montre la figure (FIII-05). Cette géométrie a été choisie

car elle permet d’appliquer notre description de l’interaction arc/cathode sur une surface

plane. Ainsi nous allons pouvoir observer comment le pied d’arc se positionne sur la surface

de la cathode ce qui ne serait pas le cas avec une cathode pointue qui contraindrait la sortie du

courant au niveau de la pointe.

Le rayon de la cathode est de 10 mm et sa longueur de 8 mm. L’espace inter-électrode

est de 5 mm. La taille de la zone d’accrochage anodique FE est calculée afin d’avoir une

densité de courant de l’ordre de -1.106 A.m-2 au niveau de l’anode pour un arc de 200 A. Cet

ordre de grandeur correspond à celui trouvé dans la thèse de Lago [Lag-2]. Le maillage utilisé

est uniforme avec un pas de 0.2 mm.

A B C

DEF

G

Anode

H10 mm

8 mm

7.98 mm

5 mm

z

r

15 mm

Cathode

Figure (FIII-05) : Géométrie et domaine de calcul

Page 121: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 123 -

Le courant total de la décharge, qui constitue la grandeur conservative de notre

modèle, est appliqué au niveau du segment AB correspondant au fond de la cathode par

l’intermédiaire d’un profil radial de densité de courant constant (EIII-38).

( )2AB

zrIrj

π= (EIII-38)

Avec I l’intensité du courant électrique circulant dans la décharge et rAB le rayon de la section

de la cathode où est imposé le profil de densité de courant.

Pour la résolution de l’équation de l’énergie, la température de refroidissement de la

cathode sur le segment AB est fixée et sera notée T0. Faute de résultats expérimentaux sur ce

type de configuration, une valeur arbitraire de la température de refroidissement T0 = 2000 K

a été choisie au niveau du segment AB. Cette valeur correspond à l’ordre de grandeur des

températures mesurées par Haidar et al [Hai-1] dans le cas d’une cathode pointue en

tungstène de diamètre 3.2 mm.

Les conditions aux limites au niveau des segments BC et CD sont définies

respectivement par les équations (EIII-39) et (EIII-40).

⎪⎩

⎪⎨⎧

=∂∂

≥=

sinon0

0 1000

zT

vsiKT z

(EIII-39)

⎪⎩

⎪⎨⎧

=∂∂

≤=

sinon0

0 1000

rT

vsiKT r

(EIII-40)

Page 122: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 124 -

Les conditions aux limites permettant de résoudre les équations aux dérivées partielles

(c.f. (TIII-01) et (TIII-03)) dans le domaine de calcul présenté par la figure (FIII-05) sont

résumées dans les tableaux (TIII-04) (a) et (b).

AB BC CD DE EF

u / 13..0 −−=∂∂ smkg

zuρ 1.0 −= smu 1.0 −= smu 1.0 −= smu

v / 1.0 −= smv 13..0 −−=∂∂ smkg

rvρ

1.0 −= smv 1.0 −= smv

T T0 (EIII-39) (EIII-40) 1000K 1.0 −=∂∂ mK

zT

V (EIII-

38) 1.0 −=

∂∂ mV

zV 1.0 −=

∂∂ mV

rV V = 0V V = 0V

Ar Tz

Ar 0=∂∂

Tz

Ar 0=∂∂ T

rAr 0=∂∂ T

zAr 0=∂∂ T

zAr 0=∂∂

Az Tz

Az 0=∂∂

Tz

Az 0=∂∂ T

rAz 0=∂∂ T

zAz 0=∂∂ T

zAz 0=∂∂

Tableau (TIII-04) (a) : Table des conditions aux limites

FA GH HB

u 10 −=∂∂ s

ru

1.0 −= smu 1.0 −= smu

v 1.0 −= smv 1.0 −= smv 1.0 −= smv

T 1.0 −=∂∂ mK

rT

(EIII-33) 1.0 −=∂∂ mK

rT

V 1.0 −=∂∂ mV

rV

/ 1.0 −=∂∂ mV

rV

Ar Tr

Ar 0=∂∂ / /

Az Tr

Az 0=∂∂ / /

Tableau (TIII-04) (b) : Table des conditions aux limites (suite)

Page 123: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 125 -

Le gaz plasmagène de la décharge est constitué par de l’argon à la pression

atmosphérique. La cathode est en tungstène qui est un matériau réfractaire dont la température

d’ébullition est de 5933K. Le travail de sortie des électrons est égal à 4.55 eV [Stö-1]. Le

coefficient d’émission secondaire est issu de l’article Phelps et al [Phe-1] dans lequel il est

égal à 0.1. L’intensité du courant électrique de la décharge est de 200A. La longueur de la

zone d’ionisation « d » est de 200 µm. Cette valeur est de l’ordre de grandeur admis dans la

littérature [Ben-15].

Page 124: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 126 -

V. Résultats

La présentation des résultats, obtenus avec notre modèle d’interaction arc/cathode 2D, va

se faire grâce à trois études :

1. l’une portant sur le passage du courant à l’interface cathode/plasma

2. une seconde qui permettra de comprendre l’évolution radiale de la chute de tension

cathodique.

3. une dernière montrant comment s’effectue le transfert thermique entre le plasma et la

cathode.

Pour chacune de ces études l’influence des paramètres jouant significativement sur les

grandeurs étudiées (conductivité électrique à deux températures, température de la surface de

la cathode, chute de tension cathodique …) va être présentée. Les paramètres qui ont été

étudiés sont les suivants :

La longueur de la zone d’ionisation « d » afin de conclure si, à terme, un calcul

de cette grandeur devra être introduit dans notre modèle.

Le choix de la température de refroidissement T0.

L’influence de la valeur du travail de sortie des électrons

L’influence de la valeur du coefficient d’émission secondaire afin d’étudier s’il

est nécessaire de calculer plus précisément ce coefficient à l’aide d’un modèle

utilisant la mécanique quantique [Spa-1][Jos-1].

Une étude sur l’influence de la méthode d’interpolation utilisée pour calculer la

température dans la zone d’ionisation sur les grandeurs de la décharge a été effectuée. Celle-ci

ne sera pas présentée car les résultats obtenus avec l’interpolation linéaire de la température

des lourds et la formule (EIII-34) donnent les mêmes résultats.

Notre modèle a été mis en place sous le logiciel commercial Fluent 4.5.6. et les calculs

ont été réalisés sur un ordinateur dont le processeur est cadencé à 2.17 GHz avec une mémoire

vive de 512 Mo. Le temps de calcul avec cette configuration est compris entre 4 et 8 heures.

Page 125: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 127 -

V.A. Passage du courant à l’interface cathode/plasma

Une des principales difficultés réside dans le fait que le passage du courant à la surface

de la cathode est fortement corrélé à l’état de la zone d’interaction arc/cathode.

Pour traiter cette problématique, le cas de référence va tout d’abord être étudié puis

des études paramétriques sur la taille de la zone d’ionisation, le travail de sortie des électrons

et la largeur de la cathode vont être effectuées.

Nous allons montrer dans cette partie que deux types de résultats peuvent être trouvés :

Dans certains cas les phénomènes de déséquilibre thermodynamique à

l’interface gaine/pré-gaine guident le passage du courant à l’aide du calcul de

conductivité électrique à deux températures.

Dans d’autres cas la température du plasma résultante du chauffage par effet

Joule va jouer un rôle prépondérant dans le calcul de la conductivité électrique

dans la pré-gaine.

Page 126: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 128 -

V.A.1. Etude du cas de référence

Les résultats présentés dans cette partie sont obtenus à partir du cas de référence décrit

dans la partie IV..

La figure (FIII-06) montre les champs correspondant à la composante axiale (à gauche) et

radiale (à droite) de la densité de courant. Les pointillés représentent la position de la cathode

dans le domaine de calcul.

Cette figure indique (côté droit) qu’il existe une concentration du courant au niveau de

l’interface entre la cathode et le plasma qui n’est pas due à la géométrie de la cathode. On

remarquera notamment un changement de signe de la composante radiale de la densité de

courant à l’interface cathode/plasma traduisant un effet de pincement de l’arc à la surface de

la cathode. La figure (FIII-06) permet également de voir que le minimum de la composante

axiale de la densité de courant est de -2.3.106 A.m-2.

z z

Jz (A.m-2) Jr (A.m-2)r r

Figure (FIII-06) : Champs des composantes axiale (à gauche) et radiale (à droite) de la densité de

courant. Calcul effectué dans un plasma d’argon et avec une cathode en tungstène. (I = 200 A)

Page 127: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 129 -

Afin d’étudier la répartition de la composante axiale jz de la densité de courant dans le

domaine, des iso-contours de jz compris entre -1.104 A.m-2 et -2.106A.m-2 ont été dessinés sur

la figure (FIII-07). Les pointillés permettent de matérialiser la cathode.

Les lignes de courant se resserrent au niveau du pied d’arc cathodique formant ainsi

naturellement la « tache cathodique ». L’iso-contour d correspond à la densité de courant -

5.105 A.m-2. Il met en avant le fait que le pincement de courant vers la « tache de sortie » se

fait en amont de la surface de la cathode en contact avec le plasma. L’iso-contour f relatif à la

valeur -2.106 A.m-2 permet de constater que le minimum de la composante axiale de la densité

de courant n’est pas sur l’axe.

f : -2.106

e : -1.106

d : -5.105

c: -1.105

b :-5.104

a : - 1.104

abcde

f

jz (A.m-2) :

z

r

Figure (FIII-07) : Iso-contours de la composante axiale de la densité de courant calculés dans un

plasma d’argon et avec une cathode en tungstène. (I = 200 A)

L’existence du minimum de densité de courant en dehors de l’axe de la décharge à la

surface de la cathode pourrait être liée à une conductivité électrique dans la zone d’ionisation

plus importante sur le bord de la « tache cathodique ». Pour pouvoir vérifier cette hypothèse

le profil radial de la conductivité électrique au niveau de la côte z = 8.08 mm, située dans la

zone d’ionisation, est représenté sur la figure (FIII-08). Les valeurs de la conductivité

électrique présentées sur cette figure correspondent à celles dont le calcul a été décrit dans la

partie III.A..

Page 128: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 130 -

La figure (FIII-08) permet de constater que la conductivité électrique est quasiment

constante jusqu’à un rayon de 2 mm, augmente jusqu’ à un maximum de 893 S.m-1 pour r =

4.7 mm puis décroit rapidement au-delà de cette position radiale. Ce résultat peut être mis en

relation avec le profil radial de la température électronique obtenu dans la gaine et présenté

figure (FIII-09).

0.0 2.0x10-3 4.0x10-3 6.0x10-3 8.0x10-3 1.0x10-20.0

2.0x102

4.0x102

6.0x102

8.0x102

1.0x103

σ (S

.m-1)

r (m)

Figure (FIII-08) : Profil radial de la conductivité électrique dans la pré-gaine calculé dans un

plasma d’argon et avec une cathode en tungstène. (I = 200 A)

La figure (FIII-09) présente le profil radial de la température électronique obtenu à

l’interface gaine/pré-gaine pour des positions radiales comprises entre 0 et 10 mm.

Cette figure montre que le profil de température électronique est quasiment constant

jusqu’à un rayon de 2 mm. Le maximum de ce profil est de 8184K et se situe à une distance

radiale de 4.9 mm par rapport à l’axe.

La position radiale du maximum du profil de température électronique coïncide

quasiment avec le maximum de conductivité électrique. Ainsi on pourrait penser que la

température électronique dans la gaine, calculée grâce à notre modèle d’interaction, influence

fortement la conductivité électrique dans la zone d’ionisation.

Le désaxement des profils de température électronique dans la gaine et de conductivité

électrique dans la pré-gaine pourrait apporter une explication au fait que la densité de courant

soit minimale en dehors de l’axe de la décharge. Cependant, du fait du fort couplage entre le

Page 129: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 131 -

plasma et la cathode, on ne peut pas affirmer que le désaxement de la densité de courant

provoque celui de la conductivité électrique ou bien l’inverse.

0.0 2.0x10-3 4.0x10-3 6.0x10-3 8.0x10-3 1.0x10-25.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

T e (kK

)

r (m) Figure (FIII-09) : Profil radial de la température électronique dans la gaine calculé dans un plasma

d’argon et avec une cathode en tungstène. (I = 200 A)

Afin de pouvoir apporter des éléments de réponse à cette question, un calcul a été

effectué en fixant la densité de courant, dans la cathode et à la surface de celle-ci, à l’aide

d’un profil de densité de courant constant permettant d’avoir un courant électrique de 200A.

La valeur de la densité de courant est de j(r) = -2.106A.m-2 pour des valeurs de r

comprises entre 0 et 5.6 mm et nulle au delà de ce rayon. Le profil de la densité de courant

obtenu lors du calcul complet et celui qui va être imposé sont présentés sur la figure (FIII-

10).

0.0 2.0x10-3 4.0x10-3 6.0x10-3 8.0x10-3 1.0x10-2-2.5x106

-2.0x106

-1.5x106

-1.0x106

-5.0x105

0.0 jcalculé jimposé

j (A.

m-2)

r (m) Figure (FIII-10) : Profils de la densité de courant à la surface de la cathode calculé (carrés) et

imposé (ronds) avec un plasma d’argon et une cathode en tungstène (I = 200 A)

Page 130: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 132 -

Ce profil constant de la densité de courant à la surface de la cathode va maintenant être

imposé dans notre modèle en utilisant les conditions aux limites et la géométrie présentées

dans la partie IV. Grâce à ce calcul, le déséquilibre existant dans la pré-gaine va être estimé à

l’aide de la température électronique dans la gaine, de la température dans le plasma à

l’E.T.L. et de la valeur du rapport θ = Te/Tl dans la pré-gaine. Ces résultats vont être ensuite

reliés au profil de conductivité électrique à deux températures dans la pré-gaine

La figure (FIII-11) présente les profils de la température électronique dans la gaine (z

≈ 8 mm) et de la température dans le plasma à l’E.T.L. en z = 8.2 mm.

Cette figure laisse apparaître une montée de la température électronique et cela

indépendamment du profil de la densité de courant qui est constant à la surface de la cathode

sur un rayon d’environ 6mm (FIII-10). Le profil de la température au niveau du plasma à

l’E.T.L. forme un plateau autour de 7500 K jusqu’à un rayon de 5 mm puis décroit. La figure

(FIII-12) va permettre de voir si l’écart à l’équilibre dans la pré-gaine suit la variation de la

température électronique.

0.0 2.0x10-3 4.0x10-3 6.0x10-34

5

6

7

8

T (z = 8.2 mm) Te

T, T

e (kK

)

r (m) Figure (FIII-11) : Profils de la température électronique dans la gaine et de la température à dans le

plasma à l’E.T.L. (z = 8.2 mm) calculés avec un profil de j constant imposé à la surface de la cathode.

Décharge créée dans de l’argon avec une cathode en tungstène (I = 200 A)

Le profil de θ au niveau de la côte z = 8.08 mm est présenté par la figure (FIII-12).

Cette figure indique que le déséquilibre thermodynamique dans la zone d’ionisation augmente

avec la valeur de r suivant ainsi la variation de la température électronique dans la gaine.

Page 131: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 133 -

0.0 1.0x10-3 2.0x10-3 3.0x10-3 4.0x10-3 5.0x10-3 6.0x10-31.8

1.9

2.0

2.1

θ

r (m) Figure (FIII-12) : Profil de θ (z = 8.08 mm) calculé avec un profil de j constant imposé à la surface

de la cathode. Décharge créée dans de l’argon avec une cathode en tungstène (I = 200 A)

L’augmentation radiale du profil de température électronique dans la gaine ainsi que

du profil de θ doit donc se traduire par une densité de charge dans la pré-gaine plus

importante sur le bord de la « tache d’accrochage ». Cette augmentation a des conséquences

sur la conductivité électrique à deux températures dans la zone d’ionisation comme nous

pouvons le voir sur la figure (FIII-13).

0.0 2.0x10-3 4.0x10-3 6.0x10-3 8.0x10-3 1.0x10-20

200

400

600

800

1000

σ (S

.m-1)

r (m) Figure (FIII-13) : Profil de conductivité électrique dans la zone d’ionisation calculé avec un profil de

j constant imposé à la surface de la cathode. Décharge créée dans de l’argon avec une cathode en

tungstène (I = 200 A)

Page 132: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 134 -

Le profil radial de conductivité électrique dans la pré-gaine (z = 8.08 mm), obtenu en

utilisant un profil de densité de courant constant à la surface de la cathode (FIII-10), est

donné par la figure (FIII-13). Cette figure permet de constater que le profil radial de

conductivité électrique est maximum en dehors de l’axe. La différence entre la valeur

maximale de ce profil et la valeur axiale de la conductivité électrique est de 60 S.m-1. On peut

donc supposer qu’un léger déséquilibre au niveau de la conductivité électrique dans la zone

d’ionisation conduit à un désaxement de la densité de courant quand celle-ci est calculée dans

tout le domaine.

L’étude comparative des résultats obtenus avec les profils de densité de courant

calculé et fixé à la surface de la cathode, a montré que l’introduction d’une description de la

zone cathodique influençait la sortie du courant à l’interface cathode/plasma. Ainsi, dans le

cas de référence, le passage du courant est conditionné par le déséquilibre thermodynamique

existant à proximité de la surface de la cathode. Ce déséquilibre est gouverné par la

température électronique dans la gaine. Les études paramétriques, présentées par la suite, vont

montrer que cette interprétation n’est pas valable dans tous les cas.

V.A.2. Etudes paramétriques

V.A.2.a) Influence de la longueur de la zone d’ionisation d

Le cas test a mis en évidence que la température électronique, au travers de la

conductivité électrique à deux températures, guidait la sortie du courant à la surface de la

cathode.

Nous allons voir si le raisonnement proposé pour expliquer le passage du courant au

niveau de la surface de la cathode, dans le cas de référence, est également applicable pour une

autre valeur de la longueur de la zone d’ionisation d. La valeur de « d » choisie pour cette

étude paramétrique est de 500 µm. Les autres paramètres de la configuration utilisée sont

ceux décrits dans la partie IV.. Les résultats obtenus dans cette nouvelle configuration vont

être comparés à ceux obtenus dans le cas de référence.

Les grandeurs principales qui vont être présentées sont : la température électronique

dans la gaine Te, la conductivité électrique à deux températures dans la pré-gaine σ2T et la

composante axiale de densité de courant jz.

Page 133: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 135 -

La figure (FIII-14) présente les profils de la température électronique dans la gaine

pour les cas d = 200 µm et 500 µm.

Celle-ci montre que pour le cas d = 500 µm le profil de la température électronique

dans la gaine est quasi-constant jusqu’à un rayon d’environ 5 mm alors que dans le cas d =

200 µm le profil est maximum en dehors de l’axe. Nous pouvons également constater une

différence au niveau de la largeur des profils. Pour le cas d = 500 µm le profil de température

électronique est 2 mm plus large que dans le cas d = 200 µm.

D’après l’étude menée dans la partie V.A.1. la conductivité électrique à deux

températures devrait être influencée par les modifications que provoque l’utilisation d’une

distance d différente.

0.0 2.0x10-3 4.0x10-3 6.0x10-3 8.0x10-3 1.0x10-25.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

d = 200 µm d = 500 µm

T e (kK

)

r (m) Figure (FIII-14) : Profils radiaux de la température électronique dans la gaine déterminés en prenant

d = 200 µm (carrés) et d = 500 µm (ronds). Calculs effectués dans l’argon avec une cathode en

tungstène (I = 200 A)

Page 134: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 136 -

La figure (FIII-15) représente les profils radiaux de conductivité électrique calculés

tous deux au niveau de la côte 8.08 mm, située dans la pré-gaine, en utilisant d = 200 µm et d

= 500 µm.

Cette figure permet de constater que les valeurs de la conductivité électrique obtenues

en prenant d = 500 µm sont deux fois plus importantes que celles obtenues avec d = 200 µm.

La figure (FIII-15) montre également que la zone conductrice est plus large si on prend d =

500 µm.

0.0 2.0x10-3 4.0x10-3 6.0x10-3 8.0x10-3 1.0x10-20

200

400

600

800

1000

1200

1400 d = 200 µm d = 500 µm

σ (S

.m-1)

r (m) Figure (FIII-15) : Profils radiaux de la conductivité électrique en z = 8.08 mm calculés avec d = 200

µm (carrés) et d = 500 µm (ronds). Calculs effectués dans l’argon avec une cathode en tungstène

(I = 200 A)

Dans le cas d = 500 µm, si on met en relation le profil de température électronique

(c.f. (FIII-14)) avec le profil radial de conductivité électrique dans la pré-gaine présenté par la

figure (FIII-15), on peut voir clairement que la variation de la conductivité électrique à deux

températures dans la pré-gaine ne suit pas celle de température électronique. En effet, alors

que les températures électroniques sur l’axe sont identiques (c.f. (FIII-14)), et le restent

jusqu’à un rayon de 4 mm, les profils de la conductivité électrique présentent de grandes

divergences. Or la conductivité électrique à deux températures dépend aussi de la température

du plasma à l’E.T.L. au travers de l’interpolation de la température des lourds et des électrons

dans la pré-gaine (cf. partie III.A.).

Page 135: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 137 -

Les profils radiaux de la température du plasma à l’E.T.L. en z = 8.5 mm et de la

température électronique dans la gaine calculés dans les cas d = 500 µm et d = 200 µm sont

reportés sur la figure (FIII-16).

Dans le cas d = 500 µm, la figure (FIII-16) montre que le profil de température au niveau du

plasma à l’E.T.L. a son maximum sur l’axe. La valeur de celui-ci est de 8130K. Cette figure

permet également de constater que la décroissance de la température en z = 8.5 mm

commence autour de 4 mm contre 6 mm pour la température électronique dans la gaine.

Lorsque l’on prend d = 200 µm, la figure (FIII-16) indique que la température du côté du

plasma à l’E.T.L. est inférieure à la température électronique dans la gaine. La différence

entre les deux profils peut atteindre 1000K sur l’axe.

Nous pouvons donc dire que dans le cas d = 500 µm, la température des électrons au

niveau de la côte z = 8.08 mm sera supérieure à celle trouvée dans le cas d = 200 µm. De plus,

on sait que la conductivité électrique et la densité électronique sont très sensibles à la valeur

de la température dans la gamme de température dans laquelle nous nous trouvons. Cela

explique pourquoi les conductivités électriques dans la zone d’ionisation sont si différentes au

centre de la décharge.

0.0 2.0x10-3 4.0x10-3 6.0x10-3 8.0x10-3 1.0x10-25

6

7

8

9Te

d = 200 µm d = 500 µm

T d = 200 µm d = 500 µm

T, T

e (kK

)

r (m) Figure (FIII-16) : Profils radiaux de température électronique dans la gaine( carrés) et de

température dans le plasma à l’E.T.L.en z = 8.5 mm (ronds) calculés avec d = 500 µm (ronds).

Calculs effectués dans l’argon avec une cathode en tungstène (I = 200 A)

Page 136: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 138 -

Si on compare l’évolution radiale de la température en z = 8.5 mm (FIII-16) avec celle

de la conductivité électrique dans la pré-gaine (FIII-15) on peut voir que leurs variations sont

similaires. On peut donc conclure que dans le cas où on utilise d = 500 µm, le calcul de la

conductivité électrique dans la pré-gaine est gouverné principalement par la température dans

le plasma à l’E.T.L..

La figure (FIII-17) représente les champs de la composante axiale de la densité de courant

obtenus en utilisant une dimension de la zone d’ionisation d = 200 µm (à gauche) et d = 500

µm (à droite). Les pointillés représentent la position de la cathode.

La comparaison des deux champs montre que les changements dus à une autre valeur de

la dimension de la zone d’ionisation sont visibles dans tout le domaine de calcul. Le champ de

densité de courant selon z est maximum sur l’axe contrairement au cas où l’on prend d = 200

µm. Dans le cas de référence, la densité de courant minimale est de -2.35.106 A.m-2 alors que

dans le cas d = 500 µm elle est de -1.90.106 A.m-2.

d = 200 µm d = 500 µm

r (mm)

Jz (A.m-2)

z (mm)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 131211109876543210

Figure (FIII-17) : Champs de la composante axiale de la densité de courant obtenus pour d = 200

µm (à gauche) et pour d = 500 µm (à droite). Calculs effectués dans l’argon avec une cathode en

tungstène (I = 200 A)

Page 137: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 139 -

Les profils de la densité de courant à la surface de la cathode obtenus avec d = 200 µm

(carrés) et avec 500 µm (ronds) sont reportés sur la figure (FIII-18).

Cette figure montre que le profil de jz est plus étendu radialement dans le cas où on

prend d = 500 µm que dans celui où d est égal à 200 µm. Le rayon du profil de jz est de 6 mm

dans le cas d = 200 µm contre 7 mm dans le cas d = 500 µm.

0.0 2.0x10-3 4.0x10-3 6.0x10-3 8.0x10-3 1.0x10-2-2.5x106

-2.0x106

-1.5x106

-1.0x106

-5.0x105

0.0 d = 200 µm d = 500 µm

j (A.

m-2)

r (m) Figure (FIII-18) : Profils de la densité de courant à la surface de la cathode obtenus en prenant d =

200 µm (carrés) et d = 500 µm (ronds). Calculs effectués dans l’argon avec une cathode en tungstène

(I = 200 A)

Les résultats présentés dans cette partie ont montré que la longueur de la zone

d’ionisation joue un rôle important sur le profil de la température électronique dans la gaine,

sur la conductivité électrique à deux températures dans la pré-gaine et sur le profil de densité

de courant à la surface de la cathode. Cette partie a mis en avant le fait que dans le cas d =

500 µm, le déséquilibre thermodynamique à l’interface gaine/pré-gaine ne joue pas un rôle

prépondérant dans le calcul de la conductivité électrique à deux températures. C’est la densité

de courant, au travers du chauffage par effet Joule du plasma à l’E.T.L., qui va créer les

conditions favorables au passage du courant. Il sera donc important d’inclure un calcul de la

longueur de zone d’ionisation dans de futurs travaux.

V.A.2.b) Influence du travail de sortie des électrons

L’objectif de cette partie est d’étudier la sensibilité du paramètre « travail de sortie »

du matériau constituant la cathode sur le passage du courant à l’interface cathode/plasma.

Page 138: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 140 -

Pour cela nous allons considérer un calcul avec une électrode en tungstène thorié dont la

valeur du travail de sortie est de 3 eV [Hai-1] que nous allons comparer aux résultats obtenus

dans le cas d’un matériau en tungstène pur : 4.55 eV, les conductivités électriques et

thermiques entre les deux cas restant identiques.

Pour effectuer ce test, la température de refroidissement de la cathode est de 1000 K.

Nous avons choisi cette température car les travaux de Haidar et al [Hai-1] ont montré

qu’une différence d’environ 1000 K existe dans la cathode suivant que l’on utilise du

tungstène ou bien du tungstène thorié. Les autres conditions du test sont celles décrites par la

partie IV.. Les résultats obtenus vont être comparés avec ceux trouvés dans les mêmes

conditions que celles utilisées dans le cas de référence (cf. IV.) mais avec une température de

refroidissement de la cathode réduite à 1000 K.

La figure (FIII-19) présente les profils radiaux de la température électronique dans la

gaine et de la température dans le plasma à l’E.T.L. calculés en utilisant des valeurs du travail

de sortie de 4.55 eV (W) et de 3 eV (WTh).

Cette figure permet de constater que la température électronique dans la gaine, dans le

cas d’un travail de sortie de 3 eV, est plus faible qu’avec 4.55 eV. En ce qui concerne la

température dans le plasma à l’E.T.L., on peut constater que les profils sont quasiment

identiques. Ces résultats ont été obtenus avec une dimension de la pré-gaine de 200 µm.

0.0 2.0x10-3 4.0x10-3 6.0x10-3 8.0x10-3 1.0x10-26.0

6.5

7.0

7.5

8.0

8.5 Te : W (4.55 eV) WTh (3 eV)

T (z = 8.2 mm): W (4.55 eV) WTh (3 eV)

T, T

e (kK

)

r (m) Figure (FIII-19) : Profils radiaux de la température électronique calculés au niveau de la gaine et

dans le plasma à l’E.T.L au niveau de la côte z = 8.2 mm. (carrés : W, ronds : WTh). Calculs effectués

dans l’argon (I = 200 A)

Page 139: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 141 -

Les profils radiaux de la conductivité électrique dans la pré-gaine, pour les deux

valeurs du travail de sortie, ont été tracés sur la figure (FIII-20) afin de voir quelles sont les

répercutions des différences entre les profils de la température électronique, présentés figure

(FIII-19), sur la conductivité électrique.

La figure (FIII-20) représente les profils radiaux de conductivité électrique calculés en

z = 8.08 mm en utilisant des valeurs du travail de sortie de 4.55 eV (carrés) et de 3 eV

(ronds).

On peut constater que le profil de la conductivité électrique est légèrement plus large

dans le cas où le travail de sortie est de 4.55 eV (W). La figure (FIII-20) montre également

que les deux profils se rejoignent entre 4 et 4.5 mm. La différence entre la conductivité

électrique au niveau de l’axe et sa valeur maximale sur le bord de la tache est de 284 S.m-1

pour 3 eV (WTh) contre 152 S.m-1 pour 4.55 eV (W).

La différence qui existe sur l’axe entre les deux profils de conductivité électrique

s’explique par le fait que la température électronique dans la gaine est plus faible dans le cas

où une valeur de 3 eV est choisie (cf. figure (FIII-19)).

Le croisement des deux profils de conductivité électrique (FIII-20) est dû au fait que

la température électronique dans la gaine et celle calculée dans le plasma à l’E.T.L. (FIII-19)

augmentent de manière quasi-identique dans le cas d’un travail de sortie de 3 eV. La

sensibilité de la conductivité électrique et de la densité électronique dans cette gamme de

température provoque alors une augmentation significative du profil de la conductivité

électrique à partir d’une distance radiale de 3 mm.

0.0 2.0x10-3 4.0x10-3 6.0x10-3 8.0x10-3 1.0x10-20

200

400

600

800

1000

1200 W (4.55 eV) WTh (3 eV)

σ (S

.m-1)

r (m) Figure (FIII-20) : Profils de la conductivité électrique calculés au niveau de la côte z = 8.08 mm

(carrés : W, ronds : WTh). Calculs effectués dans l’argon (I = 200 A)

Page 140: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 142 -

La comparaison des profils radiaux de la conductivité électrique à deux températures

avec ceux de la température électronique dans la gaine, calculés pour un travail de sortie de 3

eV, figure (FIII-19), permet de dire que la température électronique à l’interface gaine/pré-

gaine influence la conductivité électrique à deux températures dans la pré-gaine.

La figure (FIII-21) représente les champs de la composante axiale de la densité de

courant calculés avec une électrode en tungstène (à gauche) et une en tungstène thorié (à

droite).

La figure (FIII-21) permet de voir que dans le cas du tungstène thorié le champ de jz

semble plus constricté au niveau du pied d’arc cathodique. La densité de courant axiale

minimale est de -2.94.106 A.m-2 avec 3 eV (WTh) contre -2.52.106 A.m-2 avec 4.55 eV (W).

La valeur importante du minimum de la densité de courant dans le cas où le travail de

sortie des électrons est de 3 eV (WTh) vient du fait que le plasma dans la pré-gaine est

conducteur sur une couronne plus étroite que dans le cas où le travail de sortie est de 4.55 eV

(W)(c.f. (FIII-20)).

Jz (A.m-2)

W (4.55 eV) WTh (3 eV)

r (mm)

z (mm)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 131211109876543210

Figure (FIII-21) : Champs de la densité de courant axiale pour du tungstène (W) et du tungstène

thorié (WTh). Calculs effectués dans l’argon (I = 200 A)

Page 141: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 143 -

Les profils de la densité de courant à la surface de l’électrode calculés avec des valeurs du

travail de sortie de 3 eV (WTh) et de 4.55 eV (W) sont représentés par la figure (FIII-22).

Sur cette figure on peut voir que la largeur du profil de la composante axiale de la densité

de courant, obtenue dans le cas 3 eV (WTh), est légèrement plus faible qu’avec 4.55 eV (W).

La figure (FIII-22) montre une différence d’environ 106 A.m-2 entre les minima des profils de

la densité de courant alors que proche de l’axe la différence entre les deux profils est minime.

La superposition des deux profils au centre de la décharge vient du fait que le gradient

radial de conductivité électrique est identique à proximité du centre de l’arc (cf. figure (FIII-

20)).

0.0 2.0x10-3 4.0x10-3 6.0x10-3 8.0x10-3 1.0x10-2-3.0x106

-2.5x106

-2.0x106

-1.5x106

-1.0x106

-5.0x105

0.0 W (4.55 eV) WTh (3 eV)

j (A.

m-2)

r (m)

Figure (FIII-22) : Profils de la densité de courant à la surface de la cathode en fonction de la

position radiale (carré : W, ronds : WTh). Calculs effectués dans l’argon (I = 200 A)

Cette partie a permis d’étudier l’influence du travail de sortie sur le passage du courant

à l’interface cathode/plasma. On a pu montrer que la modification de la valeur du travail de

sortie peut entrainer une diminution de la température électronique dans la gaine. Le

déséquilibre thermodynamique présent dans la pré-gaine et la sensibilité de la conductivité

électrique à la température électronique peuvent néanmoins mener à une augmentation

significative de la conductivité électrique dans la pré-gaine comme on a pu le voir dans le cas

où le travail de sortie est de 3 eV.

Page 142: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 144 -

V.A.2.c) Influence de la taille de la cathode

Pour étudier l’influence de la largeur de la cathode sur le passage du courant, un calcul

a été effectué en utilisant la géométrie présentée sur la figure (FIII-23). Dans cette

configuration, le domaine de calcul est de 13 x 15 mm. Le rayon de la cathode est de 1.6 mm

et sa longueur est de 8 mm. L’espace inter-électrodes est de 5 mm.

La largeur de la zone d’accrochage anodique FE est de 7.98 mm permettant ainsi

d’avoir des densités de courant de l’ordre de 106 A.m-2 pour une décharge de 200 A. Les

conditions aux limites sont celles décrites dans la partie IV.

A B C

DEF

G

Anode

H

1.6 mm

8 mm

7.98 mm

5 mm

z

r

15 mm

Cathode

Figure (FIII-23) : Dimensions de la configuration

L’arc modélisé dans cette configuration est créé dans l’argon à la pression

atmosphérique. L’intensité du courant électrique de la décharge est de 200 A. La cathode est

en tungstène. Le dernier paramètre à choisir est la longueur de la zone d’ionisation « d » que

nous prenons ici égale à 500 µm. La partie V.A.II.a) a montré que le minimum du profil de

Page 143: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 145 -

densité de courant se trouve au centre de la cathode dans le cas où la longueur d est égale à

500 µm.

La figure (FIII-24) présente le champ de la composante axiale de la densité de courant

dans le domaine de calcul. Les pointillés correspondent à la position de la cathode.

Cette figure montre que le minimum de la composante axiale de la densité de courant est

de -3.65 A.m-2 et se trouve sur le bord de la cathode. Le décalage radial du minimum de la

densité de courant commence en amont de la surface de la cathode en contact avec le plasma.

Il est important de remarquer ici, que bien que nous ayons choisi une valeur de d = 500 µm,

nous obtenons un désaxement des densités de courant, ce qui n’était pas le cas dans la

géométrie précédente. Le phénomène de désaxement du profil de la densité de courant a

également été trouvé par Lowke et al [Low-4] dans le cas d’une cathode pointue dont le bout

a été tronqué.

Dans notre configuration on peut penser que le désaxement de la densité de courant est dû

à la présence d’un champ électrique important sur le bord de la cathode. Ainsi dans cette

configuration, le déséquilibre thermodynamique dans la zone d’interaction cathodique

pourrait ne pas jouer un rôle majeur au niveau de la description du passage du courant.

Jz (A.m-2)

r (mm)

z (mm)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 131211109876543210

Figure (FIII-24) : Champ de densité de courant axiale. Calcul effectué dans l’argon avec une cathode

en tungstène (I = 200 A)

Page 144: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 146 -

Afin d’étudier si le décalage de la densité de courant est dû à un déséquilibre

thermodynamique dans la pré-gaine ou à la géométrie étudiée, le champ de densité de courant

a été calculé en utilisant trois régions de conductivités électriques différentes. Pour ce test seul

le potentiel électrique a été calculé (cf. (EIII-06) et (EIII-15)). Les conditions aux limites

permettant de résoudre l’équation de conservation du courant sont celles décrites par les

tableaux (TIII-04) (a) et (b).

Les trois régions sont représentées sur la figure (FIII-25). Cette figure montre une

région dont la conductivité électrique est celle d’une cathode en tungstène dont la température

est de 2000 K. La seconde région a une conductivité de 7.96.103 S.m-1 correspondante à celle

d’un plasma d’argon dont la température est de 15000 K. La troisième région possède la

conductivité électrique d’un gaz froid.

1.76.106 S.m-1

7.96.103 S.m-1

10-10 S.m-1

Cathode

Zone conductrice

Anode

Figure (FIII-25) : Représentation schématique des trois régions utilisées pour effectuer le calcul du

potentiel électrique.

Page 145: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 147 -

La figure (FIII-26) représente les résultats obtenus en calculant le potentiel électrique

avec une intensité du courant électrique de 200 A en utilisant les régions définies sur la figure

(FIII-25).

La figure (FIII-26) permet de constater que même avec des profils radiaux de

conductivité électrique constants dans le matériau et dans le plasma, le minimum de densité

de courant se trouve sur le bord de la cathode. Ce minimum est de -3.93.107A.m-2. Cette

valeur est proche de celle présentée sur la figure (FIII-24).

Jz (A.m-2)

r (mm)

z (mm)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 131211109876543210

Figure (FIII-26) : Champ de densité de courant axiale. Calcul effectué dans l’argon avec une cathode

en tungstène (I = 200 A) avec 3 régions dont la conductivité électrique est définie par la figure

(FIII-25)

On peut donc conclure, que dans le cas où le plasma recouvre toute la surface de la

cathode, le champ électrique important, présent sur le bord de la cathode, va provoquer un

désaxement du minimum de la densité de courant.

Nous avons pu également voir dans cette partie que la densité de courant minimum

dans cette configuration est de l’ordre de 107 A.m-2 contre 106 A.m-2 dans le cas de référence

Page 146: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 148 -

présenté dans la partie V.A.1.. Ainsi on peut conclure que la géométrie de la cathode

conditionne fortement le profil de la densité de courant.

V.A.3. Bilan

L’étude du cas de référence a permis de montrer que quatre grandeurs sont nécessaires

pour comprendre de quelle manière s’effectue le couplage électrocinétique entre la cathode et

le plasma : la température électronique dans la gaine, la température du côté du plasma à

l’E.T.L., la conductivité à deux températures dans la pré-gaine et enfin la densité de courant

dans le domaine de calcul.

Les différentes études paramétriques présentées dans cette partie ont montré que deux

types de cas peuvent se présenter :

Pour certaines situations le courant influence la conductivité hors-équilibre en

modifiant par effet Joule la température à la frontière pré-gaine/plasma à l’E.T.L. (noté

σ⇒j dans le tableau (TIII-05))

Pour d’autres situations c’est le déséquilibre thermodynamique au niveau de la gaine

qui va modifier la température dans la pré-gaine et donc la conductivité électrique à

deux températures (noté j⇒σ dans le tableau (TIII-05)).

d = 200 µm Tungstène

(Ø =20 mm) Tungstène

(Ø = 3.2 mm) Tungstène

thorié (Ø = 20 mm)

d = 500 µm Tungstène

σ⇒j x x j⇒σ x x

Tableau (TIII-05) : Synthèse portant sur le passage du courant dans les différentes configurations

étudiées.

Il est donc difficile d’établir une règle concernant le couplage électrocinétique entre la

cathode et le plasma lorsque la partie conductrice de ce dernier ne recouvre pas toute la

surface de la cathode.

Par contre l’étude paramétrique portant sur l’étude de la largeur de la cathode a montré

que lorsque le plasma conducteur recouvre toute la surface de la cathode, le champ électrique

présent sur le bord de l’électrode provoque un désaxement du minimum de la densité de

courant à sa surface. Ce désaxement est alors indépendant du déséquilibre thermodynamique

présent dans la pré-gaine.

Page 147: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 149 -

Enfin nous avons montré que la longueur de la zone d’ionisation d joue un rôle non

négligeable dans le calcul de la densité de courant à la surface de la cathode. Il serait donc

utile dans de futurs développements d’inclure un calcul de la longueur de la zone d’ionisation

[Alm-1][Rie-2] afin de s’affranchir de ce paramètre.

V.B. Chute de tension cathodique

Dans les paramètres essentiels pour la caractérisation d’un milieu plasma en

interaction avec une électrode, la chute de tension occupe une place centrale.

Nous avons, dans les chapitres précédents, montré que cette grandeur pouvait être

obtenue par notre modèle. Cependant cette grandeur présente une variation radiale et il est

difficile de donner une grandeur unique. Une chute de tension cathodique « effective » Uceff a

donc été définie :

=

iisii

ceff UAjIU

, (EIII-41)

I correspond au courant de décharge, ji est la densité de courant pour une couronne d’aire Ai

et Us, i est la chute de tension dans la gaine associée à la couronne d’indice i. Ces grandeurs

sont schématisées sur la figure (FIII-27). Notons que le dénominateur de l’équation (EIII-41)

est assimilable à une conductance équivalente de la gaine.

ji

Ai

I

Us, i

Figure (FIII-27) : Schéma représentant les grandeurs de la formule (EIII-41)

Dans cette partie nous allons proposer une étude de sensibilité de la chute de tension

dans la gaine aux autres paramètres. Les résultats obtenus à partir du cas de référence décrit

Page 148: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 150 -

dans la partie IV. vont être analysés afin de comprendre quelles grandeurs physiques jouent

un rôle dans l’évolution radiale de la chute de tension dans la gaine. Ensuite, l’influence de la

longueur de la zone d’ionisation d, du coefficient d’émission secondaire γ et de la température

de refroidissement de la cathode T0 sur le profil de chute de tension cathodique va être

présentée. Les résultats des calculs faisant varier la valeur du travail de sortie ne sont pas

présentés car ils sont similaires à ceux obtenus dans le cas où on change la température de

refroidissement T0.

V.B.1. Cas de référence

Le profil de chute de tension dans la gaine est représenté sur la figure (FIII-28) pour

une position radiale comprise entre 0 et 10 mm. Sur cette figure a également été reportée la

chute de tension effective Uceff calculée à partir de l’équation (EIII-41) dont la valeur est de

17.95 V.

La figure (FIII-28) permet de constater que la chute de tension cathodique dépend

fortement de la position radiale. Sur l’axe de la décharge la chute de tension cathodique est de

15 V. La chute de tension dans la gaine croit jusqu’à atteindre 31.2 V pour un rayon r = 5.5

mm puis décroit jusqu’à r = 6.3 mm. Au-delà d’un rayon de 6.3 mm, une croissance de la

chute de tension peut être observée en fonction du rayon.

0.0 2.0x10-3 4.0x10-3 6.0x10-3 8.0x10-3 1.0x10-210

15

20

25

30

35

Um=17.95

U s (V)

r (m) Figure (FIII-28) : Profil de la chute de la tension dans la gaine Us(r) et valeur de la chute de tension

effective Uceff. Calcul effectué dans l’argon avec une cathode en tungstène (I = 200 A)

Page 149: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 151 -

Pour pouvoir comprendre l’évolution radiale du profil de la chute de tension dans la

gaine il est nécessaire d’étudier l’émission électronique à la surface de la cathode. Dans le

chapitre 2 il a été mis en évidence que la valeur de la chute de tension dans la gaine est

fortement liée à l’émission électronique à la surface de la cathode. Lorsque le flux d’électrons

thermoémis diminue la chute de tension dans la gaine augmente fortement.

La figure (FIII-29) présente l’évolution radiale de la densité de courant transportée par

les électrons thermoémis jem à la surface de la cathode.

Cette figure permet de constater que l’évolution radiale de la densité de courant

thermoémis est régulière. jem est quasi constante sur un rayon de 4 mm puis elle augmente de

manière importante au-delà.

La figure (FIII-28) a montré que l’évolution radiale de la chute de tension cathodique

est très irrégulière. Or le profil radial de jem est régulier. Par conséquent, on ne peut pas lier

directement les profils radiaux de la densité de courant thermoémis et de la chute de tension

dans la gaine. La variation de la chute de tension dans la gaine est en fait directement corrélée

au rapport entre la densité de courant thermoémis et la densité de courant totale comme on va

le voir sur la figure (FIII-30).

0.0 2.0x10-3 4.0x10-3 6.0x10-3 8.0x10-3 1.0x10-2-1.2x106

-1.0x106

-8.0x105

-6.0x105

-4.0x105

-2.0x105

0.0

j em (A

.m-2)

r (m) Figure (FIII-29) : Profil radial de la densité de courant transportée par les électrons thermoémis à la

surface de la cathode. Calcul effectué dans l’argon avec une cathode en tungstène (I = 200 A)

Page 150: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 152 -

L’évolution radiale du rapport entre la densité de courant thermoémis et la densité de

courant totale ainsi que le profil radial normalisé de la chute de tension dans la gaine sont

représentés sur la figure (FIII-30).

Cette figure permet de constater que les hausses de la chute de tension cathodique

coïncident avec les baisses de la proportion de la densité de courant thermoémis par rapport à

la densité de courant totale. Ainsi nous pouvons dire que le profil de la chute de tension

cathodique est directement corrélé à la valeur du rapport jem/j.

Le raisonnement suivant permet d’expliquer cette dépendance. Le fait d’imposer la

densité de courant totale j contraint la zone d’interaction cathodique à fournir un certain flux

de charges. Si le flux transporté par les électrons thermoémis n’est pas suffisant, le flux d’ions

et donc le chauffage du gaz doit augmenter afin d’avoir une densité de charges suffisante à

l’interface gaine/pré-gaine. Ce chauffage est entretenu par les électrons émis par la cathode et

accélérés par la chute de tension dans la gaine. Ainsi lorsque le rapport jem/j diminue, la chute

de tension dans la gaine doit augmenter.

0.0 2.0x10-3 4.0x10-3 6.0x10-3 8.0x10-3 1.0x10-20.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

jem/j Us/Us,max

Us/U

s, m

ax, j

em/j

r (m) Figure (FIII-30) : Profils radiaux normalisés de la chute de tension dans la gaine et du rapport entre

la densité de courant thermoémis et la densité de courant totale.

Calcul effectué dans l’argon avec une cathode en tungstène (I = 200 A)

Page 151: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 153 -

V.B.2. Paramètres influençant la chute de tension cathodique

Cette partie va permettre d’étudier l’influence des paramètres qui jouent

significativement sur le profil de chute de tension dans la gaine. Ces paramètres sont : la

longueur de la zone d’ionisation d, la température de refroidissement de la cathode T0 et la

valeur du coefficient d’émission secondaire.

V.B.2.a) Longueur de la zone d’ionisation d

L’influence de la longueur de la zone d’ionisation d sur le profil de chute de tension

dans la gaine va être étudiée dans cette partie. La longueur de la zone d’ionisation est de 500

µm. Les autres conditions du calcul sont celles décrites dans la partie IV.

Les résultats obtenus dans cette configuration vont être comparés à ceux du cas de

référence. Nous allons montrer que la partie centrale du profil de la chute de tension

cathodique va contribuer majoritairement au calcul de la chute de tension effective Uceff.

Les profils de chute de tension calculés au niveau de la gaine dans les cas d= 200 µm

et d = 500 µm ont été reportés sur la figure (FIII-31).

0.0 2.0x10-3 4.0x10-3 6.0x10-3 8.0x10-3 1.0x10-210121416182022242628303234 d = 200 µm

d = 500 µm

U s (V)

r (m) Figure (FIII-31) : Profils radiaux de la chute de tension dans la gaine calculés avec d = 200 µm

(carrés) et d = 500 µm (ronds). Calculs effectués dans l’argon avec une cathode en tungstène

(I = 200A)

Page 152: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 154 -

Pour un rayon inférieur à 4 mm, les chutes de tensions sont superposées. Au-delà, de

nombreuses différences apparaissent. Une différence entre les deux profils de la chute de

tension dans la gaine peut être observée au niveau des maxima. Dans le cas d = 500 µm la

chute de tension est de 34 V contre 31 V dans le cas d = 200 µm. Au-delà d’un rayon de 7.3

mm, la chute de tension dans la gaine calculée avec d = 500 µm devient inférieure à celle

calculée avec d = 200 µm.

Dans le cas d = 500 µm, la chute de tension effective dans la gaine est de 18.4 V

contre 17.8 V dans le cas d = 200 µm. Au vue du faible écart entre les valeurs de la tension

effective et des différences constatées au-delà d’un rayon de 4 mm au niveau des profils de la

chute de tension dans la gaine (FIII-31), nous pouvons dire que la partie centrale des profils

de la chute de tension dans la gaine joue un rôle prépondérant au niveau du calcul de la chute

de tension effective dans la gaine.

V.B.2.b) Température de refroidissement de la cathode T0

L’influence de la température de refroidissement T0 sur le profil de la chute de tension

dans la gaine est étudiée. La température de refroidissement choisie est de 1000 K. Les autres

caractéristiques de notre calcul sont celles décrites par la partie IV. Les résultats obtenus dans

ces conditions vont être comparés à ceux obtenus dans le cas de référence.

Les profils de la chute de tension dans la gaine calculés avec T0 = 2000 K et T0 = 1000

K sont présentés par la figure (FIII-32)

0.000 0.002 0.004 0.006 0.008 0.010101

102

103

T0 = 2000K T0 = 1000K

U s (V)

r (m) Figure (FIII-32) : Profils radiaux de la chute de tension dans la gaine (carré : T0 = 2000 K, ronds :

T0 = 1000 K). Calculs effectués dans l’argon avec une cathode en tungstène (I = 200 A)

Page 153: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 155 -

La chute de tension dans la gaine présentée par la figure (FIII-32) est fortement

influencée par le changement de la valeur de T0. On peut observer une différence de 7 V sur

l’axe et une différence d’un ordre de grandeur au bord de la cathode. La valeur de la chute de

tension obtenue sur le bord de la cathode dans le cas où l’on prend T0 = 1000 K n’est pas

réaliste.

Dans la partie III.C.1. nous avons montré que la chute de tension cathodique est

directement corrélée au rapport jem/j. Il est donc nécessaire d’analyser le profil radial de ce

rapport.

La figure (FIII-33) présente le profil radial du rapport entre la densité de courant

thermoémis et la densité de courant totale.

Cette figure nous montre que le rapport jem/j décroit fortement à partir d’un rayon de 4

mm. Au-delà d’un rayon de 6 mm, la densité de courant thermoémis tombe en dessous de 5%

de la densité de courant totale. Cela est dû au fait que le refroidissement de la cathode, trop

important dans le cas T0 = 1000K, entraine l’apparition d’une température de la surface de la

cathode insuffisante pour assurer le transfert de charges entre le plasma et la cathode par

thermoémission. Ainsi la chute de tension cathodique doit augmenter pour assurer la

conservation de l’énergie à l’interface gaine/pré-gaine.

0.0 2.0x10-3 4.0x10-3 6.0x10-3 8.0x10-3 1.0x10-20.0

0.1

0.2

0.3

0.4

0.5

j em/j

r (m) Figure (FIII-33) : Profil radial du rapport entre la densité de courant thermoémis et la densité de

courant totale. Calculs effectués dans l’argon avec une cathode en tungstène (I = 200 A)

Une des limites de notre modèle est donc atteinte dans cette configuration car en toute

rigueur le refroidissement de la cathode devrait être défini à l’aide d’un coefficient de

transfert de chaleur.

Page 154: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 156 -

V.B.2.c) Coefficient d’émission secondaire

L’influence de la valeur du coefficient d’émission secondaire sur le profil de la chute

de tension dans la gaine est étudiée dans cette partie. La valeur du coefficient a été modifiée et

fixée à 1. Les autres conditions du calcul sont celles détaillées dans la partie IV.

Grâce à un coefficient d’émission secondaire plus élevé, nous avons augmenté la part

des électrons secondaires et ainsi voir si la chute de tension diminue par rapport au cas de

référence.

Les profils de la chute de tension dans la gaine calculés avec γ = 1 et γ = 0.1 ont été

comparés. Ceux-ci sont représentés sur la figure (FIII-34).

On peut constater que l’utilisation de l’émission secondaire avec γ = 1 limite la chute

de tension à des valeurs allant de 14.4 V à 23.4 V. Dans le cas où γ = 1, la variation radiale de

la chute de tension cathodique se traduit par une tension effective Uceff de 16.2 V.

L’explication de cette différence de profil de chute de tension cathodique entre le cas γ

= 1 et γ = 0.1 se trouve au niveau de l’émission électronique secondaire et thermoémise

comme on va le voir sur la figure (FIII-35).

0.0 2.0x10-3 4.0x10-3 6.0x10-3 8.0x10-3 1.0x10-212

14

16

18

20

22

24

26

28

30

32

γ = 0.1 γ = 1

U s(V)

r (m) Figure (FIII-34) : Profils radiaux de la chute de tension dans la gaine déterminés avec γ = 1 (ronds)

et γ = 0.1 (carrés). Calculs effectués dans l’argon avec une cathode en tungstène (I = 200 A)

Les profils radiaux du rapport entre la densité de courant thermoémis et la densité de

courant totale, et du rapport entre la densité de courant des électrons secondaires et la densité

de courant totale calculés dans le cas γ = 1 sont reportés sur la figure (FIII-35).

Page 155: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 157 -

Cette figure permet de constater que la proportion de la densité de courant secondaire

par rapport à la densité de courant totale est deux fois plus importante que celle des électrons

thermoémis. Au niveau du pic de tension, situé à environ r = 5 mm (cf. figure (FIII-35)), on

peut constater une baisse de la densité de courant thermoémis et une hausse de la densité de

courant provenant de l’émission secondaire.

La part importante des électrons secondaires permet de compenser une partie de la

baisse de la proportion des électrons thermoémis limitant ainsi la hausse de la chute de

tension cathodique observée sur la figure (FIII-34) entre r = 4 et 6 mm.

0.0 2.0x10-3 4.0x10-3 6.0x10-3 8.0x10-3 1.0x10-20.000.05

0.10

0.15

0.200.250.30

0.350.40

0.450.50

jem/j jems/j

j em/j,

j ems/j

r (m) Figure (FIII-35) : Profil radial du rapport entre la densité de courant thermoémis et la densité de

courant totale (carrés) ; Profil radial du rapport entre la densité de courant secondaire et la densité

de courant totale (ronds). γ = 1. Calculs effectués dans l’argon avec une cathode en tungstène

(I = 200 A)

Page 156: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 158 -

V.B.3. Bilan

L’étude sur le profil de chute de tension cathodique présenté dans cette partie a permis

de montrer que la valeur de Us dépend fortement du rapport entre la densité de courant

thermoémis et la densité de courant totale.

Le changement de la longueur de la zone d’ionisation a montré que la tension effective

est principalement affectée par la partie centrale du profil de chute de tension dans la gaine.

Nous avons pu également constater que la température de refroidissement joue de

manière significative sur la valeur de la chute de tension cathodique. Il sera donc préférable

dans de futurs développements d’utiliser un coefficient de transfert de chaleur pour définir la

température de refroidissement de la cathode.

Enfin on a pu remarquer que l’augmentation de la valeur du coefficient d’émission

secondaire entraine une limitation de la valeur maximale de la chute de tension dans la gaine.

Par conséquent, il sera nécessaire de mieux connaître la valeur du coefficient d’émission

secondaire dans de futurs développements.

V.C. Etude du transfert thermique

Après avoir étudié le passage du courant à l’interface cathode/plasma (cf. V.A) et le

profil de la chute de tension dans la gaine (cf. V.B), nous arrivons dans la troisième et

dernière partie portant sur l’étude du transfert thermique entre la cathode et le plasma. Cette

étude a pour but de quantifier le flux d’énergie vers la cathode et la température de surface de

la cathode obtenus à partir de notre modèle.

Dans le corps de la décharge, le lien entre la densité de courant et le plasma à l’E.T.L.

se fait grâce à l’effet Joule et à la conductivité électrique qui est fonction de la température du

plasma. Typiquement avec une cathode cylindrique, une intensité de 200 A et un gaz

plasmagène d’argon, la température maximale est de l’ordre de 11500 K avec une cathode

dont le rayon est de 10 mm et 15200 K pour une cathode dont le rayon est de 1.6 mm.

Le couplage thermique entre la cathode et le plasma a la particularité d’être complexe

à cause du phénomène de thermoémission qui se traduit par un refroidissement de la cathode

Page 157: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 159 -

dépendant fortement de sa température de surface. Par conséquent, il est intéressant d’étudier

les profils radiaux du flux d’énergie et de la température à la surface de la cathode.

Les résultats provenant du calcul de référence vont être présentés dans un premier

temps. Ensuite les influences de la longueur de la zone d’ionisation d, de la température de

refroidissement T0 et du travail de sortie sur le transfert thermique à la cathode vont êtres

étudiées.

V.C.1. Calcul de référence

Les profils radiaux du flux d’énergie à la surface de la cathode et de ses composantes

ont été reportés sur la figure (FIII-36). Les valeurs absolues des composantes des flux

d’énergie q (flux d’énergie total), qi (flux d’énergie ionique), qrd (flux d’énergie apporté par

les électrons rétrodiffusés) et qcond (flux dû à la conduction thermique) dont les valeurs sont

négatives ont été dessinées.

La figure (FIII-36) permet de voir que les contributions majoritaires proviennent des

ions, des électrons thermoémis et des neutres. Le flux d’énergie résultant est de l’ordre de 107

W.m-2. La figure (FIII-36) montre également que le flux d’énergie total a son maximum en

dehors de l’axe à cause du flux d’ions impactant de manière plus intense la surface de la

cathode sur le bord de la « tache cathodique ».

0.0 2.0x10-3 4.0x10-3 6.0x10-3 8.0x10-3 1.0x10-210-1

100

101

102

103

104

105

106

107

108

q, q

i, qrd

, qem

s, q em

, qco

nduc

tion (

W.m

-2)

r (m)

-q -qi -qrd qems qem -qconduction

Figure (FIII-36) : Profils du flux d’énergie à la surface de la cathode et de ses différentes

composantes. Calcul effectué dans l’argon avec une cathode en tungstène (I = 200 A)

Page 158: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 160 -

Pour mieux comprendre la hausse du flux d’ions vers la cathode pour des rayons

compris entre 4 et 5 mm, le profil radial de la valeur absolue du flux d’énergie, apporté par les

ions à la surface de la cathode, est représenté sur la figure (FIII-37). Le profil radial d’une

composante de |qi| correspondant à l’équation (EIII-42) y est également tracé.

( ) iisicomp jEUq +−= (EIII-42)

La figure (FIII-37) montre que la composante décrite par la formule (EIII-42) et le

flux d’ions vers la cathode ont des profils quasi identiques. Les maxima de ces courbes se

trouvent autour de r = 5 mm.

0.0 2.0x10-3 4.0x10-3 6.0x10-3 8.0x10-3 1.0x10-2105

106

107

108

-qi -(Us+Ei) ji

-qi,

-(Us+

E i) j i

(W.m

-2)

r (m) Figure (FIII-37) : Profils des flux d’énergie ionique qi et qicomp à la surface de la cathode. Calcul

effectué dans l’argon avec une cathode en tungstène (I = 200 A)

Le flux d’ions peut donc être approximé par la formule (EIII-42). L’explication de la

position du maximum du flux d’énergie apporté par les ions ne peut être donnée par la chute

de tension dans la gaine qui a son maximum entre 5 et 6mm. La température électronique

étant en dessous de 10000 K dans la gaine (cf. (FIII-11)), la valeur de l’énergie d’ionisation

peut être considérée comme constante suivant r. Enfin on a pu voir sur la figure (FIII-11) que

la température électronique est maximale autour de r = 5mm. Par conséquent, le maximum du

flux d’énergie ionique s’explique par le fait que la densité de courant ionique en valeur

absolue |ji| est maximale en r = 5 mm à cause d’une densité de charges importante à cet

endroit.

Page 159: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 161 -

Afin de voir si la forme du profil de flux d’énergie vers la cathode a des conséquences

sur la température de surface de la cathode, la figure (FIII-38) présente le profil de

température Tw à la surface de la cathode.

Cette figure montre que la température Tw est maximale au centre de la cathode.

Cela semble en contradiction avec le profil de flux d’énergie présenté par la figure

(FIII-37). Néanmoins une explication peut être apportée. Il existe un couplage thermique

particulier au niveau de la cathode qui est dû au phénomène de thermoémission : plus la

température est importante et plus le refroidissement par thermoémission est efficace. Ainsi le

désaxement du maximum du profil de flux peut être interprété comme un état d’équilibre

entre le chauffage provoqué par le flux d’ions allant vers la cathode et le refroidissement

efficace des électrons thermoémis.

0.0 2.0x10-3 4.0x10-3 6.0x10-3 8.0x10-3 1.0x10-22.0

2.2

2.4

2.6

2.8

3.0

3.2

T w (k

K)

r (m) Figure (FIII-38) : Profil de la température à la surface de la cathode. Calcul effectué dans l’argon

avec une cathode en tungstène (I = 200 A)

V.C.2. Etude de différents paramètres

Les paramètres étudiés dans cette partie sont : la longueur de la zone hors équilibre, la

température de refroidissement de la cathode et le travail de sortie des électrons. Le

coefficient d’émission secondaire a un effet similaire à celui du travail de sortie des électrons

par conséquent celui-ci ne sera pas présenté.

Page 160: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 162 -

V.C.2.a) Longueur de la zone d’ionisation

La valeur de la longueur de la zone d’ionisation choisie pour étudier le transfert

thermique à la surface de la cathode est de 500 µm. Les résultats obtenus sont comparés avec

ceux du cas de référence.

Cette étude va permettre d’étudier le transfert thermique à la surface de la cathode

dans le cas où le profil de densité de courant à sa surface est minimum sur l’axe.

Le profil de flux d’énergie à la surface de la cathode est représenté sur la figure (FIII-

39) pour des tailles de la zone d’ionisation de 200 µm et 500 µm.

Cette figure montre que le flux d’énergie vers la cathode est plus étendu pour d = 500

µm et qu’il reste minimum en dehors de l’axe. Le minimum du flux d’énergie est de -3.9.107

W.m-2 dans le cas d = 200 µm et de -2.6.107 W.m-2 avec d = 500 µm. Cette différence entre

les minima est due au fait que le flux d’ions vers la cathode est plus important lorsqu’une

distance d = 200 µm est choisie.

0.0 2.0x10-3 4.0x10-3 6.0x10-3 8.0x10-3 1.0x10-2-5x107

-4x107

-3x107

-2x107

-1x107

0 d = 200 µm d = 500 µm

q (W

.m-2)

r (m) Figure (FIII-39) : Profils radiaux de Flux d’énergie vers la cathode pour d = 200 µm (carrés) et d =

500 µm (ronds).Calculs effectués dans l’argon avec une cathode en tungstène (I = 200 A)

Page 161: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 163 -

Pour mieux comprendre la hausse du flux d’ions vers la cathode pour des rayons

compris entre 4 mm et 5.5 mm, les profils radiaux de la valeur absolue du flux d’ions allant

vers la cathode et de la composante qicomp (cf. (EIII-42)) ont été tracés sur la figure (FIII-40)

dans le cas d = 500 µm.

Cette figure permet de voir que les résultats obtenus avec la formule (EIII-42) sont

très proches de qi. Si on regarde le profil de chute de tension cathodique obtenu sur la figure

(FIII-31), celui-ci a son maximum en r = 6.3 mm. Ainsi de la même manière que dans la

partie V.C.1. on peut conclure que la densité de charge, plus importante entre 5 et 6 mm, va

créer un minimum de flux d’énergie en dehors de l’axe de la décharge.

0.0 2.0x10-3 4.0x10-3 6.0x10-3 8.0x10-3 1.0x10-2105

106

107

108

-qi -(Us+Ei) ji

-qi, -

(Us+

E i) j i

(W.m

-2)

r (m) Figure (FIII-40) : Profils des flux d’énergie ionique qi et qicomp à la surface de la cathode. Calcul

effectué dans l’argon avec une cathode en tungstène (I = 200 A)

V.C.2.b) Influence de la température de refroidissement T0

Pour pouvoir étudier l’influence de la température de refroidissement sur le profil de

chute de tension dans la gaine, la température de refroidissement de la cathode T0 a été fixée à

1000 K. Les autres conditions du calcul sont détaillées dans la partie IV.. Les résultats ont été

comparés à ceux obtenus dans le cas de référence.

Page 162: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 164 -

La figure (FIII-41) montre les profils radiaux de la température à la surface de la cathode

pour des températures de refroidissement T0 égales à 2000 K et 1000 K

Sur cette figure, une différence de 50 K peut être constatée entre les maxima de

température. Cette différence passe à plus de 600 K sur le bord de la surface de la cathode

comme le montre la figure (FIII-41).

Ces résultats permettent d’expliquer pourquoi la proportion d’électrons thermoémis

diminue drastiquement dans le cas où on fixe la température de refroidissement à 1000 K (c.f.

(FIII-33).

0.0 2.0x10-3 4.0x10-3 6.0x10-3 8.0x10-3 1.0x10-21.92.02.12.22.32.42.52.62.72.82.93.03.13.2

T0 = 2000K T0 = 1000K

T w (k

K)

r (m) Figure (FIII-41) : Profils radiaux de la température de surface de la cathode (carrés : T0 = 2000 K,

ronds : T0 = 1000 K).Calculs effectués dans l’argon avec une cathode en tungstène (I = 200 A)

La figure (FIII-42) présente les profils du flux d’énergie à la surface de la cathode

calculés en utilisant des températures de refroidissement T0 de 2000 K et 1000 K.

On constate que le flux d’énergie vers la cathode est plus important dans le cas où le

refroidissement est de 1000 K.

Cela s’explique par le fait que la décharge doit fournir plus d’énergie afin que la

température de surface de la cathode soit suffisante pour émettre assez d’électrons et ainsi

assurer la continuité du courant et le chauffage du gaz.

Page 163: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 165 -

0.0 2.0x10-3 4.0x10-3 6.0x10-3 8.0x10-3 1.0x10-2-8x107

-7x107

-6x107

-5x107

-4x107

-3x107

-2x107

-1x107

0

T0 = 2000K T0 = 1000K

q (W

.m-2)

r (m) Figure (FIII-42) : Profils radiaux du flux d’énergie à la surface de la cathode (carrés : T0 = 2000 K,

ronds : T0 = 1000 K). Calculs effectués dans l’argon avec une cathode en tungstène (I = 200 A)

V.C.2.c) Influence du travail de sortie des électrons

L’étude des répercutions de la valeur du travail de sortie des électrons sur le profil de

température de la surface de la cathode va être présentée. La valeur du travail de sortie choisie

est de 3 eV. Une température de refroidissement de 1000 K est utilisée. Les autres conditions

du calcul sont décrites dans la partie IV. Les résultats obtenus avec cette configuration sont

comparés avec ceux obtenus à partir de l’étude utilisant une configuration dont la température

de refroidissement est de 1000 K.

Les profils de la température à la surface de la cathode calculés dans les deux

configurations, décrites ci-dessus, sont exposés sur la figure (FIII-43).

Il est intéressant de voir sur la figure (FIII-43) que la température de la surface de la

cathode, dans le cas où le travail de sortie est de 3 eV, est de 1000 K inférieure à celle obtenue

avec un travail de sortie de 4.55 eV. Ce résultat est en bon accord avec la tendance relevée

dans l’article de Haidar et al [Hai-1]. Cela s’explique par le fait que le point d’équilibre entre

la cathode et le plasma se trouve à une température de surface plus basse dans le cas du

tungstène thorié.

Page 164: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 166 -

0.0 2.0x10-3 4.0x10-3 6.0x10-3 8.0x10-3 1.0x10-21.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2 Ws = 4.55 eV (W) Ws = 3 eV (WTh)

T w (k

K)

r (m) Figure (FIII-43) : Température de surface de la cathode en fonction de la position radiale (carrés :

W, ronds : WTh). Calculs effectués dans l’argon (I = 200 A)

V.C.3. Bilan

Cette partie a permis de montrer que le flux d’énergie apporté par les ions est le terme

prépondérant dans le transfert d’énergie à la cathode. Celui-ci dépend fortement de la densité

de charge à l’interface gaine/pré-gaine. Ainsi dans le cas d’une cathode large on a pu

constater que le minimum du flux d’énergie se trouve toujours en dehors de l’axe. Cependant,

le profil de température de surface de la cathode reste maximum sur l’axe à cause de

l’équilibre qui existe entre le chauffage ionique et le refroidissement de la cathode dû à la

thermoémission.

Page 165: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 167 -

VI. Conclusion

Ce chapitre a permis de présenter le modèle 2D d’interaction entre la cathode et le

plasma que nous avons mis en place.

Dans la première partie nous avons présenté le modèle 2D décrivant les équations de

conservations dans la cathode et dans le corps du plasma.

Dans une seconde partie, les développements ajoutés au modèle d’interaction élaboré

dans le chapitre 2 ont été présentés. Notre modèle a été structuré afin de prendre en compte

l’existence de la zone cathodique dans le calcul du passage du courant à l’interface

plasma/cathode. Pour cela les propriétés de la zone d’ionisation ont été introduites grâce au

calcul de la conductivité électrique hors équilibre dans cette région. Ainsi cette conductivité

hors équilibre tient compte à la fois de l’état de la surface de la cathode mais aussi de l’état du

plasma à l’E.T.L. se trouvant à proximité à l’aide d’une interpolation de la température des

lourds et des électrons dans la pré-gaine. Grâce à ce modèle le passage du courant, sans fixer

la taille de la tache d’accrochage, a pu être décrit.

Dans une troisième partie nous nous sommes focalisés sur trois points afin d’analyser

les résultats obtenus grâce à notre modèle : le couplage électrocinétique cathode/plasma,

l’évolution radiale de la chute de tension dans la gaine et le transfert thermique à la cathode.

La partie portant sur le couplage électrocinétique a mis en avant le fait que le

lien entre la conductivité électrique à deux températures dans la zone

d’ionisation et le courant dépend fortement des conditions du calcul. On a pu

notamment montrer que la longueur de la zone d’ionisation joue un rôle

important au niveau du passage du courant à l’interface plasma/cathode. Il a

également était démontré que lorsque le plasma recouvre complètement la

surface de la cathode, les effets de pointes sont prépondérants.

L’étude du profil de chute de tension au niveau de la cathode a permis de voir

que celui-ci est directement corrélé au rapport entre la densité de courant

thermoémis et la densité de courant totale. Cette étude a permis de montrer que

le choix de la condition aux limites en température à la base de l’électrode joue

beaucoup sur le profil de chute de tension cathodique.

Page 166: Titre : Modélisation de l’interaction entre un arc

Chapitre 3 : Modélisation à deux dimensions

- 168 -

Enfin l’étude du transfert thermique au niveau de la surface de la cathode a

montré que qu’elle que soit la configuration, le maximum de flux d’énergie

vers la cathode se trouve en dehors de l’axe à cause de la présence d’une

densité de charge plus importante pour des distances radiales de l’ordre de 5

mm.

Page 167: Titre : Modélisation de l’interaction entre un arc

Conclusion

- 169 -

Conclusion

Page 168: Titre : Modélisation de l’interaction entre un arc

Conclusion

- 170 -

Page 169: Titre : Modélisation de l’interaction entre un arc

Conclusion

- 171 -

L’objectif de cette thèse a consisté à mettre en place un modèle assurant de manière

auto-cohérente la continuité du courant entre une cathode et une colonne de plasma créée par

un arc électrique. La conservation du courant a ainsi été réalisée grâce à une description

physique des zones se trouvant au proche voisinage de l’électrode : la gaine et la pré-gaine.

Comme nous avons pu le montrer dans le chapitre 1, de nombreuses études existent

sur la représentativité de ces deux zones avec la mise en place de modèles plus ou moins

sophistiqués. Cependant malgré leur degré de complexité, ces modèles se focalisent sur la

description des mécanismes dans la zone au proche voisinage de l’électrode en excluant toute

interaction, ou lien, avec la colonne du plasma ou bien avec l’électrode. Notre travail a donc

consisté dans un premier temps à effectuer une synthèse des principales études de la littérature

avec pour objectif leur incorporation dans une modélisation globale incluant la cathode, la

zone au proche voisinage (gaine et pré-gaine) ainsi que la continuité vers le plasma. Deux

familles principales de théories peuvent être considérées : celle à une température et celle à

deux températures. La famille des modèles à deux températures peut elle-même être

subdivisée en deux sous familles : celle des modèles simplifiés ne modélisant pas la zone

d’ionisation et celle des modèles complets fournissant une description plus ou moins

complexe de cette zone appelée aussi pré-gaine. De ces différentes théories sont ressorties

trois idées principales.

(1) La théorie de Benilov semble la mieux adaptée pour constituer le point de départ

du modèle que nous voulions mettre en place. En effet elle représente la zone de gaine et de

pré-gaine et a fait l’objet d’une adaptation partielle.

(2) Un calcul de composition à deux températures est nécessaire pour la description de

la pré-gaine afin d’obtenir les densités de charges à l’interface gaine/pré-gaine. Pour cela nous

pouvons considérer la température de surface des lourds égale à celle de la surface de la

cathode comme le suggère Coulombe et al [Cou-2] et Zhou et al [Zho-2].

(3) Suivant l’idée avancée dans la théorie de Lowke, la conductivité électrique doit

prendre en compte les phénomènes liés à l’interaction arc/cathode.

Le chapitre 2 a présenté une synthèse des concepts qui sont ressortis de l’étape

bibliographique précédente ainsi que les premières idées permettant l’incorporation de la

physique présente dans ces modèles vers une modélisation globale. Ainsi la première étape a

consisté à reprendre et à développer la théorie présente dans le modèle de Benilov. La

comparaison avec les résultats obtenus par l’auteur nous a montré des désaccords que nous

Page 170: Titre : Modélisation de l’interaction entre un arc

Conclusion

- 172 -

avons attribués à des différences sur les données de base utilisées telle que la valeur du

coefficient de recombinaison à trois corps. Cependant les écarts observés et expliqués par le

choix de paramètres ou de données de base différentes ont pu être levés par l’amélioration de

nos développements. L’objectif ici n’a pas été de retrouver les résultats de l’auteur mais

d’apporter les améliorations nécessaires à l’utilisation de la théorie proposée dans un couplage

complet cathode/colonne de plasma. Ainsi des changements ont été amenés, dont les

principaux sont cités ici :

(1) Un calcul de la composition à deux températures du plasma d’argon à l’interface

gaine/pré-gaine a été réalisé à partir des lois de Saha modifiées définies par Van de Sanden et

al [Van-1].

(2) Le flux d’électrons thermoémis a été explicité et le phénomène d’émission

secondaire a été introduit.

(3) La densité de charges à l’interface pré-gaine/plasma provient d’un calcul à

l’équilibre thermodynamique.

Ce modèle a ensuite été validé pour des intensités de quelques ampères. Comme nous l’avons

montré au cours de ces travaux, différents paramètres d’entrée sont possibles dans le modèle

utilisant la théorie mise en avant par Benilov. Cependant, dans le but d’incorporer cette

physique dans un modèle « global », sous entendu dans lequel la conservation du courant

serait assurée de l’entrée dans la cathode jusqu’à son entrée dans l’anode, l’utilisation de la

densité de courant comme variable principale s’avérait obligatoire. La faisabilité de

l’utilisation de cette grandeur a donc été démontrée, et le modèle adapté afin d’utiliser ce

paramètre comme unique grandeur d’entrée.

Enfin la dernière étape a consisté à montrer la faisabilité de l’adaptation du modèle

proposé dans une représentation d’arc transféré en deux dimensions et à effectuer une étude

paramétrique des principaux paramètres et variables régissant la zone cathodique. Ainsi ce

chapitre a été découpé en différentes étapes :

(1) Le modèle magnétohydrodynamique de la colonne ainsi que la prise en compte de

la cathode au travers des équations de conservation (électromagnétique et thermique) ont été

tout d’abord présentés.

(2) Les modifications et les développements supplémentaires à l’utilisation du modèle

dans un code à deux dimensions ont été détaillés.

(3) Les principaux résultats obtenus sont exposés au travers d’une étude paramétrique

et comparés à une configuration test servant de base aux discussions. Les résultats obtenus

Page 171: Titre : Modélisation de l’interaction entre un arc

Conclusion

- 173 -

grâce à notre modèle ont été regroupés en trois parties. Nous présentons ici les conclusions

essentielles:

Le couplage électrocinétique cathode/plasma a permis de montrer que la

longueur de la zone d’ionisation et la largeur de la cathode ont un effet

prépondérant sur la sortie du courant. La longueur de la zone d’ionisation ou

pré-gaine a été caractérisée pour deux épaisseurs 200 et 500 μm. Deux

dimensions de cathode ont été étudiées. Celles-ci correspondent à deux

configurations différentes : l’une où l’accrochage n’occupe qu’une partie de la

surface en contact avec la gaine, la seconde où l’accrochage est de dimension

identique au rayon de l’électrode. Ainsi nous avons pu montrer la sensibilité

des résultats à ces deux paramètres, notamment sur les champs de la densité de

courant qui pouvaient, suivant l’épaisseur de cette gaine, présenter des minima

en dehors de l’axe.

La chute de tension au niveau de la cathode est un paramètre essentiel.

Cependant, le profil de la tension présente des irrégularités que nous avons

commentées. Ces irrégularités sont fortement corrélées au rapport entre la

densité de courant thermoémis et la densité de courant totale. Nous avons

ensuite proposé une formulation pour exprimer la tension moyenne au

voisinage de la cathode, et avons montré la forte sensibilité de la tension à la

condition de refroidissement.

Enfin la dernière partie a porté sur l’étude du transfert thermique du plasma

vers la cathode. Dans cette dernière partie nous avons pu constater que le flux

d’énergie, majoritaire à la surface de la cathode, est celui des ions. Nous avons

pu également remarquer que le minimum du flux d’énergie vers la cathode est

toujours en dehors de l’axe de la décharge qu’elle que soit la configuration à

cause d’une densité de charges plus importante en dehors de l’axe.

Dans les perspectives de ces travaux, plusieurs améliorations ou extensions pourraient

être amenées :

- Nous avons montré la sensibilité des résultats à la température de refroidissement.

Pour s’abstenir de ce paramètre, il serait préférable d’utiliser un coefficient de transfert de

chaleur.

Page 172: Titre : Modélisation de l’interaction entre un arc

Conclusion

- 174 -

- L’épaisseur de la pré-gaine modifie le comportement du plasma avec des effets

visibles jusque dans la colonne. Un calcul de la longueur de la zone d’ionisation devra être

ajouté à notre modèle [Alm-1][Rie-2].

- Au niveau des hypothèses utilisées dans notre modèle figure l’absence de prise en

compte du rayonnement et de l’érosion à la surface de la cathode. Ces deux hypothèses,

étroitement liées, devront être reconsidérées. En effet, sur les bords de la décharge, vers les

basses températures, le rayonnement vers la cathode doit être considéré et cela d’autant plus si

des vapeurs métalliques sont présentes. Ainsi, dans la balance de flux d’énergie à la surface de

la cathode, ces deux contributions devront être rajoutées.

- L’implantation cumulée de notre modèle avec celui de zone anodique de Lago [Lag-

1] permettra d’avoir un modèle réellement auto-cohérent du corps de la cathode au corps de

l’anode. A terme, le modèle pourra être mis en place dans une description tridimensionnelle

de l’arc permettant ainsi d’étudier le positionnement du pied d’arc à la surface de la cathode.

- Les développements présentés manquent d’une validation avec des travaux

expérimentaux à plus fortes intensités du courant électrique. Une mise en place expérimentale

de configurations permettant de valider les développements théoriques présentés devra être

mise en œuvre. Par exemple des mesures expérimentales sur la température de la cathode

pourraient être effectuées (pyrométrie, caméra infrarouge), et une comparaison de la tension

totale aux bornes de l’arc réalisée.

Page 173: Titre : Modélisation de l’interaction entre un arc

Annexes

- 175 -

Annexes

Page 174: Titre : Modélisation de l’interaction entre un arc

Annexes

- 176 -

Page 175: Titre : Modélisation de l’interaction entre un arc

Annexes

- 177 -

Annexe 1 Synthèse des théories

Modèles 2T Modèles 2T simplifiés Modèles

monotherme Hsu Benilov Riemann&schmitz Zhou Coulombe Lowke structure Gaine x x x x x Pré-gaine x x x x x Thermodynamique 1T x 2T x x x x x Flux Ionique x x x x x x Electrons rétrodiffusés x x x x Electrons thermoémis x x x x x Densité de courant J fixée x x J calculée x x x x Interface Gaine/pré-gaine Conservation de l’énergie électronique x x x x Conservation de l’énergie des ions x x Interface cathode/gaine Bilan énergie avec la cathode x x x Dimensions 1D x x x x x x 1D dans une configuration 2D axisymétrique x

Page 176: Titre : Modélisation de l’interaction entre un arc

Annexes

- 178 -

Annexe 2 : Grandeurs utilisées

Argon

0 5 10 15 20 2510-3

10-2

10-1

100

101

ρ Ar (k

g.m

-3)

T (kK)

Figure (FAII-01) : Densité de masse de l’argon [Fau-1]

0 5 10 15 20 250.0

5.0x10-5

1.0x10-4

1.5x10-4

2.0x10-4

2.5x10-4

3.0x10-4

μ Ar (k

g.m

-1.s

-1)

T (kK) Figure (FAII-02) : Viscosité de l’argon [Fau-1]

Page 177: Titre : Modélisation de l’interaction entre un arc

Annexes

- 179 -

5 10 15 20 250.0

2.0x103

4.0x103

6.0x103

8.0x103

1.0x104

1.2x104

C p, A

r (kJ

.kg-1

.K-1)

T (kK) Figure (FAII-03) : Chaleur spécifique de l’argon (1 Atm) [Fau-1]

0 5 10 15 20 25100

101

102

103

104

105

σAr

(S.m

-1)

T (kK)

Figure (FAII-04) : Conductivité électrique de l’argon (1 Atm) [Fau-1]

Page 178: Titre : Modélisation de l’interaction entre un arc

Annexes

- 180 -

0 5 10 15 20 2510-3

10-2

10-1

100

101

κ Ar (W

.m-1.K

-1)

T (kK) Figure (FAII-05) : Conductivité thermique de l’argon (1 Atm) [Fau-1]

0 5 10 15 20 25102

103

104

105

106

107

108

109

1010

1011

ε N,A

r (W

.m-3.S

t-1)

T (kK) Figure (FAII-06) : Coefficient d’émission net de l’argon calculé pour un rayon de 2 mm (1

Atm) [Err-1]

Page 179: Titre : Modélisation de l’interaction entre un arc

Annexes

- 181 -

0 5 10 15 20 25 301020

1021

1022

1023

1024

θ = 1 θ = 2 θ = 3

n e (m

-3)

Te (kK)

Figure (FAII-07) : Densité électronique calculée pour trois valeurs de θ. Plasma d’argon à

la pression atmosphérique.

Page 180: Titre : Modélisation de l’interaction entre un arc

Bibliographie

- 182 -

Tungstène

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.00.0

2.0x106

4.0x106

6.0x106

8.0x106

1.0x107

1.2x107

1.4x107σ W

(S.m

-1)

T (K)

Figure (FAII-08) : Conductivité électrique du tungstène [Han-1]

0 1 2 3 4 50.0

2.0x101

4.0x101

6.0x101

8.0x101

1.0x102

1.2x102

1.4x102

1.6x102

1.8x102

2.0x102

κ W (W

.m-1.K

-1)

T (kK) Figure (FAII-09) : Conductivité thermique du tungstène [Tou-1]

Page 181: Titre : Modélisation de l’interaction entre un arc

Bibliographie

- 183 -

Bibliographie

Page 182: Titre : Modélisation de l’interaction entre un arc

Bibliographie

- 184 -

Page 183: Titre : Modélisation de l’interaction entre un arc

Bibliographie

- 185 -

[Alm-1] Almeida R.M.S, Benilov M.S., Naidis G.V., « Simulation of the layer of non-

equilibrium ionization in a high-pressure argon plasma with multiply-charged

ions », J. Phys. D : Appl. Phys., 33, (2000), 960-967

[Ash-1] Ashcroft N.W., Mermin N.D., « Solid state Physics », Saunders College

Publishing, 1976, ISBN : 0-03-083993-9

[Ben-1] Benilov M.S., « Nonlinear heat structures and arc-discharge electrode spots »,

Phys. Rev. E, 48,1, (1993), 506-515

[Ben-2] Benilov M.S., Marotta A., « A model of the cathode region of atmospheric

pressure arcs », J. Phys. D : Appl. Phys., 28,(1995), 1869-1882

[Ben-3] Benilov M.S., « The ion flux from a thermal plasma to a surface », J. Phys. D :

Appl. Phys., 28, (1995), 286-294

[Ben-4] Benilov M.S., « Multifluid equations of a plasma with various species of

positive ions and the Bohm criterion », J. Phys. D : Appl. Phys., 29, (1996),

364-368

[Ben-5] Benilov M.S., « Theory of a collision-dominated space-charge sheath on an

emitting cathode », J.Phys.D : Appl. Phys., 30, (1997), 1115-1119

[Ben-6] Benilov M.S., « Analysis of thermal non-equilibrium in the near-cathode

region of atmospheric-pressure arcs », J. Phys. D : Appl. Phys, 30, (1997),

3353-3359

[Ben-7] Benilov M.S., Naidis G.V., « Ionization layer at the edge of a fully ionized

plasma », Phys. Rev. E, 57,2, (1998), 2230-2241

[Ben-8] Benilov M.S., « Analysis of ionization non-equilibrium in the near-cathode

region of atmospheric-pressure arcs », J. Phys. D : Appl. Phys., 32, (1999),

257-262

[Ben-9] Benilov M.S., « Theory and modelling of arc cathodes », Plasma Sources Sci.

Technol., 11, (2002), A49-A54

[Ben-10] Benilov M.S., Cunha M.D., « Heating of refractory cathode by high-pressure

arc plasmas :I », J. Phys. D. : Appl. Phys., 35, (2002), 1736-1750

[Ben-11] Benilov M.S., Cunha M.D., « Heating of refractory cathode by high-pressure

arc plasmas :II », J. Phys. D. : Appl. Phys., 36, (2003), 603-614

[Ben-12] Benilov M.S., Cunha M.D., Naidis G.V., « Modelling interaction of

multispecies plasmas with thermionic cathodes », Plasma Souces Sci. Technol.

, 14, (2005) 517-534

Page 184: Titre : Modélisation de l’interaction entre un arc

Bibliographie

- 186 -

[Ben-13] Benilov M.S., Carpaij M., Cunha M.D., « 3D modelling of heating of the

thermionic cathodes by high-pressure arc plasmas », J. Phys. D. : Appl. Phys.,

39, (2006), 2124-2134

[Ben-14] http://www.arc_cathode.uma.pt/tool/index.htm, juin 2007

[Ben-15] Benilov M.S., « Near-Cathode Phenomena in HID Lamps », IEEE Transaction

on industry applications, Vol. 37, n°4, (2001),986-993

[Cou-1] Coulombe S., Meunier J-L., « Arc-cold cathode interactions : parametric

dependence on local pressure », Plasma Sources Sci. Technol., 6, (1997), 508-

517

[Cou-2] Coulombe S., « A model of the electric arc attachement on non-refractory

(cold) cathodes », McGill University, Montréal, Canada, (1997)

[Cou-3] Coulombe S., Meunier J-L., « Themo-field emission : a comparative study»,

J. Phys. D: Appl. Phys., 30, (1997), 776-780

[Dab-1] Dabringhausen L., Lichtenberg S., Mentel J., « Application of a self-

consistent model for HID cathodes and its comparison with the experiment »,

ICPIG XXVI, Vol 2, Greifswald, Germany, (2003), 33-34, ISBN 300-011689-

3

[Dab-2] Dabringhausen L., Nandelstädt D., Luhmann J., Mentel J., « Determination

of HID electrode falls in a model lamp I : Pyrometric measurements », J. Phys.

D : Appl. Phys., 35, (2002), 1621-1630

[Dab-3] Dabringhausen L., Langenscheidt O., Lichtenberg S., Redwitz M., Mentel

J., « Different modes of arc attachement at HID cathodes : simulation and

comparison with measurements », J. Phys. D : Appl. Phys., 38, (2005), 3128-

3142

[Del-1] Delalondre C., « Modélisation aerothermodynamique d’arcs électriques a

fortes intensité avec prise en compte du déséquilibre thermodynamique local et

du transfert thermodynamique local et du transfert thermique à la cathode »,

Thèse de doctorat, Université de Rouen, 1990

[Err-1] Erraki A., « Etude du transfert radiatif dans les plasmas thermiques :

application au SF6 et au mélange argon-fer », Thèse de l’Université Paul

Sabatier n°3447, Toulouse, (1999).

[Fau-1] Fauchais P., Boulos M. I., Pfender E., « Thermal Plasmas-Fundamentals and

applications vol 1, (New York :Plenum), ISBN 0306446073

Page 185: Titre : Modélisation de l’interaction entre un arc

Bibliographie

- 187 -

[Fle-1] Flesch P., Neiger M., « Numerical simulation of dc high-pressure discharge

lamps including electrodes », J. Phys. D : Appl. Phys., 35, (2002), 1681-1694

[Fre-1] Freton P., Gonzalez J.J., Gleizes A., « Comparison between a tow-and a

three-dimensional arc plasma configuration », J. Phys. D : Appl. Phys., 33,

(2000), 2442-2452

[Gir-1] Girard R., «Modélisation bi-dimensionnelle d’un arc de SF6 en extinction, en

déséquilibre thermique et chimique », Thèse de doctorat, Université Paul

Sabatier, Toulouse III, 2000.

[God-1] Godin D., Trépanier J.Y., 1999 Proc. 14th International Symp. on Plasma

Chemistry (Praha, Czech Republic) vol. 1, p239

[Gon-1] Gonzalez J-J, Freton P., Masquère M., « Experimental quantification in

thermal plasma medium of the heat flux transferred to an anode material », J.

Phys. D : Appl. Phys., 40, (2007), 5602-5611.

[Hai-1] Haidar J., Farmer A.J., « surface temperature measurements for tungsten-

based cathodes of high-current free-burning arcs », J. Phys. D : Appl. Phys. 28,

(1995), 2089-2094

[Hai-2] Haidar J., « Local thermodynamic equilibrium in the cathode region of a free

burning arc in argon », J. Phys. D : Appl. Phys., 28, (1995), 2494-2504

[Han-1] HANDBOOK OF CHEMISTRY, weast, 67th edition, 1986-1987, CRC

press

[Hin-1] Hinnov E., Hirschberg J.G., « Electron-ion recombination in dense

plasmas », Phys. Rev., 125, (1962), 795

[Hsu-1] Hsu K.C., Pfender E., « Analysis of the cathode region of a free-burning high

intensity argon arc », J. Appl. Phys., 54, 7, (1983), 3818-3824

[Hsu-2] Hsu K.C., « A self-consistent model for the high intensity free-burning argon

arc », Thèse de doctorat, Université du Minnesota, (1982)

[Hsu-3] Hsu K.C., Etamadi K., Pfender E., « Study of a free-burning high-intensity

argon arc », J. Appl. Phys.,54,3,(1982), 1293-1301

[Jos-1] Josso T., Jouin H., Harel C., Gayet R., “Enhancement of cathodic electronic

emission by slow positive ions in high-pressure arcs”, J. Phys. D: Appl. Phys.,

31, (1998), 996-1008

[Jüt-1] Jüttner B., « Cathode spots of electric arcs », J. Phys. D : Appl. Phys., 34,

(2001), R103-R123

Page 186: Titre : Modélisation de l’interaction entre un arc

Bibliographie

- 188 -

[Lag-1] Lago F., Gonzalez J.J., Freton P. Gleizes A., « A numerical modelling of an

electric arc and its interaction with the anonde : Part I. The tow-dimensional

model, J. Phys. D : Appl. Phys., 37, (2004), 883-897

[Lag-2] Lago F., « Modélisation de l’interaction entre un arc électrique et une surface :

application au foudroiement d’un aéronef. », Thèse de doctorat, Université Paul

Sabatier, Toulouse III, (2004)

[Li-1] Li H-P., Pfender E., Chen X., « Application of Steenbeck’s minimum

principle for three-dimensional modelling of DC arc plasma torches », J. Phys.

D : Appl. Phys., 36, (2003), 1084-1096

[Li-2] Li H-P., Benilov M.S., Effect of a near cathode sheath on heat transfer in high-

pressure arc plasmas”, J. Phys. D: Appl. Phys., 40, (2007), 2010-2017

[Low-1] Lowke J.J., Morrow R., Zhu P., Haidar J., Farmer A.J.D., Haddad G.N.,

« The physics of free burning arc and their electrodes », J. of High

Temperature Chem. Processes, 1, (1992), 549-556

[Low-2] Lowke J.J., Morrow R., Haidar J., « A simplified unified theory of arcs and

their electrodes », J.Phys.D : Appl. Phys., 30, (1997), 2033-2042

[Low-3] Lowke J.J., Quartel J.C., « Use of Transport coefficients of calculate

properties of electrode sheaths of electric arcs », Aust. J. Phys., 50, (1997),

539-552

[Low-4] Lowke J.J., Kovitya P., Schmidt H P, « Theory of free-burning arc columns

including the influence of the cathode », J. Phys. D : Appl. Phys., 25, (1992)

1600-1606

[Luh-1] Luhmann J., Nandelstädt D., Barzik A., Mentel J., « Measurment of the

cathode fall in a high pressure argon model lamp », ICPIG XXVI, Vol 1,

Greifswald, Germany, (2003),13-14, ISBN 300-011689-3

[Luh-2] Luhmann J., Lichtenberg S., Langenscheidt O., Benilov M.S., Mentel J.,

« Determination of HID electrode falls in a model of lamp II : Langmuir-probe

measurements », J. Phys. D : Appl. Phys., 35, (2002), 1631-1638

[Mac-1] Mackeown S.S., « The cathode drop in an electric arc », Phys. Rev., 34,

(1929), 611-614

[Mas-1] Masquère M., « Etude du transfert d’énergie entre un arc électrique et un

matériau », Thèse de doctorat, Université Paul Sabatier, Toulouse III, (2005)

[Mit-1] Mitchner M., Kruger C.H. Jr, « Partially Ionized Gases », (1973), New

York : Wiley

Page 187: Titre : Modélisation de l’interaction entre un arc

Bibliographie

- 189 -

[Mor-1] Morrow R., Lowke J.J., « A one-dimensional theory for the electrode sheaths

of electric arcs », J. Phys. D : Appl. Phys., 26, (1993), 634-642

[Nan-1] Nandelstät D., Luhmann J., Mentel J., « Measuring the power losses of

thermionic arc cathode », », ICPIG XXVI, Vol 1, Greifswald, Germany,

(2003),15-16, ISBN 300-011689-3

[Nan-2] Nandelstädt D., Redwitz M., Dabringhausen L., Luhmann J., Lichtenberg

S., Mentel J., « Determination of HID electrode falls in a model lamp III :

Results and comparison with theory », J. Phys. D :Appl. Phys., 35, (2002),

1639-1647

[Nie-1] Nielsen T., Kaddani A., Benilov M.S., « Model for arc cathode region in a

wide pressure range », J. Phys. D : Appl. Phys., 34, (2001), 2016-2021

[Pai-1] Paik S., Huang P.C., Heberlein J., Pfender E., « Determination of the arc-

root position in a DC plasma torch », Plasma Chem. and Plasma Proc., 13, 3,

(1993), 379-397

[Pat-1] Patankar S.V., « Numerical Heat Transfer and Fluid Flow », Mc Graw Hill

Company, (1980), ISBN 0891165223

[Pau-1] Paul K. C., Takemura T., Hiramoto T., Erraki A., Dawson F., Zissis G.,

Gonzalez J-J., Gleizes A., Benilov M.S., Lavers J.D., « Self-Consistent

model of H.I.D. Lamp for design Applications », IEEE Transaction on Plasma

Science, 34,4,(2006), 1536-1547

[Phe-1] Phelps A.V., Petrović Z. Lj., « Cold-cathode discharges and breakdown in

argon : surface and gas phase production of secondary electrons », Plasma

Sources Sci. Technol., 8, (1999), R21-R44

[Pot-1] Potapov A.V. ,« Chemical equilibrium of mutitemperature systems », High

Temp., 4, (1966), 48-51

[Ret-1] Rethfeld B., Wendelstorf J., Klein T., Simon G., « A self-consistent model

for the cathode fall region of an electric arc », J. Phys. D : Appl. Phys., 29,

(1996), 121-128

[Rie-1] Riemann K-U., « The Bohm criterion and sheath formation », J. Phys. D :

Appl. Phys., 24, (1991), 493-518

[Rie-2] Riemann K-U., « Consistent analysis of a weakly ionized plasma and its

boundary layer », J. Phys. D : Appl. Phys., 25, (1992), 1432-1442

Page 188: Titre : Modélisation de l’interaction entre un arc

Bibliographie

- 190 -

[Rie-3] Riemann K-U., « The Bohm criterion and boundary conditions for a

multicomponent system », IEEE Transaction on plasma science, 23, 4, (1995),

709-716

[San-1] Sansonnens L., Haidar J., Lowke J.J., « Prediction of properties of free

burning arcs including effects of ambipolar diffusion », J. Phys. D : Appl.

Phys., 33, (2000), 148-157

[Sch-1] Schmitz H., Riemann K-U., « Consistent analysis of the boundary layer of a

Saha plasma », J. Phys. D : Appl. Phys., 34, (2001), 1193-1202

[Sch-2] Schmitz H, Riemann K-U, « Analysis of the cathodic region of atmospheric

pressure discharges », J. Phys. D : Appl. Phys., 35, (2002), 1727-1735

[Spa-1] Spataru C., Teillet-Billy D., Gauyacq J. P., Testé P., Chabrerie J. P., “Ion-

assisted electron emission from a cathode in an electric arc”, J. Phys. D: Appl.

Phys., 30, (1997), 1135-1145

[Spe-1] Speckhofer G., Schmidt H.-P., « Experimental and theroretical investigation

of high-pressure arcs. Part II : the magnetically deflected arc (three-

dimensional modeling) », IEEE Trans. on Plasma Science, 24, 4, (1996), 1239-

1248.

[Stö-1] Stöcker H., Jundt F., Guillaume G., « Toute la physique », editions Dunod,

ISBN :2 10 003942 3

[Teu-1] Teulet P., « Etude des écarts à l’équilibre radiatif et thermique dans les

plasmas air et air sodium. Application au diagnostic spectroscopique, Thèse n°

3298, 1998

[Ton-1] Tonks L., Langmuir I., « A general theory of plasma of an arc », Physical

Review, 34, (1929), 876-922

[Tou-1] Touloukian Y.S., Thermophysical properties of matter, The TERS Data

Series, Vol. 1, (1970), ISBN : 0306670208

[Vac-1] Vacquier S., « L’arc électrique », éd. Eyrolles, ISBN : 2-212-05822-5

[Val-1] Valentini H-B., Herrmann F., « Boundary value problems for multi-

component plasmas and a generalized Bohm criterion », J. Phys. D : Appl.

Phys., 29, (1996), 1175-1180

[Van-1] Van de Sanden M.C.M., Schram P.P.J.M., Peeters A.G., « Thermodynamic

generalization of the Saha equation for a two temperature plasma », Phys. Rev.

A, 40, 9, (1989), 5273-5276

Page 189: Titre : Modélisation de l’interaction entre un arc

Bibliographie

- 191 -

[Ver-1] Versteeg H.K., Malalasekera W., «An introduction to computational fluid

dynamics: The finite volume methode », Longman-Edinburgh, (1996), ISBN 0-

582-21884-5

[Yok-1] Yokomizu Y., Matsumura T., Henmi R., Kito Y., « Total voltage drops in

electrode fall regions of SF6, argon and air arcs in current range from 10 to

20000A », J. Phys. D :Appl. Phys., 29, (1996), 1260-1267

[Zho-1] Zhou X., Heberlein J., « Theoretical study of factors influencing arc erosion

of cathode », IEEE Transaction on components, parckaging and manufacturing

technology, Part A, 17, 1, (1994), 107-112

[Zho-2] Zhou X., Heberlein J., « Analysis of the arc-cathode interaction of free-

burning arcs », Plasma Souces Sci. Technol.,3, (1994), 564-574

[Zhu-1] Zhu P., Lowke J.J., Morrow R., « A unified theory of free burning arcs,

cathode sheaths and cathodes », J. Phys. D : Appl. Phys, 25, (1992), 1221-1230

Page 190: Titre : Modélisation de l’interaction entre un arc

Bibliographie

- 192 -

Page 191: Titre : Modélisation de l’interaction entre un arc

TITLE: Modeling of the arc cathode interaction

SUMMARY:

This work deals on the study and the development of a model describing the

interaction between argon thermal plasma and a tungsten cathode.

A bibliographical study of the different models describing the interaction region is

performed leading to the theory proposed by Benilov as base of our developments.

In a second part, the arc/cathode interaction model has been realized taking into

account secondary emission phenomenon. Then the model has been compared and validated

by experimental results found in the literature. The final aim of this study was to couple the

developed interaction model to a more global modeling describing the electrical conduction in

the cathode bulk, the interaction region (sheath and pre-sheath) and the plasma column. We

expose the rule of different possibilities for the input parameters and we justify the choice of

the current density as main entry.

In a last part, the interaction model has been coupled to a two dimensional coordinate

system model of thermal plasma flow. The current continuity between cathode and plasma

has been assumed using an estimation of the two temperature electrical conductivity in the

pre-sheath. The influence of physical parameters (values of the secondary emission

coefficient, work function…) and geometrical ones on the characteristics of the discharge

(cathode drop voltage, plasma temperature field…) in a free burning arc configuration using

cylindrical cathode has been realized showing the good ability and behavior of the model to a

global thermal plasma description.

KEY WORDS: Cathode, numerical modeling, thermal plasma, 2D, interaction, two

temperature, heat flux, cathodic voltage drop, electrical arc, sheath, pre-sheath.

Page 192: Titre : Modélisation de l’interaction entre un arc

AUTEUR : François CAYLA

TITRE : Modélisation de l’interaction entre un arc électrique et une cathode

DIRECTEURS DE THESE : Jean-Jacques GONZALEZ et Pierre FRETON

LIEU ET DATE DE SOUTENANCE : Toulouse, le 5 Février 2008

RESUME :

Ce travail est relatif à l’étude et à la mise en place d’un modèle décrivant l’interaction

entre un plasma thermique d’argon à la pression atmosphérique et une cathode en tungstène.

Après une étude bibliographique sur les différents modèles décrivant la zone d’interaction,

la théorie proposée par Benilov a été retenue comme base de nos développements.

Dans une seconde partie, le modèle d’interaction arc/cathode est amélioré notamment par

la prise en compte de l’émission secondaire. Le modèle est ensuite confronté et validé par des

résultats expérimentaux issus de la littérature. Notre objectif était de coupler ce modèle

d’interaction à une modélisation plus globale représentant aussi bien le passage du courant

dans la cathode, la zone d’interaction (gaine et pré-gaine) que la colonne du plasma. Nous

exposons les différents paramètres d’entrée possibles et justifions le choix de la densité de

courant.

Dans une dernière partie, le modèle d’interaction développé est couplé à un modèle

bidimensionnel (2D) de plasma thermique en écoulement. Le passage du courant entre la

cathode et le plasma est assuré grâce à une estimation de la conductivité électrique à deux

températures dans la pré-gaine. L’influence de paramètres physiques (valeurs du coefficient

d’émission secondaire, du travail de sortie,…) et géométriques sur les grandeurs

caractéristiques de la décharge (tension cathodique, champ de température dans le plasma,…)

dans une configuration d’arc libre avec une cathode cylindrique a pu être étudiée.

MOTS-CLEFS : Cathode, modélisation numérique, plasma thermique, 2D, interaction, deux

températures, flux d’énergie, chute de tension cathodique, arc électrique, gaine, pré-gaine.

PHYSIQUE ET INGENIERIE DES PLASMAS DE DECHARGE

LABORATOIRE PLASMA ET CONVERSION D’ENERGIE, UMR 5213

118 ROUTE DE NARBONNE 31026 TOULOUSE CEDEX 9

Equipe Arc Electrique et Procédés Plasma Thermique