74
TELEKOMUNIKACIONI SISTEMI (3.1) Školska 2007/2008. god.

Tk Sistemi 3-1

Embed Size (px)

Citation preview

Page 1: Tk Sistemi 3-1

TELEKOMUNIKACIONI SISTEMI (3.1)

Školska 2007/2008. god.

Page 2: Tk Sistemi 3-1

2

Pregled kursa Pregled kursa Uvod: istorija telekomunikacija, uvodni pojmovi o TK

mrežama, model komunikacionog sistema, izobličenja u prenosu signala, šumovi

Kablovski sistemi veza (žične linije veza) Analogni sistemi prenosaAnalogni sistemi prenosa (prvi deo) (prvi deo) Digitalni sistemi prenosa (PDH, SDH) Telefonska mreža, IDN, ISDN, signalizacija no. 7 Frame Relay tehnologija ATM tehnologija i B-ISDN xDSL (HDSL, ADSL, VDSL) Lokalne računarske mreže (LAN) Internet i IP tehnologija Multiservisne IP mreže; VoiP, IP televizija

Page 3: Tk Sistemi 3-1

3

Analogni sistemi prenosaAnalogni sistemi prenosa

Analogni sistemi, bez obzira na prednosti digitalnih sistema, su u značajnoj meri još uvek u upotrebi.

Razlog je što su analogni sistemi ranije uvedeni u prvom redu da zadovolje potrebe prenosa govora, muzike i slike.

Analogni sistemi se koriste za: niskofrekventni (NF) prenos i visokofrekventni (VF) prenos. VF omogućava primenu frekvencijskog multipleksiranja kanala (FDM – Frequency Division Multiplexing).

Page 4: Tk Sistemi 3-1

4

PorePoređenje NF, VF i PCM po đenje NF, VF i PCM po ceniceni

Poređenje je vršeno za sisteme za prenos govora. Kao mera Poređenje je vršeno za sisteme za prenos govora. Kao mera poređenja je uzeta cena sistema po jedinici dužine.poređenja je uzeta cena sistema po jedinici dužine.

Page 5: Tk Sistemi 3-1

5

PorePoređenje NF, VF i PCM po đenje NF, VF i PCM po ceniceni

Za veze dužine do 10 km NF prenos je isplatljiviji od VF prenosa.

Na većim daljinama je jeftiniji VF prenos. Cena PCM prenosa je data za slučaj potpuno

digitalne mreže sa digitalnim centralama. Uvek je jeftiniji od analognog VF prenosa. NF prenos je jeftiniji od digitalnog samo na kraćim rastojanjima do 5km.

Page 6: Tk Sistemi 3-1

6

Digitalizacija – kada?Digitalizacija – kada?

Zamena postojećih analognih sistema digitalnim zavisi od toga da li su stari sistemi još komercijalno isplativi.

Novi sistemi koji se ugrađuju za veze među centralama, na magistralnim pravcima i u opsluživanju velikog saobraćaja, su digitalni.

Page 7: Tk Sistemi 3-1

7

Elementi telekomunikacionih Elementi telekomunikacionih sistemasistema Telekomunikacioni sistemi se realizuju

međusobnim povezivanjem većeg broja elemenata.

Svaki od tih elemenata obavlja neku posebnu funkciju u obradi i prenosu signala.

Ovi funkcionalni elementi, po svojoj nameni i karakteristikama, su uglavnom standardizovani.

Neki od njh su identični kod analognih i digitalnih sistema prenosa, a neki su posebni. Takođe, postoje posebni elementi vezani za konkretne žične, optičke i radio linije veza.

Page 8: Tk Sistemi 3-1

8

Električni filtri – uvod (1)Električni filtri – uvod (1)

Filtar je element ili sistem koji na određeni unapred propisani način vrši konverziju veličina na svojim ulazima u veličine na svojim izlazima

Cilj: umanjiti neželjena svojstva ulaznih veličina

zadržati ili istaći željena svojstva Električni filtar je sistem čije su ulazne i izlazne veličine

električni signali Njegova funkcija je da na propisani način promeni

karakteristike spektra ulaznog signala Termin "električni" odnosi se na karakter signala koji filtar

obrađuje (ne zavisi od načina realizacije)

Page 9: Tk Sistemi 3-1

9

ElektriElektriččni filtrini filtri – uvod (2) – uvod (2)

Po brojnosti i raznovrsnosti karakteristika, najbrojniji element telekomunikacionih sistema

U idealnom slučaju, filtar od svih signala, koji dolaze na njegov ulaz propušta bez slabljenja signale određenih frekvencija, a signale koji nemaju te frekvencije beskonačno slabi, odnosno ne propušta.

Realno, filtar će za neke frekvencije imati dovoljno malo Realno, filtar će za neke frekvencije imati dovoljno malo slabljenje, a za neke dovoljno veliko slabljenje. slabljenje, a za neke dovoljno veliko slabljenje. Takođe, Takođe, na granici propusni-nepropusni opseg, slabljenje filtra se na granici propusni-nepropusni opseg, slabljenje filtra se neće naglo promeniti. Ta promena će se izvršiti u nekom neće naglo promeniti. Ta promena će se izvršiti u nekom manjem opsegu frekvencija. Ukoliko je taj opseg manji, manjem opsegu frekvencija. Ukoliko je taj opseg manji, filtar je selektivniji.filtar je selektivniji.

Page 10: Tk Sistemi 3-1

10

Funkcije filtaraFunkcije filtara

Izdvajanje dela spektra signala koji će se prenositi iz celokupnog spektra signala

Odvajanje jednog bočnog opsega posle modulacije Odvajanje signala u svom osnovnom (izvornom) opsegu

frekvencija od svih ostalih signala posle demodulacije Izdvajanje jednog kanala iz grupe kanala koji se zajedno

prenose Izdvajanje grupe kanala iz veće grupe kanala Izdvajanje signala jedne, tačno određene, frekvencije od

svih ostalih signala Nepropuštanje pojedinih signala Popravka amplitudske karakteristike sistema Popravka fazne karakteristike sistema

Page 11: Tk Sistemi 3-1

11

Realizacije filtaraRealizacije filtara

Pasivni filtriPasivni filtri – realizuju se pomoću pasivnih elemenata Filtri sa koncentrisanim parametrimaFiltri sa koncentrisanim parametrima: elementi ovih filtara su

kalemovi, kondenzatori, idealni transformatori i otpornici Najrasprostranjeniji su LC filtri (sastavljeni od kalemova i

kondenzatora) – najviše se koriste u multipleksnim uređajima. Kombinacija kalema i kondenzatora predstavlja oscilatorno kolo – može biti redno ili paralelno

RC filtri čiji su elementi otpornici i kondenzatori pretežno se primenjuju kao specijalna kola pri prenosu impulsa

Filtri sa raspodeljenim parametrimaFiltri sa raspodeljenim parametrima: elementi ovih filtara su delovi vodova, rezonantne šupljine i dr. Koriste se u mikrotalasnoj tehnici

Aktivni filtriAktivni filtri – pored pasivnih elemenata koriste bar jedan aktivni generator struje i napona

Page 12: Tk Sistemi 3-1

12

Kalemovi i kondenzatoriKalemovi i kondenzatori

Kalem ima impedansu Z=r+jZ=r+jωωLL, gde je L induktivnost kalema, a r otpornost bakarnih namotaja od kojih je kalem napravljen.

Moduo impedanse je: Za ω=∞ ima beskonačnu vrednost i tada kroz njega ne može da prođe

signal. Za ω=0 moduo impedanse je minimalan i jednak je otpornosti namotaja

r. Kada bi bilo r=0 moduo impedanse bi bio jednak nuli i signal bi prošao kroz kalem bez slabljenja.

Impedansa kondenzatora je Z=1/jZ=1/jωωCC, a moduo impedanse |Z||Z|=1/=1/ωωCC Signali beskonačne frekvencije prolaze bez slabljenja Signali sa frekvencijom jednakoj nuli se beskonačno slabe.

2 2Z = r +(ωL)

Page 13: Tk Sistemi 3-1

13

Redno oscilatorno koloRedno oscilatorno kolo2

21 1Z=r+jωL+ i Z = r + ωL-

jωC ωC

0 01

ω =2πf =LC

01

f =2π LC

•Za rezonantnu frekvenciju moduo impedanse (slabljenje kola) je minimalZa rezonantnu frekvenciju moduo impedanse (slabljenje kola) je minimalaann

•U slučaju da je r=0, za rezonantnu frekvenciju redno oscilatorno kolo ima impedansu jednaku nuli, a za sve druge frekvencije moduo impedanse je beskonačan•Ukoliko je otpornost kalema manja brži je porast slabljenja, filtar je selektivniji

Page 14: Tk Sistemi 3-1

14

Paralelno oscilatorno koloParalelno oscilatorno kolo

Za Za ff00 moduo impedanse (slabljenje) je maksimalan. moduo impedanse (slabljenje) je maksimalan. Kako frekvencija raste, ili opada u odnosu na fo moduo impedanse,

znači i slabljenje signala opada; ukoliko je otpornost kalema manja brži je porast slabljenja,tj. filtar je selektivniji

U slučaju da je r=0, na rezonantnoj frekvenciji impedansa je beskonačna, a na svim drugim jednaka je nuli;

0 01

ω =2πf =LC

01

f =2π LC

2 2

2 2 2

1(r+jωL)

jωC r +(ωL)Z= i Z =

1 (1-ω LC) +(ωrC)(r+jωL)+

jωC

Page 15: Tk Sistemi 3-1

15

Lestvičasti filtri – Lestvičasti filtri – kombinacija rednih i kombinacija rednih i paralelnih oscilatornih kolaparalelnih oscilatornih kola

Redna i paralelna oscilatorna kola se mogu naći u obe grane gornje mreže koja predstavlja filtar. Svako od njih ima drugačiju rezonantnu frekvenciju. Kombinovanjem pojedinačnih rezonantnih frekvencija i slabljenja svakog oscilatornog kola dobijaju se slabljenja prema zadatom gabaritu

N je red filtraN je red filtra; što je N veće slabljenje je bliže idealnom, ali takvo rešenje je složenije i skuplje.

Z1

Z2U1 U2

Z3

Z4

ZN–1

ZN

Page 16: Tk Sistemi 3-1

16

Filtri: Filtri: funkcija prenosa (1)funkcija prenosa (1) Električni filtar je sistem, pa se može definisati kao skup

specifikacija kojima su određeni odnosi između njegovih ulaza i izlaza

Za linearan i vremenski nepromenljiv sistem odnos između ulaza i izlaza sistema definiše se konvolucionim integralom

gde su: h(t) – impulsni odziv sistema; x(t) – ulaz sistema; y(t) – izlaz ili odziv sistema

Fx(t) y(t)

0

( ) ( ) ( )y t h t x t d

Page 17: Tk Sistemi 3-1

17

Filtri: funkcija prenosa (2)Filtri: funkcija prenosa (2)

Laplasovom (Laplace) transformacijom konvolucionog integrala dobija se odnos ulaznog i izlaznog signala u frekvencijskom domenu

gde je H(s) – funkcija prenosa filtraH(s) – funkcija prenosa filtra

Opšti oblik električnog filtra koji se razmatra je električna mreža sastavljena od konačnog broja elemenata koji su: koncentrisani, linearni i vremenski nepromenljivi.

Y(s) H(s) X(s)

Page 18: Tk Sistemi 3-1

18

Filtri: funkcija prenosa (3)Filtri: funkcija prenosa (3)

Za takve sisteme, odnos ulaz-izlaz moguće je definisati diferencijalnom jednačinom N-tog reda oblika:

gde su bi (i=0, N) i aj (j=0, M) realni koeficijenti.

Primenom Laplasove transformacije dobija se:

N M

0 1 N 0 1 MN Mdy d y dx d x

b y+b +...+b =a x+a ...+adt dtdt dt

N M0 1 N 0 1 Mb Y(s) + b sY(s) +...+ b s Y(s) a X(s) + a sX(s) +...+ a s X(s)

Page 19: Tk Sistemi 3-1

19

Filtri: funkcija prenosa (4)Filtri: funkcija prenosa (4) Na osnovu toga, funkcija prenosa je:

Drugim rečima, funkcija H(s) je realna racionalna funkcija kompleksne frekvencije s, koju je moguće prikazati kao količnik dva polinoma sa realnim koeficijentima:

M iiM

0 1 M i=0N N j0 1 N j

j=0

a sa +a s+...+a sY(s)

H(s)= = =X(s) b +b s+...+b s b s

P(s)H(s)=

Q(s)

Page 20: Tk Sistemi 3-1

20

Filtri: funkcija prenosa (5)Filtri: funkcija prenosa (5)

H(s) je moguće prikazati i u sledećem obliku:

gde su soi (i = 1,…,M) koreni polinoma u brojiocu P(s) ili nule prenosne

funkcije, spj (j = 1,…,N) koreni polinoma u imeniocu Q(s) ili polovi

prenosne funkcije, k – realna konstanta jednaka k = aM/bN.

H s k

s s s s s s s s

s s s s s s s sk

s s

s s

oM oM o o

pN pN p p

oii

M

pjj

N( )...

...

1 2 1

1 2 1

1

1

Page 21: Tk Sistemi 3-1

21

Filtri: funkcija prenosa (6)Filtri: funkcija prenosa (6) U oba slučaja koreni mogu biti realni ili kompleksni. Svaki kompleksni koren ima odgovarajući konjugovano

kompleksni par, pa se uparivanjem, H(s) može prikazati u obliku:

ili

H s k

s s s

s s s

oi oi oii r

M

i

r

pj pj pjj t

N

j

t( )

2 2

2 11

2 2

2 11

2

2

H s k

sq

s s

sq

s s

oi

oioi oi

i r

M

i

r

pj

pjpj pj

j t

N

j

t( )

2 2

2 11

2 2

2 11

Page 22: Tk Sistemi 3-1

22

Filtri: funkcija prenosa (7)Filtri: funkcija prenosa (7)

s je kompleksna promenljiva, tj. s=s= +j +j , pa je i funkcija H(s) kompleksna veličina za neki proizvoljni broj s.

U uslovima stacionarnog stanja sinusne pobude, promenljiva s s == j j, pa je funkcija prenosa H(s) H(s) = H= H(j(j ) ).

H(j) se naziva kompleksnom frekventnom karakteristikom filtra

Osnovna funkcija električOsnovna funkcija električnnih filtara sadržana je upravo u ih filtara sadržana je upravo u obliku frekvenobliku frekventne tne karakteristike H(jkarakteristike H(j ). ).

H j H j e j

Page 23: Tk Sistemi 3-1

23

Frekventna karakteristika Frekventna karakteristika filtra (1)filtra (1) Promene koje električni filtar treba da unese u spektar

ulaznog signala najčešće se svode na prigušenje ili eliminaciju određenih nepoželjnih frekvencijskih komponenti tog signala

Za zadati ulazni signal x(t) sa frekvencijskim spektrom X(j):

Spektar izlaznog signala određen je izrazom

X j X j e j x

Y j Y j e H j X jj y

Page 24: Tk Sistemi 3-1

24

Frekventna karakteristika Frekventna karakteristika filtra (2)filtra (2) Za module i faze važe sledeći izrazi:

Modul prenosne funkcije električnog filtra često se izražava u logaritamskom obliku:

() predstavlja logaritamsku meru pojačanja filtra Slabljenje filtraSlabljenje filtra Pored faze (), često se koristi i funkcija grupnog

kašnjenja g() koja se definiše kao:

Y j H j X j

Y X

( ) ( ) ( )

20log H( j ) (dB)

T

d

dg

A ( ) (dB)

Page 25: Tk Sistemi 3-1

25

Primer realizacije pasivnog Primer realizacije pasivnog filtra (1) filtra (1) Zadatak je da se odredi funkcija prenosa filtra drugog

reda sa slike a). Ovaj filtar može se može se predstaviti ekvivalentnim kolom sa slike b), gde je:

C1

C2

R

L

U1 U2

11 2

11

1Ls

LsC sZ (s)= =

1 1+LC sLs+C s

22

22

1R

RC sZ (s)= =

1 1+RC sR+C s

Z1

Z2U1 U2

a)

b)

2 2

1 1 2

U (s) Z (s)H(s)= =

U (s) Z (s)+Z (s)

Page 26: Tk Sistemi 3-1

26

Primer realizacije pasivnog Primer realizacije pasivnog filtra (2) filtra (2) Zamenom izraza za Z1(s) i Z2(s) u izraz za H(s) dobija se:

Gornji izraz se može predstaviti u obliku

gde je:

22 12

21 2 2 1

221

RZ (s) R(1+LC s )1+RC s

H(s)=Ls RZ (s)+Z (s) Ls(1+RC s)+R(1+LC s )+

1+RC s1+LC s

22 2

1 01

p2 221 2p

p1 2 1 2

1s

LC s +ΩCH(s)= k

ΩC C 1 1s + s+Ωs s

qR(C +C ) L(C C )

1 1 20 p p p

1 2 1 21 1 2

C 1 1 R C +Ck= ; ; ; q =R

C C C +C LLC L(C C )

Page 27: Tk Sistemi 3-1

27

Primer realizacije pasivnog Primer realizacije pasivnog filtra (3) filtra (3) Za vrednosti elemenata R = 1 k, C1 = C2 = 1 nF

i L = 0.5 mH, važi:

Funkcija prenosa je:

Nule funkcije prenosa su:

Polovi funkcije prenosa su:

2 12

2 6 121 s +2 10

H(s)=2 s +0.5 10 s+10

p2 12 2 12 60 p

p

1k= ; 2 10 ; 10 ; 0.5 10

2 q

601,2

s j 2 10

6 6p1,2

1 15s 10 j 10

4 4

Page 28: Tk Sistemi 3-1

28

Primer realizacije pasivnog Primer realizacije pasivnog filtra (4) filtra (4) Zamenom s = j u funkciju prenosa H(s) dobija se

kompleksna frekventna karakteristika filtra:

Amplitudno frekvencijska karakteristika je moduo gornjeg izraza:

2 20

p2 2p

p

Ω ΩH(j )=k

ΩΩ Ω +j

q

2 20

22 p2 2

pp

Ω ΩH(j ) =k

Ω Ωq

Page 29: Tk Sistemi 3-1

29

Primer realizacije pasivnog Primer realizacije pasivnog filtra (5)filtra (5)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

105 10 6 107

|H(j )|

0

0.2

0.4

0.6

0.8

1

1.2

1.4

105105 10 610 6 107107

|H(j )||H(j )|

Za vrednosti elemenata R = 1 k, C1 = C2 = 1 nF, L = 0.5 mH

Page 30: Tk Sistemi 3-1

30

Tipovi filtaraTipovi filtara

Filtre je moguće obzirom na oblik frekventne karakteristike podeliti u dve grupe: Selektivni filtri Korektori

Kod selektivnih filtara oblik |H(j)| je takav da je moguće jasno razlikovati frekvencijske opsege u kojima je ulazni signal oslabljen (prigušen) od onih u kojima je on propušten.

Page 31: Tk Sistemi 3-1

31

Selektivni filtri (1)Selektivni filtri (1)

Propusni opseg filtra Opseg frekvencija u kome amplitudno frekvencijska

karakteristika ima vrednost približno jednaku 1 Komponente pobudnog signala čije su frekvencije

unutar tog opsega pojavljuju na izlazu filtra sa približno istom amplitudom kao i na ulazu.

Nepropusni opseg filtra Opseg frekvencija u kome je amplitudno frekvencijska

karakteristika približno jednaka nuli, Frekvencijske komponente ulaznog signala koje se

nalaze unutar tog opsega nisu propuštene na izlaz.

Page 32: Tk Sistemi 3-1

32

Selektivni filtri (2)Selektivni filtri (2)

Amplitudno frekvencijska karakteristika |H(j)| je funkcija bez diskontinuiteta, pa je prelaz između propusnog i nepropusnog opsega kontinuiran.

Prelazni opseg filtra Opseg frekvencija na prelazu između propusnog i

nepropusnog opsega U zavisnosti od položaja propusnog i nepropusnog opsega

na frekvencijskoj osi, moguće je razlikovati 4 osnovna tipa selektivnih filtara.

Page 33: Tk Sistemi 3-1

33

Osnovni tipovi selektivnih Osnovni tipovi selektivnih filtara (1)filtara (1) Niskopropusni filtar (NF, Low-pass)

Propusni opseg: 0 < < 1

Nepropusni opseg 2 < < Uslov: 1 < 2

|H(j|

1

0 1 2

~~

Page 34: Tk Sistemi 3-1

34

Osnovni tipovi selektivnih Osnovni tipovi selektivnih filtara (filtara (22)) Visokopropusni filtar (VF, High-pass)

Propusni opseg: 2 < < Nepropusni opseg 0 < < 1

Uslov: 1 < 2 |H(j|

1

0 1 2

~~

Page 35: Tk Sistemi 3-1

35

Osnovni tipovi selektivnih Osnovni tipovi selektivnih filtara (filtara (33)) Propusnik opsega (Band-pass)

Propusni opseg: 2 < < 3

Nepropusni opseg 0 < < 1 i 4 < < Uslov: 1 < 2 < 3 < 4

Poseban slučaj – uskopojasni filtar, koji propušta samo uzan opseg oko 2

|H(j|

1

0 32 41

~~~

Page 36: Tk Sistemi 3-1

36

Osnovni tipovi selektivnih Osnovni tipovi selektivnih filtara (filtara (44)) Nepropusnik opsega (Band-stop)

Propusni opseg: 0 < < 1 i 4 < < Nepropusni opseg 2 < < 3

Uslov: 1 < 2 < 3 < 4|H(j|

1

0 32 41

~~~

Page 37: Tk Sistemi 3-1

37

Filtarska skretnica (1)Filtarska skretnica (1) Kombinacijom osnovnih tipova filtara može se izvršiti

realizacija i složenijih funkcija, npr. filtarska skretnica Dvožičnom vezom prostire se u jednom smeru signal čiji

je spektar u opsegu {f1, f2}. Po istoj parici, u suprotnom smeru, prenosi se signal čiji spektar leži u opsegu od {f3, f4}. Razdvajanje ova dva signala vrši filtarska skretnica, koju čine dva filtra propusnika opsega.

Page 38: Tk Sistemi 3-1

38

Filtarska skretnica (2)Filtarska skretnica (2) Opisana funkcija je identična onoj koju vrši račvalica,

samo se ovde radi o signalima visokih frekvencija u različitim opsezima.

Realizacija račvalice pomoću diferencijalnog transformatora za visoke frekvencije je gotovo nemoguća zbog teškoća da se uravnoteži transformator i zbog njegovih gubitaka pri visokim frekvencijama.

Page 39: Tk Sistemi 3-1

39

Filtarski korektoriFiltarski korektori (1) (1)

Za razliku od selektivnih filtara, nemaju jasno definisan propusni i nepropusni opseg

Služe za korekciju frekvencijske karakteristike nekog drugog sistema.

U zavisnosti od toga da li vrše korekciju amplitudne ili fazne karakteristike dele se na: amplitudske korektore i fazne korektore

Page 40: Tk Sistemi 3-1

40

Filtarski korektori (2)Filtarski korektori (2) Amplitudski korektor, AK , ima linearnu faznu

karakteristiku, a njegova amplitudska karakteristika, sabrana sa amplitudskom karakteristikom sistema, treba da obezbedi željenu amplitudsku karakteristiku.

Fazni korektor, FK , najčešće se realizuje kao svepropusnik opsega; amplitudska karakteristika je ravna u celom frekvencijskom opsegu, a njegova fazna karakteristika, sabrana sa faznom karakteristikom sistema treba da obezbedi linearnu faznu karakteristiku.

|H(j|

1

0

Fazni korektor

Page 41: Tk Sistemi 3-1

41

Projektovanje analognih Projektovanje analognih filtara (1)filtara (1) Slabljenje filtra: Idealan filtar imao bi Au propusnom opsegu i Au

nepropusnom opsegu Realno, projektovanje analognog filtra kreće od definicije

zahteva koji taj filtar treba da zadovolji – specifikacije gabarita slabljenjagabarita slabljenja

Gabarit slabljenja definiše: Propusni i nepropusni opseg filtra Najmanje dozvoljeno slabljenje u nepropusnom opsegu Najveće dozvoljeno slabljenje u propusnom opsegu

A 20log H( j ) (dB)

Page 42: Tk Sistemi 3-1

42

Primer gabarita slabljenja Primer gabarita slabljenja filtra filtra Primer gabarita slabljenja propusnika opsega

A((dB)

0

32 41

AMIN

AMAX

Page 43: Tk Sistemi 3-1

43

uskopojasniuskopojasni

BSFBSF

VFVF

BPFBPF

Gabariti Gabariti selektivnih selektivnih filtara filtara NFNF

Page 44: Tk Sistemi 3-1

44

Projektovanje analognih Projektovanje analognih filtara (1)filtara (1) Kod većine postupaka aproksimacije polazi se od

idealne karakteristike propusnika niskih učestanosti (NF) Frekvencijskim transformacijama se ta nisko propusna

karakteristika transformiše željenu karakteristiku: Propusnika visokih učestanosti Propusnika opsega Nepropusnika opsega

Frekvencijska osa prototipa NF filtra je normalizovana na graničnu frekvenciju, c=1.

Page 45: Tk Sistemi 3-1

45

Prototipski analogni NF Prototipski analogni NF filtarfiltar Amplitudska karakteristika idealnog normalizovanog

NF filtra data je izrazom:

|H(j|

1

0 /c1

Propusni opseg

Nepropusni opseg

c

c

1, za 1H(j )=

0, za 1

Page 46: Tk Sistemi 3-1

46

Projektovanje analognih Projektovanje analognih filtara (2)filtara (2) Za filtar zadat funkcijom prenosa H(s) važi:

odnosno:

U postupku aproksimacije pogodno je koristiti karakterističnu funkciju K(s) :

H j H j H j( ) Re ( ) Im ( ) 2 2

H j H j H j( ) ( ) ( )

H jK j

1

1 2

Page 47: Tk Sistemi 3-1

47

Karakteristična funkcija Karakteristična funkcija K(s)K(s) K(s)K(s) je racionalna funkcija kompleksne promenljive ss

|K( j)| treba da bude približno jednak 0 u propusnom opsegu i što veći u nepropusnom opsegu

Krajnji cilj je određivanje funkcije prenosa filtra

Ostvarljivost H(s) Stabilnost H(s)

K sn sd s

( )( )( )

P(s)H(s)=

Q(s)

Page 48: Tk Sistemi 3-1

48

Postupci aproksimacije funkcije prenosa električnih filtara Ciljevi aproksimacije:

Problem aproksimacije svodi se na nalaženje frekvencijske karakteristike koja zadovoljava zahteve za filtar

Sistem mora da bude ostvarljiv, što nižeg reda i stabilan

Tipovi aproksimacija: Batervortova (Butterworth) aproksimacija Čebiševljeva (Chebyshev) aproksimacija Eliptička ili Kauerova (Cauer) aproksimacija i dr.

Page 49: Tk Sistemi 3-1

49

Batervortova Batervortova aproksimacija (1)aproksimacija (1) Karakteristična funkcija je:

gde je N – stepen funkcije prenosa Amplitudska karakteristika filtra je

Ako se granična frekvencija C definiše za slabljenje 3 dB:

K j CNN( ) 2 2 2

H jC

N N

1

1 2 2

2 -2NN C C

1H jΩ C =Ω

2

H jN

CN

1

1 2/

Page 50: Tk Sistemi 3-1

50

Batervortova Batervortova aproksimacija (2)aproksimacija (2)

0 0.5 1 1.5 2 2.5 3-60

-50

-40

-30

-20

-10

020log H(jΩ)N=1

N=6

(dB)

c1

Ravna u propusnom opsegu (bez talasanja)

Page 51: Tk Sistemi 3-1

51

Batervortova Batervortova aproksimacija (3)aproksimacija (3) Na osnovu kvadrata amplitudne karakteristike treba odrediti

H(s) filtra :

Zamenom =s/j dobija se:

Koreni imenioca dobijaju se rešavanjem:

H j H j H j

c

N

22

1

1

H s H ss s s

c

N

kk

N

1

1

12

21

2

1 2 2N Nc

Ns

Page 52: Tk Sistemi 3-1

52

Batervortova Batervortova aproksimacija (4)aproksimacija (4) Polovi funkcije H (s) H (-s) u s ravni su ravnomerno

raspoređeni po kružnici poluprečnika c

Polovi u levoj poluravni pripadaju funkciji prenosa H(s)

/s-ravan

j

c

Page 53: Tk Sistemi 3-1

53

Batervortova Batervortova aproksimacija (5)aproksimacija (5) Uparivanjem konjugovano kompleksnih parova polova

dobija se opšti oblik funkcije prenosa:

Za normalizovani filtar C=1 važi 0k=1, k

H s

Hs q s

Hs s s q s

k k kk

N

N k k kk

N( )/

...

/...

/

( ) /

/

0 20 0

21

2

0

1 22

0 02

1

1 2

1

1

N paran

N nep.

qk

N

kN za

N zak

1

22 1

2

1 21 1 2

sin

,..., /,...,( ) /

,

N paran N nep.

Page 54: Tk Sistemi 3-1

54

Batervortova Batervortova aproksimacija (6)aproksimacija (6) Frekventna karakteristika Batervortovog filtra je

maksimalno ravna (nema talasanja – ripples) u propusnom opsegu i teži nuli u nepropusnom opsegu.

Nagib u nepropusnom opsegu – 20 decibela po dekadi za filtar prvog reda, 40 decibela po dekadi za filtar drugog reda itd.

Zadržava isti oblik za viši red filtara, ali sa oštrijim nagibom (opadanjem) u nepropusnom opsegu.

Page 55: Tk Sistemi 3-1

55

Čebiševljeva aproksimacijaČebiševljeva aproksimacija tipa Itipa I (1) (1) Karakteristična funkcija se definiše kao:

gde je TN() Čebiševljev polinom N-tog reda:

Boljim rasporedom nula kod funkcije TN() postiže se poklapanje s idealnom karakteristikom u više tačaka u propusnom opsegu nego kod Batervortovog filtra

Za Čebiševljeve polinome važi rekurzivna formula :

K j TN N( ) ( ) 2 2 2

T NN ( ) cos( )

cos( )

T T TN N N( ) ( ) ( ) 2 1 2

Page 56: Tk Sistemi 3-1

56

Čebiševljeva aproksimacijaČebiševljeva aproksimacija tipa tipa I (2)I (2) Korišćenjem rekurzivne formule i poznavanjem prva dva

polinoma T0() i T1() lako se nalaze preostali:

T T TN N N( ) ( ) ( ) 2 1 2

TTTTTT

0

1

22

33

44 2

55 3

1

2 14 38 8 116 20 5

( )( )( )( )( )( )

Page 57: Tk Sistemi 3-1

57

Čebiševljeva aproksimacija Čebiševljeva aproksimacija tipa I (tipa I (33)) Amplitudska karakteristika normalizovanog NF filtra sa

Čebiševljevom aproksimacijom data je izrazom:

gde konstanta određuje talasnost Rtalasnost Rpp u propusnom u propusnom

opsegu filtraopsegu filtra

Amplitudska karakteristika filtra je monotono opadajuća funkcija sa porastom frekvencije od 1 prema .

H jT

N

N

( )( )

1

1 2 2

R p 10 1 2log( ) , [dB]Rp1010 1

H jTN

NN N( )

( )

1 1

2 1 , za >> 1

Page 58: Tk Sistemi 3-1

58

Čebiševljeva aproksimacija Čebiševljeva aproksimacija tipa I (tipa I (44))

N=4

0 0.5 1 1.5 2 2.5 3-60

-50

-40

-30

-20

-10

0

N=1

20log H(jΩ)(dB)

Rp=1dB

Page 59: Tk Sistemi 3-1

59

Čebiševljeva aproksimacija Čebiševljeva aproksimacija tipa I (tipa I (55)) Propusni opseg, Rp=1dB

0 0.2 0.4 0.6 0.8 1-1

-0.8

-0.6

-0.4

-0.2

0

N=1

N=4

20log H(jΩ)(dB)

Page 60: Tk Sistemi 3-1

60

Čebiševljeva aproksimacija Čebiševljeva aproksimacija tipa II (1)tipa II (1)

Svojstvo Čebiševljevog filtra tipa I je da minimizira grešku između idealne i realne karakteristike filtra, ali na račun talasnosti u propusnom opsegu

Čebiševljeva aproksimacija tipa II – inverzinverznana Čebiševljeva Čebiševljeva aproksimacijaaproksimacija – ima ravniju karakteristiku u propusnom opsegu, a talasnost se pojavljuje u nepropusnom opsegu

Karakteristična funkcija se definiše kao:

Konstanta Rs određuje talasnost u nepropusnom opsegutalasnost u nepropusnom opsegu

N

2 2N

1H (jΩ) =

11+

ε T (Ω)

Rs10

1ε =

10 -1

Page 61: Tk Sistemi 3-1

61

Čebiševljeva aproksimacija Čebiševljeva aproksimacija tipa II (2)tipa II (2)

N=4

0 0.5 1 1.5 2 2.5 3-60

-50

-40

-30

-20

-10

0

N=1

20log H(jΩ)(dB)

Rs=40dB

Page 62: Tk Sistemi 3-1

62

Eliptička aproksimacija (1)Eliptička aproksimacija (1) Eliptička ili Kauerova aproksimacija karakteriše se

jednakom talasnošću u propusnom i nepropusnom opsegu (equiripple)

Talasnost u svakom od opsega može se podešavati nezavisno

Ova aproksimacija omogućava veoma brzu tranziciju između propusnog i nepropusnog opsega.

gde je RN(, ) racionalna eliptička funkcija N-tog reda

N 2 2N

1H (jΩ)

1+ε R (ε,Ω)

Page 63: Tk Sistemi 3-1

63

Eliptička aproksimacija (2)Eliptička aproksimacija (2)

N=8

0 0.5 1 1.5 2 2.5 3-60

-50

-40

-30

-20

-10

0N=4

20log H(jΩ)(dB)

N=6

Rp=1dB Rs=40dB

Page 64: Tk Sistemi 3-1

64

Eliptička aproksimacija (3)Eliptička aproksimacija (3) Propusni opseg, Rp=1dB, Rs=40dB

20log H(jΩ)(dB)

0 0.2 0.4 0.6 0.8 1-1

-0.8

-0.6

-0.4

-0.2

0

N=4

N=8

N=6

Page 65: Tk Sistemi 3-1

65

Primer gabarita i slabljenja filtra Primer gabarita i slabljenja filtra za odvajanje jednog kanala iz za odvajanje jednog kanala iz grupe telefonskih kanalagrupe telefonskih kanala

Page 66: Tk Sistemi 3-1

66

PorePoređenje aproksimacija za filtar đenje aproksimacija za filtar četvrtog reda, uz uslov četvrtog reda, uz uslov c=1, Rp=1dB i c=1, Rp=1dB i Rs=40dBRs=40dB

0 0.5 1 1.5 2 2.5 3-60

-50

-40

-30

-20

-10

0

20log H(jΩ)

0 0.5 1 1.5 2 2.5 3-60

-50

-40

-30

-20

-10

0

20log H(jΩ)

0 0.5 1 1.5 2 2.5 3-60

-50

-40

-30

-20

-10

0

20log H(jΩ)20log H(jΩ)

0 0.5 1 1.5 2 2.5 3-60

-50

-40

-30

-20

-10

0

Bat

ervo

rto

vaB

ater

vort

ova

Čeb

išev

ljev

a Č

ebiš

evlj

eva

tip

Iti

p I

Čeb

išev

ljev

a Č

ebiš

evlj

eva

tip

II

tip

II

Eli

pti

čka

Eli

pti

čka

Page 67: Tk Sistemi 3-1

67

Aktivni analogni filtri (1)Aktivni analogni filtri (1)

Aktivni filtri koriste bar jedan aktivni generator struje i napona, pored pasivnih elemenata

Korišćenjem aktivnog elementa (tipično operacionog pojačavača) efikasno se utiče na odziv filtra, prvenstveno u prelaznom opsegu između propusnog i nepropusnog opsega filtra.

Time se omogućava korišćenje filtara nižeg reda i eliminiše potreba za induktivnim elementima (značajno se smanjuju dimenzije filtra).

Sve ranije navedene aproksimacije karakteristične funkcije koriste se i pri projektovanju aktivnih filtara.

Page 68: Tk Sistemi 3-1

68

Aktivni analogni filtri (2)Aktivni analogni filtri (2)

SallenSallen--KeyKey filtar je najjednostavniji tip aktivnog filtra NF ili VF filtar drugog reda projektuje se korišćenjem dva

otpornika, dva kondenzatora i jediničnog operacionog pojačavača

Filtri višeg reda dobijaju se kaskadnim vezivanjem osnovnih ćelija

Topologija je poznata i kao naponski kontrolisan izvor napona – VCVS (Voltage Controlled Voltage Source) filtar.

U2

U1

C1 C2

R1 R2

1 nF 1 nF

10 k 10 k

Sallen-Key NF filtar drugog reda

Page 69: Tk Sistemi 3-1

69

Aktivni analogni filtri (3)Aktivni analogni filtri (3)

Ostali tipovi aktivnih filtara:Ostali tipovi aktivnih filtara: Fliege-ovi filtri Filtri sa višestrukom povratnom spregom Filtri sa promenljivom stanja (state variable) Akerberg Mossberg-ovi filtri itd.

Page 70: Tk Sistemi 3-1

70

Uvod u digitalne filtre (1)Uvod u digitalne filtre (1) Digitalni filtriDigitalni filtri – izvršavaju digitalne matematičke operacije

nad signalom; mogu postići bilo koji efekat filtriranja koji se može izraziti kao matematička funkcija ili algoritam

Danas su sastavni element mobilnih telefona, radio prijemnika, stereo prijemnika i drugih telekomunikacionih uređaja

Prednosti digitalnih nad analognim filtrima su brojne: Lako se mogu realizovati performanse koje su značajno bolje od

performansi analognih filtara Za kompleksne operacije filtriranja signala postižu znatno bolji

odnos signal/šum Programabilni; malih dimenzija

Page 71: Tk Sistemi 3-1

71

Uvod u digitalne filtre (2)Uvod u digitalne filtre (2) Projektovanje digitalnih filtara se pretežno zasniva na

brzoj Furijeovoj transformaciji (FFT) Funkcija prenosa linearnog digitalnog filtra izražava se

pomoću z- transformacijez- transformacije:

Bilinearna transformacija – Bilinearna transformacija – transformiše funkciju prenosa H(s)H(s) u kontinualnom vremenskom domenu (analognog filtra) u funkciju H(z)H(z) u diskretnom vremenskom domenu (digitalnog filtra)

1 N0 1 N

1 M1 M

b +b z +...+ b zB(z)H(z)= =

A(z) 1+a z +...+ a z

Page 72: Tk Sistemi 3-1

72

Uvod u digitalne filtre (3)Uvod u digitalne filtre (3) FIR (FFIR (Finite inite IImpulse mpulse RResponseesponse) filtri) filtri – filtri sa konačnim

impulsnim odzivom su klasa digitalnih filtara koja ima samo nule u z-ravni. Ovi filtri su uvek stabilni i imaju linerani fazni odziv

IIR (InfIIR (Infinite inite IImpulse mpulse RResponseesponse) filtri) filtri – filtri sa beskonačnim impulsnim odzivom su klasa digitalnih filtara koja ima i nule i polove u z-ravni. Posledica toga je potencijalni problem sa stabilnošću, kao i nelinearni fazni odziv. Prednost u odnosu na FIR filtre se ogleda u znatno bržem prelazu između propusnog i nepropusnog opsega.

Page 73: Tk Sistemi 3-1

73

Uvod u digitalne filtre (4)Uvod u digitalne filtre (4)

Primer realizacije FIR filtra: Elementi koji unose fiksno kašnjenje T (DELAY) Koeficijenti h0, h1, ..., hn–1

Sabirači (+)

Page 74: Tk Sistemi 3-1

74

Za kraj priče o filtrima ...Za kraj priče o filtrima ... Projektovanje analognih i digitalnih filtara vrši

se efikasno pomoću programskih paketa kao što su: MATHLABMATHLAB MathematicaMathematica FiltersCAD i dr.FiltersCAD i dr.

Primer dizajna filtra pomoću programskog paketa FiltersCAD